ruby-lapack 1.3

Sign up to get free protection for your applications and to get access to all the features.
Files changed (3419) hide show
  1. data/COPYING +56 -0
  2. data/GPL +340 -0
  3. data/README.rdoc +61 -0
  4. data/Rakefile +115 -0
  5. data/dev/common.rb +9 -0
  6. data/dev/defs/cbbcsd +297 -0
  7. data/dev/defs/cbdsqr +196 -0
  8. data/dev/defs/cgbbrd +174 -0
  9. data/dev/defs/cgbcon +114 -0
  10. data/dev/defs/cgbequ +121 -0
  11. data/dev/defs/cgbequb +128 -0
  12. data/dev/defs/cgbrfs +182 -0
  13. data/dev/defs/cgbrfsx +418 -0
  14. data/dev/defs/cgbsv +134 -0
  15. data/dev/defs/cgbsvx +356 -0
  16. data/dev/defs/cgbsvxx +539 -0
  17. data/dev/defs/cgbtf2 +110 -0
  18. data/dev/defs/cgbtrf +109 -0
  19. data/dev/defs/cgbtrs +106 -0
  20. data/dev/defs/cgebak +95 -0
  21. data/dev/defs/cgebal +125 -0
  22. data/dev/defs/cgebd2 +162 -0
  23. data/dev/defs/cgebrd +178 -0
  24. data/dev/defs/cgecon +90 -0
  25. data/dev/defs/cgeequ +107 -0
  26. data/dev/defs/cgeequb +114 -0
  27. data/dev/defs/cgees +169 -0
  28. data/dev/defs/cgeesx +209 -0
  29. data/dev/defs/cgeev +154 -0
  30. data/dev/defs/cgeevx +263 -0
  31. data/dev/defs/cgegs +204 -0
  32. data/dev/defs/cgegv +261 -0
  33. data/dev/defs/cgehd2 +115 -0
  34. data/dev/defs/cgehrd +136 -0
  35. data/dev/defs/cgelq2 +89 -0
  36. data/dev/defs/cgelqf +113 -0
  37. data/dev/defs/cgels +157 -0
  38. data/dev/defs/cgelsd +211 -0
  39. data/dev/defs/cgelss +156 -0
  40. data/dev/defs/cgelsx +155 -0
  41. data/dev/defs/cgelsy +188 -0
  42. data/dev/defs/cgeql2 +91 -0
  43. data/dev/defs/cgeqlf +116 -0
  44. data/dev/defs/cgeqp3 +127 -0
  45. data/dev/defs/cgeqpf +118 -0
  46. data/dev/defs/cgeqr2 +89 -0
  47. data/dev/defs/cgeqr2p +89 -0
  48. data/dev/defs/cgeqrf +114 -0
  49. data/dev/defs/cgeqrfp +114 -0
  50. data/dev/defs/cgerfs +164 -0
  51. data/dev/defs/cgerfsx +394 -0
  52. data/dev/defs/cgerq2 +91 -0
  53. data/dev/defs/cgerqf +116 -0
  54. data/dev/defs/cgesc2 +87 -0
  55. data/dev/defs/cgesdd +203 -0
  56. data/dev/defs/cgesv +97 -0
  57. data/dev/defs/cgesvd +195 -0
  58. data/dev/defs/cgesvx +333 -0
  59. data/dev/defs/cgesvxx +519 -0
  60. data/dev/defs/cgetc2 +82 -0
  61. data/dev/defs/cgetf2 +76 -0
  62. data/dev/defs/cgetrf +76 -0
  63. data/dev/defs/cgetri +86 -0
  64. data/dev/defs/cgetrs +91 -0
  65. data/dev/defs/cggbak +119 -0
  66. data/dev/defs/cggbal +144 -0
  67. data/dev/defs/cgges +247 -0
  68. data/dev/defs/cggesx +311 -0
  69. data/dev/defs/cggev +197 -0
  70. data/dev/defs/cggevx +353 -0
  71. data/dev/defs/cggglm +160 -0
  72. data/dev/defs/cgghrd +171 -0
  73. data/dev/defs/cgglse +157 -0
  74. data/dev/defs/cggqrf +195 -0
  75. data/dev/defs/cggrqf +194 -0
  76. data/dev/defs/cggsvd +324 -0
  77. data/dev/defs/cggsvp +240 -0
  78. data/dev/defs/cgtcon +112 -0
  79. data/dev/defs/cgtrfs +193 -0
  80. data/dev/defs/cgtsv +97 -0
  81. data/dev/defs/cgtsvx +275 -0
  82. data/dev/defs/cgttrf +97 -0
  83. data/dev/defs/cgttrs +119 -0
  84. data/dev/defs/cgtts2 +108 -0
  85. data/dev/defs/chbev +124 -0
  86. data/dev/defs/chbevd +194 -0
  87. data/dev/defs/chbevx +234 -0
  88. data/dev/defs/chbgst +137 -0
  89. data/dev/defs/chbgv +163 -0
  90. data/dev/defs/chbgvd +231 -0
  91. data/dev/defs/chbgvx +265 -0
  92. data/dev/defs/chbtrd +132 -0
  93. data/dev/defs/checon +91 -0
  94. data/dev/defs/cheequb +87 -0
  95. data/dev/defs/cheev +111 -0
  96. data/dev/defs/cheevd +178 -0
  97. data/dev/defs/cheevr +325 -0
  98. data/dev/defs/cheevx +225 -0
  99. data/dev/defs/chegs2 +96 -0
  100. data/dev/defs/chegst +96 -0
  101. data/dev/defs/chegv +155 -0
  102. data/dev/defs/chegvd +222 -0
  103. data/dev/defs/chegvx +270 -0
  104. data/dev/defs/cherfs +170 -0
  105. data/dev/defs/cherfsx +380 -0
  106. data/dev/defs/chesv +147 -0
  107. data/dev/defs/chesvx +261 -0
  108. data/dev/defs/chesvxx +481 -0
  109. data/dev/defs/chetd2 +143 -0
  110. data/dev/defs/chetf2 +141 -0
  111. data/dev/defs/chetrd +162 -0
  112. data/dev/defs/chetrf +151 -0
  113. data/dev/defs/chetri +83 -0
  114. data/dev/defs/chetrs +90 -0
  115. data/dev/defs/chetrs2 +97 -0
  116. data/dev/defs/chfrk +138 -0
  117. data/dev/defs/chgeqz +258 -0
  118. data/dev/defs/chla_transtype +32 -0
  119. data/dev/defs/chpcon +85 -0
  120. data/dev/defs/chpev +110 -0
  121. data/dev/defs/chpevd +179 -0
  122. data/dev/defs/chpevx +204 -0
  123. data/dev/defs/chpgst +80 -0
  124. data/dev/defs/chpgv +145 -0
  125. data/dev/defs/chpgvd +221 -0
  126. data/dev/defs/chpgvx +247 -0
  127. data/dev/defs/chprfs +156 -0
  128. data/dev/defs/chpsv +134 -0
  129. data/dev/defs/chpsvx +248 -0
  130. data/dev/defs/chptrd +118 -0
  131. data/dev/defs/chptrf +120 -0
  132. data/dev/defs/chptri +77 -0
  133. data/dev/defs/chptrs +84 -0
  134. data/dev/defs/chsein +217 -0
  135. data/dev/defs/chseqr +263 -0
  136. data/dev/defs/cla_gbamv +154 -0
  137. data/dev/defs/cla_gbrcond_c +146 -0
  138. data/dev/defs/cla_gbrcond_x +140 -0
  139. data/dev/defs/cla_gbrfsx_extended +391 -0
  140. data/dev/defs/cla_gbrpvgrw +94 -0
  141. data/dev/defs/cla_geamv +142 -0
  142. data/dev/defs/cla_gercond_c +128 -0
  143. data/dev/defs/cla_gercond_x +122 -0
  144. data/dev/defs/cla_gerfsx_extended +376 -0
  145. data/dev/defs/cla_heamv +142 -0
  146. data/dev/defs/cla_hercond_c +125 -0
  147. data/dev/defs/cla_hercond_x +119 -0
  148. data/dev/defs/cla_herfsx_extended +375 -0
  149. data/dev/defs/cla_herpvgrw +105 -0
  150. data/dev/defs/cla_lin_berr +79 -0
  151. data/dev/defs/cla_porcond_c +116 -0
  152. data/dev/defs/cla_porcond_x +110 -0
  153. data/dev/defs/cla_porfsx_extended +366 -0
  154. data/dev/defs/cla_porpvgrw +85 -0
  155. data/dev/defs/cla_rpvgrw +76 -0
  156. data/dev/defs/cla_syamv +142 -0
  157. data/dev/defs/cla_syrcond_c +125 -0
  158. data/dev/defs/cla_syrcond_x +119 -0
  159. data/dev/defs/cla_syrfsx_extended +375 -0
  160. data/dev/defs/cla_syrpvgrw +105 -0
  161. data/dev/defs/cla_wwaddw +53 -0
  162. data/dev/defs/clabrd +187 -0
  163. data/dev/defs/clacgv +44 -0
  164. data/dev/defs/clacn2 +91 -0
  165. data/dev/defs/clacon +75 -0
  166. data/dev/defs/clacp2 +78 -0
  167. data/dev/defs/clacpy +78 -0
  168. data/dev/defs/clacrm +88 -0
  169. data/dev/defs/clacrt +73 -0
  170. data/dev/defs/cladiv +37 -0
  171. data/dev/defs/claed0 +121 -0
  172. data/dev/defs/claed7 +237 -0
  173. data/dev/defs/claed8 +211 -0
  174. data/dev/defs/claein +117 -0
  175. data/dev/defs/claesy +81 -0
  176. data/dev/defs/claev2 +83 -0
  177. data/dev/defs/clag2z +73 -0
  178. data/dev/defs/clags2 +116 -0
  179. data/dev/defs/clagtm +115 -0
  180. data/dev/defs/clahef +127 -0
  181. data/dev/defs/clahqr +159 -0
  182. data/dev/defs/clahr2 +153 -0
  183. data/dev/defs/clahrd +141 -0
  184. data/dev/defs/claic1 +101 -0
  185. data/dev/defs/clals0 +251 -0
  186. data/dev/defs/clalsa +267 -0
  187. data/dev/defs/clalsd +160 -0
  188. data/dev/defs/clangb +92 -0
  189. data/dev/defs/clange +84 -0
  190. data/dev/defs/clangt +77 -0
  191. data/dev/defs/clanhb +99 -0
  192. data/dev/defs/clanhe +93 -0
  193. data/dev/defs/clanhf +211 -0
  194. data/dev/defs/clanhp +85 -0
  195. data/dev/defs/clanhs +78 -0
  196. data/dev/defs/clanht +69 -0
  197. data/dev/defs/clansb +97 -0
  198. data/dev/defs/clansp +83 -0
  199. data/dev/defs/clansy +92 -0
  200. data/dev/defs/clantb +108 -0
  201. data/dev/defs/clantp +93 -0
  202. data/dev/defs/clantr +109 -0
  203. data/dev/defs/clapll +67 -0
  204. data/dev/defs/clapmr +73 -0
  205. data/dev/defs/clapmt +73 -0
  206. data/dev/defs/claqgb +124 -0
  207. data/dev/defs/claqge +107 -0
  208. data/dev/defs/claqhb +105 -0
  209. data/dev/defs/claqhe +98 -0
  210. data/dev/defs/claqhp +89 -0
  211. data/dev/defs/claqp2 +115 -0
  212. data/dev/defs/claqps +146 -0
  213. data/dev/defs/claqr0 +203 -0
  214. data/dev/defs/claqr1 +66 -0
  215. data/dev/defs/claqr2 +243 -0
  216. data/dev/defs/claqr3 +238 -0
  217. data/dev/defs/claqr4 +203 -0
  218. data/dev/defs/claqr5 +221 -0
  219. data/dev/defs/claqsb +105 -0
  220. data/dev/defs/claqsp +89 -0
  221. data/dev/defs/claqsy +98 -0
  222. data/dev/defs/clar1v +199 -0
  223. data/dev/defs/clar2v +88 -0
  224. data/dev/defs/clarcm +88 -0
  225. data/dev/defs/clarf +97 -0
  226. data/dev/defs/clarfb +139 -0
  227. data/dev/defs/clarfg +71 -0
  228. data/dev/defs/clarfgp +69 -0
  229. data/dev/defs/clarft +133 -0
  230. data/dev/defs/clarfx +88 -0
  231. data/dev/defs/clargv +88 -0
  232. data/dev/defs/clarnv +63 -0
  233. data/dev/defs/clarrv +259 -0
  234. data/dev/defs/clarscl2 +61 -0
  235. data/dev/defs/clartg +66 -0
  236. data/dev/defs/clartv +82 -0
  237. data/dev/defs/clarz +111 -0
  238. data/dev/defs/clarzb +150 -0
  239. data/dev/defs/clarzt +151 -0
  240. data/dev/defs/clascl +102 -0
  241. data/dev/defs/clascl2 +61 -0
  242. data/dev/defs/claset +77 -0
  243. data/dev/defs/clasr +169 -0
  244. data/dev/defs/classq +71 -0
  245. data/dev/defs/claswp +81 -0
  246. data/dev/defs/clasyf +127 -0
  247. data/dev/defs/clatbs +206 -0
  248. data/dev/defs/clatdf +133 -0
  249. data/dev/defs/clatps +193 -0
  250. data/dev/defs/clatrd +168 -0
  251. data/dev/defs/clatrs +202 -0
  252. data/dev/defs/clatrz +106 -0
  253. data/dev/defs/clatzm +124 -0
  254. data/dev/defs/clauu2 +68 -0
  255. data/dev/defs/clauum +68 -0
  256. data/dev/defs/cpbcon +99 -0
  257. data/dev/defs/cpbequ +96 -0
  258. data/dev/defs/cpbrfs +166 -0
  259. data/dev/defs/cpbstf +116 -0
  260. data/dev/defs/cpbsv +136 -0
  261. data/dev/defs/cpbsvx +314 -0
  262. data/dev/defs/cpbtf2 +105 -0
  263. data/dev/defs/cpbtrf +103 -0
  264. data/dev/defs/cpbtrs +98 -0
  265. data/dev/defs/cpftrf +183 -0
  266. data/dev/defs/cpftri +175 -0
  267. data/dev/defs/cpftrs +185 -0
  268. data/dev/defs/cpocon +87 -0
  269. data/dev/defs/cpoequ +80 -0
  270. data/dev/defs/cpoequb +80 -0
  271. data/dev/defs/cporfs +160 -0
  272. data/dev/defs/cporfsx +371 -0
  273. data/dev/defs/cposv +105 -0
  274. data/dev/defs/cposvx +281 -0
  275. data/dev/defs/cposvxx +471 -0
  276. data/dev/defs/cpotf2 +75 -0
  277. data/dev/defs/cpotrf +73 -0
  278. data/dev/defs/cpotri +67 -0
  279. data/dev/defs/cpotrs +79 -0
  280. data/dev/defs/cppcon +85 -0
  281. data/dev/defs/cppequ +82 -0
  282. data/dev/defs/cpprfs +146 -0
  283. data/dev/defs/cppsv +115 -0
  284. data/dev/defs/cppsvx +283 -0
  285. data/dev/defs/cpptrf +81 -0
  286. data/dev/defs/cpptri +58 -0
  287. data/dev/defs/cpptrs +84 -0
  288. data/dev/defs/cpstf2 +108 -0
  289. data/dev/defs/cpstrf +108 -0
  290. data/dev/defs/cptcon +84 -0
  291. data/dev/defs/cpteqr +116 -0
  292. data/dev/defs/cptrfs +161 -0
  293. data/dev/defs/cptsv +89 -0
  294. data/dev/defs/cptsvx +210 -0
  295. data/dev/defs/cpttrf +59 -0
  296. data/dev/defs/cpttrs +98 -0
  297. data/dev/defs/cptts2 +89 -0
  298. data/dev/defs/crot +72 -0
  299. data/dev/defs/cspcon +85 -0
  300. data/dev/defs/cspmv +121 -0
  301. data/dev/defs/cspr +98 -0
  302. data/dev/defs/csprfs +156 -0
  303. data/dev/defs/cspsv +134 -0
  304. data/dev/defs/cspsvx +248 -0
  305. data/dev/defs/csptrf +121 -0
  306. data/dev/defs/csptri +77 -0
  307. data/dev/defs/csptrs +84 -0
  308. data/dev/defs/csrscl +49 -0
  309. data/dev/defs/cstedc +191 -0
  310. data/dev/defs/cstegr +233 -0
  311. data/dev/defs/cstein +159 -0
  312. data/dev/defs/cstemr +302 -0
  313. data/dev/defs/csteqr +103 -0
  314. data/dev/defs/csycon +91 -0
  315. data/dev/defs/csyconv +90 -0
  316. data/dev/defs/csyequb +104 -0
  317. data/dev/defs/csymv +126 -0
  318. data/dev/defs/csyr +102 -0
  319. data/dev/defs/csyrfs +170 -0
  320. data/dev/defs/csyrfsx +380 -0
  321. data/dev/defs/csysv +149 -0
  322. data/dev/defs/csysvx +261 -0
  323. data/dev/defs/csysvxx +485 -0
  324. data/dev/defs/csyswapr +70 -0
  325. data/dev/defs/csytf2 +140 -0
  326. data/dev/defs/csytrf +156 -0
  327. data/dev/defs/csytri +83 -0
  328. data/dev/defs/csytri2 +110 -0
  329. data/dev/defs/csytri2x +90 -0
  330. data/dev/defs/csytrs +90 -0
  331. data/dev/defs/csytrs2 +97 -0
  332. data/dev/defs/ctbcon +109 -0
  333. data/dev/defs/ctbrfs +164 -0
  334. data/dev/defs/ctbtrs +113 -0
  335. data/dev/defs/ctfsm +259 -0
  336. data/dev/defs/ctftri +183 -0
  337. data/dev/defs/ctfttp +172 -0
  338. data/dev/defs/ctfttr +182 -0
  339. data/dev/defs/ctgevc +194 -0
  340. data/dev/defs/ctgex2 +158 -0
  341. data/dev/defs/ctgexc +176 -0
  342. data/dev/defs/ctgsen +406 -0
  343. data/dev/defs/ctgsja +344 -0
  344. data/dev/defs/ctgsna +282 -0
  345. data/dev/defs/ctgsy2 +235 -0
  346. data/dev/defs/ctgsyl +273 -0
  347. data/dev/defs/ctpcon +95 -0
  348. data/dev/defs/ctprfs +150 -0
  349. data/dev/defs/ctptri +79 -0
  350. data/dev/defs/ctptrs +98 -0
  351. data/dev/defs/ctpttf +172 -0
  352. data/dev/defs/ctpttr +73 -0
  353. data/dev/defs/ctrcon +103 -0
  354. data/dev/defs/ctrevc +188 -0
  355. data/dev/defs/ctrexc +99 -0
  356. data/dev/defs/ctrrfs +158 -0
  357. data/dev/defs/ctrsen +234 -0
  358. data/dev/defs/ctrsna +223 -0
  359. data/dev/defs/ctrsyl +126 -0
  360. data/dev/defs/ctrti2 +76 -0
  361. data/dev/defs/ctrtri +75 -0
  362. data/dev/defs/ctrtrs +107 -0
  363. data/dev/defs/ctrttf +181 -0
  364. data/dev/defs/ctrttp +72 -0
  365. data/dev/defs/ctzrqf +104 -0
  366. data/dev/defs/ctzrzf +128 -0
  367. data/dev/defs/cunbdb +270 -0
  368. data/dev/defs/cuncsd +283 -0
  369. data/dev/defs/cung2l +85 -0
  370. data/dev/defs/cung2r +85 -0
  371. data/dev/defs/cungbr +129 -0
  372. data/dev/defs/cunghr +97 -0
  373. data/dev/defs/cungl2 +84 -0
  374. data/dev/defs/cunglq +100 -0
  375. data/dev/defs/cungql +101 -0
  376. data/dev/defs/cungqr +101 -0
  377. data/dev/defs/cungr2 +85 -0
  378. data/dev/defs/cungrq +101 -0
  379. data/dev/defs/cungtr +95 -0
  380. data/dev/defs/cunm2l +130 -0
  381. data/dev/defs/cunm2r +130 -0
  382. data/dev/defs/cunmbr +179 -0
  383. data/dev/defs/cunmhr +157 -0
  384. data/dev/defs/cunml2 +130 -0
  385. data/dev/defs/cunmlq +143 -0
  386. data/dev/defs/cunmql +143 -0
  387. data/dev/defs/cunmqr +143 -0
  388. data/dev/defs/cunmr2 +130 -0
  389. data/dev/defs/cunmr3 +152 -0
  390. data/dev/defs/cunmrq +143 -0
  391. data/dev/defs/cunmrz +157 -0
  392. data/dev/defs/cunmtr +152 -0
  393. data/dev/defs/cupgtr +87 -0
  394. data/dev/defs/cupmtr +120 -0
  395. data/dev/defs/dbbcsd +297 -0
  396. data/dev/defs/dbdsdc +194 -0
  397. data/dev/defs/dbdsqr +203 -0
  398. data/dev/defs/ddisna +84 -0
  399. data/dev/defs/dgbbrd +167 -0
  400. data/dev/defs/dgbcon +114 -0
  401. data/dev/defs/dgbequ +121 -0
  402. data/dev/defs/dgbequb +128 -0
  403. data/dev/defs/dgbrfs +182 -0
  404. data/dev/defs/dgbrfsx +418 -0
  405. data/dev/defs/dgbsv +134 -0
  406. data/dev/defs/dgbsvx +353 -0
  407. data/dev/defs/dgbsvxx +536 -0
  408. data/dev/defs/dgbtf2 +110 -0
  409. data/dev/defs/dgbtrf +109 -0
  410. data/dev/defs/dgbtrs +106 -0
  411. data/dev/defs/dgebak +95 -0
  412. data/dev/defs/dgebal +125 -0
  413. data/dev/defs/dgebd2 +162 -0
  414. data/dev/defs/dgebrd +178 -0
  415. data/dev/defs/dgecon +90 -0
  416. data/dev/defs/dgeequ +107 -0
  417. data/dev/defs/dgeequb +114 -0
  418. data/dev/defs/dgees +188 -0
  419. data/dev/defs/dgeesx +251 -0
  420. data/dev/defs/dgeev +166 -0
  421. data/dev/defs/dgeevx +282 -0
  422. data/dev/defs/dgegs +207 -0
  423. data/dev/defs/dgegv +286 -0
  424. data/dev/defs/dgehd2 +115 -0
  425. data/dev/defs/dgehrd +136 -0
  426. data/dev/defs/dgejsv +862 -0
  427. data/dev/defs/dgelq2 +89 -0
  428. data/dev/defs/dgelqf +113 -0
  429. data/dev/defs/dgels +158 -0
  430. data/dev/defs/dgelsd +193 -0
  431. data/dev/defs/dgelss +149 -0
  432. data/dev/defs/dgelsx +148 -0
  433. data/dev/defs/dgelsy +181 -0
  434. data/dev/defs/dgeql2 +91 -0
  435. data/dev/defs/dgeqlf +116 -0
  436. data/dev/defs/dgeqp3 +120 -0
  437. data/dev/defs/dgeqpf +111 -0
  438. data/dev/defs/dgeqr2 +89 -0
  439. data/dev/defs/dgeqr2p +89 -0
  440. data/dev/defs/dgeqrf +114 -0
  441. data/dev/defs/dgeqrfp +114 -0
  442. data/dev/defs/dgerfs +164 -0
  443. data/dev/defs/dgerfsx +394 -0
  444. data/dev/defs/dgerq2 +91 -0
  445. data/dev/defs/dgerqf +116 -0
  446. data/dev/defs/dgesc2 +86 -0
  447. data/dev/defs/dgesdd +197 -0
  448. data/dev/defs/dgesv +97 -0
  449. data/dev/defs/dgesvd +188 -0
  450. data/dev/defs/dgesvj +308 -0
  451. data/dev/defs/dgesvx +333 -0
  452. data/dev/defs/dgesvxx +516 -0
  453. data/dev/defs/dgetc2 +82 -0
  454. data/dev/defs/dgetf2 +76 -0
  455. data/dev/defs/dgetrf +76 -0
  456. data/dev/defs/dgetri +86 -0
  457. data/dev/defs/dgetrs +91 -0
  458. data/dev/defs/dggbak +119 -0
  459. data/dev/defs/dggbal +145 -0
  460. data/dev/defs/dgges +261 -0
  461. data/dev/defs/dggesx +342 -0
  462. data/dev/defs/dggev +206 -0
  463. data/dev/defs/dggevx +371 -0
  464. data/dev/defs/dggglm +160 -0
  465. data/dev/defs/dgghrd +174 -0
  466. data/dev/defs/dgglse +157 -0
  467. data/dev/defs/dggqrf +195 -0
  468. data/dev/defs/dggrqf +194 -0
  469. data/dev/defs/dggsvd +319 -0
  470. data/dev/defs/dggsvp +233 -0
  471. data/dev/defs/dgsvj0 +200 -0
  472. data/dev/defs/dgsvj1 +220 -0
  473. data/dev/defs/dgtcon +119 -0
  474. data/dev/defs/dgtrfs +193 -0
  475. data/dev/defs/dgtsv +100 -0
  476. data/dev/defs/dgtsvx +275 -0
  477. data/dev/defs/dgttrf +97 -0
  478. data/dev/defs/dgttrs +119 -0
  479. data/dev/defs/dgtts2 +106 -0
  480. data/dev/defs/dhgeqz +282 -0
  481. data/dev/defs/dhsein +234 -0
  482. data/dev/defs/dhseqr +279 -0
  483. data/dev/defs/disnan +29 -0
  484. data/dev/defs/dla_gbamv +152 -0
  485. data/dev/defs/dla_gbrcond +152 -0
  486. data/dev/defs/dla_gbrfsx_extended +393 -0
  487. data/dev/defs/dla_gbrpvgrw +90 -0
  488. data/dev/defs/dla_geamv +142 -0
  489. data/dev/defs/dla_gercond +134 -0
  490. data/dev/defs/dla_gerfsx_extended +379 -0
  491. data/dev/defs/dla_lin_berr +78 -0
  492. data/dev/defs/dla_porcond +122 -0
  493. data/dev/defs/dla_porfsx_extended +366 -0
  494. data/dev/defs/dla_porpvgrw +81 -0
  495. data/dev/defs/dla_rpvgrw +72 -0
  496. data/dev/defs/dla_syamv +142 -0
  497. data/dev/defs/dla_syrcond +131 -0
  498. data/dev/defs/dla_syrfsx_extended +375 -0
  499. data/dev/defs/dla_syrpvgrw +101 -0
  500. data/dev/defs/dla_wwaddw +53 -0
  501. data/dev/defs/dlabad +43 -0
  502. data/dev/defs/dlabrd +186 -0
  503. data/dev/defs/dlacn2 +96 -0
  504. data/dev/defs/dlacon +80 -0
  505. data/dev/defs/dlacpy +78 -0
  506. data/dev/defs/dladiv +57 -0
  507. data/dev/defs/dlae2 +66 -0
  508. data/dev/defs/dlaebz +292 -0
  509. data/dev/defs/dlaed0 +147 -0
  510. data/dev/defs/dlaed1 +141 -0
  511. data/dev/defs/dlaed2 +194 -0
  512. data/dev/defs/dlaed3 +167 -0
  513. data/dev/defs/dlaed4 +113 -0
  514. data/dev/defs/dlaed5 +78 -0
  515. data/dev/defs/dlaed6 +101 -0
  516. data/dev/defs/dlaed7 +241 -0
  517. data/dev/defs/dlaed8 +227 -0
  518. data/dev/defs/dlaed9 +137 -0
  519. data/dev/defs/dlaeda +147 -0
  520. data/dev/defs/dlaein +141 -0
  521. data/dev/defs/dlaev2 +83 -0
  522. data/dev/defs/dlaexc +107 -0
  523. data/dev/defs/dlag2 +123 -0
  524. data/dev/defs/dlag2s +81 -0
  525. data/dev/defs/dlags2 +108 -0
  526. data/dev/defs/dlagtf +128 -0
  527. data/dev/defs/dlagtm +115 -0
  528. data/dev/defs/dlagts +135 -0
  529. data/dev/defs/dlagv2 +128 -0
  530. data/dev/defs/dlahqr +172 -0
  531. data/dev/defs/dlahr2 +153 -0
  532. data/dev/defs/dlahrd +141 -0
  533. data/dev/defs/dlaic1 +101 -0
  534. data/dev/defs/dlaln2 +187 -0
  535. data/dev/defs/dlals0 +250 -0
  536. data/dev/defs/dlalsa +268 -0
  537. data/dev/defs/dlalsd +152 -0
  538. data/dev/defs/dlamrg +66 -0
  539. data/dev/defs/dlaneg +87 -0
  540. data/dev/defs/dlangb +93 -0
  541. data/dev/defs/dlange +84 -0
  542. data/dev/defs/dlangt +77 -0
  543. data/dev/defs/dlanhs +78 -0
  544. data/dev/defs/dlansb +97 -0
  545. data/dev/defs/dlansf +178 -0
  546. data/dev/defs/dlansp +83 -0
  547. data/dev/defs/dlanst +69 -0
  548. data/dev/defs/dlansy +92 -0
  549. data/dev/defs/dlantb +108 -0
  550. data/dev/defs/dlantp +93 -0
  551. data/dev/defs/dlantr +109 -0
  552. data/dev/defs/dlanv2 +84 -0
  553. data/dev/defs/dlapll +69 -0
  554. data/dev/defs/dlapmr +73 -0
  555. data/dev/defs/dlapmt +73 -0
  556. data/dev/defs/dlapy2 +30 -0
  557. data/dev/defs/dlapy3 +34 -0
  558. data/dev/defs/dlaqgb +124 -0
  559. data/dev/defs/dlaqge +107 -0
  560. data/dev/defs/dlaqp2 +115 -0
  561. data/dev/defs/dlaqps +146 -0
  562. data/dev/defs/dlaqr0 +225 -0
  563. data/dev/defs/dlaqr1 +79 -0
  564. data/dev/defs/dlaqr2 +252 -0
  565. data/dev/defs/dlaqr3 +247 -0
  566. data/dev/defs/dlaqr4 +225 -0
  567. data/dev/defs/dlaqr5 +230 -0
  568. data/dev/defs/dlaqsb +105 -0
  569. data/dev/defs/dlaqsp +89 -0
  570. data/dev/defs/dlaqsy +98 -0
  571. data/dev/defs/dlaqtr +134 -0
  572. data/dev/defs/dlar1v +199 -0
  573. data/dev/defs/dlar2v +86 -0
  574. data/dev/defs/dlarf +93 -0
  575. data/dev/defs/dlarfb +139 -0
  576. data/dev/defs/dlarfg +71 -0
  577. data/dev/defs/dlarfgp +69 -0
  578. data/dev/defs/dlarft +133 -0
  579. data/dev/defs/dlarfx +89 -0
  580. data/dev/defs/dlargv +74 -0
  581. data/dev/defs/dlarnv +61 -0
  582. data/dev/defs/dlarra +106 -0
  583. data/dev/defs/dlarrb +167 -0
  584. data/dev/defs/dlarrc +99 -0
  585. data/dev/defs/dlarrd +290 -0
  586. data/dev/defs/dlarre +265 -0
  587. data/dev/defs/dlarrf +168 -0
  588. data/dev/defs/dlarrj +138 -0
  589. data/dev/defs/dlarrk +108 -0
  590. data/dev/defs/dlarrr +62 -0
  591. data/dev/defs/dlarrv +259 -0
  592. data/dev/defs/dlarscl2 +61 -0
  593. data/dev/defs/dlartg +64 -0
  594. data/dev/defs/dlartgp +62 -0
  595. data/dev/defs/dlartgs +57 -0
  596. data/dev/defs/dlartv +82 -0
  597. data/dev/defs/dlaruv +59 -0
  598. data/dev/defs/dlarz +109 -0
  599. data/dev/defs/dlarzb +150 -0
  600. data/dev/defs/dlarzt +151 -0
  601. data/dev/defs/dlas2 +71 -0
  602. data/dev/defs/dlascl +102 -0
  603. data/dev/defs/dlascl2 +61 -0
  604. data/dev/defs/dlasd0 +133 -0
  605. data/dev/defs/dlasd1 +180 -0
  606. data/dev/defs/dlasd2 +254 -0
  607. data/dev/defs/dlasd3 +213 -0
  608. data/dev/defs/dlasd4 +123 -0
  609. data/dev/defs/dlasd5 +88 -0
  610. data/dev/defs/dlasd6 +300 -0
  611. data/dev/defs/dlasd7 +264 -0
  612. data/dev/defs/dlasd8 +144 -0
  613. data/dev/defs/dlasda +276 -0
  614. data/dev/defs/dlasdq +187 -0
  615. data/dev/defs/dlasdt +76 -0
  616. data/dev/defs/dlaset +81 -0
  617. data/dev/defs/dlasq1 +75 -0
  618. data/dev/defs/dlasq2 +73 -0
  619. data/dev/defs/dlasq3 +141 -0
  620. data/dev/defs/dlasq4 +107 -0
  621. data/dev/defs/dlasq5 +100 -0
  622. data/dev/defs/dlasq6 +90 -0
  623. data/dev/defs/dlasr +169 -0
  624. data/dev/defs/dlasrt +53 -0
  625. data/dev/defs/dlassq +68 -0
  626. data/dev/defs/dlasv2 +100 -0
  627. data/dev/defs/dlaswp +81 -0
  628. data/dev/defs/dlasy2 +145 -0
  629. data/dev/defs/dlasyf +126 -0
  630. data/dev/defs/dlat2s +83 -0
  631. data/dev/defs/dlatbs +206 -0
  632. data/dev/defs/dlatdf +131 -0
  633. data/dev/defs/dlatps +192 -0
  634. data/dev/defs/dlatrd +168 -0
  635. data/dev/defs/dlatrs +202 -0
  636. data/dev/defs/dlatrz +106 -0
  637. data/dev/defs/dlatzm +123 -0
  638. data/dev/defs/dlauu2 +68 -0
  639. data/dev/defs/dlauum +68 -0
  640. data/dev/defs/dopgtr +87 -0
  641. data/dev/defs/dopmtr +120 -0
  642. data/dev/defs/dorbdb +270 -0
  643. data/dev/defs/dorcsd +264 -0
  644. data/dev/defs/dorg2l +85 -0
  645. data/dev/defs/dorg2r +85 -0
  646. data/dev/defs/dorgbr +129 -0
  647. data/dev/defs/dorghr +97 -0
  648. data/dev/defs/dorgl2 +84 -0
  649. data/dev/defs/dorglq +100 -0
  650. data/dev/defs/dorgql +101 -0
  651. data/dev/defs/dorgqr +101 -0
  652. data/dev/defs/dorgr2 +85 -0
  653. data/dev/defs/dorgrq +101 -0
  654. data/dev/defs/dorgtr +95 -0
  655. data/dev/defs/dorm2l +130 -0
  656. data/dev/defs/dorm2r +130 -0
  657. data/dev/defs/dormbr +176 -0
  658. data/dev/defs/dormhr +157 -0
  659. data/dev/defs/dorml2 +130 -0
  660. data/dev/defs/dormlq +143 -0
  661. data/dev/defs/dormql +143 -0
  662. data/dev/defs/dormqr +143 -0
  663. data/dev/defs/dormr2 +130 -0
  664. data/dev/defs/dormr3 +152 -0
  665. data/dev/defs/dormrq +143 -0
  666. data/dev/defs/dormrz +157 -0
  667. data/dev/defs/dormtr +152 -0
  668. data/dev/defs/dpbcon +98 -0
  669. data/dev/defs/dpbequ +96 -0
  670. data/dev/defs/dpbrfs +166 -0
  671. data/dev/defs/dpbstf +115 -0
  672. data/dev/defs/dpbsv +136 -0
  673. data/dev/defs/dpbsvx +314 -0
  674. data/dev/defs/dpbtf2 +105 -0
  675. data/dev/defs/dpbtrf +103 -0
  676. data/dev/defs/dpbtrs +98 -0
  677. data/dev/defs/dpftrf +161 -0
  678. data/dev/defs/dpftri +154 -0
  679. data/dev/defs/dpftrs +164 -0
  680. data/dev/defs/dpocon +87 -0
  681. data/dev/defs/dpoequ +80 -0
  682. data/dev/defs/dpoequb +80 -0
  683. data/dev/defs/dporfs +160 -0
  684. data/dev/defs/dporfsx +370 -0
  685. data/dev/defs/dposv +105 -0
  686. data/dev/defs/dposvx +281 -0
  687. data/dev/defs/dposvxx +468 -0
  688. data/dev/defs/dpotf2 +75 -0
  689. data/dev/defs/dpotrf +73 -0
  690. data/dev/defs/dpotri +67 -0
  691. data/dev/defs/dpotrs +79 -0
  692. data/dev/defs/dppcon +85 -0
  693. data/dev/defs/dppequ +82 -0
  694. data/dev/defs/dpprfs +146 -0
  695. data/dev/defs/dppsv +115 -0
  696. data/dev/defs/dppsvx +283 -0
  697. data/dev/defs/dpptrf +81 -0
  698. data/dev/defs/dpptri +58 -0
  699. data/dev/defs/dpptrs +84 -0
  700. data/dev/defs/dpstf2 +108 -0
  701. data/dev/defs/dpstrf +108 -0
  702. data/dev/defs/dptcon +84 -0
  703. data/dev/defs/dpteqr +117 -0
  704. data/dev/defs/dptrfs +141 -0
  705. data/dev/defs/dptsv +89 -0
  706. data/dev/defs/dptsvx +203 -0
  707. data/dev/defs/dpttrf +59 -0
  708. data/dev/defs/dpttrs +88 -0
  709. data/dev/defs/dptts2 +77 -0
  710. data/dev/defs/drscl +49 -0
  711. data/dev/defs/dsbev +117 -0
  712. data/dev/defs/dsbevd +169 -0
  713. data/dev/defs/dsbevx +231 -0
  714. data/dev/defs/dsbgst +130 -0
  715. data/dev/defs/dsbgv +156 -0
  716. data/dev/defs/dsbgvd +206 -0
  717. data/dev/defs/dsbgvx +259 -0
  718. data/dev/defs/dsbtrd +132 -0
  719. data/dev/defs/dsfrk +134 -0
  720. data/dev/defs/dsgesv +170 -0
  721. data/dev/defs/dspcon +92 -0
  722. data/dev/defs/dspev +103 -0
  723. data/dev/defs/dspevd +155 -0
  724. data/dev/defs/dspevx +197 -0
  725. data/dev/defs/dspgst +80 -0
  726. data/dev/defs/dspgv +139 -0
  727. data/dev/defs/dspgvd +188 -0
  728. data/dev/defs/dspgvx +241 -0
  729. data/dev/defs/dsposv +173 -0
  730. data/dev/defs/dsprfs +156 -0
  731. data/dev/defs/dspsv +134 -0
  732. data/dev/defs/dspsvx +249 -0
  733. data/dev/defs/dsptrd +118 -0
  734. data/dev/defs/dsptrf +120 -0
  735. data/dev/defs/dsptri +77 -0
  736. data/dev/defs/dsptrs +84 -0
  737. data/dev/defs/dstebz +229 -0
  738. data/dev/defs/dstedc +165 -0
  739. data/dev/defs/dstegr +233 -0
  740. data/dev/defs/dstein +152 -0
  741. data/dev/defs/dstemr +285 -0
  742. data/dev/defs/dsteqr +103 -0
  743. data/dev/defs/dsterf +54 -0
  744. data/dev/defs/dstev +88 -0
  745. data/dev/defs/dstevd +138 -0
  746. data/dev/defs/dstevr +273 -0
  747. data/dev/defs/dstevx +193 -0
  748. data/dev/defs/dsycon +98 -0
  749. data/dev/defs/dsyconv +90 -0
  750. data/dev/defs/dsyequb +104 -0
  751. data/dev/defs/dsyev +104 -0
  752. data/dev/defs/dsyevd +157 -0
  753. data/dev/defs/dsyevr +300 -0
  754. data/dev/defs/dsyevx +218 -0
  755. data/dev/defs/dsygs2 +96 -0
  756. data/dev/defs/dsygst +96 -0
  757. data/dev/defs/dsygv +148 -0
  758. data/dev/defs/dsygvd +197 -0
  759. data/dev/defs/dsygvx +263 -0
  760. data/dev/defs/dsyrfs +170 -0
  761. data/dev/defs/dsyrfsx +380 -0
  762. data/dev/defs/dsysv +149 -0
  763. data/dev/defs/dsysvx +261 -0
  764. data/dev/defs/dsysvxx +481 -0
  765. data/dev/defs/dsyswapr +70 -0
  766. data/dev/defs/dsytd2 +142 -0
  767. data/dev/defs/dsytf2 +143 -0
  768. data/dev/defs/dsytrd +162 -0
  769. data/dev/defs/dsytrf +156 -0
  770. data/dev/defs/dsytri +83 -0
  771. data/dev/defs/dsytri2 +110 -0
  772. data/dev/defs/dsytri2x +90 -0
  773. data/dev/defs/dsytrs +90 -0
  774. data/dev/defs/dsytrs2 +97 -0
  775. data/dev/defs/dtbcon +109 -0
  776. data/dev/defs/dtbrfs +164 -0
  777. data/dev/defs/dtbtrs +113 -0
  778. data/dev/defs/dtfsm +243 -0
  779. data/dev/defs/dtftri +163 -0
  780. data/dev/defs/dtfttp +151 -0
  781. data/dev/defs/dtfttr +176 -0
  782. data/dev/defs/dtgevc +265 -0
  783. data/dev/defs/dtgex2 +191 -0
  784. data/dev/defs/dtgexc +190 -0
  785. data/dev/defs/dtgsen +422 -0
  786. data/dev/defs/dtgsja +343 -0
  787. data/dev/defs/dtgsna +354 -0
  788. data/dev/defs/dtgsy2 +252 -0
  789. data/dev/defs/dtgsyl +274 -0
  790. data/dev/defs/dtpcon +95 -0
  791. data/dev/defs/dtprfs +150 -0
  792. data/dev/defs/dtptri +79 -0
  793. data/dev/defs/dtptrs +98 -0
  794. data/dev/defs/dtpttf +151 -0
  795. data/dev/defs/dtpttr +73 -0
  796. data/dev/defs/dtrcon +103 -0
  797. data/dev/defs/dtrevc +191 -0
  798. data/dev/defs/dtrexc +113 -0
  799. data/dev/defs/dtrrfs +158 -0
  800. data/dev/defs/dtrsen +284 -0
  801. data/dev/defs/dtrsna +239 -0
  802. data/dev/defs/dtrsyl +133 -0
  803. data/dev/defs/dtrti2 +76 -0
  804. data/dev/defs/dtrtri +75 -0
  805. data/dev/defs/dtrtrs +107 -0
  806. data/dev/defs/dtrttf +171 -0
  807. data/dev/defs/dtrttp +72 -0
  808. data/dev/defs/dtzrqf +104 -0
  809. data/dev/defs/dtzrzf +128 -0
  810. data/dev/defs/dzsum1 +49 -0
  811. data/dev/defs/icmax1 +55 -0
  812. data/dev/defs/ieeeck +49 -0
  813. data/dev/defs/ilaclc +46 -0
  814. data/dev/defs/ilaclr +46 -0
  815. data/dev/defs/iladiag +30 -0
  816. data/dev/defs/iladlc +46 -0
  817. data/dev/defs/iladlr +46 -0
  818. data/dev/defs/ilaenv +133 -0
  819. data/dev/defs/ilaprec +33 -0
  820. data/dev/defs/ilaslc +46 -0
  821. data/dev/defs/ilaslr +46 -0
  822. data/dev/defs/ilatrans +32 -0
  823. data/dev/defs/ilauplo +30 -0
  824. data/dev/defs/ilaver +35 -0
  825. data/dev/defs/ilazlc +46 -0
  826. data/dev/defs/ilazlr +46 -0
  827. data/dev/defs/iparmq +177 -0
  828. data/dev/defs/izmax1 +55 -0
  829. data/dev/defs/lsamen +50 -0
  830. data/dev/defs/sbbcsd +297 -0
  831. data/dev/defs/sbdsdc +192 -0
  832. data/dev/defs/sbdsqr +203 -0
  833. data/dev/defs/scsum1 +49 -0
  834. data/dev/defs/sdisna +84 -0
  835. data/dev/defs/sgbbrd +167 -0
  836. data/dev/defs/sgbcon +114 -0
  837. data/dev/defs/sgbequ +121 -0
  838. data/dev/defs/sgbequb +128 -0
  839. data/dev/defs/sgbrfs +182 -0
  840. data/dev/defs/sgbrfsx +419 -0
  841. data/dev/defs/sgbsv +134 -0
  842. data/dev/defs/sgbsvx +356 -0
  843. data/dev/defs/sgbsvxx +539 -0
  844. data/dev/defs/sgbtf2 +110 -0
  845. data/dev/defs/sgbtrf +109 -0
  846. data/dev/defs/sgbtrs +106 -0
  847. data/dev/defs/sgebak +95 -0
  848. data/dev/defs/sgebal +125 -0
  849. data/dev/defs/sgebd2 +162 -0
  850. data/dev/defs/sgebrd +178 -0
  851. data/dev/defs/sgecon +90 -0
  852. data/dev/defs/sgeequ +107 -0
  853. data/dev/defs/sgeequb +114 -0
  854. data/dev/defs/sgees +188 -0
  855. data/dev/defs/sgeesx +251 -0
  856. data/dev/defs/sgeev +166 -0
  857. data/dev/defs/sgeevx +282 -0
  858. data/dev/defs/sgegs +207 -0
  859. data/dev/defs/sgegv +286 -0
  860. data/dev/defs/sgehd2 +115 -0
  861. data/dev/defs/sgehrd +136 -0
  862. data/dev/defs/sgejsv +860 -0
  863. data/dev/defs/sgelq2 +89 -0
  864. data/dev/defs/sgelqf +113 -0
  865. data/dev/defs/sgels +158 -0
  866. data/dev/defs/sgelsd +194 -0
  867. data/dev/defs/sgelss +149 -0
  868. data/dev/defs/sgelsx +148 -0
  869. data/dev/defs/sgelsy +181 -0
  870. data/dev/defs/sgeql2 +91 -0
  871. data/dev/defs/sgeqlf +116 -0
  872. data/dev/defs/sgeqp3 +120 -0
  873. data/dev/defs/sgeqpf +111 -0
  874. data/dev/defs/sgeqr2 +89 -0
  875. data/dev/defs/sgeqr2p +89 -0
  876. data/dev/defs/sgeqrf +114 -0
  877. data/dev/defs/sgeqrfp +114 -0
  878. data/dev/defs/sgerfs +164 -0
  879. data/dev/defs/sgerfsx +394 -0
  880. data/dev/defs/sgerq2 +91 -0
  881. data/dev/defs/sgerqf +116 -0
  882. data/dev/defs/sgesc2 +86 -0
  883. data/dev/defs/sgesdd +197 -0
  884. data/dev/defs/sgesv +97 -0
  885. data/dev/defs/sgesvd +188 -0
  886. data/dev/defs/sgesvj +304 -0
  887. data/dev/defs/sgesvx +333 -0
  888. data/dev/defs/sgesvxx +519 -0
  889. data/dev/defs/sgetc2 +82 -0
  890. data/dev/defs/sgetf2 +76 -0
  891. data/dev/defs/sgetrf +76 -0
  892. data/dev/defs/sgetri +86 -0
  893. data/dev/defs/sgetrs +91 -0
  894. data/dev/defs/sggbak +119 -0
  895. data/dev/defs/sggbal +144 -0
  896. data/dev/defs/sgges +261 -0
  897. data/dev/defs/sggesx +342 -0
  898. data/dev/defs/sggev +206 -0
  899. data/dev/defs/sggevx +371 -0
  900. data/dev/defs/sggglm +160 -0
  901. data/dev/defs/sgghrd +174 -0
  902. data/dev/defs/sgglse +157 -0
  903. data/dev/defs/sggqrf +195 -0
  904. data/dev/defs/sggrqf +194 -0
  905. data/dev/defs/sggsvd +319 -0
  906. data/dev/defs/sggsvp +233 -0
  907. data/dev/defs/sgsvj0 +200 -0
  908. data/dev/defs/sgsvj1 +220 -0
  909. data/dev/defs/sgtcon +119 -0
  910. data/dev/defs/sgtrfs +193 -0
  911. data/dev/defs/sgtsv +100 -0
  912. data/dev/defs/sgtsvx +275 -0
  913. data/dev/defs/sgttrf +97 -0
  914. data/dev/defs/sgttrs +119 -0
  915. data/dev/defs/sgtts2 +106 -0
  916. data/dev/defs/shgeqz +282 -0
  917. data/dev/defs/shsein +234 -0
  918. data/dev/defs/shseqr +279 -0
  919. data/dev/defs/sisnan +29 -0
  920. data/dev/defs/sla_gbamv +152 -0
  921. data/dev/defs/sla_gbrcond +152 -0
  922. data/dev/defs/sla_gbrfsx_extended +391 -0
  923. data/dev/defs/sla_gbrpvgrw +90 -0
  924. data/dev/defs/sla_geamv +142 -0
  925. data/dev/defs/sla_gercond +134 -0
  926. data/dev/defs/sla_gerfsx_extended +376 -0
  927. data/dev/defs/sla_lin_berr +78 -0
  928. data/dev/defs/sla_porcond +122 -0
  929. data/dev/defs/sla_porfsx_extended +363 -0
  930. data/dev/defs/sla_porpvgrw +81 -0
  931. data/dev/defs/sla_rpvgrw +72 -0
  932. data/dev/defs/sla_syamv +142 -0
  933. data/dev/defs/sla_syrcond +131 -0
  934. data/dev/defs/sla_syrfsx_extended +372 -0
  935. data/dev/defs/sla_syrpvgrw +101 -0
  936. data/dev/defs/sla_wwaddw +53 -0
  937. data/dev/defs/slabad +43 -0
  938. data/dev/defs/slabrd +186 -0
  939. data/dev/defs/slacn2 +96 -0
  940. data/dev/defs/slacon +80 -0
  941. data/dev/defs/slacpy +78 -0
  942. data/dev/defs/sladiv +57 -0
  943. data/dev/defs/slae2 +66 -0
  944. data/dev/defs/slaebz +292 -0
  945. data/dev/defs/slaed0 +147 -0
  946. data/dev/defs/slaed1 +141 -0
  947. data/dev/defs/slaed2 +194 -0
  948. data/dev/defs/slaed3 +167 -0
  949. data/dev/defs/slaed4 +113 -0
  950. data/dev/defs/slaed5 +78 -0
  951. data/dev/defs/slaed6 +101 -0
  952. data/dev/defs/slaed7 +241 -0
  953. data/dev/defs/slaed8 +227 -0
  954. data/dev/defs/slaed9 +137 -0
  955. data/dev/defs/slaeda +147 -0
  956. data/dev/defs/slaein +141 -0
  957. data/dev/defs/slaev2 +83 -0
  958. data/dev/defs/slaexc +107 -0
  959. data/dev/defs/slag2 +123 -0
  960. data/dev/defs/slag2d +74 -0
  961. data/dev/defs/slags2 +108 -0
  962. data/dev/defs/slagtf +128 -0
  963. data/dev/defs/slagtm +115 -0
  964. data/dev/defs/slagts +135 -0
  965. data/dev/defs/slagv2 +128 -0
  966. data/dev/defs/slahqr +172 -0
  967. data/dev/defs/slahr2 +153 -0
  968. data/dev/defs/slahrd +142 -0
  969. data/dev/defs/slaic1 +101 -0
  970. data/dev/defs/slaln2 +187 -0
  971. data/dev/defs/slals0 +250 -0
  972. data/dev/defs/slalsa +268 -0
  973. data/dev/defs/slalsd +150 -0
  974. data/dev/defs/slamrg +66 -0
  975. data/dev/defs/slaneg +87 -0
  976. data/dev/defs/slangb +93 -0
  977. data/dev/defs/slange +84 -0
  978. data/dev/defs/slangt +77 -0
  979. data/dev/defs/slanhs +78 -0
  980. data/dev/defs/slansb +97 -0
  981. data/dev/defs/slansf +179 -0
  982. data/dev/defs/slansp +83 -0
  983. data/dev/defs/slanst +69 -0
  984. data/dev/defs/slansy +92 -0
  985. data/dev/defs/slantb +108 -0
  986. data/dev/defs/slantp +93 -0
  987. data/dev/defs/slantr +109 -0
  988. data/dev/defs/slanv2 +84 -0
  989. data/dev/defs/slapll +69 -0
  990. data/dev/defs/slapmr +73 -0
  991. data/dev/defs/slapmt +73 -0
  992. data/dev/defs/slapy2 +30 -0
  993. data/dev/defs/slapy3 +34 -0
  994. data/dev/defs/slaqgb +124 -0
  995. data/dev/defs/slaqge +107 -0
  996. data/dev/defs/slaqp2 +115 -0
  997. data/dev/defs/slaqps +146 -0
  998. data/dev/defs/slaqr0 +225 -0
  999. data/dev/defs/slaqr1 +79 -0
  1000. data/dev/defs/slaqr2 +252 -0
  1001. data/dev/defs/slaqr3 +247 -0
  1002. data/dev/defs/slaqr4 +225 -0
  1003. data/dev/defs/slaqr5 +230 -0
  1004. data/dev/defs/slaqsb +105 -0
  1005. data/dev/defs/slaqsp +89 -0
  1006. data/dev/defs/slaqsy +98 -0
  1007. data/dev/defs/slaqtr +134 -0
  1008. data/dev/defs/slar1v +199 -0
  1009. data/dev/defs/slar2v +86 -0
  1010. data/dev/defs/slarf +93 -0
  1011. data/dev/defs/slarfb +139 -0
  1012. data/dev/defs/slarfg +71 -0
  1013. data/dev/defs/slarfgp +69 -0
  1014. data/dev/defs/slarft +133 -0
  1015. data/dev/defs/slarfx +89 -0
  1016. data/dev/defs/slargv +74 -0
  1017. data/dev/defs/slarnv +61 -0
  1018. data/dev/defs/slarra +106 -0
  1019. data/dev/defs/slarrb +167 -0
  1020. data/dev/defs/slarrc +99 -0
  1021. data/dev/defs/slarrd +290 -0
  1022. data/dev/defs/slarre +265 -0
  1023. data/dev/defs/slarrf +165 -0
  1024. data/dev/defs/slarrj +138 -0
  1025. data/dev/defs/slarrk +108 -0
  1026. data/dev/defs/slarrr +62 -0
  1027. data/dev/defs/slarrv +259 -0
  1028. data/dev/defs/slarscl2 +61 -0
  1029. data/dev/defs/slartg +64 -0
  1030. data/dev/defs/slartgp +62 -0
  1031. data/dev/defs/slartgs +57 -0
  1032. data/dev/defs/slartv +82 -0
  1033. data/dev/defs/slaruv +59 -0
  1034. data/dev/defs/slarz +109 -0
  1035. data/dev/defs/slarzb +150 -0
  1036. data/dev/defs/slarzt +151 -0
  1037. data/dev/defs/slas2 +71 -0
  1038. data/dev/defs/slascl +102 -0
  1039. data/dev/defs/slascl2 +61 -0
  1040. data/dev/defs/slasd0 +131 -0
  1041. data/dev/defs/slasd1 +179 -0
  1042. data/dev/defs/slasd2 +254 -0
  1043. data/dev/defs/slasd3 +213 -0
  1044. data/dev/defs/slasd4 +123 -0
  1045. data/dev/defs/slasd5 +88 -0
  1046. data/dev/defs/slasd6 +300 -0
  1047. data/dev/defs/slasd7 +264 -0
  1048. data/dev/defs/slasd8 +144 -0
  1049. data/dev/defs/slasda +275 -0
  1050. data/dev/defs/slasdq +187 -0
  1051. data/dev/defs/slasdt +76 -0
  1052. data/dev/defs/slaset +81 -0
  1053. data/dev/defs/slasq1 +75 -0
  1054. data/dev/defs/slasq2 +73 -0
  1055. data/dev/defs/slasq3 +141 -0
  1056. data/dev/defs/slasq4 +107 -0
  1057. data/dev/defs/slasq5 +100 -0
  1058. data/dev/defs/slasq6 +90 -0
  1059. data/dev/defs/slasr +169 -0
  1060. data/dev/defs/slasrt +53 -0
  1061. data/dev/defs/slassq +68 -0
  1062. data/dev/defs/slasv2 +100 -0
  1063. data/dev/defs/slaswp +81 -0
  1064. data/dev/defs/slasy2 +145 -0
  1065. data/dev/defs/slasyf +126 -0
  1066. data/dev/defs/slatbs +206 -0
  1067. data/dev/defs/slatdf +131 -0
  1068. data/dev/defs/slatps +192 -0
  1069. data/dev/defs/slatrd +168 -0
  1070. data/dev/defs/slatrs +202 -0
  1071. data/dev/defs/slatrz +106 -0
  1072. data/dev/defs/slatzm +123 -0
  1073. data/dev/defs/slauu2 +68 -0
  1074. data/dev/defs/slauum +68 -0
  1075. data/dev/defs/sopgtr +87 -0
  1076. data/dev/defs/sopmtr +120 -0
  1077. data/dev/defs/sorbdb +270 -0
  1078. data/dev/defs/sorcsd +264 -0
  1079. data/dev/defs/sorg2l +85 -0
  1080. data/dev/defs/sorg2r +85 -0
  1081. data/dev/defs/sorgbr +129 -0
  1082. data/dev/defs/sorghr +97 -0
  1083. data/dev/defs/sorgl2 +84 -0
  1084. data/dev/defs/sorglq +100 -0
  1085. data/dev/defs/sorgql +101 -0
  1086. data/dev/defs/sorgqr +101 -0
  1087. data/dev/defs/sorgr2 +85 -0
  1088. data/dev/defs/sorgrq +101 -0
  1089. data/dev/defs/sorgtr +95 -0
  1090. data/dev/defs/sorm2l +130 -0
  1091. data/dev/defs/sorm2r +130 -0
  1092. data/dev/defs/sormbr +176 -0
  1093. data/dev/defs/sormhr +157 -0
  1094. data/dev/defs/sorml2 +130 -0
  1095. data/dev/defs/sormlq +143 -0
  1096. data/dev/defs/sormql +143 -0
  1097. data/dev/defs/sormqr +143 -0
  1098. data/dev/defs/sormr2 +130 -0
  1099. data/dev/defs/sormr3 +152 -0
  1100. data/dev/defs/sormrq +143 -0
  1101. data/dev/defs/sormrz +157 -0
  1102. data/dev/defs/sormtr +152 -0
  1103. data/dev/defs/spbcon +98 -0
  1104. data/dev/defs/spbequ +96 -0
  1105. data/dev/defs/spbrfs +166 -0
  1106. data/dev/defs/spbstf +115 -0
  1107. data/dev/defs/spbsv +136 -0
  1108. data/dev/defs/spbsvx +314 -0
  1109. data/dev/defs/spbtf2 +105 -0
  1110. data/dev/defs/spbtrf +103 -0
  1111. data/dev/defs/spbtrs +98 -0
  1112. data/dev/defs/spftrf +161 -0
  1113. data/dev/defs/spftri +154 -0
  1114. data/dev/defs/spftrs +164 -0
  1115. data/dev/defs/spocon +87 -0
  1116. data/dev/defs/spoequ +80 -0
  1117. data/dev/defs/spoequb +80 -0
  1118. data/dev/defs/sporfs +160 -0
  1119. data/dev/defs/sporfsx +370 -0
  1120. data/dev/defs/sposv +105 -0
  1121. data/dev/defs/sposvx +281 -0
  1122. data/dev/defs/sposvxx +471 -0
  1123. data/dev/defs/spotf2 +75 -0
  1124. data/dev/defs/spotrf +73 -0
  1125. data/dev/defs/spotri +67 -0
  1126. data/dev/defs/spotrs +79 -0
  1127. data/dev/defs/sppcon +85 -0
  1128. data/dev/defs/sppequ +82 -0
  1129. data/dev/defs/spprfs +146 -0
  1130. data/dev/defs/sppsv +115 -0
  1131. data/dev/defs/sppsvx +283 -0
  1132. data/dev/defs/spptrf +81 -0
  1133. data/dev/defs/spptri +58 -0
  1134. data/dev/defs/spptrs +84 -0
  1135. data/dev/defs/spstf2 +108 -0
  1136. data/dev/defs/spstrf +108 -0
  1137. data/dev/defs/sptcon +84 -0
  1138. data/dev/defs/spteqr +117 -0
  1139. data/dev/defs/sptrfs +141 -0
  1140. data/dev/defs/sptsv +89 -0
  1141. data/dev/defs/sptsvx +203 -0
  1142. data/dev/defs/spttrf +59 -0
  1143. data/dev/defs/spttrs +88 -0
  1144. data/dev/defs/sptts2 +77 -0
  1145. data/dev/defs/srscl +49 -0
  1146. data/dev/defs/ssbev +117 -0
  1147. data/dev/defs/ssbevd +169 -0
  1148. data/dev/defs/ssbevx +231 -0
  1149. data/dev/defs/ssbgst +130 -0
  1150. data/dev/defs/ssbgv +156 -0
  1151. data/dev/defs/ssbgvd +206 -0
  1152. data/dev/defs/ssbgvx +259 -0
  1153. data/dev/defs/ssbtrd +132 -0
  1154. data/dev/defs/ssfrk +134 -0
  1155. data/dev/defs/sspcon +92 -0
  1156. data/dev/defs/sspev +103 -0
  1157. data/dev/defs/sspevd +154 -0
  1158. data/dev/defs/sspevx +197 -0
  1159. data/dev/defs/sspgst +80 -0
  1160. data/dev/defs/sspgv +139 -0
  1161. data/dev/defs/sspgvd +188 -0
  1162. data/dev/defs/sspgvx +241 -0
  1163. data/dev/defs/ssprfs +156 -0
  1164. data/dev/defs/sspsv +134 -0
  1165. data/dev/defs/sspsvx +249 -0
  1166. data/dev/defs/ssptrd +118 -0
  1167. data/dev/defs/ssptrf +120 -0
  1168. data/dev/defs/ssptri +77 -0
  1169. data/dev/defs/ssptrs +84 -0
  1170. data/dev/defs/sstebz +229 -0
  1171. data/dev/defs/sstedc +164 -0
  1172. data/dev/defs/sstegr +233 -0
  1173. data/dev/defs/sstein +152 -0
  1174. data/dev/defs/sstemr +285 -0
  1175. data/dev/defs/ssteqr +103 -0
  1176. data/dev/defs/ssterf +54 -0
  1177. data/dev/defs/sstev +88 -0
  1178. data/dev/defs/sstevd +138 -0
  1179. data/dev/defs/sstevr +275 -0
  1180. data/dev/defs/sstevx +193 -0
  1181. data/dev/defs/ssycon +98 -0
  1182. data/dev/defs/ssyconv +90 -0
  1183. data/dev/defs/ssyequb +104 -0
  1184. data/dev/defs/ssyev +104 -0
  1185. data/dev/defs/ssyevd +157 -0
  1186. data/dev/defs/ssyevr +302 -0
  1187. data/dev/defs/ssyevx +218 -0
  1188. data/dev/defs/ssygs2 +96 -0
  1189. data/dev/defs/ssygst +96 -0
  1190. data/dev/defs/ssygv +148 -0
  1191. data/dev/defs/ssygvd +197 -0
  1192. data/dev/defs/ssygvx +263 -0
  1193. data/dev/defs/ssyrfs +170 -0
  1194. data/dev/defs/ssyrfsx +380 -0
  1195. data/dev/defs/ssysv +149 -0
  1196. data/dev/defs/ssysvx +261 -0
  1197. data/dev/defs/ssysvxx +484 -0
  1198. data/dev/defs/ssyswapr +70 -0
  1199. data/dev/defs/ssytd2 +142 -0
  1200. data/dev/defs/ssytf2 +143 -0
  1201. data/dev/defs/ssytrd +162 -0
  1202. data/dev/defs/ssytrf +156 -0
  1203. data/dev/defs/ssytri +83 -0
  1204. data/dev/defs/ssytri2 +110 -0
  1205. data/dev/defs/ssytri2x +90 -0
  1206. data/dev/defs/ssytrs +90 -0
  1207. data/dev/defs/ssytrs2 +97 -0
  1208. data/dev/defs/stbcon +109 -0
  1209. data/dev/defs/stbrfs +164 -0
  1210. data/dev/defs/stbtrs +113 -0
  1211. data/dev/defs/stfsm +243 -0
  1212. data/dev/defs/stftri +163 -0
  1213. data/dev/defs/stfttp +151 -0
  1214. data/dev/defs/stfttr +174 -0
  1215. data/dev/defs/stgevc +265 -0
  1216. data/dev/defs/stgex2 +191 -0
  1217. data/dev/defs/stgexc +190 -0
  1218. data/dev/defs/stgsen +421 -0
  1219. data/dev/defs/stgsja +343 -0
  1220. data/dev/defs/stgsna +354 -0
  1221. data/dev/defs/stgsy2 +252 -0
  1222. data/dev/defs/stgsyl +274 -0
  1223. data/dev/defs/stpcon +95 -0
  1224. data/dev/defs/stprfs +150 -0
  1225. data/dev/defs/stptri +79 -0
  1226. data/dev/defs/stptrs +98 -0
  1227. data/dev/defs/stpttf +151 -0
  1228. data/dev/defs/stpttr +73 -0
  1229. data/dev/defs/strcon +103 -0
  1230. data/dev/defs/strevc +191 -0
  1231. data/dev/defs/strexc +113 -0
  1232. data/dev/defs/strrfs +158 -0
  1233. data/dev/defs/strsen +284 -0
  1234. data/dev/defs/strsna +239 -0
  1235. data/dev/defs/strsyl +133 -0
  1236. data/dev/defs/strti2 +76 -0
  1237. data/dev/defs/strtri +75 -0
  1238. data/dev/defs/strtrs +107 -0
  1239. data/dev/defs/strttf +171 -0
  1240. data/dev/defs/strttp +72 -0
  1241. data/dev/defs/stzrqf +104 -0
  1242. data/dev/defs/stzrzf +128 -0
  1243. data/dev/defs/xerbla +40 -0
  1244. data/dev/defs/xerbla_array +65 -0
  1245. data/dev/defs/zbbcsd +297 -0
  1246. data/dev/defs/zbdsqr +196 -0
  1247. data/dev/defs/zcgesv +176 -0
  1248. data/dev/defs/zcposv +182 -0
  1249. data/dev/defs/zdrscl +49 -0
  1250. data/dev/defs/zgbbrd +174 -0
  1251. data/dev/defs/zgbcon +114 -0
  1252. data/dev/defs/zgbequ +121 -0
  1253. data/dev/defs/zgbequb +128 -0
  1254. data/dev/defs/zgbrfs +182 -0
  1255. data/dev/defs/zgbrfsx +418 -0
  1256. data/dev/defs/zgbsv +134 -0
  1257. data/dev/defs/zgbsvx +356 -0
  1258. data/dev/defs/zgbsvxx +536 -0
  1259. data/dev/defs/zgbtf2 +110 -0
  1260. data/dev/defs/zgbtrf +109 -0
  1261. data/dev/defs/zgbtrs +106 -0
  1262. data/dev/defs/zgebak +95 -0
  1263. data/dev/defs/zgebal +125 -0
  1264. data/dev/defs/zgebd2 +162 -0
  1265. data/dev/defs/zgebrd +178 -0
  1266. data/dev/defs/zgecon +90 -0
  1267. data/dev/defs/zgeequ +107 -0
  1268. data/dev/defs/zgeequb +114 -0
  1269. data/dev/defs/zgees +170 -0
  1270. data/dev/defs/zgeesx +209 -0
  1271. data/dev/defs/zgeev +154 -0
  1272. data/dev/defs/zgeevx +263 -0
  1273. data/dev/defs/zgegs +205 -0
  1274. data/dev/defs/zgegv +261 -0
  1275. data/dev/defs/zgehd2 +115 -0
  1276. data/dev/defs/zgehrd +136 -0
  1277. data/dev/defs/zgelq2 +89 -0
  1278. data/dev/defs/zgelqf +113 -0
  1279. data/dev/defs/zgels +157 -0
  1280. data/dev/defs/zgelsd +211 -0
  1281. data/dev/defs/zgelss +156 -0
  1282. data/dev/defs/zgelsx +155 -0
  1283. data/dev/defs/zgelsy +188 -0
  1284. data/dev/defs/zgeql2 +91 -0
  1285. data/dev/defs/zgeqlf +116 -0
  1286. data/dev/defs/zgeqp3 +127 -0
  1287. data/dev/defs/zgeqpf +118 -0
  1288. data/dev/defs/zgeqr2 +89 -0
  1289. data/dev/defs/zgeqr2p +89 -0
  1290. data/dev/defs/zgeqrf +114 -0
  1291. data/dev/defs/zgeqrfp +114 -0
  1292. data/dev/defs/zgerfs +164 -0
  1293. data/dev/defs/zgerfsx +394 -0
  1294. data/dev/defs/zgerq2 +91 -0
  1295. data/dev/defs/zgerqf +116 -0
  1296. data/dev/defs/zgesc2 +87 -0
  1297. data/dev/defs/zgesdd +203 -0
  1298. data/dev/defs/zgesv +97 -0
  1299. data/dev/defs/zgesvd +195 -0
  1300. data/dev/defs/zgesvx +333 -0
  1301. data/dev/defs/zgesvxx +516 -0
  1302. data/dev/defs/zgetc2 +82 -0
  1303. data/dev/defs/zgetf2 +76 -0
  1304. data/dev/defs/zgetrf +76 -0
  1305. data/dev/defs/zgetri +86 -0
  1306. data/dev/defs/zgetrs +91 -0
  1307. data/dev/defs/zggbak +119 -0
  1308. data/dev/defs/zggbal +144 -0
  1309. data/dev/defs/zgges +247 -0
  1310. data/dev/defs/zggesx +311 -0
  1311. data/dev/defs/zggev +197 -0
  1312. data/dev/defs/zggevx +353 -0
  1313. data/dev/defs/zggglm +160 -0
  1314. data/dev/defs/zgghrd +171 -0
  1315. data/dev/defs/zgglse +157 -0
  1316. data/dev/defs/zggqrf +195 -0
  1317. data/dev/defs/zggrqf +194 -0
  1318. data/dev/defs/zggsvd +324 -0
  1319. data/dev/defs/zggsvp +240 -0
  1320. data/dev/defs/zgtcon +112 -0
  1321. data/dev/defs/zgtrfs +193 -0
  1322. data/dev/defs/zgtsv +97 -0
  1323. data/dev/defs/zgtsvx +275 -0
  1324. data/dev/defs/zgttrf +97 -0
  1325. data/dev/defs/zgttrs +119 -0
  1326. data/dev/defs/zgtts2 +108 -0
  1327. data/dev/defs/zhbev +124 -0
  1328. data/dev/defs/zhbevd +194 -0
  1329. data/dev/defs/zhbevx +234 -0
  1330. data/dev/defs/zhbgst +137 -0
  1331. data/dev/defs/zhbgv +163 -0
  1332. data/dev/defs/zhbgvd +231 -0
  1333. data/dev/defs/zhbgvx +265 -0
  1334. data/dev/defs/zhbtrd +132 -0
  1335. data/dev/defs/zhecon +91 -0
  1336. data/dev/defs/zheequb +87 -0
  1337. data/dev/defs/zheev +111 -0
  1338. data/dev/defs/zheevd +178 -0
  1339. data/dev/defs/zheevr +325 -0
  1340. data/dev/defs/zheevx +225 -0
  1341. data/dev/defs/zhegs2 +96 -0
  1342. data/dev/defs/zhegst +96 -0
  1343. data/dev/defs/zhegv +155 -0
  1344. data/dev/defs/zhegvd +222 -0
  1345. data/dev/defs/zhegvx +270 -0
  1346. data/dev/defs/zherfs +170 -0
  1347. data/dev/defs/zherfsx +380 -0
  1348. data/dev/defs/zhesv +147 -0
  1349. data/dev/defs/zhesvx +261 -0
  1350. data/dev/defs/zhesvxx +478 -0
  1351. data/dev/defs/zhetd2 +143 -0
  1352. data/dev/defs/zhetf2 +141 -0
  1353. data/dev/defs/zhetrd +162 -0
  1354. data/dev/defs/zhetrf +151 -0
  1355. data/dev/defs/zhetri +83 -0
  1356. data/dev/defs/zhetrs +90 -0
  1357. data/dev/defs/zhetrs2 +97 -0
  1358. data/dev/defs/zhfrk +138 -0
  1359. data/dev/defs/zhgeqz +258 -0
  1360. data/dev/defs/zhpcon +85 -0
  1361. data/dev/defs/zhpev +110 -0
  1362. data/dev/defs/zhpevd +180 -0
  1363. data/dev/defs/zhpevx +204 -0
  1364. data/dev/defs/zhpgst +80 -0
  1365. data/dev/defs/zhpgv +145 -0
  1366. data/dev/defs/zhpgvd +221 -0
  1367. data/dev/defs/zhpgvx +247 -0
  1368. data/dev/defs/zhprfs +156 -0
  1369. data/dev/defs/zhpsv +134 -0
  1370. data/dev/defs/zhpsvx +248 -0
  1371. data/dev/defs/zhptrd +118 -0
  1372. data/dev/defs/zhptrf +120 -0
  1373. data/dev/defs/zhptri +77 -0
  1374. data/dev/defs/zhptrs +84 -0
  1375. data/dev/defs/zhsein +217 -0
  1376. data/dev/defs/zhseqr +263 -0
  1377. data/dev/defs/zla_gbamv +154 -0
  1378. data/dev/defs/zla_gbrcond_c +146 -0
  1379. data/dev/defs/zla_gbrcond_x +140 -0
  1380. data/dev/defs/zla_gbrfsx_extended +391 -0
  1381. data/dev/defs/zla_gbrpvgrw +94 -0
  1382. data/dev/defs/zla_geamv +142 -0
  1383. data/dev/defs/zla_gercond_c +128 -0
  1384. data/dev/defs/zla_gercond_x +122 -0
  1385. data/dev/defs/zla_gerfsx_extended +378 -0
  1386. data/dev/defs/zla_heamv +142 -0
  1387. data/dev/defs/zla_hercond_c +125 -0
  1388. data/dev/defs/zla_hercond_x +119 -0
  1389. data/dev/defs/zla_herfsx_extended +375 -0
  1390. data/dev/defs/zla_herpvgrw +105 -0
  1391. data/dev/defs/zla_lin_berr +79 -0
  1392. data/dev/defs/zla_porcond_c +116 -0
  1393. data/dev/defs/zla_porcond_x +110 -0
  1394. data/dev/defs/zla_porfsx_extended +366 -0
  1395. data/dev/defs/zla_porpvgrw +85 -0
  1396. data/dev/defs/zla_rpvgrw +76 -0
  1397. data/dev/defs/zla_syamv +142 -0
  1398. data/dev/defs/zla_syrcond_c +125 -0
  1399. data/dev/defs/zla_syrcond_x +119 -0
  1400. data/dev/defs/zla_syrfsx_extended +375 -0
  1401. data/dev/defs/zla_syrpvgrw +105 -0
  1402. data/dev/defs/zla_wwaddw +53 -0
  1403. data/dev/defs/zlabrd +187 -0
  1404. data/dev/defs/zlacgv +44 -0
  1405. data/dev/defs/zlacn2 +91 -0
  1406. data/dev/defs/zlacon +75 -0
  1407. data/dev/defs/zlacp2 +78 -0
  1408. data/dev/defs/zlacpy +78 -0
  1409. data/dev/defs/zlacrm +88 -0
  1410. data/dev/defs/zlacrt +73 -0
  1411. data/dev/defs/zladiv +37 -0
  1412. data/dev/defs/zlaed0 +121 -0
  1413. data/dev/defs/zlaed7 +237 -0
  1414. data/dev/defs/zlaed8 +211 -0
  1415. data/dev/defs/zlaein +117 -0
  1416. data/dev/defs/zlaesy +81 -0
  1417. data/dev/defs/zlaev2 +83 -0
  1418. data/dev/defs/zlag2c +82 -0
  1419. data/dev/defs/zlags2 +116 -0
  1420. data/dev/defs/zlagtm +115 -0
  1421. data/dev/defs/zlahef +127 -0
  1422. data/dev/defs/zlahqr +159 -0
  1423. data/dev/defs/zlahr2 +153 -0
  1424. data/dev/defs/zlahrd +141 -0
  1425. data/dev/defs/zlaic1 +101 -0
  1426. data/dev/defs/zlals0 +251 -0
  1427. data/dev/defs/zlalsa +267 -0
  1428. data/dev/defs/zlalsd +160 -0
  1429. data/dev/defs/zlangb +92 -0
  1430. data/dev/defs/zlange +84 -0
  1431. data/dev/defs/zlangt +77 -0
  1432. data/dev/defs/zlanhb +99 -0
  1433. data/dev/defs/zlanhe +93 -0
  1434. data/dev/defs/zlanhf +211 -0
  1435. data/dev/defs/zlanhp +85 -0
  1436. data/dev/defs/zlanhs +78 -0
  1437. data/dev/defs/zlanht +69 -0
  1438. data/dev/defs/zlansb +97 -0
  1439. data/dev/defs/zlansp +83 -0
  1440. data/dev/defs/zlansy +92 -0
  1441. data/dev/defs/zlantb +108 -0
  1442. data/dev/defs/zlantp +93 -0
  1443. data/dev/defs/zlantr +109 -0
  1444. data/dev/defs/zlapll +67 -0
  1445. data/dev/defs/zlapmr +73 -0
  1446. data/dev/defs/zlapmt +73 -0
  1447. data/dev/defs/zlaqgb +124 -0
  1448. data/dev/defs/zlaqge +107 -0
  1449. data/dev/defs/zlaqhb +105 -0
  1450. data/dev/defs/zlaqhe +98 -0
  1451. data/dev/defs/zlaqhp +89 -0
  1452. data/dev/defs/zlaqp2 +115 -0
  1453. data/dev/defs/zlaqps +141 -0
  1454. data/dev/defs/zlaqr0 +203 -0
  1455. data/dev/defs/zlaqr1 +66 -0
  1456. data/dev/defs/zlaqr2 +243 -0
  1457. data/dev/defs/zlaqr3 +238 -0
  1458. data/dev/defs/zlaqr4 +203 -0
  1459. data/dev/defs/zlaqr5 +221 -0
  1460. data/dev/defs/zlaqsb +105 -0
  1461. data/dev/defs/zlaqsp +89 -0
  1462. data/dev/defs/zlaqsy +98 -0
  1463. data/dev/defs/zlar1v +199 -0
  1464. data/dev/defs/zlar2v +88 -0
  1465. data/dev/defs/zlarcm +88 -0
  1466. data/dev/defs/zlarf +97 -0
  1467. data/dev/defs/zlarfb +139 -0
  1468. data/dev/defs/zlarfg +71 -0
  1469. data/dev/defs/zlarfgp +69 -0
  1470. data/dev/defs/zlarft +133 -0
  1471. data/dev/defs/zlarfx +88 -0
  1472. data/dev/defs/zlargv +88 -0
  1473. data/dev/defs/zlarnv +63 -0
  1474. data/dev/defs/zlarrv +259 -0
  1475. data/dev/defs/zlarscl2 +61 -0
  1476. data/dev/defs/zlartg +66 -0
  1477. data/dev/defs/zlartv +82 -0
  1478. data/dev/defs/zlarz +111 -0
  1479. data/dev/defs/zlarzb +150 -0
  1480. data/dev/defs/zlarzt +151 -0
  1481. data/dev/defs/zlascl +102 -0
  1482. data/dev/defs/zlascl2 +61 -0
  1483. data/dev/defs/zlaset +77 -0
  1484. data/dev/defs/zlasr +169 -0
  1485. data/dev/defs/zlassq +71 -0
  1486. data/dev/defs/zlaswp +81 -0
  1487. data/dev/defs/zlasyf +127 -0
  1488. data/dev/defs/zlat2c +85 -0
  1489. data/dev/defs/zlatbs +206 -0
  1490. data/dev/defs/zlatdf +133 -0
  1491. data/dev/defs/zlatps +193 -0
  1492. data/dev/defs/zlatrd +168 -0
  1493. data/dev/defs/zlatrs +202 -0
  1494. data/dev/defs/zlatrz +106 -0
  1495. data/dev/defs/zlatzm +124 -0
  1496. data/dev/defs/zlauu2 +68 -0
  1497. data/dev/defs/zlauum +68 -0
  1498. data/dev/defs/zpbcon +99 -0
  1499. data/dev/defs/zpbequ +96 -0
  1500. data/dev/defs/zpbrfs +166 -0
  1501. data/dev/defs/zpbstf +116 -0
  1502. data/dev/defs/zpbsv +136 -0
  1503. data/dev/defs/zpbsvx +314 -0
  1504. data/dev/defs/zpbtf2 +105 -0
  1505. data/dev/defs/zpbtrf +103 -0
  1506. data/dev/defs/zpbtrs +98 -0
  1507. data/dev/defs/zpftrf +182 -0
  1508. data/dev/defs/zpftri +175 -0
  1509. data/dev/defs/zpftrs +185 -0
  1510. data/dev/defs/zpocon +87 -0
  1511. data/dev/defs/zpoequ +80 -0
  1512. data/dev/defs/zpoequb +80 -0
  1513. data/dev/defs/zporfs +160 -0
  1514. data/dev/defs/zporfsx +370 -0
  1515. data/dev/defs/zposv +105 -0
  1516. data/dev/defs/zposvx +281 -0
  1517. data/dev/defs/zposvxx +468 -0
  1518. data/dev/defs/zpotf2 +75 -0
  1519. data/dev/defs/zpotrf +73 -0
  1520. data/dev/defs/zpotri +67 -0
  1521. data/dev/defs/zpotrs +79 -0
  1522. data/dev/defs/zppcon +85 -0
  1523. data/dev/defs/zppequ +82 -0
  1524. data/dev/defs/zpprfs +146 -0
  1525. data/dev/defs/zppsv +115 -0
  1526. data/dev/defs/zppsvx +283 -0
  1527. data/dev/defs/zpptrf +81 -0
  1528. data/dev/defs/zpptri +58 -0
  1529. data/dev/defs/zpptrs +84 -0
  1530. data/dev/defs/zpstf2 +108 -0
  1531. data/dev/defs/zpstrf +108 -0
  1532. data/dev/defs/zptcon +84 -0
  1533. data/dev/defs/zpteqr +116 -0
  1534. data/dev/defs/zptrfs +161 -0
  1535. data/dev/defs/zptsv +89 -0
  1536. data/dev/defs/zptsvx +210 -0
  1537. data/dev/defs/zpttrf +59 -0
  1538. data/dev/defs/zpttrs +98 -0
  1539. data/dev/defs/zptts2 +89 -0
  1540. data/dev/defs/zrot +72 -0
  1541. data/dev/defs/zspcon +85 -0
  1542. data/dev/defs/zspmv +119 -0
  1543. data/dev/defs/zspr +98 -0
  1544. data/dev/defs/zsprfs +156 -0
  1545. data/dev/defs/zspsv +134 -0
  1546. data/dev/defs/zspsvx +248 -0
  1547. data/dev/defs/zsptrf +121 -0
  1548. data/dev/defs/zsptri +77 -0
  1549. data/dev/defs/zsptrs +84 -0
  1550. data/dev/defs/zstedc +192 -0
  1551. data/dev/defs/zstegr +233 -0
  1552. data/dev/defs/zstein +159 -0
  1553. data/dev/defs/zstemr +302 -0
  1554. data/dev/defs/zsteqr +103 -0
  1555. data/dev/defs/zsycon +91 -0
  1556. data/dev/defs/zsyconv +90 -0
  1557. data/dev/defs/zsyequb +104 -0
  1558. data/dev/defs/zsymv +126 -0
  1559. data/dev/defs/zsyr +102 -0
  1560. data/dev/defs/zsyrfs +170 -0
  1561. data/dev/defs/zsyrfsx +380 -0
  1562. data/dev/defs/zsysv +149 -0
  1563. data/dev/defs/zsysvx +261 -0
  1564. data/dev/defs/zsysvxx +482 -0
  1565. data/dev/defs/zsyswapr +70 -0
  1566. data/dev/defs/zsytf2 +140 -0
  1567. data/dev/defs/zsytrf +156 -0
  1568. data/dev/defs/zsytri +83 -0
  1569. data/dev/defs/zsytri2 +111 -0
  1570. data/dev/defs/zsytri2x +90 -0
  1571. data/dev/defs/zsytrs +90 -0
  1572. data/dev/defs/zsytrs2 +97 -0
  1573. data/dev/defs/ztbcon +109 -0
  1574. data/dev/defs/ztbrfs +164 -0
  1575. data/dev/defs/ztbtrs +113 -0
  1576. data/dev/defs/ztfsm +259 -0
  1577. data/dev/defs/ztftri +183 -0
  1578. data/dev/defs/ztfttp +172 -0
  1579. data/dev/defs/ztfttr +182 -0
  1580. data/dev/defs/ztgevc +194 -0
  1581. data/dev/defs/ztgex2 +158 -0
  1582. data/dev/defs/ztgexc +176 -0
  1583. data/dev/defs/ztgsen +406 -0
  1584. data/dev/defs/ztgsja +344 -0
  1585. data/dev/defs/ztgsna +282 -0
  1586. data/dev/defs/ztgsy2 +235 -0
  1587. data/dev/defs/ztgsyl +273 -0
  1588. data/dev/defs/ztpcon +95 -0
  1589. data/dev/defs/ztprfs +150 -0
  1590. data/dev/defs/ztptri +79 -0
  1591. data/dev/defs/ztptrs +98 -0
  1592. data/dev/defs/ztpttf +172 -0
  1593. data/dev/defs/ztpttr +73 -0
  1594. data/dev/defs/ztrcon +103 -0
  1595. data/dev/defs/ztrevc +188 -0
  1596. data/dev/defs/ztrexc +99 -0
  1597. data/dev/defs/ztrrfs +158 -0
  1598. data/dev/defs/ztrsen +234 -0
  1599. data/dev/defs/ztrsna +223 -0
  1600. data/dev/defs/ztrsyl +126 -0
  1601. data/dev/defs/ztrti2 +76 -0
  1602. data/dev/defs/ztrtri +75 -0
  1603. data/dev/defs/ztrtrs +107 -0
  1604. data/dev/defs/ztrttf +181 -0
  1605. data/dev/defs/ztrttp +72 -0
  1606. data/dev/defs/ztzrqf +104 -0
  1607. data/dev/defs/ztzrzf +128 -0
  1608. data/dev/defs/zunbdb +270 -0
  1609. data/dev/defs/zuncsd +283 -0
  1610. data/dev/defs/zung2l +85 -0
  1611. data/dev/defs/zung2r +85 -0
  1612. data/dev/defs/zungbr +129 -0
  1613. data/dev/defs/zunghr +97 -0
  1614. data/dev/defs/zungl2 +84 -0
  1615. data/dev/defs/zunglq +100 -0
  1616. data/dev/defs/zungql +101 -0
  1617. data/dev/defs/zungqr +101 -0
  1618. data/dev/defs/zungr2 +85 -0
  1619. data/dev/defs/zungrq +101 -0
  1620. data/dev/defs/zungtr +95 -0
  1621. data/dev/defs/zunm2l +130 -0
  1622. data/dev/defs/zunm2r +130 -0
  1623. data/dev/defs/zunmbr +177 -0
  1624. data/dev/defs/zunmhr +157 -0
  1625. data/dev/defs/zunml2 +130 -0
  1626. data/dev/defs/zunmlq +143 -0
  1627. data/dev/defs/zunmql +143 -0
  1628. data/dev/defs/zunmqr +143 -0
  1629. data/dev/defs/zunmr2 +130 -0
  1630. data/dev/defs/zunmr3 +152 -0
  1631. data/dev/defs/zunmrq +143 -0
  1632. data/dev/defs/zunmrz +157 -0
  1633. data/dev/defs/zunmtr +152 -0
  1634. data/dev/defs/zupgtr +87 -0
  1635. data/dev/defs/zupmtr +120 -0
  1636. data/dev/make_csrc.rb +857 -0
  1637. data/dev/mkdoc.rb +265 -0
  1638. data/dev/parse.rb +1972 -0
  1639. data/doc/bd.html +16 -0
  1640. data/doc/c.html +36 -0
  1641. data/doc/cbd.html +161 -0
  1642. data/doc/cgb.html +1865 -0
  1643. data/doc/cge.html +5261 -0
  1644. data/doc/cgg.html +2027 -0
  1645. data/doc/cgt.html +711 -0
  1646. data/doc/chb.html +1031 -0
  1647. data/doc/che.html +3165 -0
  1648. data/doc/chg.html +201 -0
  1649. data/doc/chp.html +1696 -0
  1650. data/doc/chs.html +386 -0
  1651. data/doc/cpb.html +994 -0
  1652. data/doc/cpo.html +1520 -0
  1653. data/doc/cpp.html +770 -0
  1654. data/doc/cpt.html +706 -0
  1655. data/doc/csp.html +905 -0
  1656. data/doc/cst.html +742 -0
  1657. data/doc/csy.html +2194 -0
  1658. data/doc/ctb.html +284 -0
  1659. data/doc/ctg.html +1544 -0
  1660. data/doc/ctp.html +553 -0
  1661. data/doc/ctr.html +1281 -0
  1662. data/doc/ctz.html +211 -0
  1663. data/doc/cun.html +2553 -0
  1664. data/doc/cup.html +166 -0
  1665. data/doc/d.html +35 -0
  1666. data/doc/dbd.html +304 -0
  1667. data/doc/ddi.html +87 -0
  1668. data/doc/dgb.html +1857 -0
  1669. data/doc/dge.html +7267 -0
  1670. data/doc/dgg.html +2102 -0
  1671. data/doc/dgt.html +713 -0
  1672. data/doc/dhg.html +225 -0
  1673. data/doc/dhs.html +414 -0
  1674. data/doc/di.html +14 -0
  1675. data/doc/dop.html +166 -0
  1676. data/doc/dor.html +2540 -0
  1677. data/doc/dpb.html +992 -0
  1678. data/doc/dpo.html +1517 -0
  1679. data/doc/dpp.html +770 -0
  1680. data/doc/dpt.html +675 -0
  1681. data/doc/dsb.html +995 -0
  1682. data/doc/dsp.html +1777 -0
  1683. data/doc/dst.html +1422 -0
  1684. data/doc/dsy.html +3433 -0
  1685. data/doc/dtb.html +284 -0
  1686. data/doc/dtg.html +1730 -0
  1687. data/doc/dtp.html +532 -0
  1688. data/doc/dtr.html +1346 -0
  1689. data/doc/dtz.html +211 -0
  1690. data/doc/gb.html +16 -0
  1691. data/doc/ge.html +16 -0
  1692. data/doc/gg.html +16 -0
  1693. data/doc/gt.html +16 -0
  1694. data/doc/hb.html +14 -0
  1695. data/doc/he.html +14 -0
  1696. data/doc/hg.html +16 -0
  1697. data/doc/hp.html +14 -0
  1698. data/doc/hs.html +16 -0
  1699. data/doc/index.html +53 -0
  1700. data/doc/op.html +14 -0
  1701. data/doc/or.html +14 -0
  1702. data/doc/others.html +1142 -0
  1703. data/doc/pb.html +16 -0
  1704. data/doc/po.html +16 -0
  1705. data/doc/pp.html +16 -0
  1706. data/doc/pt.html +16 -0
  1707. data/doc/s.html +35 -0
  1708. data/doc/sb.html +14 -0
  1709. data/doc/sbd.html +303 -0
  1710. data/doc/sdi.html +87 -0
  1711. data/doc/sgb.html +1863 -0
  1712. data/doc/sge.html +7263 -0
  1713. data/doc/sgg.html +2102 -0
  1714. data/doc/sgt.html +713 -0
  1715. data/doc/shg.html +225 -0
  1716. data/doc/shs.html +414 -0
  1717. data/doc/sop.html +166 -0
  1718. data/doc/sor.html +2540 -0
  1719. data/doc/sp.html +16 -0
  1720. data/doc/spb.html +992 -0
  1721. data/doc/spo.html +1520 -0
  1722. data/doc/spp.html +770 -0
  1723. data/doc/spt.html +675 -0
  1724. data/doc/ssb.html +995 -0
  1725. data/doc/ssp.html +1647 -0
  1726. data/doc/sst.html +1423 -0
  1727. data/doc/ssy.html +3438 -0
  1728. data/doc/st.html +16 -0
  1729. data/doc/stb.html +284 -0
  1730. data/doc/stg.html +1729 -0
  1731. data/doc/stp.html +532 -0
  1732. data/doc/str.html +1346 -0
  1733. data/doc/stz.html +211 -0
  1734. data/doc/sy.html +16 -0
  1735. data/doc/tb.html +16 -0
  1736. data/doc/tg.html +16 -0
  1737. data/doc/tp.html +16 -0
  1738. data/doc/tr.html +16 -0
  1739. data/doc/tz.html +16 -0
  1740. data/doc/un.html +14 -0
  1741. data/doc/up.html +14 -0
  1742. data/doc/z.html +36 -0
  1743. data/doc/zbd.html +161 -0
  1744. data/doc/zgb.html +1862 -0
  1745. data/doc/zge.html +5258 -0
  1746. data/doc/zgg.html +2027 -0
  1747. data/doc/zgt.html +711 -0
  1748. data/doc/zhb.html +1031 -0
  1749. data/doc/zhe.html +3162 -0
  1750. data/doc/zhg.html +201 -0
  1751. data/doc/zhp.html +1697 -0
  1752. data/doc/zhs.html +386 -0
  1753. data/doc/zpb.html +994 -0
  1754. data/doc/zpo.html +1517 -0
  1755. data/doc/zpp.html +770 -0
  1756. data/doc/zpt.html +706 -0
  1757. data/doc/zsp.html +905 -0
  1758. data/doc/zst.html +743 -0
  1759. data/doc/zsy.html +2191 -0
  1760. data/doc/ztb.html +284 -0
  1761. data/doc/ztg.html +1544 -0
  1762. data/doc/ztp.html +553 -0
  1763. data/doc/ztr.html +1281 -0
  1764. data/doc/ztz.html +211 -0
  1765. data/doc/zun.html +2553 -0
  1766. data/doc/zup.html +166 -0
  1767. data/ext/cbbcsd.c +279 -0
  1768. data/ext/cbdsqr.c +178 -0
  1769. data/ext/cgbbrd.c +153 -0
  1770. data/ext/cgbcon.c +94 -0
  1771. data/ext/cgbequ.c +94 -0
  1772. data/ext/cgbequb.c +92 -0
  1773. data/ext/cgbrfs.c +157 -0
  1774. data/ext/cgbrfsx.c +245 -0
  1775. data/ext/cgbsv.c +111 -0
  1776. data/ext/cgbsvx.c +282 -0
  1777. data/ext/cgbsvxx.c +285 -0
  1778. data/ext/cgbtf2.c +89 -0
  1779. data/ext/cgbtrf.c +89 -0
  1780. data/ext/cgbtrs.c +107 -0
  1781. data/ext/cgebak.c +97 -0
  1782. data/ext/cgebal.c +87 -0
  1783. data/ext/cgebd2.c +108 -0
  1784. data/ext/cgebrd.c +123 -0
  1785. data/ext/cgecon.c +74 -0
  1786. data/ext/cgeequ.c +84 -0
  1787. data/ext/cgeequb.c +84 -0
  1788. data/ext/cgees.c +138 -0
  1789. data/ext/cgeesx.c +148 -0
  1790. data/ext/cgeev.c +128 -0
  1791. data/ext/cgeevx.c +169 -0
  1792. data/ext/cgegs.c +162 -0
  1793. data/ext/cgegv.c +167 -0
  1794. data/ext/cgehd2.c +88 -0
  1795. data/ext/cgehrd.c +103 -0
  1796. data/ext/cgelq2.c +82 -0
  1797. data/ext/cgelqf.c +99 -0
  1798. data/ext/cgels.c +133 -0
  1799. data/ext/cgelsd.c +150 -0
  1800. data/ext/cgelss.c +147 -0
  1801. data/ext/cgelsx.c +135 -0
  1802. data/ext/cgelsy.c +162 -0
  1803. data/ext/cgeql2.c +84 -0
  1804. data/ext/cgeqlf.c +99 -0
  1805. data/ext/cgeqp3.c +125 -0
  1806. data/ext/cgeqpf.c +110 -0
  1807. data/ext/cgeqr2.c +84 -0
  1808. data/ext/cgeqr2p.c +84 -0
  1809. data/ext/cgeqrf.c +99 -0
  1810. data/ext/cgeqrfp.c +99 -0
  1811. data/ext/cgerfs.c +149 -0
  1812. data/ext/cgerfsx.c +215 -0
  1813. data/ext/cgerq2.c +82 -0
  1814. data/ext/cgerqf.c +99 -0
  1815. data/ext/cgesc2.c +104 -0
  1816. data/ext/cgesdd.c +131 -0
  1817. data/ext/cgesv.c +103 -0
  1818. data/ext/cgesvd.c +142 -0
  1819. data/ext/cgesvx.c +274 -0
  1820. data/ext/cgesvxx.c +277 -0
  1821. data/ext/cgetc2.c +85 -0
  1822. data/ext/cgetf2.c +81 -0
  1823. data/ext/cgetrf.c +81 -0
  1824. data/ext/cgetri.c +99 -0
  1825. data/ext/cgetrs.c +99 -0
  1826. data/ext/cggbak.c +109 -0
  1827. data/ext/cggbal.c +124 -0
  1828. data/ext/cgges.c +188 -0
  1829. data/ext/cggesx.c +226 -0
  1830. data/ext/cggev.c +167 -0
  1831. data/ext/cggevx.c +222 -0
  1832. data/ext/cggglm.c +152 -0
  1833. data/ext/cgghrd.c +163 -0
  1834. data/ext/cgglse.c +167 -0
  1835. data/ext/cggqrf.c +133 -0
  1836. data/ext/cggrqf.c +137 -0
  1837. data/ext/cggsvd.c +180 -0
  1838. data/ext/cggsvp.c +170 -0
  1839. data/ext/cgtcon.c +117 -0
  1840. data/ext/cgtrfs.c +205 -0
  1841. data/ext/cgtsv.c +138 -0
  1842. data/ext/cgtsvx.c +252 -0
  1843. data/ext/cgttrf.c +128 -0
  1844. data/ext/cgttrs.c +133 -0
  1845. data/ext/cgtts2.c +130 -0
  1846. data/ext/chbev.c +106 -0
  1847. data/ext/chbevd.c +154 -0
  1848. data/ext/chbevx.c +156 -0
  1849. data/ext/chbgst.c +116 -0
  1850. data/ext/chbgv.c +136 -0
  1851. data/ext/chbgvd.c +184 -0
  1852. data/ext/chbgvx.c +185 -0
  1853. data/ext/chbtrd.c +126 -0
  1854. data/ext/checon.c +83 -0
  1855. data/ext/cheequb.c +78 -0
  1856. data/ext/cheev.c +106 -0
  1857. data/ext/cheevd.c +139 -0
  1858. data/ext/cheevr.c +186 -0
  1859. data/ext/cheevx.c +156 -0
  1860. data/ext/chegs2.c +91 -0
  1861. data/ext/chegst.c +91 -0
  1862. data/ext/chegv.c +136 -0
  1863. data/ext/chegvd.c +169 -0
  1864. data/ext/chegvx.c +186 -0
  1865. data/ext/cherfs.c +149 -0
  1866. data/ext/cherfsx.c +214 -0
  1867. data/ext/chesv.c +119 -0
  1868. data/ext/chesvx.c +179 -0
  1869. data/ext/chesvxx.c +254 -0
  1870. data/ext/chetd2.c +97 -0
  1871. data/ext/chetf2.c +81 -0
  1872. data/ext/chetrd.c +109 -0
  1873. data/ext/chetrf.c +93 -0
  1874. data/ext/chetri.c +88 -0
  1875. data/ext/chetrs.c +99 -0
  1876. data/ext/chetrs2.c +102 -0
  1877. data/ext/chfrk.c +105 -0
  1878. data/ext/chgeqz.c +204 -0
  1879. data/ext/chla_transtype.c +47 -0
  1880. data/ext/chpcon.c +81 -0
  1881. data/ext/chpev.c +101 -0
  1882. data/ext/chpevd.c +149 -0
  1883. data/ext/chpevx.c +140 -0
  1884. data/ext/chpgst.c +90 -0
  1885. data/ext/chpgv.c +128 -0
  1886. data/ext/chpgvd.c +166 -0
  1887. data/ext/chpgvx.c +166 -0
  1888. data/ext/chprfs.c +145 -0
  1889. data/ext/chpsv.c +106 -0
  1890. data/ext/chpsvx.c +159 -0
  1891. data/ext/chptrd.c +96 -0
  1892. data/ext/chptrf.c +80 -0
  1893. data/ext/chptri.c +85 -0
  1894. data/ext/chptrs.c +97 -0
  1895. data/ext/chsein.c +181 -0
  1896. data/ext/chseqr.c +141 -0
  1897. data/ext/cla_gbamv.c +123 -0
  1898. data/ext/cla_gbrcond_c.c +138 -0
  1899. data/ext/cla_gbrcond_x.c +134 -0
  1900. data/ext/cla_gbrfsx_extended.c +291 -0
  1901. data/ext/cla_gbrpvgrw.c +83 -0
  1902. data/ext/cla_geamv.c +113 -0
  1903. data/ext/cla_gercond_c.c +130 -0
  1904. data/ext/cla_gercond_x.c +126 -0
  1905. data/ext/cla_gerfsx_extended.c +277 -0
  1906. data/ext/cla_heamv.c +112 -0
  1907. data/ext/cla_hercond_c.c +130 -0
  1908. data/ext/cla_hercond_x.c +126 -0
  1909. data/ext/cla_herfsx_extended.c +279 -0
  1910. data/ext/cla_herpvgrw.c +103 -0
  1911. data/ext/cla_lin_berr.c +80 -0
  1912. data/ext/cla_porcond_c.c +118 -0
  1913. data/ext/cla_porcond_x.c +114 -0
  1914. data/ext/cla_porfsx_extended.c +267 -0
  1915. data/ext/cla_porpvgrw.c +91 -0
  1916. data/ext/cla_rpvgrw.c +75 -0
  1917. data/ext/cla_syamv.c +111 -0
  1918. data/ext/cla_syrcond_c.c +130 -0
  1919. data/ext/cla_syrcond_x.c +126 -0
  1920. data/ext/cla_syrfsx_extended.c +279 -0
  1921. data/ext/cla_syrpvgrw.c +103 -0
  1922. data/ext/cla_wwaddw.c +98 -0
  1923. data/ext/clabrd.c +128 -0
  1924. data/ext/clacgv.c +71 -0
  1925. data/ext/clacn2.c +99 -0
  1926. data/ext/clacon.c +76 -0
  1927. data/ext/clacp2.c +73 -0
  1928. data/ext/clacpy.c +73 -0
  1929. data/ext/clacrm.c +86 -0
  1930. data/ext/clacrt.c +104 -0
  1931. data/ext/cladiv.c +53 -0
  1932. data/ext/claed0.c +130 -0
  1933. data/ext/claed7.c +243 -0
  1934. data/ext/claed8.c +194 -0
  1935. data/ext/claein.c +109 -0
  1936. data/ext/claesy.c +70 -0
  1937. data/ext/claev2.c +67 -0
  1938. data/ext/clag2z.c +72 -0
  1939. data/ext/clags2.c +88 -0
  1940. data/ext/clagtm.c +128 -0
  1941. data/ext/clahef.c +93 -0
  1942. data/ext/clahqr.c +131 -0
  1943. data/ext/clahr2.c +108 -0
  1944. data/ext/clahrd.c +108 -0
  1945. data/ext/claic1.c +86 -0
  1946. data/ext/clals0.c +197 -0
  1947. data/ext/clalsa.c +266 -0
  1948. data/ext/clalsd.c +141 -0
  1949. data/ext/clangb.c +72 -0
  1950. data/ext/clange.c +70 -0
  1951. data/ext/clangt.c +83 -0
  1952. data/ext/clanhb.c +74 -0
  1953. data/ext/clanhe.c +68 -0
  1954. data/ext/clanhf.c +76 -0
  1955. data/ext/clanhp.c +70 -0
  1956. data/ext/clanhs.c +66 -0
  1957. data/ext/clanht.c +71 -0
  1958. data/ext/clansb.c +74 -0
  1959. data/ext/clansp.c +70 -0
  1960. data/ext/clansy.c +68 -0
  1961. data/ext/clantb.c +76 -0
  1962. data/ext/clantp.c +76 -0
  1963. data/ext/clantr.c +78 -0
  1964. data/ext/clapll.c +101 -0
  1965. data/ext/clapmr.c +93 -0
  1966. data/ext/clapmt.c +97 -0
  1967. data/ext/claqgb.c +113 -0
  1968. data/ext/claqge.c +105 -0
  1969. data/ext/claqhb.c +93 -0
  1970. data/ext/claqhe.c +93 -0
  1971. data/ext/claqhp.c +90 -0
  1972. data/ext/claqp2.c +154 -0
  1973. data/ext/claqps.c +204 -0
  1974. data/ext/claqr0.c +141 -0
  1975. data/ext/claqr1.c +72 -0
  1976. data/ext/claqr2.c +170 -0
  1977. data/ext/claqr3.c +170 -0
  1978. data/ext/claqr4.c +141 -0
  1979. data/ext/claqr5.c +175 -0
  1980. data/ext/claqsb.c +97 -0
  1981. data/ext/claqsp.c +90 -0
  1982. data/ext/claqsy.c +93 -0
  1983. data/ext/clar1v.c +169 -0
  1984. data/ext/clar2v.c +145 -0
  1985. data/ext/clarcm.c +82 -0
  1986. data/ext/clarf.c +98 -0
  1987. data/ext/clarfb.c +119 -0
  1988. data/ext/clarfg.c +80 -0
  1989. data/ext/clarfgp.c +80 -0
  1990. data/ext/clarft.c +101 -0
  1991. data/ext/clarfx.c +90 -0
  1992. data/ext/clargv.c +110 -0
  1993. data/ext/clarnv.c +79 -0
  1994. data/ext/clarrv.c +267 -0
  1995. data/ext/clarscl2.c +78 -0
  1996. data/ext/clartg.c +59 -0
  1997. data/ext/clartv.c +126 -0
  1998. data/ext/clarz.c +102 -0
  1999. data/ext/clarzb.c +123 -0
  2000. data/ext/clarzt.c +101 -0
  2001. data/ext/clascl.c +93 -0
  2002. data/ext/clascl2.c +78 -0
  2003. data/ext/claset.c +84 -0
  2004. data/ext/clasr.c +106 -0
  2005. data/ext/classq.c +66 -0
  2006. data/ext/claswp.c +90 -0
  2007. data/ext/clasyf.c +93 -0
  2008. data/ext/clatbs.c +126 -0
  2009. data/ext/clatdf.c +115 -0
  2010. data/ext/clatps.c +120 -0
  2011. data/ext/clatrd.c +101 -0
  2012. data/ext/clatrs.c +122 -0
  2013. data/ext/clatrz.c +83 -0
  2014. data/ext/clatzm.c +128 -0
  2015. data/ext/clauu2.c +73 -0
  2016. data/ext/clauum.c +73 -0
  2017. data/ext/cpbcon.c +78 -0
  2018. data/ext/cpbequ.c +79 -0
  2019. data/ext/cpbrfs.c +141 -0
  2020. data/ext/cpbstf.c +77 -0
  2021. data/ext/cpbsv.c +103 -0
  2022. data/ext/cpbsvx.c +197 -0
  2023. data/ext/cpbtf2.c +77 -0
  2024. data/ext/cpbtrf.c +77 -0
  2025. data/ext/cpbtrs.c +91 -0
  2026. data/ext/cpftrf.c +78 -0
  2027. data/ext/cpftri.c +78 -0
  2028. data/ext/cpftrs.c +93 -0
  2029. data/ext/cpocon.c +74 -0
  2030. data/ext/cpoequ.c +71 -0
  2031. data/ext/cpoequb.c +71 -0
  2032. data/ext/cporfs.c +137 -0
  2033. data/ext/cporfsx.c +202 -0
  2034. data/ext/cposv.c +99 -0
  2035. data/ext/cposvx.c +193 -0
  2036. data/ext/cposvxx.c +231 -0
  2037. data/ext/cpotf2.c +73 -0
  2038. data/ext/cpotrf.c +73 -0
  2039. data/ext/cpotri.c +73 -0
  2040. data/ext/cpotrs.c +87 -0
  2041. data/ext/cppcon.c +74 -0
  2042. data/ext/cppequ.c +75 -0
  2043. data/ext/cpprfs.c +135 -0
  2044. data/ext/cppsv.c +100 -0
  2045. data/ext/cppsvx.c +187 -0
  2046. data/ext/cpptrf.c +74 -0
  2047. data/ext/cpptri.c +74 -0
  2048. data/ext/cpptrs.c +89 -0
  2049. data/ext/cpstf2.c +91 -0
  2050. data/ext/cpstrf.c +91 -0
  2051. data/ext/cptcon.c +77 -0
  2052. data/ext/cpteqr.c +122 -0
  2053. data/ext/cptrfs.c +157 -0
  2054. data/ext/cptsv.c +115 -0
  2055. data/ext/cptsvx.c +167 -0
  2056. data/ext/cpttrf.c +89 -0
  2057. data/ext/cpttrs.c +97 -0
  2058. data/ext/cptts2.c +94 -0
  2059. data/ext/crot.c +103 -0
  2060. data/ext/cspcon.c +81 -0
  2061. data/ext/cspmv.c +111 -0
  2062. data/ext/cspr.c +92 -0
  2063. data/ext/csprfs.c +145 -0
  2064. data/ext/cspsv.c +106 -0
  2065. data/ext/cspsvx.c +159 -0
  2066. data/ext/csptrf.c +80 -0
  2067. data/ext/csptri.c +85 -0
  2068. data/ext/csptrs.c +97 -0
  2069. data/ext/csrscl.c +75 -0
  2070. data/ext/cstedc.c +173 -0
  2071. data/ext/cstegr.c +184 -0
  2072. data/ext/cstein.c +130 -0
  2073. data/ext/cstemr.c +189 -0
  2074. data/ext/csteqr.c +122 -0
  2075. data/ext/csycon.c +83 -0
  2076. data/ext/csyconv.c +80 -0
  2077. data/ext/csyequb.c +78 -0
  2078. data/ext/csymv.c +111 -0
  2079. data/ext/csyr.c +91 -0
  2080. data/ext/csyrfs.c +149 -0
  2081. data/ext/csyrfsx.c +214 -0
  2082. data/ext/csysv.c +125 -0
  2083. data/ext/csysvx.c +179 -0
  2084. data/ext/csysvxx.c +254 -0
  2085. data/ext/csyswapr.c +78 -0
  2086. data/ext/csytf2.c +81 -0
  2087. data/ext/csytrf.c +93 -0
  2088. data/ext/csytri.c +88 -0
  2089. data/ext/csytri2.c +104 -0
  2090. data/ext/csytri2x.c +92 -0
  2091. data/ext/csytrs.c +99 -0
  2092. data/ext/csytrs2.c +102 -0
  2093. data/ext/ctbcon.c +82 -0
  2094. data/ext/ctbrfs.c +123 -0
  2095. data/ext/ctbtrs.c +99 -0
  2096. data/ext/ctfsm.c +107 -0
  2097. data/ext/ctftri.c +82 -0
  2098. data/ext/ctfttp.c +75 -0
  2099. data/ext/ctfttr.c +76 -0
  2100. data/ext/ctgevc.c +152 -0
  2101. data/ext/ctgex2.c +167 -0
  2102. data/ext/ctgexc.c +168 -0
  2103. data/ext/ctgsen.c +240 -0
  2104. data/ext/ctgsja.c +223 -0
  2105. data/ext/ctgsna.c +160 -0
  2106. data/ext/ctgsy2.c +172 -0
  2107. data/ext/ctgsyl.c +186 -0
  2108. data/ext/ctpcon.c +78 -0
  2109. data/ext/ctprfs.c +119 -0
  2110. data/ext/ctptri.c +78 -0
  2111. data/ext/ctptrs.c +97 -0
  2112. data/ext/ctpttf.c +75 -0
  2113. data/ext/ctpttr.c +72 -0
  2114. data/ext/ctrcon.c +78 -0
  2115. data/ext/ctrevc.c +150 -0
  2116. data/ext/ctrexc.c +107 -0
  2117. data/ext/ctrrfs.c +119 -0
  2118. data/ext/ctrsen.c +150 -0
  2119. data/ext/ctrsna.c +133 -0
  2120. data/ext/ctrsyl.c +112 -0
  2121. data/ext/ctrti2.c +77 -0
  2122. data/ext/ctrtri.c +77 -0
  2123. data/ext/ctrtrs.c +95 -0
  2124. data/ext/ctrttf.c +73 -0
  2125. data/ext/ctrttp.c +69 -0
  2126. data/ext/ctzrqf.c +79 -0
  2127. data/ext/ctzrzf.c +97 -0
  2128. data/ext/cunbdb.c +228 -0
  2129. data/ext/cuncsd.c +200 -0
  2130. data/ext/cung2l.c +88 -0
  2131. data/ext/cung2r.c +88 -0
  2132. data/ext/cungbr.c +111 -0
  2133. data/ext/cunghr.c +107 -0
  2134. data/ext/cungl2.c +86 -0
  2135. data/ext/cunglq.c +103 -0
  2136. data/ext/cungql.c +103 -0
  2137. data/ext/cungqr.c +103 -0
  2138. data/ext/cungr2.c +86 -0
  2139. data/ext/cungrq.c +103 -0
  2140. data/ext/cungtr.c +103 -0
  2141. data/ext/cunm2l.c +110 -0
  2142. data/ext/cunm2r.c +110 -0
  2143. data/ext/cunmbr.c +135 -0
  2144. data/ext/cunmhr.c +129 -0
  2145. data/ext/cunml2.c +106 -0
  2146. data/ext/cunmlq.c +121 -0
  2147. data/ext/cunmql.c +125 -0
  2148. data/ext/cunmqr.c +125 -0
  2149. data/ext/cunmr2.c +106 -0
  2150. data/ext/cunmr3.c +110 -0
  2151. data/ext/cunmrq.c +121 -0
  2152. data/ext/cunmrz.c +125 -0
  2153. data/ext/cunmtr.c +125 -0
  2154. data/ext/cupgtr.c +87 -0
  2155. data/ext/cupmtr.c +112 -0
  2156. data/ext/dbbcsd.c +283 -0
  2157. data/ext/dbdsdc.c +147 -0
  2158. data/ext/dbdsqr.c +178 -0
  2159. data/ext/ddisna.c +71 -0
  2160. data/ext/dgbbrd.c +150 -0
  2161. data/ext/dgbcon.c +94 -0
  2162. data/ext/dgbequ.c +94 -0
  2163. data/ext/dgbequb.c +92 -0
  2164. data/ext/dgbrfs.c +157 -0
  2165. data/ext/dgbrfsx.c +245 -0
  2166. data/ext/dgbsv.c +111 -0
  2167. data/ext/dgbsvx.c +282 -0
  2168. data/ext/dgbsvxx.c +285 -0
  2169. data/ext/dgbtf2.c +89 -0
  2170. data/ext/dgbtrf.c +89 -0
  2171. data/ext/dgbtrs.c +107 -0
  2172. data/ext/dgebak.c +97 -0
  2173. data/ext/dgebal.c +87 -0
  2174. data/ext/dgebd2.c +108 -0
  2175. data/ext/dgebrd.c +123 -0
  2176. data/ext/dgecon.c +74 -0
  2177. data/ext/dgeequ.c +84 -0
  2178. data/ext/dgeequb.c +84 -0
  2179. data/ext/dgees.c +144 -0
  2180. data/ext/dgeesx.c +166 -0
  2181. data/ext/dgeev.c +133 -0
  2182. data/ext/dgeevx.c +177 -0
  2183. data/ext/dgegs.c +167 -0
  2184. data/ext/dgegv.c +167 -0
  2185. data/ext/dgehd2.c +88 -0
  2186. data/ext/dgehrd.c +103 -0
  2187. data/ext/dgejsv.c +155 -0
  2188. data/ext/dgelq2.c +82 -0
  2189. data/ext/dgelqf.c +99 -0
  2190. data/ext/dgels.c +133 -0
  2191. data/ext/dgelsd.c +145 -0
  2192. data/ext/dgelss.c +144 -0
  2193. data/ext/dgelsx.c +132 -0
  2194. data/ext/dgelsy.c +159 -0
  2195. data/ext/dgeql2.c +84 -0
  2196. data/ext/dgeqlf.c +99 -0
  2197. data/ext/dgeqp3.c +122 -0
  2198. data/ext/dgeqpf.c +107 -0
  2199. data/ext/dgeqr2.c +84 -0
  2200. data/ext/dgeqr2p.c +84 -0
  2201. data/ext/dgeqrf.c +99 -0
  2202. data/ext/dgeqrfp.c +99 -0
  2203. data/ext/dgerfs.c +149 -0
  2204. data/ext/dgerfsx.c +215 -0
  2205. data/ext/dgerq2.c +82 -0
  2206. data/ext/dgerqf.c +99 -0
  2207. data/ext/dgesc2.c +104 -0
  2208. data/ext/dgesdd.c +128 -0
  2209. data/ext/dgesv.c +103 -0
  2210. data/ext/dgesvd.c +139 -0
  2211. data/ext/dgesvj.c +152 -0
  2212. data/ext/dgesvx.c +274 -0
  2213. data/ext/dgesvxx.c +277 -0
  2214. data/ext/dgetc2.c +85 -0
  2215. data/ext/dgetf2.c +81 -0
  2216. data/ext/dgetrf.c +81 -0
  2217. data/ext/dgetri.c +99 -0
  2218. data/ext/dgetrs.c +99 -0
  2219. data/ext/dggbak.c +109 -0
  2220. data/ext/dggbal.c +124 -0
  2221. data/ext/dgges.c +194 -0
  2222. data/ext/dggesx.c +227 -0
  2223. data/ext/dggev.c +167 -0
  2224. data/ext/dggevx.c +225 -0
  2225. data/ext/dggglm.c +152 -0
  2226. data/ext/dgghrd.c +163 -0
  2227. data/ext/dgglse.c +167 -0
  2228. data/ext/dggqrf.c +133 -0
  2229. data/ext/dggrqf.c +137 -0
  2230. data/ext/dggsvd.c +177 -0
  2231. data/ext/dggsvp.c +167 -0
  2232. data/ext/dgsvj0.c +178 -0
  2233. data/ext/dgsvj1.c +182 -0
  2234. data/ext/dgtcon.c +120 -0
  2235. data/ext/dgtrfs.c +205 -0
  2236. data/ext/dgtsv.c +138 -0
  2237. data/ext/dgtsvx.c +252 -0
  2238. data/ext/dgttrf.c +128 -0
  2239. data/ext/dgttrs.c +133 -0
  2240. data/ext/dgtts2.c +130 -0
  2241. data/ext/dhgeqz.c +209 -0
  2242. data/ext/dhsein.c +201 -0
  2243. data/ext/dhseqr.c +149 -0
  2244. data/ext/disnan.c +47 -0
  2245. data/ext/dla_gbamv.c +125 -0
  2246. data/ext/dla_gbrcond.c +138 -0
  2247. data/ext/dla_gbrfsx_extended.c +289 -0
  2248. data/ext/dla_gbrpvgrw.c +83 -0
  2249. data/ext/dla_geamv.c +115 -0
  2250. data/ext/dla_gercond.c +130 -0
  2251. data/ext/dla_gerfsx_extended.c +277 -0
  2252. data/ext/dla_lin_berr.c +80 -0
  2253. data/ext/dla_porcond.c +118 -0
  2254. data/ext/dla_porfsx_extended.c +267 -0
  2255. data/ext/dla_porpvgrw.c +91 -0
  2256. data/ext/dla_rpvgrw.c +75 -0
  2257. data/ext/dla_syamv.c +109 -0
  2258. data/ext/dla_syrcond.c +130 -0
  2259. data/ext/dla_syrfsx_extended.c +279 -0
  2260. data/ext/dla_syrpvgrw.c +103 -0
  2261. data/ext/dla_wwaddw.c +98 -0
  2262. data/ext/dlabad.c +50 -0
  2263. data/ext/dlabrd.c +128 -0
  2264. data/ext/dlacn2.c +102 -0
  2265. data/ext/dlacon.c +79 -0
  2266. data/ext/dlacpy.c +73 -0
  2267. data/ext/dladiv.c +62 -0
  2268. data/ext/dlae2.c +58 -0
  2269. data/ext/dlaebz.c +214 -0
  2270. data/ext/dlaed0.c +123 -0
  2271. data/ext/dlaed1.c +129 -0
  2272. data/ext/dlaed2.c +185 -0
  2273. data/ext/dlaed3.c +157 -0
  2274. data/ext/dlaed4.c +86 -0
  2275. data/ext/dlaed5.c +83 -0
  2276. data/ext/dlaed6.c +86 -0
  2277. data/ext/dlaed7.c +244 -0
  2278. data/ext/dlaed8.c +202 -0
  2279. data/ext/dlaed9.c +107 -0
  2280. data/ext/dlaeda.c +156 -0
  2281. data/ext/dlaein.c +139 -0
  2282. data/ext/dlaev2.c +64 -0
  2283. data/ext/dlaexc.c +114 -0
  2284. data/ext/dlag2.c +87 -0
  2285. data/ext/dlag2s.c +72 -0
  2286. data/ext/dlags2.c +86 -0
  2287. data/ext/dlagtf.c +136 -0
  2288. data/ext/dlagtm.c +128 -0
  2289. data/ext/dlagts.c +135 -0
  2290. data/ext/dlagv2.c +128 -0
  2291. data/ext/dlahqr.c +139 -0
  2292. data/ext/dlahr2.c +108 -0
  2293. data/ext/dlahrd.c +108 -0
  2294. data/ext/dlaic1.c +85 -0
  2295. data/ext/dlaln2.c +116 -0
  2296. data/ext/dlals0.c +197 -0
  2297. data/ext/dlalsa.c +266 -0
  2298. data/ext/dlalsd.c +138 -0
  2299. data/ext/dlamrg.c +76 -0
  2300. data/ext/dlaneg.c +79 -0
  2301. data/ext/dlangb.c +74 -0
  2302. data/ext/dlange.c +70 -0
  2303. data/ext/dlangt.c +83 -0
  2304. data/ext/dlanhs.c +66 -0
  2305. data/ext/dlansb.c +74 -0
  2306. data/ext/dlansf.c +76 -0
  2307. data/ext/dlansp.c +72 -0
  2308. data/ext/dlanst.c +71 -0
  2309. data/ext/dlansy.c +70 -0
  2310. data/ext/dlantb.c +78 -0
  2311. data/ext/dlantp.c +76 -0
  2312. data/ext/dlantr.c +78 -0
  2313. data/ext/dlanv2.c +78 -0
  2314. data/ext/dlapll.c +101 -0
  2315. data/ext/dlapmr.c +93 -0
  2316. data/ext/dlapmt.c +97 -0
  2317. data/ext/dlapy2.c +51 -0
  2318. data/ext/dlapy3.c +55 -0
  2319. data/ext/dlaqgb.c +113 -0
  2320. data/ext/dlaqge.c +105 -0
  2321. data/ext/dlaqp2.c +154 -0
  2322. data/ext/dlaqps.c +204 -0
  2323. data/ext/dlaqr0.c +149 -0
  2324. data/ext/dlaqr1.c +78 -0
  2325. data/ext/dlaqr2.c +178 -0
  2326. data/ext/dlaqr3.c +178 -0
  2327. data/ext/dlaqr4.c +149 -0
  2328. data/ext/dlaqr5.c +196 -0
  2329. data/ext/dlaqsb.c +97 -0
  2330. data/ext/dlaqsp.c +90 -0
  2331. data/ext/dlaqsy.c +93 -0
  2332. data/ext/dlaqtr.c +110 -0
  2333. data/ext/dlar1v.c +169 -0
  2334. data/ext/dlar2v.c +145 -0
  2335. data/ext/dlarf.c +97 -0
  2336. data/ext/dlarfb.c +119 -0
  2337. data/ext/dlarfg.c +79 -0
  2338. data/ext/dlarfgp.c +79 -0
  2339. data/ext/dlarft.c +101 -0
  2340. data/ext/dlarfx.c +89 -0
  2341. data/ext/dlargv.c +110 -0
  2342. data/ext/dlarnv.c +79 -0
  2343. data/ext/dlarra.c +120 -0
  2344. data/ext/dlarrb.c +174 -0
  2345. data/ext/dlarrc.c +92 -0
  2346. data/ext/dlarrd.c +186 -0
  2347. data/ext/dlarre.c +217 -0
  2348. data/ext/dlarrf.c +172 -0
  2349. data/ext/dlarrj.c +143 -0
  2350. data/ext/dlarrk.c +93 -0
  2351. data/ext/dlarrr.c +78 -0
  2352. data/ext/dlarrv.c +267 -0
  2353. data/ext/dlarscl2.c +78 -0
  2354. data/ext/dlartg.c +57 -0
  2355. data/ext/dlartgp.c +57 -0
  2356. data/ext/dlartgs.c +58 -0
  2357. data/ext/dlartv.c +126 -0
  2358. data/ext/dlaruv.c +75 -0
  2359. data/ext/dlarz.c +101 -0
  2360. data/ext/dlarzb.c +123 -0
  2361. data/ext/dlarzt.c +101 -0
  2362. data/ext/dlas2.c +58 -0
  2363. data/ext/dlascl.c +93 -0
  2364. data/ext/dlascl2.c +78 -0
  2365. data/ext/dlasd0.c +116 -0
  2366. data/ext/dlasd1.c +158 -0
  2367. data/ext/dlasd2.c +224 -0
  2368. data/ext/dlasd3.c +198 -0
  2369. data/ext/dlasd4.c +89 -0
  2370. data/ext/dlasd5.c +86 -0
  2371. data/ext/dlasd6.c +232 -0
  2372. data/ext/dlasd7.c +221 -0
  2373. data/ext/dlasd8.c +169 -0
  2374. data/ext/dlasda.c +217 -0
  2375. data/ext/dlasdq.c +182 -0
  2376. data/ext/dlasdt.c +78 -0
  2377. data/ext/dlaset.c +82 -0
  2378. data/ext/dlasq1.c +92 -0
  2379. data/ext/dlasq2.c +70 -0
  2380. data/ext/dlasq3.c +134 -0
  2381. data/ext/dlasq4.c +103 -0
  2382. data/ext/dlasq5.c +90 -0
  2383. data/ext/dlasq6.c +82 -0
  2384. data/ext/dlasr.c +106 -0
  2385. data/ext/dlasrt.c +70 -0
  2386. data/ext/dlassq.c +66 -0
  2387. data/ext/dlasv2.c +70 -0
  2388. data/ext/dlaswp.c +90 -0
  2389. data/ext/dlasy2.c +122 -0
  2390. data/ext/dlasyf.c +93 -0
  2391. data/ext/dlat2s.c +72 -0
  2392. data/ext/dlatbs.c +126 -0
  2393. data/ext/dlatdf.c +115 -0
  2394. data/ext/dlatps.c +120 -0
  2395. data/ext/dlatrd.c +101 -0
  2396. data/ext/dlatrs.c +122 -0
  2397. data/ext/dlatrz.c +83 -0
  2398. data/ext/dlatzm.c +127 -0
  2399. data/ext/dlauu2.c +73 -0
  2400. data/ext/dlauum.c +73 -0
  2401. data/ext/dopgtr.c +87 -0
  2402. data/ext/dopmtr.c +112 -0
  2403. data/ext/dorbdb.c +228 -0
  2404. data/ext/dorcsd.c +193 -0
  2405. data/ext/dorg2l.c +88 -0
  2406. data/ext/dorg2r.c +88 -0
  2407. data/ext/dorgbr.c +111 -0
  2408. data/ext/dorghr.c +107 -0
  2409. data/ext/dorgl2.c +86 -0
  2410. data/ext/dorglq.c +103 -0
  2411. data/ext/dorgql.c +103 -0
  2412. data/ext/dorgqr.c +103 -0
  2413. data/ext/dorgr2.c +86 -0
  2414. data/ext/dorgrq.c +103 -0
  2415. data/ext/dorgtr.c +103 -0
  2416. data/ext/dorm2l.c +110 -0
  2417. data/ext/dorm2r.c +110 -0
  2418. data/ext/dormbr.c +135 -0
  2419. data/ext/dormhr.c +129 -0
  2420. data/ext/dorml2.c +106 -0
  2421. data/ext/dormlq.c +121 -0
  2422. data/ext/dormql.c +125 -0
  2423. data/ext/dormqr.c +125 -0
  2424. data/ext/dormr2.c +106 -0
  2425. data/ext/dormr3.c +110 -0
  2426. data/ext/dormrq.c +121 -0
  2427. data/ext/dormrz.c +125 -0
  2428. data/ext/dormtr.c +125 -0
  2429. data/ext/dpbcon.c +78 -0
  2430. data/ext/dpbequ.c +79 -0
  2431. data/ext/dpbrfs.c +141 -0
  2432. data/ext/dpbstf.c +77 -0
  2433. data/ext/dpbsv.c +103 -0
  2434. data/ext/dpbsvx.c +197 -0
  2435. data/ext/dpbtf2.c +77 -0
  2436. data/ext/dpbtrf.c +77 -0
  2437. data/ext/dpbtrs.c +91 -0
  2438. data/ext/dpftrf.c +78 -0
  2439. data/ext/dpftri.c +78 -0
  2440. data/ext/dpftrs.c +93 -0
  2441. data/ext/dpocon.c +74 -0
  2442. data/ext/dpoequ.c +71 -0
  2443. data/ext/dpoequb.c +71 -0
  2444. data/ext/dporfs.c +137 -0
  2445. data/ext/dporfsx.c +202 -0
  2446. data/ext/dposv.c +99 -0
  2447. data/ext/dposvx.c +193 -0
  2448. data/ext/dposvxx.c +231 -0
  2449. data/ext/dpotf2.c +73 -0
  2450. data/ext/dpotrf.c +73 -0
  2451. data/ext/dpotri.c +73 -0
  2452. data/ext/dpotrs.c +87 -0
  2453. data/ext/dppcon.c +74 -0
  2454. data/ext/dppequ.c +75 -0
  2455. data/ext/dpprfs.c +135 -0
  2456. data/ext/dppsv.c +100 -0
  2457. data/ext/dppsvx.c +187 -0
  2458. data/ext/dpptrf.c +74 -0
  2459. data/ext/dpptri.c +74 -0
  2460. data/ext/dpptrs.c +89 -0
  2461. data/ext/dpstf2.c +91 -0
  2462. data/ext/dpstrf.c +91 -0
  2463. data/ext/dptcon.c +77 -0
  2464. data/ext/dpteqr.c +122 -0
  2465. data/ext/dptrfs.c +150 -0
  2466. data/ext/dptsv.c +115 -0
  2467. data/ext/dptsvx.c +164 -0
  2468. data/ext/dpttrf.c +89 -0
  2469. data/ext/dpttrs.c +93 -0
  2470. data/ext/dptts2.c +90 -0
  2471. data/ext/drscl.c +75 -0
  2472. data/ext/dsbev.c +103 -0
  2473. data/ext/dsbevd.c +136 -0
  2474. data/ext/dsbevx.c +153 -0
  2475. data/ext/dsbgst.c +113 -0
  2476. data/ext/dsbgv.c +133 -0
  2477. data/ext/dsbgvd.c +166 -0
  2478. data/ext/dsbgvx.c +193 -0
  2479. data/ext/dsbtrd.c +126 -0
  2480. data/ext/dsfrk.c +105 -0
  2481. data/ext/dsgesv.c +111 -0
  2482. data/ext/dspcon.c +84 -0
  2483. data/ext/dspev.c +98 -0
  2484. data/ext/dspevd.c +131 -0
  2485. data/ext/dspevx.c +137 -0
  2486. data/ext/dspgst.c +90 -0
  2487. data/ext/dspgv.c +125 -0
  2488. data/ext/dspgvd.c +158 -0
  2489. data/ext/dspgvx.c +164 -0
  2490. data/ext/dsposv.c +107 -0
  2491. data/ext/dsprfs.c +145 -0
  2492. data/ext/dspsv.c +106 -0
  2493. data/ext/dspsvx.c +159 -0
  2494. data/ext/dsptrd.c +96 -0
  2495. data/ext/dsptrf.c +80 -0
  2496. data/ext/dsptri.c +85 -0
  2497. data/ext/dsptrs.c +97 -0
  2498. data/ext/dstebz.c +131 -0
  2499. data/ext/dstedc.c +155 -0
  2500. data/ext/dstegr.c +184 -0
  2501. data/ext/dstein.c +130 -0
  2502. data/ext/dstemr.c +189 -0
  2503. data/ext/dsteqr.c +122 -0
  2504. data/ext/dsterf.c +89 -0
  2505. data/ext/dstev.c +107 -0
  2506. data/ext/dstevd.c +140 -0
  2507. data/ext/dstevr.c +184 -0
  2508. data/ext/dstevx.c +154 -0
  2509. data/ext/dsycon.c +86 -0
  2510. data/ext/dsyconv.c +80 -0
  2511. data/ext/dsyequb.c +78 -0
  2512. data/ext/dsyev.c +103 -0
  2513. data/ext/dsyevd.c +121 -0
  2514. data/ext/dsyevr.c +168 -0
  2515. data/ext/dsyevx.c +153 -0
  2516. data/ext/dsygs2.c +91 -0
  2517. data/ext/dsygst.c +91 -0
  2518. data/ext/dsygv.c +133 -0
  2519. data/ext/dsygvd.c +151 -0
  2520. data/ext/dsygvx.c +183 -0
  2521. data/ext/dsyrfs.c +149 -0
  2522. data/ext/dsyrfsx.c +214 -0
  2523. data/ext/dsysv.c +125 -0
  2524. data/ext/dsysvx.c +179 -0
  2525. data/ext/dsysvxx.c +254 -0
  2526. data/ext/dsyswapr.c +78 -0
  2527. data/ext/dsytd2.c +97 -0
  2528. data/ext/dsytf2.c +81 -0
  2529. data/ext/dsytrd.c +109 -0
  2530. data/ext/dsytrf.c +93 -0
  2531. data/ext/dsytri.c +88 -0
  2532. data/ext/dsytri2.c +104 -0
  2533. data/ext/dsytri2x.c +92 -0
  2534. data/ext/dsytrs.c +99 -0
  2535. data/ext/dsytrs2.c +102 -0
  2536. data/ext/dtbcon.c +82 -0
  2537. data/ext/dtbrfs.c +123 -0
  2538. data/ext/dtbtrs.c +99 -0
  2539. data/ext/dtfsm.c +106 -0
  2540. data/ext/dtftri.c +82 -0
  2541. data/ext/dtfttp.c +75 -0
  2542. data/ext/dtfttr.c +76 -0
  2543. data/ext/dtgevc.c +149 -0
  2544. data/ext/dtgex2.c +176 -0
  2545. data/ext/dtgexc.c +183 -0
  2546. data/ext/dtgsen.c +248 -0
  2547. data/ext/dtgsja.c +223 -0
  2548. data/ext/dtgsna.c +160 -0
  2549. data/ext/dtgsy2.c +178 -0
  2550. data/ext/dtgsyl.c +186 -0
  2551. data/ext/dtpcon.c +78 -0
  2552. data/ext/dtprfs.c +119 -0
  2553. data/ext/dtptri.c +78 -0
  2554. data/ext/dtptrs.c +97 -0
  2555. data/ext/dtpttf.c +75 -0
  2556. data/ext/dtpttr.c +72 -0
  2557. data/ext/dtrcon.c +78 -0
  2558. data/ext/dtrevc.c +146 -0
  2559. data/ext/dtrexc.c +112 -0
  2560. data/ext/dtrrfs.c +119 -0
  2561. data/ext/dtrsen.c +165 -0
  2562. data/ext/dtrsna.c +133 -0
  2563. data/ext/dtrsyl.c +112 -0
  2564. data/ext/dtrti2.c +77 -0
  2565. data/ext/dtrtri.c +77 -0
  2566. data/ext/dtrtrs.c +95 -0
  2567. data/ext/dtrttf.c +73 -0
  2568. data/ext/dtrttp.c +69 -0
  2569. data/ext/dtzrqf.c +79 -0
  2570. data/ext/dtzrzf.c +97 -0
  2571. data/ext/dzsum1.c +59 -0
  2572. data/ext/extconf.rb +136 -0
  2573. data/ext/f2c_minimal.h +36 -0
  2574. data/ext/icmax1.c +59 -0
  2575. data/ext/ieeeck.c +55 -0
  2576. data/ext/ilaclc.c +61 -0
  2577. data/ext/ilaclr.c +61 -0
  2578. data/ext/iladiag.c +47 -0
  2579. data/ext/iladlc.c +61 -0
  2580. data/ext/iladlr.c +61 -0
  2581. data/ext/ilaenv.c +71 -0
  2582. data/ext/ilaprec.c +47 -0
  2583. data/ext/ilaslc.c +61 -0
  2584. data/ext/ilaslr.c +61 -0
  2585. data/ext/ilatrans.c +47 -0
  2586. data/ext/ilauplo.c +47 -0
  2587. data/ext/ilaver.c +49 -0
  2588. data/ext/ilazlc.c +61 -0
  2589. data/ext/ilazlr.c +61 -0
  2590. data/ext/iparmq.c +71 -0
  2591. data/ext/izmax1.c +59 -0
  2592. data/ext/lsamen.c +55 -0
  2593. data/ext/rb_lapack.c +3279 -0
  2594. data/ext/rb_lapack.h +18 -0
  2595. data/ext/sbbcsd.c +283 -0
  2596. data/ext/sbdsdc.c +153 -0
  2597. data/ext/sbdsqr.c +178 -0
  2598. data/ext/scsum1.c +59 -0
  2599. data/ext/sdisna.c +71 -0
  2600. data/ext/sgbbrd.c +150 -0
  2601. data/ext/sgbcon.c +94 -0
  2602. data/ext/sgbequ.c +94 -0
  2603. data/ext/sgbequb.c +92 -0
  2604. data/ext/sgbrfs.c +157 -0
  2605. data/ext/sgbrfsx.c +245 -0
  2606. data/ext/sgbsv.c +111 -0
  2607. data/ext/sgbsvx.c +282 -0
  2608. data/ext/sgbsvxx.c +285 -0
  2609. data/ext/sgbtf2.c +89 -0
  2610. data/ext/sgbtrf.c +89 -0
  2611. data/ext/sgbtrs.c +107 -0
  2612. data/ext/sgebak.c +97 -0
  2613. data/ext/sgebal.c +87 -0
  2614. data/ext/sgebd2.c +108 -0
  2615. data/ext/sgebrd.c +123 -0
  2616. data/ext/sgecon.c +74 -0
  2617. data/ext/sgeequ.c +84 -0
  2618. data/ext/sgeequb.c +84 -0
  2619. data/ext/sgees.c +144 -0
  2620. data/ext/sgeesx.c +166 -0
  2621. data/ext/sgeev.c +133 -0
  2622. data/ext/sgeevx.c +177 -0
  2623. data/ext/sgegs.c +167 -0
  2624. data/ext/sgegv.c +167 -0
  2625. data/ext/sgehd2.c +88 -0
  2626. data/ext/sgehrd.c +103 -0
  2627. data/ext/sgejsv.c +155 -0
  2628. data/ext/sgelq2.c +82 -0
  2629. data/ext/sgelqf.c +99 -0
  2630. data/ext/sgels.c +133 -0
  2631. data/ext/sgelsd.c +145 -0
  2632. data/ext/sgelss.c +144 -0
  2633. data/ext/sgelsx.c +132 -0
  2634. data/ext/sgelsy.c +159 -0
  2635. data/ext/sgeql2.c +84 -0
  2636. data/ext/sgeqlf.c +99 -0
  2637. data/ext/sgeqp3.c +122 -0
  2638. data/ext/sgeqpf.c +107 -0
  2639. data/ext/sgeqr2.c +84 -0
  2640. data/ext/sgeqr2p.c +84 -0
  2641. data/ext/sgeqrf.c +99 -0
  2642. data/ext/sgeqrfp.c +99 -0
  2643. data/ext/sgerfs.c +149 -0
  2644. data/ext/sgerfsx.c +215 -0
  2645. data/ext/sgerq2.c +82 -0
  2646. data/ext/sgerqf.c +99 -0
  2647. data/ext/sgesc2.c +104 -0
  2648. data/ext/sgesdd.c +128 -0
  2649. data/ext/sgesv.c +103 -0
  2650. data/ext/sgesvd.c +139 -0
  2651. data/ext/sgesvj.c +152 -0
  2652. data/ext/sgesvx.c +274 -0
  2653. data/ext/sgesvxx.c +277 -0
  2654. data/ext/sgetc2.c +85 -0
  2655. data/ext/sgetf2.c +81 -0
  2656. data/ext/sgetrf.c +81 -0
  2657. data/ext/sgetri.c +99 -0
  2658. data/ext/sgetrs.c +99 -0
  2659. data/ext/sggbak.c +109 -0
  2660. data/ext/sggbal.c +124 -0
  2661. data/ext/sgges.c +194 -0
  2662. data/ext/sggesx.c +227 -0
  2663. data/ext/sggev.c +167 -0
  2664. data/ext/sggevx.c +225 -0
  2665. data/ext/sggglm.c +152 -0
  2666. data/ext/sgghrd.c +163 -0
  2667. data/ext/sgglse.c +167 -0
  2668. data/ext/sggqrf.c +133 -0
  2669. data/ext/sggrqf.c +137 -0
  2670. data/ext/sggsvd.c +177 -0
  2671. data/ext/sggsvp.c +167 -0
  2672. data/ext/sgsvj0.c +178 -0
  2673. data/ext/sgsvj1.c +182 -0
  2674. data/ext/sgtcon.c +120 -0
  2675. data/ext/sgtrfs.c +205 -0
  2676. data/ext/sgtsv.c +138 -0
  2677. data/ext/sgtsvx.c +252 -0
  2678. data/ext/sgttrf.c +128 -0
  2679. data/ext/sgttrs.c +133 -0
  2680. data/ext/sgtts2.c +130 -0
  2681. data/ext/shgeqz.c +209 -0
  2682. data/ext/shsein.c +201 -0
  2683. data/ext/shseqr.c +149 -0
  2684. data/ext/sisnan.c +47 -0
  2685. data/ext/sla_gbamv.c +125 -0
  2686. data/ext/sla_gbrcond.c +138 -0
  2687. data/ext/sla_gbrfsx_extended.c +287 -0
  2688. data/ext/sla_gbrpvgrw.c +83 -0
  2689. data/ext/sla_geamv.c +115 -0
  2690. data/ext/sla_gercond.c +130 -0
  2691. data/ext/sla_gerfsx_extended.c +279 -0
  2692. data/ext/sla_lin_berr.c +80 -0
  2693. data/ext/sla_porcond.c +118 -0
  2694. data/ext/sla_porfsx_extended.c +267 -0
  2695. data/ext/sla_porpvgrw.c +91 -0
  2696. data/ext/sla_rpvgrw.c +75 -0
  2697. data/ext/sla_syamv.c +112 -0
  2698. data/ext/sla_syrcond.c +130 -0
  2699. data/ext/sla_syrfsx_extended.c +279 -0
  2700. data/ext/sla_syrpvgrw.c +103 -0
  2701. data/ext/sla_wwaddw.c +98 -0
  2702. data/ext/slabad.c +50 -0
  2703. data/ext/slabrd.c +128 -0
  2704. data/ext/slacn2.c +102 -0
  2705. data/ext/slacon.c +79 -0
  2706. data/ext/slacpy.c +73 -0
  2707. data/ext/sladiv.c +62 -0
  2708. data/ext/slae2.c +58 -0
  2709. data/ext/slaebz.c +214 -0
  2710. data/ext/slaed0.c +123 -0
  2711. data/ext/slaed1.c +129 -0
  2712. data/ext/slaed2.c +185 -0
  2713. data/ext/slaed3.c +157 -0
  2714. data/ext/slaed4.c +86 -0
  2715. data/ext/slaed5.c +83 -0
  2716. data/ext/slaed6.c +86 -0
  2717. data/ext/slaed7.c +244 -0
  2718. data/ext/slaed8.c +202 -0
  2719. data/ext/slaed9.c +107 -0
  2720. data/ext/slaeda.c +156 -0
  2721. data/ext/slaein.c +139 -0
  2722. data/ext/slaev2.c +64 -0
  2723. data/ext/slaexc.c +114 -0
  2724. data/ext/slag2.c +87 -0
  2725. data/ext/slag2d.c +72 -0
  2726. data/ext/slags2.c +86 -0
  2727. data/ext/slagtf.c +136 -0
  2728. data/ext/slagtm.c +128 -0
  2729. data/ext/slagts.c +135 -0
  2730. data/ext/slagv2.c +128 -0
  2731. data/ext/slahqr.c +139 -0
  2732. data/ext/slahr2.c +108 -0
  2733. data/ext/slahrd.c +110 -0
  2734. data/ext/slaic1.c +85 -0
  2735. data/ext/slaln2.c +116 -0
  2736. data/ext/slals0.c +197 -0
  2737. data/ext/slalsa.c +266 -0
  2738. data/ext/slalsd.c +138 -0
  2739. data/ext/slamrg.c +76 -0
  2740. data/ext/slaneg.c +79 -0
  2741. data/ext/slangb.c +74 -0
  2742. data/ext/slange.c +70 -0
  2743. data/ext/slangt.c +83 -0
  2744. data/ext/slanhs.c +66 -0
  2745. data/ext/slansb.c +74 -0
  2746. data/ext/slansf.c +74 -0
  2747. data/ext/slansp.c +72 -0
  2748. data/ext/slanst.c +71 -0
  2749. data/ext/slansy.c +70 -0
  2750. data/ext/slantb.c +78 -0
  2751. data/ext/slantp.c +76 -0
  2752. data/ext/slantr.c +78 -0
  2753. data/ext/slanv2.c +78 -0
  2754. data/ext/slapll.c +101 -0
  2755. data/ext/slapmr.c +93 -0
  2756. data/ext/slapmt.c +97 -0
  2757. data/ext/slapy2.c +51 -0
  2758. data/ext/slapy3.c +55 -0
  2759. data/ext/slaqgb.c +113 -0
  2760. data/ext/slaqge.c +105 -0
  2761. data/ext/slaqp2.c +154 -0
  2762. data/ext/slaqps.c +204 -0
  2763. data/ext/slaqr0.c +149 -0
  2764. data/ext/slaqr1.c +78 -0
  2765. data/ext/slaqr2.c +178 -0
  2766. data/ext/slaqr3.c +178 -0
  2767. data/ext/slaqr4.c +149 -0
  2768. data/ext/slaqr5.c +196 -0
  2769. data/ext/slaqsb.c +97 -0
  2770. data/ext/slaqsp.c +90 -0
  2771. data/ext/slaqsy.c +93 -0
  2772. data/ext/slaqtr.c +110 -0
  2773. data/ext/slar1v.c +169 -0
  2774. data/ext/slar2v.c +145 -0
  2775. data/ext/slarf.c +97 -0
  2776. data/ext/slarfb.c +119 -0
  2777. data/ext/slarfg.c +79 -0
  2778. data/ext/slarfgp.c +79 -0
  2779. data/ext/slarft.c +101 -0
  2780. data/ext/slarfx.c +89 -0
  2781. data/ext/slargv.c +110 -0
  2782. data/ext/slarnv.c +79 -0
  2783. data/ext/slarra.c +120 -0
  2784. data/ext/slarrb.c +174 -0
  2785. data/ext/slarrc.c +92 -0
  2786. data/ext/slarrd.c +186 -0
  2787. data/ext/slarre.c +217 -0
  2788. data/ext/slarrf.c +172 -0
  2789. data/ext/slarrj.c +143 -0
  2790. data/ext/slarrk.c +93 -0
  2791. data/ext/slarrr.c +78 -0
  2792. data/ext/slarrv.c +267 -0
  2793. data/ext/slarscl2.c +78 -0
  2794. data/ext/slartg.c +57 -0
  2795. data/ext/slartgp.c +57 -0
  2796. data/ext/slartgs.c +58 -0
  2797. data/ext/slartv.c +126 -0
  2798. data/ext/slaruv.c +75 -0
  2799. data/ext/slarz.c +101 -0
  2800. data/ext/slarzb.c +123 -0
  2801. data/ext/slarzt.c +101 -0
  2802. data/ext/slas2.c +58 -0
  2803. data/ext/slascl.c +93 -0
  2804. data/ext/slascl2.c +78 -0
  2805. data/ext/slasd0.c +116 -0
  2806. data/ext/slasd1.c +156 -0
  2807. data/ext/slasd2.c +224 -0
  2808. data/ext/slasd3.c +208 -0
  2809. data/ext/slasd4.c +89 -0
  2810. data/ext/slasd5.c +86 -0
  2811. data/ext/slasd6.c +232 -0
  2812. data/ext/slasd7.c +221 -0
  2813. data/ext/slasd8.c +169 -0
  2814. data/ext/slasda.c +217 -0
  2815. data/ext/slasdq.c +182 -0
  2816. data/ext/slasdt.c +78 -0
  2817. data/ext/slaset.c +82 -0
  2818. data/ext/slasq1.c +92 -0
  2819. data/ext/slasq2.c +70 -0
  2820. data/ext/slasq3.c +134 -0
  2821. data/ext/slasq4.c +103 -0
  2822. data/ext/slasq5.c +90 -0
  2823. data/ext/slasq6.c +82 -0
  2824. data/ext/slasr.c +106 -0
  2825. data/ext/slasrt.c +70 -0
  2826. data/ext/slassq.c +66 -0
  2827. data/ext/slasv2.c +70 -0
  2828. data/ext/slaswp.c +90 -0
  2829. data/ext/slasy2.c +122 -0
  2830. data/ext/slasyf.c +93 -0
  2831. data/ext/slatbs.c +126 -0
  2832. data/ext/slatdf.c +115 -0
  2833. data/ext/slatps.c +120 -0
  2834. data/ext/slatrd.c +101 -0
  2835. data/ext/slatrs.c +122 -0
  2836. data/ext/slatrz.c +83 -0
  2837. data/ext/slatzm.c +127 -0
  2838. data/ext/slauu2.c +73 -0
  2839. data/ext/slauum.c +73 -0
  2840. data/ext/sopgtr.c +87 -0
  2841. data/ext/sopmtr.c +112 -0
  2842. data/ext/sorbdb.c +228 -0
  2843. data/ext/sorcsd.c +193 -0
  2844. data/ext/sorg2l.c +88 -0
  2845. data/ext/sorg2r.c +88 -0
  2846. data/ext/sorgbr.c +111 -0
  2847. data/ext/sorghr.c +107 -0
  2848. data/ext/sorgl2.c +86 -0
  2849. data/ext/sorglq.c +103 -0
  2850. data/ext/sorgql.c +103 -0
  2851. data/ext/sorgqr.c +103 -0
  2852. data/ext/sorgr2.c +86 -0
  2853. data/ext/sorgrq.c +103 -0
  2854. data/ext/sorgtr.c +103 -0
  2855. data/ext/sorm2l.c +110 -0
  2856. data/ext/sorm2r.c +110 -0
  2857. data/ext/sormbr.c +135 -0
  2858. data/ext/sormhr.c +129 -0
  2859. data/ext/sorml2.c +106 -0
  2860. data/ext/sormlq.c +121 -0
  2861. data/ext/sormql.c +125 -0
  2862. data/ext/sormqr.c +125 -0
  2863. data/ext/sormr2.c +106 -0
  2864. data/ext/sormr3.c +110 -0
  2865. data/ext/sormrq.c +121 -0
  2866. data/ext/sormrz.c +125 -0
  2867. data/ext/sormtr.c +125 -0
  2868. data/ext/spbcon.c +78 -0
  2869. data/ext/spbequ.c +79 -0
  2870. data/ext/spbrfs.c +141 -0
  2871. data/ext/spbstf.c +77 -0
  2872. data/ext/spbsv.c +103 -0
  2873. data/ext/spbsvx.c +197 -0
  2874. data/ext/spbtf2.c +77 -0
  2875. data/ext/spbtrf.c +77 -0
  2876. data/ext/spbtrs.c +91 -0
  2877. data/ext/spftrf.c +78 -0
  2878. data/ext/spftri.c +78 -0
  2879. data/ext/spftrs.c +93 -0
  2880. data/ext/spocon.c +74 -0
  2881. data/ext/spoequ.c +71 -0
  2882. data/ext/spoequb.c +71 -0
  2883. data/ext/sporfs.c +137 -0
  2884. data/ext/sporfsx.c +202 -0
  2885. data/ext/sposv.c +99 -0
  2886. data/ext/sposvx.c +193 -0
  2887. data/ext/sposvxx.c +231 -0
  2888. data/ext/spotf2.c +73 -0
  2889. data/ext/spotrf.c +73 -0
  2890. data/ext/spotri.c +73 -0
  2891. data/ext/spotrs.c +87 -0
  2892. data/ext/sppcon.c +74 -0
  2893. data/ext/sppequ.c +75 -0
  2894. data/ext/spprfs.c +135 -0
  2895. data/ext/sppsv.c +100 -0
  2896. data/ext/sppsvx.c +187 -0
  2897. data/ext/spptrf.c +74 -0
  2898. data/ext/spptri.c +74 -0
  2899. data/ext/spptrs.c +89 -0
  2900. data/ext/spstf2.c +91 -0
  2901. data/ext/spstrf.c +91 -0
  2902. data/ext/sptcon.c +77 -0
  2903. data/ext/spteqr.c +122 -0
  2904. data/ext/sptrfs.c +150 -0
  2905. data/ext/sptsv.c +115 -0
  2906. data/ext/sptsvx.c +164 -0
  2907. data/ext/spttrf.c +89 -0
  2908. data/ext/spttrs.c +93 -0
  2909. data/ext/sptts2.c +90 -0
  2910. data/ext/srscl.c +75 -0
  2911. data/ext/ssbev.c +103 -0
  2912. data/ext/ssbevd.c +136 -0
  2913. data/ext/ssbevx.c +153 -0
  2914. data/ext/ssbgst.c +113 -0
  2915. data/ext/ssbgv.c +133 -0
  2916. data/ext/ssbgvd.c +166 -0
  2917. data/ext/ssbgvx.c +193 -0
  2918. data/ext/ssbtrd.c +126 -0
  2919. data/ext/ssfrk.c +105 -0
  2920. data/ext/sspcon.c +84 -0
  2921. data/ext/sspev.c +98 -0
  2922. data/ext/sspevd.c +131 -0
  2923. data/ext/sspevx.c +137 -0
  2924. data/ext/sspgst.c +90 -0
  2925. data/ext/sspgv.c +125 -0
  2926. data/ext/sspgvd.c +158 -0
  2927. data/ext/sspgvx.c +164 -0
  2928. data/ext/ssprfs.c +145 -0
  2929. data/ext/sspsv.c +106 -0
  2930. data/ext/sspsvx.c +159 -0
  2931. data/ext/ssptrd.c +96 -0
  2932. data/ext/ssptrf.c +80 -0
  2933. data/ext/ssptri.c +85 -0
  2934. data/ext/ssptrs.c +97 -0
  2935. data/ext/sstebz.c +131 -0
  2936. data/ext/sstedc.c +155 -0
  2937. data/ext/sstegr.c +184 -0
  2938. data/ext/sstein.c +130 -0
  2939. data/ext/sstemr.c +189 -0
  2940. data/ext/ssteqr.c +122 -0
  2941. data/ext/ssterf.c +89 -0
  2942. data/ext/sstev.c +107 -0
  2943. data/ext/sstevd.c +140 -0
  2944. data/ext/sstevr.c +184 -0
  2945. data/ext/sstevx.c +154 -0
  2946. data/ext/ssycon.c +86 -0
  2947. data/ext/ssyconv.c +80 -0
  2948. data/ext/ssyequb.c +78 -0
  2949. data/ext/ssyev.c +103 -0
  2950. data/ext/ssyevd.c +121 -0
  2951. data/ext/ssyevr.c +168 -0
  2952. data/ext/ssyevx.c +153 -0
  2953. data/ext/ssygs2.c +91 -0
  2954. data/ext/ssygst.c +91 -0
  2955. data/ext/ssygv.c +133 -0
  2956. data/ext/ssygvd.c +151 -0
  2957. data/ext/ssygvx.c +187 -0
  2958. data/ext/ssyrfs.c +149 -0
  2959. data/ext/ssyrfsx.c +214 -0
  2960. data/ext/ssysv.c +125 -0
  2961. data/ext/ssysvx.c +179 -0
  2962. data/ext/ssysvxx.c +254 -0
  2963. data/ext/ssyswapr.c +78 -0
  2964. data/ext/ssytd2.c +97 -0
  2965. data/ext/ssytf2.c +81 -0
  2966. data/ext/ssytrd.c +109 -0
  2967. data/ext/ssytrf.c +93 -0
  2968. data/ext/ssytri.c +88 -0
  2969. data/ext/ssytri2.c +123 -0
  2970. data/ext/ssytri2x.c +92 -0
  2971. data/ext/ssytrs.c +99 -0
  2972. data/ext/ssytrs2.c +102 -0
  2973. data/ext/stbcon.c +82 -0
  2974. data/ext/stbrfs.c +123 -0
  2975. data/ext/stbtrs.c +99 -0
  2976. data/ext/stfsm.c +108 -0
  2977. data/ext/stftri.c +82 -0
  2978. data/ext/stfttp.c +75 -0
  2979. data/ext/stfttr.c +76 -0
  2980. data/ext/stgevc.c +149 -0
  2981. data/ext/stgex2.c +180 -0
  2982. data/ext/stgexc.c +187 -0
  2983. data/ext/stgsen.c +248 -0
  2984. data/ext/stgsja.c +223 -0
  2985. data/ext/stgsna.c +160 -0
  2986. data/ext/stgsy2.c +178 -0
  2987. data/ext/stgsyl.c +186 -0
  2988. data/ext/stpcon.c +78 -0
  2989. data/ext/stprfs.c +119 -0
  2990. data/ext/stptri.c +78 -0
  2991. data/ext/stptrs.c +97 -0
  2992. data/ext/stpttf.c +75 -0
  2993. data/ext/stpttr.c +72 -0
  2994. data/ext/strcon.c +78 -0
  2995. data/ext/strevc.c +146 -0
  2996. data/ext/strexc.c +112 -0
  2997. data/ext/strrfs.c +119 -0
  2998. data/ext/strsen.c +165 -0
  2999. data/ext/strsna.c +133 -0
  3000. data/ext/strsyl.c +112 -0
  3001. data/ext/strti2.c +77 -0
  3002. data/ext/strtri.c +77 -0
  3003. data/ext/strtrs.c +95 -0
  3004. data/ext/strttf.c +73 -0
  3005. data/ext/strttp.c +69 -0
  3006. data/ext/stzrqf.c +79 -0
  3007. data/ext/stzrzf.c +97 -0
  3008. data/ext/xerbla.c +48 -0
  3009. data/ext/xerbla_array.c +49 -0
  3010. data/ext/zbbcsd.c +279 -0
  3011. data/ext/zbdsqr.c +178 -0
  3012. data/ext/zcgesv.c +114 -0
  3013. data/ext/zcposv.c +110 -0
  3014. data/ext/zdrscl.c +75 -0
  3015. data/ext/zgbbrd.c +153 -0
  3016. data/ext/zgbcon.c +94 -0
  3017. data/ext/zgbequ.c +94 -0
  3018. data/ext/zgbequb.c +92 -0
  3019. data/ext/zgbrfs.c +157 -0
  3020. data/ext/zgbrfsx.c +245 -0
  3021. data/ext/zgbsv.c +111 -0
  3022. data/ext/zgbsvx.c +282 -0
  3023. data/ext/zgbsvxx.c +285 -0
  3024. data/ext/zgbtf2.c +89 -0
  3025. data/ext/zgbtrf.c +89 -0
  3026. data/ext/zgbtrs.c +107 -0
  3027. data/ext/zgebak.c +97 -0
  3028. data/ext/zgebal.c +87 -0
  3029. data/ext/zgebd2.c +108 -0
  3030. data/ext/zgebrd.c +123 -0
  3031. data/ext/zgecon.c +74 -0
  3032. data/ext/zgeequ.c +84 -0
  3033. data/ext/zgeequb.c +84 -0
  3034. data/ext/zgees.c +138 -0
  3035. data/ext/zgeesx.c +148 -0
  3036. data/ext/zgeev.c +128 -0
  3037. data/ext/zgeevx.c +169 -0
  3038. data/ext/zgegs.c +162 -0
  3039. data/ext/zgegv.c +167 -0
  3040. data/ext/zgehd2.c +88 -0
  3041. data/ext/zgehrd.c +103 -0
  3042. data/ext/zgelq2.c +82 -0
  3043. data/ext/zgelqf.c +99 -0
  3044. data/ext/zgels.c +133 -0
  3045. data/ext/zgelsd.c +150 -0
  3046. data/ext/zgelss.c +147 -0
  3047. data/ext/zgelsx.c +135 -0
  3048. data/ext/zgelsy.c +162 -0
  3049. data/ext/zgeql2.c +84 -0
  3050. data/ext/zgeqlf.c +99 -0
  3051. data/ext/zgeqp3.c +125 -0
  3052. data/ext/zgeqpf.c +110 -0
  3053. data/ext/zgeqr2.c +84 -0
  3054. data/ext/zgeqr2p.c +84 -0
  3055. data/ext/zgeqrf.c +99 -0
  3056. data/ext/zgeqrfp.c +99 -0
  3057. data/ext/zgerfs.c +149 -0
  3058. data/ext/zgerfsx.c +215 -0
  3059. data/ext/zgerq2.c +82 -0
  3060. data/ext/zgerqf.c +99 -0
  3061. data/ext/zgesc2.c +104 -0
  3062. data/ext/zgesdd.c +131 -0
  3063. data/ext/zgesv.c +103 -0
  3064. data/ext/zgesvd.c +142 -0
  3065. data/ext/zgesvx.c +274 -0
  3066. data/ext/zgesvxx.c +277 -0
  3067. data/ext/zgetc2.c +85 -0
  3068. data/ext/zgetf2.c +81 -0
  3069. data/ext/zgetrf.c +81 -0
  3070. data/ext/zgetri.c +99 -0
  3071. data/ext/zgetrs.c +99 -0
  3072. data/ext/zggbak.c +109 -0
  3073. data/ext/zggbal.c +124 -0
  3074. data/ext/zgges.c +188 -0
  3075. data/ext/zggesx.c +226 -0
  3076. data/ext/zggev.c +167 -0
  3077. data/ext/zggevx.c +222 -0
  3078. data/ext/zggglm.c +152 -0
  3079. data/ext/zgghrd.c +163 -0
  3080. data/ext/zgglse.c +167 -0
  3081. data/ext/zggqrf.c +133 -0
  3082. data/ext/zggrqf.c +137 -0
  3083. data/ext/zggsvd.c +180 -0
  3084. data/ext/zggsvp.c +170 -0
  3085. data/ext/zgtcon.c +117 -0
  3086. data/ext/zgtrfs.c +205 -0
  3087. data/ext/zgtsv.c +138 -0
  3088. data/ext/zgtsvx.c +252 -0
  3089. data/ext/zgttrf.c +128 -0
  3090. data/ext/zgttrs.c +133 -0
  3091. data/ext/zgtts2.c +130 -0
  3092. data/ext/zhbev.c +106 -0
  3093. data/ext/zhbevd.c +154 -0
  3094. data/ext/zhbevx.c +156 -0
  3095. data/ext/zhbgst.c +116 -0
  3096. data/ext/zhbgv.c +136 -0
  3097. data/ext/zhbgvd.c +184 -0
  3098. data/ext/zhbgvx.c +185 -0
  3099. data/ext/zhbtrd.c +126 -0
  3100. data/ext/zhecon.c +83 -0
  3101. data/ext/zheequb.c +78 -0
  3102. data/ext/zheev.c +106 -0
  3103. data/ext/zheevd.c +139 -0
  3104. data/ext/zheevr.c +186 -0
  3105. data/ext/zheevx.c +156 -0
  3106. data/ext/zhegs2.c +91 -0
  3107. data/ext/zhegst.c +91 -0
  3108. data/ext/zhegv.c +136 -0
  3109. data/ext/zhegvd.c +169 -0
  3110. data/ext/zhegvx.c +186 -0
  3111. data/ext/zherfs.c +149 -0
  3112. data/ext/zherfsx.c +214 -0
  3113. data/ext/zhesv.c +119 -0
  3114. data/ext/zhesvx.c +179 -0
  3115. data/ext/zhesvxx.c +254 -0
  3116. data/ext/zhetd2.c +97 -0
  3117. data/ext/zhetf2.c +81 -0
  3118. data/ext/zhetrd.c +109 -0
  3119. data/ext/zhetrf.c +93 -0
  3120. data/ext/zhetri.c +88 -0
  3121. data/ext/zhetrs.c +99 -0
  3122. data/ext/zhetrs2.c +102 -0
  3123. data/ext/zhfrk.c +105 -0
  3124. data/ext/zhgeqz.c +204 -0
  3125. data/ext/zhpcon.c +81 -0
  3126. data/ext/zhpev.c +101 -0
  3127. data/ext/zhpevd.c +149 -0
  3128. data/ext/zhpevx.c +140 -0
  3129. data/ext/zhpgst.c +90 -0
  3130. data/ext/zhpgv.c +128 -0
  3131. data/ext/zhpgvd.c +166 -0
  3132. data/ext/zhpgvx.c +166 -0
  3133. data/ext/zhprfs.c +145 -0
  3134. data/ext/zhpsv.c +106 -0
  3135. data/ext/zhpsvx.c +159 -0
  3136. data/ext/zhptrd.c +96 -0
  3137. data/ext/zhptrf.c +80 -0
  3138. data/ext/zhptri.c +85 -0
  3139. data/ext/zhptrs.c +97 -0
  3140. data/ext/zhsein.c +181 -0
  3141. data/ext/zhseqr.c +141 -0
  3142. data/ext/zla_gbamv.c +123 -0
  3143. data/ext/zla_gbrcond_c.c +138 -0
  3144. data/ext/zla_gbrcond_x.c +134 -0
  3145. data/ext/zla_gbrfsx_extended.c +291 -0
  3146. data/ext/zla_gbrpvgrw.c +83 -0
  3147. data/ext/zla_geamv.c +115 -0
  3148. data/ext/zla_gercond_c.c +130 -0
  3149. data/ext/zla_gercond_x.c +126 -0
  3150. data/ext/zla_gerfsx_extended.c +277 -0
  3151. data/ext/zla_heamv.c +112 -0
  3152. data/ext/zla_hercond_c.c +130 -0
  3153. data/ext/zla_hercond_x.c +126 -0
  3154. data/ext/zla_herfsx_extended.c +279 -0
  3155. data/ext/zla_herpvgrw.c +103 -0
  3156. data/ext/zla_lin_berr.c +80 -0
  3157. data/ext/zla_porcond_c.c +118 -0
  3158. data/ext/zla_porcond_x.c +114 -0
  3159. data/ext/zla_porfsx_extended.c +267 -0
  3160. data/ext/zla_porpvgrw.c +91 -0
  3161. data/ext/zla_rpvgrw.c +75 -0
  3162. data/ext/zla_syamv.c +112 -0
  3163. data/ext/zla_syrcond_c.c +130 -0
  3164. data/ext/zla_syrcond_x.c +126 -0
  3165. data/ext/zla_syrfsx_extended.c +279 -0
  3166. data/ext/zla_syrpvgrw.c +103 -0
  3167. data/ext/zla_wwaddw.c +98 -0
  3168. data/ext/zlabrd.c +128 -0
  3169. data/ext/zlacgv.c +71 -0
  3170. data/ext/zlacn2.c +99 -0
  3171. data/ext/zlacon.c +76 -0
  3172. data/ext/zlacp2.c +73 -0
  3173. data/ext/zlacpy.c +73 -0
  3174. data/ext/zlacrm.c +86 -0
  3175. data/ext/zlacrt.c +104 -0
  3176. data/ext/zladiv.c +53 -0
  3177. data/ext/zlaed0.c +130 -0
  3178. data/ext/zlaed7.c +243 -0
  3179. data/ext/zlaed8.c +194 -0
  3180. data/ext/zlaein.c +109 -0
  3181. data/ext/zlaesy.c +70 -0
  3182. data/ext/zlaev2.c +67 -0
  3183. data/ext/zlag2c.c +72 -0
  3184. data/ext/zlags2.c +88 -0
  3185. data/ext/zlagtm.c +128 -0
  3186. data/ext/zlahef.c +93 -0
  3187. data/ext/zlahqr.c +131 -0
  3188. data/ext/zlahr2.c +108 -0
  3189. data/ext/zlahrd.c +108 -0
  3190. data/ext/zlaic1.c +86 -0
  3191. data/ext/zlals0.c +197 -0
  3192. data/ext/zlalsa.c +266 -0
  3193. data/ext/zlalsd.c +141 -0
  3194. data/ext/zlangb.c +72 -0
  3195. data/ext/zlange.c +70 -0
  3196. data/ext/zlangt.c +83 -0
  3197. data/ext/zlanhb.c +74 -0
  3198. data/ext/zlanhe.c +70 -0
  3199. data/ext/zlanhf.c +76 -0
  3200. data/ext/zlanhp.c +72 -0
  3201. data/ext/zlanhs.c +66 -0
  3202. data/ext/zlanht.c +71 -0
  3203. data/ext/zlansb.c +74 -0
  3204. data/ext/zlansp.c +72 -0
  3205. data/ext/zlansy.c +70 -0
  3206. data/ext/zlantb.c +78 -0
  3207. data/ext/zlantp.c +76 -0
  3208. data/ext/zlantr.c +78 -0
  3209. data/ext/zlapll.c +101 -0
  3210. data/ext/zlapmr.c +93 -0
  3211. data/ext/zlapmt.c +97 -0
  3212. data/ext/zlaqgb.c +113 -0
  3213. data/ext/zlaqge.c +105 -0
  3214. data/ext/zlaqhb.c +93 -0
  3215. data/ext/zlaqhe.c +93 -0
  3216. data/ext/zlaqhp.c +90 -0
  3217. data/ext/zlaqp2.c +154 -0
  3218. data/ext/zlaqps.c +204 -0
  3219. data/ext/zlaqr0.c +149 -0
  3220. data/ext/zlaqr1.c +72 -0
  3221. data/ext/zlaqr2.c +170 -0
  3222. data/ext/zlaqr3.c +170 -0
  3223. data/ext/zlaqr4.c +143 -0
  3224. data/ext/zlaqr5.c +175 -0
  3225. data/ext/zlaqsb.c +97 -0
  3226. data/ext/zlaqsp.c +90 -0
  3227. data/ext/zlaqsy.c +93 -0
  3228. data/ext/zlar1v.c +169 -0
  3229. data/ext/zlar2v.c +145 -0
  3230. data/ext/zlarcm.c +82 -0
  3231. data/ext/zlarf.c +98 -0
  3232. data/ext/zlarfb.c +119 -0
  3233. data/ext/zlarfg.c +80 -0
  3234. data/ext/zlarfgp.c +80 -0
  3235. data/ext/zlarft.c +101 -0
  3236. data/ext/zlarfx.c +90 -0
  3237. data/ext/zlargv.c +110 -0
  3238. data/ext/zlarnv.c +79 -0
  3239. data/ext/zlarrv.c +267 -0
  3240. data/ext/zlarscl2.c +78 -0
  3241. data/ext/zlartg.c +59 -0
  3242. data/ext/zlartv.c +126 -0
  3243. data/ext/zlarz.c +102 -0
  3244. data/ext/zlarzb.c +123 -0
  3245. data/ext/zlarzt.c +101 -0
  3246. data/ext/zlascl.c +93 -0
  3247. data/ext/zlascl2.c +78 -0
  3248. data/ext/zlaset.c +84 -0
  3249. data/ext/zlasr.c +106 -0
  3250. data/ext/zlassq.c +66 -0
  3251. data/ext/zlaswp.c +90 -0
  3252. data/ext/zlasyf.c +93 -0
  3253. data/ext/zlat2c.c +72 -0
  3254. data/ext/zlatbs.c +126 -0
  3255. data/ext/zlatdf.c +115 -0
  3256. data/ext/zlatps.c +120 -0
  3257. data/ext/zlatrd.c +101 -0
  3258. data/ext/zlatrs.c +122 -0
  3259. data/ext/zlatrz.c +83 -0
  3260. data/ext/zlatzm.c +128 -0
  3261. data/ext/zlauu2.c +73 -0
  3262. data/ext/zlauum.c +73 -0
  3263. data/ext/zpbcon.c +78 -0
  3264. data/ext/zpbequ.c +79 -0
  3265. data/ext/zpbrfs.c +141 -0
  3266. data/ext/zpbstf.c +77 -0
  3267. data/ext/zpbsv.c +103 -0
  3268. data/ext/zpbsvx.c +197 -0
  3269. data/ext/zpbtf2.c +77 -0
  3270. data/ext/zpbtrf.c +77 -0
  3271. data/ext/zpbtrs.c +91 -0
  3272. data/ext/zpftrf.c +78 -0
  3273. data/ext/zpftri.c +78 -0
  3274. data/ext/zpftrs.c +93 -0
  3275. data/ext/zpocon.c +74 -0
  3276. data/ext/zpoequ.c +71 -0
  3277. data/ext/zpoequb.c +71 -0
  3278. data/ext/zporfs.c +137 -0
  3279. data/ext/zporfsx.c +202 -0
  3280. data/ext/zposv.c +99 -0
  3281. data/ext/zposvx.c +193 -0
  3282. data/ext/zposvxx.c +231 -0
  3283. data/ext/zpotf2.c +73 -0
  3284. data/ext/zpotrf.c +73 -0
  3285. data/ext/zpotri.c +73 -0
  3286. data/ext/zpotrs.c +87 -0
  3287. data/ext/zppcon.c +74 -0
  3288. data/ext/zppequ.c +75 -0
  3289. data/ext/zpprfs.c +135 -0
  3290. data/ext/zppsv.c +100 -0
  3291. data/ext/zppsvx.c +187 -0
  3292. data/ext/zpptrf.c +74 -0
  3293. data/ext/zpptri.c +74 -0
  3294. data/ext/zpptrs.c +89 -0
  3295. data/ext/zpstf2.c +91 -0
  3296. data/ext/zpstrf.c +91 -0
  3297. data/ext/zptcon.c +77 -0
  3298. data/ext/zpteqr.c +122 -0
  3299. data/ext/zptrfs.c +157 -0
  3300. data/ext/zptsv.c +119 -0
  3301. data/ext/zptsvx.c +167 -0
  3302. data/ext/zpttrf.c +89 -0
  3303. data/ext/zpttrs.c +97 -0
  3304. data/ext/zptts2.c +94 -0
  3305. data/ext/zrot.c +103 -0
  3306. data/ext/zspcon.c +81 -0
  3307. data/ext/zspmv.c +113 -0
  3308. data/ext/zspr.c +92 -0
  3309. data/ext/zsprfs.c +145 -0
  3310. data/ext/zspsv.c +106 -0
  3311. data/ext/zspsvx.c +159 -0
  3312. data/ext/zsptrf.c +80 -0
  3313. data/ext/zsptri.c +85 -0
  3314. data/ext/zsptrs.c +97 -0
  3315. data/ext/zstedc.c +173 -0
  3316. data/ext/zstegr.c +184 -0
  3317. data/ext/zstein.c +130 -0
  3318. data/ext/zstemr.c +189 -0
  3319. data/ext/zsteqr.c +122 -0
  3320. data/ext/zsycon.c +83 -0
  3321. data/ext/zsyconv.c +80 -0
  3322. data/ext/zsyequb.c +78 -0
  3323. data/ext/zsymv.c +111 -0
  3324. data/ext/zsyr.c +91 -0
  3325. data/ext/zsyrfs.c +149 -0
  3326. data/ext/zsyrfsx.c +214 -0
  3327. data/ext/zsysv.c +125 -0
  3328. data/ext/zsysvx.c +179 -0
  3329. data/ext/zsysvxx.c +254 -0
  3330. data/ext/zsyswapr.c +78 -0
  3331. data/ext/zsytf2.c +81 -0
  3332. data/ext/zsytrf.c +93 -0
  3333. data/ext/zsytri.c +88 -0
  3334. data/ext/zsytri2.c +100 -0
  3335. data/ext/zsytri2x.c +92 -0
  3336. data/ext/zsytrs.c +99 -0
  3337. data/ext/zsytrs2.c +102 -0
  3338. data/ext/ztbcon.c +82 -0
  3339. data/ext/ztbrfs.c +123 -0
  3340. data/ext/ztbtrs.c +99 -0
  3341. data/ext/ztfsm.c +107 -0
  3342. data/ext/ztftri.c +82 -0
  3343. data/ext/ztfttp.c +75 -0
  3344. data/ext/ztfttr.c +76 -0
  3345. data/ext/ztgevc.c +152 -0
  3346. data/ext/ztgex2.c +167 -0
  3347. data/ext/ztgexc.c +168 -0
  3348. data/ext/ztgsen.c +240 -0
  3349. data/ext/ztgsja.c +223 -0
  3350. data/ext/ztgsna.c +160 -0
  3351. data/ext/ztgsy2.c +172 -0
  3352. data/ext/ztgsyl.c +186 -0
  3353. data/ext/ztpcon.c +78 -0
  3354. data/ext/ztprfs.c +119 -0
  3355. data/ext/ztptri.c +78 -0
  3356. data/ext/ztptrs.c +97 -0
  3357. data/ext/ztpttf.c +75 -0
  3358. data/ext/ztpttr.c +72 -0
  3359. data/ext/ztrcon.c +78 -0
  3360. data/ext/ztrevc.c +150 -0
  3361. data/ext/ztrexc.c +107 -0
  3362. data/ext/ztrrfs.c +119 -0
  3363. data/ext/ztrsen.c +150 -0
  3364. data/ext/ztrsna.c +133 -0
  3365. data/ext/ztrsyl.c +112 -0
  3366. data/ext/ztrti2.c +77 -0
  3367. data/ext/ztrtri.c +77 -0
  3368. data/ext/ztrtrs.c +95 -0
  3369. data/ext/ztrttf.c +73 -0
  3370. data/ext/ztrttp.c +69 -0
  3371. data/ext/ztzrqf.c +79 -0
  3372. data/ext/ztzrzf.c +97 -0
  3373. data/ext/zunbdb.c +228 -0
  3374. data/ext/zuncsd.c +200 -0
  3375. data/ext/zung2l.c +88 -0
  3376. data/ext/zung2r.c +88 -0
  3377. data/ext/zungbr.c +111 -0
  3378. data/ext/zunghr.c +107 -0
  3379. data/ext/zungl2.c +86 -0
  3380. data/ext/zunglq.c +103 -0
  3381. data/ext/zungql.c +103 -0
  3382. data/ext/zungqr.c +103 -0
  3383. data/ext/zungr2.c +86 -0
  3384. data/ext/zungrq.c +103 -0
  3385. data/ext/zungtr.c +103 -0
  3386. data/ext/zunm2l.c +110 -0
  3387. data/ext/zunm2r.c +110 -0
  3388. data/ext/zunmbr.c +135 -0
  3389. data/ext/zunmhr.c +129 -0
  3390. data/ext/zunml2.c +106 -0
  3391. data/ext/zunmlq.c +121 -0
  3392. data/ext/zunmql.c +125 -0
  3393. data/ext/zunmqr.c +125 -0
  3394. data/ext/zunmr2.c +106 -0
  3395. data/ext/zunmr3.c +110 -0
  3396. data/ext/zunmrq.c +121 -0
  3397. data/ext/zunmrz.c +125 -0
  3398. data/ext/zunmtr.c +125 -0
  3399. data/ext/zupgtr.c +87 -0
  3400. data/ext/zupmtr.c +112 -0
  3401. data/lib/numru/lapack.rb +51 -0
  3402. data/samples/dsyevr.rb +25 -0
  3403. data/tests/eig/ge/test_gesdd.rb +90 -0
  3404. data/tests/eig/ge/test_gesvd.rb +99 -0
  3405. data/tests/eig/gg/test_ggev.rb +124 -0
  3406. data/tests/eig/gg/test_ggsvd.rb +76 -0
  3407. data/tests/eig/sb/test_sbev.rb +39 -0
  3408. data/tests/lapack_test.rb +50 -0
  3409. data/tests/lin/gb/test_gbsv.rb +46 -0
  3410. data/tests/lin/gb/test_gbsvx.rb +56 -0
  3411. data/tests/lin/ge/test_gels.rb +63 -0
  3412. data/tests/lin/ge/test_gelsd.rb +54 -0
  3413. data/tests/lin/ge/test_gelss.rb +73 -0
  3414. data/tests/lin/ge/test_gelsy.rb +73 -0
  3415. data/tests/lin/ge/test_gesv.rb +43 -0
  3416. data/tests/lin/ge/test_gesvx.rb +52 -0
  3417. data/tests/lin/gt/test_gtsv.rb +39 -0
  3418. data/tests/test_all.rb +7 -0
  3419. metadata +3513 -0
data/doc/dsy.html ADDED
@@ -0,0 +1,3433 @@
1
+ <HTML>
2
+ <HEAD>
3
+ <TITLE>DOUBLE PRECISION routines for symmetric matrix</TITLE>
4
+ </HEAD>
5
+ <BODY>
6
+ <A NAME="top"></A>
7
+ <H1>DOUBLE PRECISION routines for symmetric matrix</H1>
8
+ <UL>
9
+ <LI><A HREF="#dsycon">dsycon</A></LI>
10
+ <LI><A HREF="#dsyconv">dsyconv</A></LI>
11
+ <LI><A HREF="#dsyequb">dsyequb</A></LI>
12
+ <LI><A HREF="#dsyev">dsyev</A></LI>
13
+ <LI><A HREF="#dsyevd">dsyevd</A></LI>
14
+ <LI><A HREF="#dsyevr">dsyevr</A></LI>
15
+ <LI><A HREF="#dsyevx">dsyevx</A></LI>
16
+ <LI><A HREF="#dsygs2">dsygs2</A></LI>
17
+ <LI><A HREF="#dsygst">dsygst</A></LI>
18
+ <LI><A HREF="#dsygv">dsygv</A></LI>
19
+ <LI><A HREF="#dsygvd">dsygvd</A></LI>
20
+ <LI><A HREF="#dsygvx">dsygvx</A></LI>
21
+ <LI><A HREF="#dsyrfs">dsyrfs</A></LI>
22
+ <LI><A HREF="#dsyrfsx">dsyrfsx</A></LI>
23
+ <LI><A HREF="#dsysv">dsysv</A></LI>
24
+ <LI><A HREF="#dsysvx">dsysvx</A></LI>
25
+ <LI><A HREF="#dsysvxx">dsysvxx</A></LI>
26
+ <LI><A HREF="#dsyswapr">dsyswapr</A></LI>
27
+ <LI><A HREF="#dsytd2">dsytd2</A></LI>
28
+ <LI><A HREF="#dsytf2">dsytf2</A></LI>
29
+ <LI><A HREF="#dsytrd">dsytrd</A></LI>
30
+ <LI><A HREF="#dsytrf">dsytrf</A></LI>
31
+ <LI><A HREF="#dsytri">dsytri</A></LI>
32
+ <LI><A HREF="#dsytri2">dsytri2</A></LI>
33
+ <LI><A HREF="#dsytri2x">dsytri2x</A></LI>
34
+ <LI><A HREF="#dsytrs">dsytrs</A></LI>
35
+ <LI><A HREF="#dsytrs2">dsytrs2</A></LI>
36
+ </UL>
37
+
38
+ <A NAME="dsycon"></A>
39
+ <H2>dsycon</H2>
40
+ <PRE>
41
+ USAGE:
42
+ rcond, info = NumRu::Lapack.dsycon( uplo, a, ipiv, anorm, [:usage => usage, :help => help])
43
+
44
+
45
+ FORTRAN MANUAL
46
+ SUBROUTINE DSYCON( UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, IWORK, INFO )
47
+
48
+ * Purpose
49
+ * =======
50
+ *
51
+ * DSYCON estimates the reciprocal of the condition number (in the
52
+ * 1-norm) of a real symmetric matrix A using the factorization
53
+ * A = U*D*U**T or A = L*D*L**T computed by DSYTRF.
54
+ *
55
+ * An estimate is obtained for norm(inv(A)), and the reciprocal of the
56
+ * condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
57
+ *
58
+
59
+ * Arguments
60
+ * =========
61
+ *
62
+ * UPLO (input) CHARACTER*1
63
+ * Specifies whether the details of the factorization are stored
64
+ * as an upper or lower triangular matrix.
65
+ * = 'U': Upper triangular, form is A = U*D*U**T;
66
+ * = 'L': Lower triangular, form is A = L*D*L**T.
67
+ *
68
+ * N (input) INTEGER
69
+ * The order of the matrix A. N >= 0.
70
+ *
71
+ * A (input) DOUBLE PRECISION array, dimension (LDA,N)
72
+ * The block diagonal matrix D and the multipliers used to
73
+ * obtain the factor U or L as computed by DSYTRF.
74
+ *
75
+ * LDA (input) INTEGER
76
+ * The leading dimension of the array A. LDA >= max(1,N).
77
+ *
78
+ * IPIV (input) INTEGER array, dimension (N)
79
+ * Details of the interchanges and the block structure of D
80
+ * as determined by DSYTRF.
81
+ *
82
+ * ANORM (input) DOUBLE PRECISION
83
+ * The 1-norm of the original matrix A.
84
+ *
85
+ * RCOND (output) DOUBLE PRECISION
86
+ * The reciprocal of the condition number of the matrix A,
87
+ * computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
88
+ * estimate of the 1-norm of inv(A) computed in this routine.
89
+ *
90
+ * WORK (workspace) DOUBLE PRECISION array, dimension (2*N)
91
+ *
92
+ * IWORK (workspace) INTEGER array, dimension (N)
93
+ *
94
+ * INFO (output) INTEGER
95
+ * = 0: successful exit
96
+ * < 0: if INFO = -i, the i-th argument had an illegal value
97
+ *
98
+
99
+ * =====================================================================
100
+ *
101
+
102
+
103
+ </PRE>
104
+ <A HREF="#top">go to the page top</A>
105
+
106
+ <A NAME="dsyconv"></A>
107
+ <H2>dsyconv</H2>
108
+ <PRE>
109
+ USAGE:
110
+ info = NumRu::Lapack.dsyconv( uplo, way, a, ipiv, [:usage => usage, :help => help])
111
+
112
+
113
+ FORTRAN MANUAL
114
+ SUBROUTINE DSYCONV( UPLO, WAY, N, A, LDA, IPIV, WORK, INFO )
115
+
116
+ * Purpose
117
+ * =======
118
+ *
119
+ * DSYCONV convert A given by TRF into L and D and vice-versa.
120
+ * Get Non-diag elements of D (returned in workspace) and
121
+ * apply or reverse permutation done in TRF.
122
+ *
123
+
124
+ * Arguments
125
+ * =========
126
+ *
127
+ * UPLO (input) CHARACTER*1
128
+ * Specifies whether the details of the factorization are stored
129
+ * as an upper or lower triangular matrix.
130
+ * = 'U': Upper triangular, form is A = U*D*U**T;
131
+ * = 'L': Lower triangular, form is A = L*D*L**T.
132
+ *
133
+ * WAY (input) CHARACTER*1
134
+ * = 'C': Convert
135
+ * = 'R': Revert
136
+ *
137
+ * N (input) INTEGER
138
+ * The order of the matrix A. N >= 0.
139
+ *
140
+ * A (input) DOUBLE PRECISION array, dimension (LDA,N)
141
+ * The block diagonal matrix D and the multipliers used to
142
+ * obtain the factor U or L as computed by DSYTRF.
143
+ *
144
+ * LDA (input) INTEGER
145
+ * The leading dimension of the array A. LDA >= max(1,N).
146
+ *
147
+ * IPIV (input) INTEGER array, dimension (N)
148
+ * Details of the interchanges and the block structure of D
149
+ * as determined by DSYTRF.
150
+ *
151
+ * WORK (workspace) DOUBLE PRECISION array, dimension (N)
152
+ *
153
+ * LWORK (input) INTEGER
154
+ * The length of WORK. LWORK >=1.
155
+ * LWORK = N
156
+ *
157
+ * If LWORK = -1, then a workspace query is assumed; the routine
158
+ * only calculates the optimal size of the WORK array, returns
159
+ * this value as the first entry of the WORK array, and no error
160
+ * message related to LWORK is issued by XERBLA.
161
+ *
162
+ * INFO (output) INTEGER
163
+ * = 0: successful exit
164
+ * < 0: if INFO = -i, the i-th argument had an illegal value
165
+ *
166
+
167
+ * =====================================================================
168
+ *
169
+
170
+
171
+ </PRE>
172
+ <A HREF="#top">go to the page top</A>
173
+
174
+ <A NAME="dsyequb"></A>
175
+ <H2>dsyequb</H2>
176
+ <PRE>
177
+ USAGE:
178
+ s, scond, amax, info = NumRu::Lapack.dsyequb( uplo, a, [:usage => usage, :help => help])
179
+
180
+
181
+ FORTRAN MANUAL
182
+ SUBROUTINE DSYEQUB( UPLO, N, A, LDA, S, SCOND, AMAX, WORK, INFO )
183
+
184
+ * Purpose
185
+ * =======
186
+ *
187
+ * DSYEQUB computes row and column scalings intended to equilibrate a
188
+ * symmetric matrix A and reduce its condition number
189
+ * (with respect to the two-norm). S contains the scale factors,
190
+ * S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with
191
+ * elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This
192
+ * choice of S puts the condition number of B within a factor N of the
193
+ * smallest possible condition number over all possible diagonal
194
+ * scalings.
195
+ *
196
+
197
+ * Arguments
198
+ * =========
199
+ *
200
+ * UPLO (input) CHARACTER*1
201
+ * Specifies whether the details of the factorization are stored
202
+ * as an upper or lower triangular matrix.
203
+ * = 'U': Upper triangular, form is A = U*D*U**T;
204
+ * = 'L': Lower triangular, form is A = L*D*L**T.
205
+ *
206
+ * N (input) INTEGER
207
+ * The order of the matrix A. N >= 0.
208
+ *
209
+ * A (input) DOUBLE PRECISION array, dimension (LDA,N)
210
+ * The N-by-N symmetric matrix whose scaling
211
+ * factors are to be computed. Only the diagonal elements of A
212
+ * are referenced.
213
+ *
214
+ * LDA (input) INTEGER
215
+ * The leading dimension of the array A. LDA >= max(1,N).
216
+ *
217
+ * S (output) DOUBLE PRECISION array, dimension (N)
218
+ * If INFO = 0, S contains the scale factors for A.
219
+ *
220
+ * SCOND (output) DOUBLE PRECISION
221
+ * If INFO = 0, S contains the ratio of the smallest S(i) to
222
+ * the largest S(i). If SCOND >= 0.1 and AMAX is neither too
223
+ * large nor too small, it is not worth scaling by S.
224
+ *
225
+ * AMAX (output) DOUBLE PRECISION
226
+ * Absolute value of largest matrix element. If AMAX is very
227
+ * close to overflow or very close to underflow, the matrix
228
+ * should be scaled.
229
+ *
230
+ * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
231
+ *
232
+ * INFO (output) INTEGER
233
+ * = 0: successful exit
234
+ * < 0: if INFO = -i, the i-th argument had an illegal value
235
+ * > 0: if INFO = i, the i-th diagonal element is nonpositive.
236
+ *
237
+
238
+ * Further Details
239
+ * ======= =======
240
+ *
241
+ * Reference: Livne, O.E. and Golub, G.H., "Scaling by Binormalization",
242
+ * Numerical Algorithms, vol. 35, no. 1, pp. 97-120, January 2004.
243
+ * DOI 10.1023/B:NUMA.0000016606.32820.69
244
+ * Tech report version: http://ruready.utah.edu/archive/papers/bin.pdf
245
+ *
246
+ * =====================================================================
247
+ *
248
+
249
+
250
+ </PRE>
251
+ <A HREF="#top">go to the page top</A>
252
+
253
+ <A NAME="dsyev"></A>
254
+ <H2>dsyev</H2>
255
+ <PRE>
256
+ USAGE:
257
+ w, work, info, a = NumRu::Lapack.dsyev( jobz, uplo, a, [:lwork => lwork, :usage => usage, :help => help])
258
+
259
+
260
+ FORTRAN MANUAL
261
+ SUBROUTINE DSYEV( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, INFO )
262
+
263
+ * Purpose
264
+ * =======
265
+ *
266
+ * DSYEV computes all eigenvalues and, optionally, eigenvectors of a
267
+ * real symmetric matrix A.
268
+ *
269
+
270
+ * Arguments
271
+ * =========
272
+ *
273
+ * JOBZ (input) CHARACTER*1
274
+ * = 'N': Compute eigenvalues only;
275
+ * = 'V': Compute eigenvalues and eigenvectors.
276
+ *
277
+ * UPLO (input) CHARACTER*1
278
+ * = 'U': Upper triangle of A is stored;
279
+ * = 'L': Lower triangle of A is stored.
280
+ *
281
+ * N (input) INTEGER
282
+ * The order of the matrix A. N >= 0.
283
+ *
284
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
285
+ * On entry, the symmetric matrix A. If UPLO = 'U', the
286
+ * leading N-by-N upper triangular part of A contains the
287
+ * upper triangular part of the matrix A. If UPLO = 'L',
288
+ * the leading N-by-N lower triangular part of A contains
289
+ * the lower triangular part of the matrix A.
290
+ * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
291
+ * orthonormal eigenvectors of the matrix A.
292
+ * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
293
+ * or the upper triangle (if UPLO='U') of A, including the
294
+ * diagonal, is destroyed.
295
+ *
296
+ * LDA (input) INTEGER
297
+ * The leading dimension of the array A. LDA >= max(1,N).
298
+ *
299
+ * W (output) DOUBLE PRECISION array, dimension (N)
300
+ * If INFO = 0, the eigenvalues in ascending order.
301
+ *
302
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
303
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
304
+ *
305
+ * LWORK (input) INTEGER
306
+ * The length of the array WORK. LWORK >= max(1,3*N-1).
307
+ * For optimal efficiency, LWORK >= (NB+2)*N,
308
+ * where NB is the blocksize for DSYTRD returned by ILAENV.
309
+ *
310
+ * If LWORK = -1, then a workspace query is assumed; the routine
311
+ * only calculates the optimal size of the WORK array, returns
312
+ * this value as the first entry of the WORK array, and no error
313
+ * message related to LWORK is issued by XERBLA.
314
+ *
315
+ * INFO (output) INTEGER
316
+ * = 0: successful exit
317
+ * < 0: if INFO = -i, the i-th argument had an illegal value
318
+ * > 0: if INFO = i, the algorithm failed to converge; i
319
+ * off-diagonal elements of an intermediate tridiagonal
320
+ * form did not converge to zero.
321
+ *
322
+
323
+ * =====================================================================
324
+ *
325
+
326
+
327
+ </PRE>
328
+ <A HREF="#top">go to the page top</A>
329
+
330
+ <A NAME="dsyevd"></A>
331
+ <H2>dsyevd</H2>
332
+ <PRE>
333
+ USAGE:
334
+ w, work, iwork, info, a = NumRu::Lapack.dsyevd( jobz, uplo, a, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
335
+
336
+
337
+ FORTRAN MANUAL
338
+ SUBROUTINE DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK, INFO )
339
+
340
+ * Purpose
341
+ * =======
342
+ *
343
+ * DSYEVD computes all eigenvalues and, optionally, eigenvectors of a
344
+ * real symmetric matrix A. If eigenvectors are desired, it uses a
345
+ * divide and conquer algorithm.
346
+ *
347
+ * The divide and conquer algorithm makes very mild assumptions about
348
+ * floating point arithmetic. It will work on machines with a guard
349
+ * digit in add/subtract, or on those binary machines without guard
350
+ * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
351
+ * Cray-2. It could conceivably fail on hexadecimal or decimal machines
352
+ * without guard digits, but we know of none.
353
+ *
354
+ * Because of large use of BLAS of level 3, DSYEVD needs N**2 more
355
+ * workspace than DSYEVX.
356
+ *
357
+
358
+ * Arguments
359
+ * =========
360
+ *
361
+ * JOBZ (input) CHARACTER*1
362
+ * = 'N': Compute eigenvalues only;
363
+ * = 'V': Compute eigenvalues and eigenvectors.
364
+ *
365
+ * UPLO (input) CHARACTER*1
366
+ * = 'U': Upper triangle of A is stored;
367
+ * = 'L': Lower triangle of A is stored.
368
+ *
369
+ * N (input) INTEGER
370
+ * The order of the matrix A. N >= 0.
371
+ *
372
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
373
+ * On entry, the symmetric matrix A. If UPLO = 'U', the
374
+ * leading N-by-N upper triangular part of A contains the
375
+ * upper triangular part of the matrix A. If UPLO = 'L',
376
+ * the leading N-by-N lower triangular part of A contains
377
+ * the lower triangular part of the matrix A.
378
+ * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
379
+ * orthonormal eigenvectors of the matrix A.
380
+ * If JOBZ = 'N', then on exit the lower triangle (if UPLO='L')
381
+ * or the upper triangle (if UPLO='U') of A, including the
382
+ * diagonal, is destroyed.
383
+ *
384
+ * LDA (input) INTEGER
385
+ * The leading dimension of the array A. LDA >= max(1,N).
386
+ *
387
+ * W (output) DOUBLE PRECISION array, dimension (N)
388
+ * If INFO = 0, the eigenvalues in ascending order.
389
+ *
390
+ * WORK (workspace/output) DOUBLE PRECISION array,
391
+ * dimension (LWORK)
392
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
393
+ *
394
+ * LWORK (input) INTEGER
395
+ * The dimension of the array WORK.
396
+ * If N <= 1, LWORK must be at least 1.
397
+ * If JOBZ = 'N' and N > 1, LWORK must be at least 2*N+1.
398
+ * If JOBZ = 'V' and N > 1, LWORK must be at least
399
+ * 1 + 6*N + 2*N**2.
400
+ *
401
+ * If LWORK = -1, then a workspace query is assumed; the routine
402
+ * only calculates the optimal sizes of the WORK and IWORK
403
+ * arrays, returns these values as the first entries of the WORK
404
+ * and IWORK arrays, and no error message related to LWORK or
405
+ * LIWORK is issued by XERBLA.
406
+ *
407
+ * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
408
+ * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
409
+ *
410
+ * LIWORK (input) INTEGER
411
+ * The dimension of the array IWORK.
412
+ * If N <= 1, LIWORK must be at least 1.
413
+ * If JOBZ = 'N' and N > 1, LIWORK must be at least 1.
414
+ * If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N.
415
+ *
416
+ * If LIWORK = -1, then a workspace query is assumed; the
417
+ * routine only calculates the optimal sizes of the WORK and
418
+ * IWORK arrays, returns these values as the first entries of
419
+ * the WORK and IWORK arrays, and no error message related to
420
+ * LWORK or LIWORK is issued by XERBLA.
421
+ *
422
+ * INFO (output) INTEGER
423
+ * = 0: successful exit
424
+ * < 0: if INFO = -i, the i-th argument had an illegal value
425
+ * > 0: if INFO = i and JOBZ = 'N', then the algorithm failed
426
+ * to converge; i off-diagonal elements of an intermediate
427
+ * tridiagonal form did not converge to zero;
428
+ * if INFO = i and JOBZ = 'V', then the algorithm failed
429
+ * to compute an eigenvalue while working on the submatrix
430
+ * lying in rows and columns INFO/(N+1) through
431
+ * mod(INFO,N+1).
432
+ *
433
+
434
+ * Further Details
435
+ * ===============
436
+ *
437
+ * Based on contributions by
438
+ * Jeff Rutter, Computer Science Division, University of California
439
+ * at Berkeley, USA
440
+ * Modified by Francoise Tisseur, University of Tennessee.
441
+ *
442
+ * Modified description of INFO. Sven, 16 Feb 05.
443
+ * =====================================================================
444
+ *
445
+
446
+
447
+ </PRE>
448
+ <A HREF="#top">go to the page top</A>
449
+
450
+ <A NAME="dsyevr"></A>
451
+ <H2>dsyevr</H2>
452
+ <PRE>
453
+ USAGE:
454
+ m, w, z, isuppz, work, iwork, info, a = NumRu::Lapack.dsyevr( jobz, range, uplo, a, vl, vu, il, iu, abstol, liwork, [:lwork => lwork, :usage => usage, :help => help])
455
+
456
+
457
+ FORTRAN MANUAL
458
+ SUBROUTINE DSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, IWORK, LIWORK, INFO )
459
+
460
+ * Purpose
461
+ * =======
462
+ *
463
+ * DSYEVR computes selected eigenvalues and, optionally, eigenvectors
464
+ * of a real symmetric matrix A. Eigenvalues and eigenvectors can be
465
+ * selected by specifying either a range of values or a range of
466
+ * indices for the desired eigenvalues.
467
+ *
468
+ * DSYEVR first reduces the matrix A to tridiagonal form T with a call
469
+ * to DSYTRD. Then, whenever possible, DSYEVR calls DSTEMR to compute
470
+ * the eigenspectrum using Relatively Robust Representations. DSTEMR
471
+ * computes eigenvalues by the dqds algorithm, while orthogonal
472
+ * eigenvectors are computed from various "good" L D L^T representations
473
+ * (also known as Relatively Robust Representations). Gram-Schmidt
474
+ * orthogonalization is avoided as far as possible. More specifically,
475
+ * the various steps of the algorithm are as follows.
476
+ *
477
+ * For each unreduced block (submatrix) of T,
478
+ * (a) Compute T - sigma I = L D L^T, so that L and D
479
+ * define all the wanted eigenvalues to high relative accuracy.
480
+ * This means that small relative changes in the entries of D and L
481
+ * cause only small relative changes in the eigenvalues and
482
+ * eigenvectors. The standard (unfactored) representation of the
483
+ * tridiagonal matrix T does not have this property in general.
484
+ * (b) Compute the eigenvalues to suitable accuracy.
485
+ * If the eigenvectors are desired, the algorithm attains full
486
+ * accuracy of the computed eigenvalues only right before
487
+ * the corresponding vectors have to be computed, see steps c) and d).
488
+ * (c) For each cluster of close eigenvalues, select a new
489
+ * shift close to the cluster, find a new factorization, and refine
490
+ * the shifted eigenvalues to suitable accuracy.
491
+ * (d) For each eigenvalue with a large enough relative separation compute
492
+ * the corresponding eigenvector by forming a rank revealing twisted
493
+ * factorization. Go back to (c) for any clusters that remain.
494
+ *
495
+ * The desired accuracy of the output can be specified by the input
496
+ * parameter ABSTOL.
497
+ *
498
+ * For more details, see DSTEMR's documentation and:
499
+ * - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations
500
+ * to compute orthogonal eigenvectors of symmetric tridiagonal matrices,"
501
+ * Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004.
502
+ * - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and
503
+ * Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25,
504
+ * 2004. Also LAPACK Working Note 154.
505
+ * - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric
506
+ * tridiagonal eigenvalue/eigenvector problem",
507
+ * Computer Science Division Technical Report No. UCB/CSD-97-971,
508
+ * UC Berkeley, May 1997.
509
+ *
510
+ *
511
+ * Note 1 : DSYEVR calls DSTEMR when the full spectrum is requested
512
+ * on machines which conform to the ieee-754 floating point standard.
513
+ * DSYEVR calls DSTEBZ and SSTEIN on non-ieee machines and
514
+ * when partial spectrum requests are made.
515
+ *
516
+ * Normal execution of DSTEMR may create NaNs and infinities and
517
+ * hence may abort due to a floating point exception in environments
518
+ * which do not handle NaNs and infinities in the ieee standard default
519
+ * manner.
520
+ *
521
+
522
+ * Arguments
523
+ * =========
524
+ *
525
+ * JOBZ (input) CHARACTER*1
526
+ * = 'N': Compute eigenvalues only;
527
+ * = 'V': Compute eigenvalues and eigenvectors.
528
+ *
529
+ * RANGE (input) CHARACTER*1
530
+ * = 'A': all eigenvalues will be found.
531
+ * = 'V': all eigenvalues in the half-open interval (VL,VU]
532
+ * will be found.
533
+ * = 'I': the IL-th through IU-th eigenvalues will be found.
534
+ ********** For RANGE = 'V' or 'I' and IU - IL < N - 1, DSTEBZ and
535
+ ********** DSTEIN are called
536
+ *
537
+ * UPLO (input) CHARACTER*1
538
+ * = 'U': Upper triangle of A is stored;
539
+ * = 'L': Lower triangle of A is stored.
540
+ *
541
+ * N (input) INTEGER
542
+ * The order of the matrix A. N >= 0.
543
+ *
544
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
545
+ * On entry, the symmetric matrix A. If UPLO = 'U', the
546
+ * leading N-by-N upper triangular part of A contains the
547
+ * upper triangular part of the matrix A. If UPLO = 'L',
548
+ * the leading N-by-N lower triangular part of A contains
549
+ * the lower triangular part of the matrix A.
550
+ * On exit, the lower triangle (if UPLO='L') or the upper
551
+ * triangle (if UPLO='U') of A, including the diagonal, is
552
+ * destroyed.
553
+ *
554
+ * LDA (input) INTEGER
555
+ * The leading dimension of the array A. LDA >= max(1,N).
556
+ *
557
+ * VL (input) DOUBLE PRECISION
558
+ * VU (input) DOUBLE PRECISION
559
+ * If RANGE='V', the lower and upper bounds of the interval to
560
+ * be searched for eigenvalues. VL < VU.
561
+ * Not referenced if RANGE = 'A' or 'I'.
562
+ *
563
+ * IL (input) INTEGER
564
+ * IU (input) INTEGER
565
+ * If RANGE='I', the indices (in ascending order) of the
566
+ * smallest and largest eigenvalues to be returned.
567
+ * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
568
+ * Not referenced if RANGE = 'A' or 'V'.
569
+ *
570
+ * ABSTOL (input) DOUBLE PRECISION
571
+ * The absolute error tolerance for the eigenvalues.
572
+ * An approximate eigenvalue is accepted as converged
573
+ * when it is determined to lie in an interval [a,b]
574
+ * of width less than or equal to
575
+ *
576
+ * ABSTOL + EPS * max( |a|,|b| ) ,
577
+ *
578
+ * where EPS is the machine precision. If ABSTOL is less than
579
+ * or equal to zero, then EPS*|T| will be used in its place,
580
+ * where |T| is the 1-norm of the tridiagonal matrix obtained
581
+ * by reducing A to tridiagonal form.
582
+ *
583
+ * See "Computing Small Singular Values of Bidiagonal Matrices
584
+ * with Guaranteed High Relative Accuracy," by Demmel and
585
+ * Kahan, LAPACK Working Note #3.
586
+ *
587
+ * If high relative accuracy is important, set ABSTOL to
588
+ * DLAMCH( 'Safe minimum' ). Doing so will guarantee that
589
+ * eigenvalues are computed to high relative accuracy when
590
+ * possible in future releases. The current code does not
591
+ * make any guarantees about high relative accuracy, but
592
+ * future releases will. See J. Barlow and J. Demmel,
593
+ * "Computing Accurate Eigensystems of Scaled Diagonally
594
+ * Dominant Matrices", LAPACK Working Note #7, for a discussion
595
+ * of which matrices define their eigenvalues to high relative
596
+ * accuracy.
597
+ *
598
+ * M (output) INTEGER
599
+ * The total number of eigenvalues found. 0 <= M <= N.
600
+ * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
601
+ *
602
+ * W (output) DOUBLE PRECISION array, dimension (N)
603
+ * The first M elements contain the selected eigenvalues in
604
+ * ascending order.
605
+ *
606
+ * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
607
+ * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
608
+ * contain the orthonormal eigenvectors of the matrix A
609
+ * corresponding to the selected eigenvalues, with the i-th
610
+ * column of Z holding the eigenvector associated with W(i).
611
+ * If JOBZ = 'N', then Z is not referenced.
612
+ * Note: the user must ensure that at least max(1,M) columns are
613
+ * supplied in the array Z; if RANGE = 'V', the exact value of M
614
+ * is not known in advance and an upper bound must be used.
615
+ * Supplying N columns is always safe.
616
+ *
617
+ * LDZ (input) INTEGER
618
+ * The leading dimension of the array Z. LDZ >= 1, and if
619
+ * JOBZ = 'V', LDZ >= max(1,N).
620
+ *
621
+ * ISUPPZ (output) INTEGER array, dimension ( 2*max(1,M) )
622
+ * The support of the eigenvectors in Z, i.e., the indices
623
+ * indicating the nonzero elements in Z. The i-th eigenvector
624
+ * is nonzero only in elements ISUPPZ( 2*i-1 ) through
625
+ * ISUPPZ( 2*i ).
626
+ ********** Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1
627
+ *
628
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
629
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
630
+ *
631
+ * LWORK (input) INTEGER
632
+ * The dimension of the array WORK. LWORK >= max(1,26*N).
633
+ * For optimal efficiency, LWORK >= (NB+6)*N,
634
+ * where NB is the max of the blocksize for DSYTRD and DORMTR
635
+ * returned by ILAENV.
636
+ *
637
+ * If LWORK = -1, then a workspace query is assumed; the routine
638
+ * only calculates the optimal size of the WORK array, returns
639
+ * this value as the first entry of the WORK array, and no error
640
+ * message related to LWORK is issued by XERBLA.
641
+ *
642
+ * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
643
+ * On exit, if INFO = 0, IWORK(1) returns the optimal LWORK.
644
+ *
645
+ * LIWORK (input) INTEGER
646
+ * The dimension of the array IWORK. LIWORK >= max(1,10*N).
647
+ *
648
+ * If LIWORK = -1, then a workspace query is assumed; the
649
+ * routine only calculates the optimal size of the IWORK array,
650
+ * returns this value as the first entry of the IWORK array, and
651
+ * no error message related to LIWORK is issued by XERBLA.
652
+ *
653
+ * INFO (output) INTEGER
654
+ * = 0: successful exit
655
+ * < 0: if INFO = -i, the i-th argument had an illegal value
656
+ * > 0: Internal error
657
+ *
658
+
659
+ * Further Details
660
+ * ===============
661
+ *
662
+ * Based on contributions by
663
+ * Inderjit Dhillon, IBM Almaden, USA
664
+ * Osni Marques, LBNL/NERSC, USA
665
+ * Ken Stanley, Computer Science Division, University of
666
+ * California at Berkeley, USA
667
+ * Jason Riedy, Computer Science Division, University of
668
+ * California at Berkeley, USA
669
+ *
670
+ * =====================================================================
671
+ *
672
+
673
+
674
+ </PRE>
675
+ <A HREF="#top">go to the page top</A>
676
+
677
+ <A NAME="dsyevx"></A>
678
+ <H2>dsyevx</H2>
679
+ <PRE>
680
+ USAGE:
681
+ m, w, z, work, ifail, info, a = NumRu::Lapack.dsyevx( jobz, range, uplo, a, vl, vu, il, iu, abstol, [:lwork => lwork, :usage => usage, :help => help])
682
+
683
+
684
+ FORTRAN MANUAL
685
+ SUBROUTINE DSYEVX( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
686
+
687
+ * Purpose
688
+ * =======
689
+ *
690
+ * DSYEVX computes selected eigenvalues and, optionally, eigenvectors
691
+ * of a real symmetric matrix A. Eigenvalues and eigenvectors can be
692
+ * selected by specifying either a range of values or a range of indices
693
+ * for the desired eigenvalues.
694
+ *
695
+
696
+ * Arguments
697
+ * =========
698
+ *
699
+ * JOBZ (input) CHARACTER*1
700
+ * = 'N': Compute eigenvalues only;
701
+ * = 'V': Compute eigenvalues and eigenvectors.
702
+ *
703
+ * RANGE (input) CHARACTER*1
704
+ * = 'A': all eigenvalues will be found.
705
+ * = 'V': all eigenvalues in the half-open interval (VL,VU]
706
+ * will be found.
707
+ * = 'I': the IL-th through IU-th eigenvalues will be found.
708
+ *
709
+ * UPLO (input) CHARACTER*1
710
+ * = 'U': Upper triangle of A is stored;
711
+ * = 'L': Lower triangle of A is stored.
712
+ *
713
+ * N (input) INTEGER
714
+ * The order of the matrix A. N >= 0.
715
+ *
716
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
717
+ * On entry, the symmetric matrix A. If UPLO = 'U', the
718
+ * leading N-by-N upper triangular part of A contains the
719
+ * upper triangular part of the matrix A. If UPLO = 'L',
720
+ * the leading N-by-N lower triangular part of A contains
721
+ * the lower triangular part of the matrix A.
722
+ * On exit, the lower triangle (if UPLO='L') or the upper
723
+ * triangle (if UPLO='U') of A, including the diagonal, is
724
+ * destroyed.
725
+ *
726
+ * LDA (input) INTEGER
727
+ * The leading dimension of the array A. LDA >= max(1,N).
728
+ *
729
+ * VL (input) DOUBLE PRECISION
730
+ * VU (input) DOUBLE PRECISION
731
+ * If RANGE='V', the lower and upper bounds of the interval to
732
+ * be searched for eigenvalues. VL < VU.
733
+ * Not referenced if RANGE = 'A' or 'I'.
734
+ *
735
+ * IL (input) INTEGER
736
+ * IU (input) INTEGER
737
+ * If RANGE='I', the indices (in ascending order) of the
738
+ * smallest and largest eigenvalues to be returned.
739
+ * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
740
+ * Not referenced if RANGE = 'A' or 'V'.
741
+ *
742
+ * ABSTOL (input) DOUBLE PRECISION
743
+ * The absolute error tolerance for the eigenvalues.
744
+ * An approximate eigenvalue is accepted as converged
745
+ * when it is determined to lie in an interval [a,b]
746
+ * of width less than or equal to
747
+ *
748
+ * ABSTOL + EPS * max( |a|,|b| ) ,
749
+ *
750
+ * where EPS is the machine precision. If ABSTOL is less than
751
+ * or equal to zero, then EPS*|T| will be used in its place,
752
+ * where |T| is the 1-norm of the tridiagonal matrix obtained
753
+ * by reducing A to tridiagonal form.
754
+ *
755
+ * Eigenvalues will be computed most accurately when ABSTOL is
756
+ * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
757
+ * If this routine returns with INFO>0, indicating that some
758
+ * eigenvectors did not converge, try setting ABSTOL to
759
+ * 2*DLAMCH('S').
760
+ *
761
+ * See "Computing Small Singular Values of Bidiagonal Matrices
762
+ * with Guaranteed High Relative Accuracy," by Demmel and
763
+ * Kahan, LAPACK Working Note #3.
764
+ *
765
+ * M (output) INTEGER
766
+ * The total number of eigenvalues found. 0 <= M <= N.
767
+ * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
768
+ *
769
+ * W (output) DOUBLE PRECISION array, dimension (N)
770
+ * On normal exit, the first M elements contain the selected
771
+ * eigenvalues in ascending order.
772
+ *
773
+ * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
774
+ * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
775
+ * contain the orthonormal eigenvectors of the matrix A
776
+ * corresponding to the selected eigenvalues, with the i-th
777
+ * column of Z holding the eigenvector associated with W(i).
778
+ * If an eigenvector fails to converge, then that column of Z
779
+ * contains the latest approximation to the eigenvector, and the
780
+ * index of the eigenvector is returned in IFAIL.
781
+ * If JOBZ = 'N', then Z is not referenced.
782
+ * Note: the user must ensure that at least max(1,M) columns are
783
+ * supplied in the array Z; if RANGE = 'V', the exact value of M
784
+ * is not known in advance and an upper bound must be used.
785
+ *
786
+ * LDZ (input) INTEGER
787
+ * The leading dimension of the array Z. LDZ >= 1, and if
788
+ * JOBZ = 'V', LDZ >= max(1,N).
789
+ *
790
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
791
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
792
+ *
793
+ * LWORK (input) INTEGER
794
+ * The length of the array WORK. LWORK >= 1, when N <= 1;
795
+ * otherwise 8*N.
796
+ * For optimal efficiency, LWORK >= (NB+3)*N,
797
+ * where NB is the max of the blocksize for DSYTRD and DORMTR
798
+ * returned by ILAENV.
799
+ *
800
+ * If LWORK = -1, then a workspace query is assumed; the routine
801
+ * only calculates the optimal size of the WORK array, returns
802
+ * this value as the first entry of the WORK array, and no error
803
+ * message related to LWORK is issued by XERBLA.
804
+ *
805
+ * IWORK (workspace) INTEGER array, dimension (5*N)
806
+ *
807
+ * IFAIL (output) INTEGER array, dimension (N)
808
+ * If JOBZ = 'V', then if INFO = 0, the first M elements of
809
+ * IFAIL are zero. If INFO > 0, then IFAIL contains the
810
+ * indices of the eigenvectors that failed to converge.
811
+ * If JOBZ = 'N', then IFAIL is not referenced.
812
+ *
813
+ * INFO (output) INTEGER
814
+ * = 0: successful exit
815
+ * < 0: if INFO = -i, the i-th argument had an illegal value
816
+ * > 0: if INFO = i, then i eigenvectors failed to converge.
817
+ * Their indices are stored in array IFAIL.
818
+ *
819
+
820
+ * =====================================================================
821
+ *
822
+
823
+
824
+ </PRE>
825
+ <A HREF="#top">go to the page top</A>
826
+
827
+ <A NAME="dsygs2"></A>
828
+ <H2>dsygs2</H2>
829
+ <PRE>
830
+ USAGE:
831
+ info, a = NumRu::Lapack.dsygs2( itype, uplo, a, b, [:usage => usage, :help => help])
832
+
833
+
834
+ FORTRAN MANUAL
835
+ SUBROUTINE DSYGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
836
+
837
+ * Purpose
838
+ * =======
839
+ *
840
+ * DSYGS2 reduces a real symmetric-definite generalized eigenproblem
841
+ * to standard form.
842
+ *
843
+ * If ITYPE = 1, the problem is A*x = lambda*B*x,
844
+ * and A is overwritten by inv(U')*A*inv(U) or inv(L)*A*inv(L')
845
+ *
846
+ * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
847
+ * B*A*x = lambda*x, and A is overwritten by U*A*U` or L'*A*L.
848
+ *
849
+ * B must have been previously factorized as U'*U or L*L' by DPOTRF.
850
+ *
851
+
852
+ * Arguments
853
+ * =========
854
+ *
855
+ * ITYPE (input) INTEGER
856
+ * = 1: compute inv(U')*A*inv(U) or inv(L)*A*inv(L');
857
+ * = 2 or 3: compute U*A*U' or L'*A*L.
858
+ *
859
+ * UPLO (input) CHARACTER*1
860
+ * Specifies whether the upper or lower triangular part of the
861
+ * symmetric matrix A is stored, and how B has been factorized.
862
+ * = 'U': Upper triangular
863
+ * = 'L': Lower triangular
864
+ *
865
+ * N (input) INTEGER
866
+ * The order of the matrices A and B. N >= 0.
867
+ *
868
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
869
+ * On entry, the symmetric matrix A. If UPLO = 'U', the leading
870
+ * n by n upper triangular part of A contains the upper
871
+ * triangular part of the matrix A, and the strictly lower
872
+ * triangular part of A is not referenced. If UPLO = 'L', the
873
+ * leading n by n lower triangular part of A contains the lower
874
+ * triangular part of the matrix A, and the strictly upper
875
+ * triangular part of A is not referenced.
876
+ *
877
+ * On exit, if INFO = 0, the transformed matrix, stored in the
878
+ * same format as A.
879
+ *
880
+ * LDA (input) INTEGER
881
+ * The leading dimension of the array A. LDA >= max(1,N).
882
+ *
883
+ * B (input) DOUBLE PRECISION array, dimension (LDB,N)
884
+ * The triangular factor from the Cholesky factorization of B,
885
+ * as returned by DPOTRF.
886
+ *
887
+ * LDB (input) INTEGER
888
+ * The leading dimension of the array B. LDB >= max(1,N).
889
+ *
890
+ * INFO (output) INTEGER
891
+ * = 0: successful exit.
892
+ * < 0: if INFO = -i, the i-th argument had an illegal value.
893
+ *
894
+
895
+ * =====================================================================
896
+ *
897
+
898
+
899
+ </PRE>
900
+ <A HREF="#top">go to the page top</A>
901
+
902
+ <A NAME="dsygst"></A>
903
+ <H2>dsygst</H2>
904
+ <PRE>
905
+ USAGE:
906
+ info, a = NumRu::Lapack.dsygst( itype, uplo, a, b, [:usage => usage, :help => help])
907
+
908
+
909
+ FORTRAN MANUAL
910
+ SUBROUTINE DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
911
+
912
+ * Purpose
913
+ * =======
914
+ *
915
+ * DSYGST reduces a real symmetric-definite generalized eigenproblem
916
+ * to standard form.
917
+ *
918
+ * If ITYPE = 1, the problem is A*x = lambda*B*x,
919
+ * and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
920
+ *
921
+ * If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
922
+ * B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
923
+ *
924
+ * B must have been previously factorized as U**T*U or L*L**T by DPOTRF.
925
+ *
926
+
927
+ * Arguments
928
+ * =========
929
+ *
930
+ * ITYPE (input) INTEGER
931
+ * = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
932
+ * = 2 or 3: compute U*A*U**T or L**T*A*L.
933
+ *
934
+ * UPLO (input) CHARACTER*1
935
+ * = 'U': Upper triangle of A is stored and B is factored as
936
+ * U**T*U;
937
+ * = 'L': Lower triangle of A is stored and B is factored as
938
+ * L*L**T.
939
+ *
940
+ * N (input) INTEGER
941
+ * The order of the matrices A and B. N >= 0.
942
+ *
943
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
944
+ * On entry, the symmetric matrix A. If UPLO = 'U', the leading
945
+ * N-by-N upper triangular part of A contains the upper
946
+ * triangular part of the matrix A, and the strictly lower
947
+ * triangular part of A is not referenced. If UPLO = 'L', the
948
+ * leading N-by-N lower triangular part of A contains the lower
949
+ * triangular part of the matrix A, and the strictly upper
950
+ * triangular part of A is not referenced.
951
+ *
952
+ * On exit, if INFO = 0, the transformed matrix, stored in the
953
+ * same format as A.
954
+ *
955
+ * LDA (input) INTEGER
956
+ * The leading dimension of the array A. LDA >= max(1,N).
957
+ *
958
+ * B (input) DOUBLE PRECISION array, dimension (LDB,N)
959
+ * The triangular factor from the Cholesky factorization of B,
960
+ * as returned by DPOTRF.
961
+ *
962
+ * LDB (input) INTEGER
963
+ * The leading dimension of the array B. LDB >= max(1,N).
964
+ *
965
+ * INFO (output) INTEGER
966
+ * = 0: successful exit
967
+ * < 0: if INFO = -i, the i-th argument had an illegal value
968
+ *
969
+
970
+ * =====================================================================
971
+ *
972
+
973
+
974
+ </PRE>
975
+ <A HREF="#top">go to the page top</A>
976
+
977
+ <A NAME="dsygv"></A>
978
+ <H2>dsygv</H2>
979
+ <PRE>
980
+ USAGE:
981
+ w, work, info, a, b = NumRu::Lapack.dsygv( itype, jobz, uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])
982
+
983
+
984
+ FORTRAN MANUAL
985
+ SUBROUTINE DSYGV( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, INFO )
986
+
987
+ * Purpose
988
+ * =======
989
+ *
990
+ * DSYGV computes all the eigenvalues, and optionally, the eigenvectors
991
+ * of a real generalized symmetric-definite eigenproblem, of the form
992
+ * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x.
993
+ * Here A and B are assumed to be symmetric and B is also
994
+ * positive definite.
995
+ *
996
+
997
+ * Arguments
998
+ * =========
999
+ *
1000
+ * ITYPE (input) INTEGER
1001
+ * Specifies the problem type to be solved:
1002
+ * = 1: A*x = (lambda)*B*x
1003
+ * = 2: A*B*x = (lambda)*x
1004
+ * = 3: B*A*x = (lambda)*x
1005
+ *
1006
+ * JOBZ (input) CHARACTER*1
1007
+ * = 'N': Compute eigenvalues only;
1008
+ * = 'V': Compute eigenvalues and eigenvectors.
1009
+ *
1010
+ * UPLO (input) CHARACTER*1
1011
+ * = 'U': Upper triangles of A and B are stored;
1012
+ * = 'L': Lower triangles of A and B are stored.
1013
+ *
1014
+ * N (input) INTEGER
1015
+ * The order of the matrices A and B. N >= 0.
1016
+ *
1017
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
1018
+ * On entry, the symmetric matrix A. If UPLO = 'U', the
1019
+ * leading N-by-N upper triangular part of A contains the
1020
+ * upper triangular part of the matrix A. If UPLO = 'L',
1021
+ * the leading N-by-N lower triangular part of A contains
1022
+ * the lower triangular part of the matrix A.
1023
+ *
1024
+ * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
1025
+ * matrix Z of eigenvectors. The eigenvectors are normalized
1026
+ * as follows:
1027
+ * if ITYPE = 1 or 2, Z**T*B*Z = I;
1028
+ * if ITYPE = 3, Z**T*inv(B)*Z = I.
1029
+ * If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
1030
+ * or the lower triangle (if UPLO='L') of A, including the
1031
+ * diagonal, is destroyed.
1032
+ *
1033
+ * LDA (input) INTEGER
1034
+ * The leading dimension of the array A. LDA >= max(1,N).
1035
+ *
1036
+ * B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
1037
+ * On entry, the symmetric positive definite matrix B.
1038
+ * If UPLO = 'U', the leading N-by-N upper triangular part of B
1039
+ * contains the upper triangular part of the matrix B.
1040
+ * If UPLO = 'L', the leading N-by-N lower triangular part of B
1041
+ * contains the lower triangular part of the matrix B.
1042
+ *
1043
+ * On exit, if INFO <= N, the part of B containing the matrix is
1044
+ * overwritten by the triangular factor U or L from the Cholesky
1045
+ * factorization B = U**T*U or B = L*L**T.
1046
+ *
1047
+ * LDB (input) INTEGER
1048
+ * The leading dimension of the array B. LDB >= max(1,N).
1049
+ *
1050
+ * W (output) DOUBLE PRECISION array, dimension (N)
1051
+ * If INFO = 0, the eigenvalues in ascending order.
1052
+ *
1053
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1054
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1055
+ *
1056
+ * LWORK (input) INTEGER
1057
+ * The length of the array WORK. LWORK >= max(1,3*N-1).
1058
+ * For optimal efficiency, LWORK >= (NB+2)*N,
1059
+ * where NB is the blocksize for DSYTRD returned by ILAENV.
1060
+ *
1061
+ * If LWORK = -1, then a workspace query is assumed; the routine
1062
+ * only calculates the optimal size of the WORK array, returns
1063
+ * this value as the first entry of the WORK array, and no error
1064
+ * message related to LWORK is issued by XERBLA.
1065
+ *
1066
+ * INFO (output) INTEGER
1067
+ * = 0: successful exit
1068
+ * < 0: if INFO = -i, the i-th argument had an illegal value
1069
+ * > 0: DPOTRF or DSYEV returned an error code:
1070
+ * <= N: if INFO = i, DSYEV failed to converge;
1071
+ * i off-diagonal elements of an intermediate
1072
+ * tridiagonal form did not converge to zero;
1073
+ * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1074
+ * minor of order i of B is not positive definite.
1075
+ * The factorization of B could not be completed and
1076
+ * no eigenvalues or eigenvectors were computed.
1077
+ *
1078
+
1079
+ * =====================================================================
1080
+ *
1081
+
1082
+
1083
+ </PRE>
1084
+ <A HREF="#top">go to the page top</A>
1085
+
1086
+ <A NAME="dsygvd"></A>
1087
+ <H2>dsygvd</H2>
1088
+ <PRE>
1089
+ USAGE:
1090
+ w, work, iwork, info, a, b = NumRu::Lapack.dsygvd( itype, jobz, uplo, a, b, [:lwork => lwork, :liwork => liwork, :usage => usage, :help => help])
1091
+
1092
+
1093
+ FORTRAN MANUAL
1094
+ SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK, LWORK, IWORK, LIWORK, INFO )
1095
+
1096
+ * Purpose
1097
+ * =======
1098
+ *
1099
+ * DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
1100
+ * of a real generalized symmetric-definite eigenproblem, of the form
1101
+ * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
1102
+ * B are assumed to be symmetric and B is also positive definite.
1103
+ * If eigenvectors are desired, it uses a divide and conquer algorithm.
1104
+ *
1105
+ * The divide and conquer algorithm makes very mild assumptions about
1106
+ * floating point arithmetic. It will work on machines with a guard
1107
+ * digit in add/subtract, or on those binary machines without guard
1108
+ * digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
1109
+ * Cray-2. It could conceivably fail on hexadecimal or decimal machines
1110
+ * without guard digits, but we know of none.
1111
+ *
1112
+
1113
+ * Arguments
1114
+ * =========
1115
+ *
1116
+ * ITYPE (input) INTEGER
1117
+ * Specifies the problem type to be solved:
1118
+ * = 1: A*x = (lambda)*B*x
1119
+ * = 2: A*B*x = (lambda)*x
1120
+ * = 3: B*A*x = (lambda)*x
1121
+ *
1122
+ * JOBZ (input) CHARACTER*1
1123
+ * = 'N': Compute eigenvalues only;
1124
+ * = 'V': Compute eigenvalues and eigenvectors.
1125
+ *
1126
+ * UPLO (input) CHARACTER*1
1127
+ * = 'U': Upper triangles of A and B are stored;
1128
+ * = 'L': Lower triangles of A and B are stored.
1129
+ *
1130
+ * N (input) INTEGER
1131
+ * The order of the matrices A and B. N >= 0.
1132
+ *
1133
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
1134
+ * On entry, the symmetric matrix A. If UPLO = 'U', the
1135
+ * leading N-by-N upper triangular part of A contains the
1136
+ * upper triangular part of the matrix A. If UPLO = 'L',
1137
+ * the leading N-by-N lower triangular part of A contains
1138
+ * the lower triangular part of the matrix A.
1139
+ *
1140
+ * On exit, if JOBZ = 'V', then if INFO = 0, A contains the
1141
+ * matrix Z of eigenvectors. The eigenvectors are normalized
1142
+ * as follows:
1143
+ * if ITYPE = 1 or 2, Z**T*B*Z = I;
1144
+ * if ITYPE = 3, Z**T*inv(B)*Z = I.
1145
+ * If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
1146
+ * or the lower triangle (if UPLO='L') of A, including the
1147
+ * diagonal, is destroyed.
1148
+ *
1149
+ * LDA (input) INTEGER
1150
+ * The leading dimension of the array A. LDA >= max(1,N).
1151
+ *
1152
+ * B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
1153
+ * On entry, the symmetric matrix B. If UPLO = 'U', the
1154
+ * leading N-by-N upper triangular part of B contains the
1155
+ * upper triangular part of the matrix B. If UPLO = 'L',
1156
+ * the leading N-by-N lower triangular part of B contains
1157
+ * the lower triangular part of the matrix B.
1158
+ *
1159
+ * On exit, if INFO <= N, the part of B containing the matrix is
1160
+ * overwritten by the triangular factor U or L from the Cholesky
1161
+ * factorization B = U**T*U or B = L*L**T.
1162
+ *
1163
+ * LDB (input) INTEGER
1164
+ * The leading dimension of the array B. LDB >= max(1,N).
1165
+ *
1166
+ * W (output) DOUBLE PRECISION array, dimension (N)
1167
+ * If INFO = 0, the eigenvalues in ascending order.
1168
+ *
1169
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1170
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1171
+ *
1172
+ * LWORK (input) INTEGER
1173
+ * The dimension of the array WORK.
1174
+ * If N <= 1, LWORK >= 1.
1175
+ * If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
1176
+ * If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
1177
+ *
1178
+ * If LWORK = -1, then a workspace query is assumed; the routine
1179
+ * only calculates the optimal sizes of the WORK and IWORK
1180
+ * arrays, returns these values as the first entries of the WORK
1181
+ * and IWORK arrays, and no error message related to LWORK or
1182
+ * LIWORK is issued by XERBLA.
1183
+ *
1184
+ * IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK))
1185
+ * On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
1186
+ *
1187
+ * LIWORK (input) INTEGER
1188
+ * The dimension of the array IWORK.
1189
+ * If N <= 1, LIWORK >= 1.
1190
+ * If JOBZ = 'N' and N > 1, LIWORK >= 1.
1191
+ * If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
1192
+ *
1193
+ * If LIWORK = -1, then a workspace query is assumed; the
1194
+ * routine only calculates the optimal sizes of the WORK and
1195
+ * IWORK arrays, returns these values as the first entries of
1196
+ * the WORK and IWORK arrays, and no error message related to
1197
+ * LWORK or LIWORK is issued by XERBLA.
1198
+ *
1199
+ * INFO (output) INTEGER
1200
+ * = 0: successful exit
1201
+ * < 0: if INFO = -i, the i-th argument had an illegal value
1202
+ * > 0: DPOTRF or DSYEVD returned an error code:
1203
+ * <= N: if INFO = i and JOBZ = 'N', then the algorithm
1204
+ * failed to converge; i off-diagonal elements of an
1205
+ * intermediate tridiagonal form did not converge to
1206
+ * zero;
1207
+ * if INFO = i and JOBZ = 'V', then the algorithm
1208
+ * failed to compute an eigenvalue while working on
1209
+ * the submatrix lying in rows and columns INFO/(N+1)
1210
+ * through mod(INFO,N+1);
1211
+ * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1212
+ * minor of order i of B is not positive definite.
1213
+ * The factorization of B could not be completed and
1214
+ * no eigenvalues or eigenvectors were computed.
1215
+ *
1216
+
1217
+ * Further Details
1218
+ * ===============
1219
+ *
1220
+ * Based on contributions by
1221
+ * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
1222
+ *
1223
+ * Modified so that no backsubstitution is performed if DSYEVD fails to
1224
+ * converge (NEIG in old code could be greater than N causing out of
1225
+ * bounds reference to A - reported by Ralf Meyer). Also corrected the
1226
+ * description of INFO and the test on ITYPE. Sven, 16 Feb 05.
1227
+ * =====================================================================
1228
+ *
1229
+
1230
+
1231
+ </PRE>
1232
+ <A HREF="#top">go to the page top</A>
1233
+
1234
+ <A NAME="dsygvx"></A>
1235
+ <H2>dsygvx</H2>
1236
+ <PRE>
1237
+ USAGE:
1238
+ m, w, z, work, ifail, info, a, b = NumRu::Lapack.dsygvx( itype, jobz, range, uplo, a, b, vl, vu, il, iu, abstol, [:lwork => lwork, :usage => usage, :help => help])
1239
+
1240
+
1241
+ FORTRAN MANUAL
1242
+ SUBROUTINE DSYGVX( ITYPE, JOBZ, RANGE, UPLO, N, A, LDA, B, LDB, VL, VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, LWORK, IWORK, IFAIL, INFO )
1243
+
1244
+ * Purpose
1245
+ * =======
1246
+ *
1247
+ * DSYGVX computes selected eigenvalues, and optionally, eigenvectors
1248
+ * of a real generalized symmetric-definite eigenproblem, of the form
1249
+ * A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A
1250
+ * and B are assumed to be symmetric and B is also positive definite.
1251
+ * Eigenvalues and eigenvectors can be selected by specifying either a
1252
+ * range of values or a range of indices for the desired eigenvalues.
1253
+ *
1254
+
1255
+ * Arguments
1256
+ * =========
1257
+ *
1258
+ * ITYPE (input) INTEGER
1259
+ * Specifies the problem type to be solved:
1260
+ * = 1: A*x = (lambda)*B*x
1261
+ * = 2: A*B*x = (lambda)*x
1262
+ * = 3: B*A*x = (lambda)*x
1263
+ *
1264
+ * JOBZ (input) CHARACTER*1
1265
+ * = 'N': Compute eigenvalues only;
1266
+ * = 'V': Compute eigenvalues and eigenvectors.
1267
+ *
1268
+ * RANGE (input) CHARACTER*1
1269
+ * = 'A': all eigenvalues will be found.
1270
+ * = 'V': all eigenvalues in the half-open interval (VL,VU]
1271
+ * will be found.
1272
+ * = 'I': the IL-th through IU-th eigenvalues will be found.
1273
+ *
1274
+ * UPLO (input) CHARACTER*1
1275
+ * = 'U': Upper triangle of A and B are stored;
1276
+ * = 'L': Lower triangle of A and B are stored.
1277
+ *
1278
+ * N (input) INTEGER
1279
+ * The order of the matrix pencil (A,B). N >= 0.
1280
+ *
1281
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA, N)
1282
+ * On entry, the symmetric matrix A. If UPLO = 'U', the
1283
+ * leading N-by-N upper triangular part of A contains the
1284
+ * upper triangular part of the matrix A. If UPLO = 'L',
1285
+ * the leading N-by-N lower triangular part of A contains
1286
+ * the lower triangular part of the matrix A.
1287
+ *
1288
+ * On exit, the lower triangle (if UPLO='L') or the upper
1289
+ * triangle (if UPLO='U') of A, including the diagonal, is
1290
+ * destroyed.
1291
+ *
1292
+ * LDA (input) INTEGER
1293
+ * The leading dimension of the array A. LDA >= max(1,N).
1294
+ *
1295
+ * B (input/output) DOUBLE PRECISION array, dimension (LDB, N)
1296
+ * On entry, the symmetric matrix B. If UPLO = 'U', the
1297
+ * leading N-by-N upper triangular part of B contains the
1298
+ * upper triangular part of the matrix B. If UPLO = 'L',
1299
+ * the leading N-by-N lower triangular part of B contains
1300
+ * the lower triangular part of the matrix B.
1301
+ *
1302
+ * On exit, if INFO <= N, the part of B containing the matrix is
1303
+ * overwritten by the triangular factor U or L from the Cholesky
1304
+ * factorization B = U**T*U or B = L*L**T.
1305
+ *
1306
+ * LDB (input) INTEGER
1307
+ * The leading dimension of the array B. LDB >= max(1,N).
1308
+ *
1309
+ * VL (input) DOUBLE PRECISION
1310
+ * VU (input) DOUBLE PRECISION
1311
+ * If RANGE='V', the lower and upper bounds of the interval to
1312
+ * be searched for eigenvalues. VL < VU.
1313
+ * Not referenced if RANGE = 'A' or 'I'.
1314
+ *
1315
+ * IL (input) INTEGER
1316
+ * IU (input) INTEGER
1317
+ * If RANGE='I', the indices (in ascending order) of the
1318
+ * smallest and largest eigenvalues to be returned.
1319
+ * 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
1320
+ * Not referenced if RANGE = 'A' or 'V'.
1321
+ *
1322
+ * ABSTOL (input) DOUBLE PRECISION
1323
+ * The absolute error tolerance for the eigenvalues.
1324
+ * An approximate eigenvalue is accepted as converged
1325
+ * when it is determined to lie in an interval [a,b]
1326
+ * of width less than or equal to
1327
+ *
1328
+ * ABSTOL + EPS * max( |a|,|b| ) ,
1329
+ *
1330
+ * where EPS is the machine precision. If ABSTOL is less than
1331
+ * or equal to zero, then EPS*|T| will be used in its place,
1332
+ * where |T| is the 1-norm of the tridiagonal matrix obtained
1333
+ * by reducing A to tridiagonal form.
1334
+ *
1335
+ * Eigenvalues will be computed most accurately when ABSTOL is
1336
+ * set to twice the underflow threshold 2*DLAMCH('S'), not zero.
1337
+ * If this routine returns with INFO>0, indicating that some
1338
+ * eigenvectors did not converge, try setting ABSTOL to
1339
+ * 2*DLAMCH('S').
1340
+ *
1341
+ * M (output) INTEGER
1342
+ * The total number of eigenvalues found. 0 <= M <= N.
1343
+ * If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
1344
+ *
1345
+ * W (output) DOUBLE PRECISION array, dimension (N)
1346
+ * On normal exit, the first M elements contain the selected
1347
+ * eigenvalues in ascending order.
1348
+ *
1349
+ * Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M))
1350
+ * If JOBZ = 'N', then Z is not referenced.
1351
+ * If JOBZ = 'V', then if INFO = 0, the first M columns of Z
1352
+ * contain the orthonormal eigenvectors of the matrix A
1353
+ * corresponding to the selected eigenvalues, with the i-th
1354
+ * column of Z holding the eigenvector associated with W(i).
1355
+ * The eigenvectors are normalized as follows:
1356
+ * if ITYPE = 1 or 2, Z**T*B*Z = I;
1357
+ * if ITYPE = 3, Z**T*inv(B)*Z = I.
1358
+ *
1359
+ * If an eigenvector fails to converge, then that column of Z
1360
+ * contains the latest approximation to the eigenvector, and the
1361
+ * index of the eigenvector is returned in IFAIL.
1362
+ * Note: the user must ensure that at least max(1,M) columns are
1363
+ * supplied in the array Z; if RANGE = 'V', the exact value of M
1364
+ * is not known in advance and an upper bound must be used.
1365
+ *
1366
+ * LDZ (input) INTEGER
1367
+ * The leading dimension of the array Z. LDZ >= 1, and if
1368
+ * JOBZ = 'V', LDZ >= max(1,N).
1369
+ *
1370
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1371
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1372
+ *
1373
+ * LWORK (input) INTEGER
1374
+ * The length of the array WORK. LWORK >= max(1,8*N).
1375
+ * For optimal efficiency, LWORK >= (NB+3)*N,
1376
+ * where NB is the blocksize for DSYTRD returned by ILAENV.
1377
+ *
1378
+ * If LWORK = -1, then a workspace query is assumed; the routine
1379
+ * only calculates the optimal size of the WORK array, returns
1380
+ * this value as the first entry of the WORK array, and no error
1381
+ * message related to LWORK is issued by XERBLA.
1382
+ *
1383
+ * IWORK (workspace) INTEGER array, dimension (5*N)
1384
+ *
1385
+ * IFAIL (output) INTEGER array, dimension (N)
1386
+ * If JOBZ = 'V', then if INFO = 0, the first M elements of
1387
+ * IFAIL are zero. If INFO > 0, then IFAIL contains the
1388
+ * indices of the eigenvectors that failed to converge.
1389
+ * If JOBZ = 'N', then IFAIL is not referenced.
1390
+ *
1391
+ * INFO (output) INTEGER
1392
+ * = 0: successful exit
1393
+ * < 0: if INFO = -i, the i-th argument had an illegal value
1394
+ * > 0: DPOTRF or DSYEVX returned an error code:
1395
+ * <= N: if INFO = i, DSYEVX failed to converge;
1396
+ * i eigenvectors failed to converge. Their indices
1397
+ * are stored in array IFAIL.
1398
+ * > N: if INFO = N + i, for 1 <= i <= N, then the leading
1399
+ * minor of order i of B is not positive definite.
1400
+ * The factorization of B could not be completed and
1401
+ * no eigenvalues or eigenvectors were computed.
1402
+ *
1403
+
1404
+ * Further Details
1405
+ * ===============
1406
+ *
1407
+ * Based on contributions by
1408
+ * Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
1409
+ *
1410
+ * =====================================================================
1411
+ *
1412
+
1413
+
1414
+ </PRE>
1415
+ <A HREF="#top">go to the page top</A>
1416
+
1417
+ <A NAME="dsyrfs"></A>
1418
+ <H2>dsyrfs</H2>
1419
+ <PRE>
1420
+ USAGE:
1421
+ ferr, berr, info, x = NumRu::Lapack.dsyrfs( uplo, a, af, ipiv, b, x, [:usage => usage, :help => help])
1422
+
1423
+
1424
+ FORTRAN MANUAL
1425
+ SUBROUTINE DSYRFS( UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO )
1426
+
1427
+ * Purpose
1428
+ * =======
1429
+ *
1430
+ * DSYRFS improves the computed solution to a system of linear
1431
+ * equations when the coefficient matrix is symmetric indefinite, and
1432
+ * provides error bounds and backward error estimates for the solution.
1433
+ *
1434
+
1435
+ * Arguments
1436
+ * =========
1437
+ *
1438
+ * UPLO (input) CHARACTER*1
1439
+ * = 'U': Upper triangle of A is stored;
1440
+ * = 'L': Lower triangle of A is stored.
1441
+ *
1442
+ * N (input) INTEGER
1443
+ * The order of the matrix A. N >= 0.
1444
+ *
1445
+ * NRHS (input) INTEGER
1446
+ * The number of right hand sides, i.e., the number of columns
1447
+ * of the matrices B and X. NRHS >= 0.
1448
+ *
1449
+ * A (input) DOUBLE PRECISION array, dimension (LDA,N)
1450
+ * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
1451
+ * upper triangular part of A contains the upper triangular part
1452
+ * of the matrix A, and the strictly lower triangular part of A
1453
+ * is not referenced. If UPLO = 'L', the leading N-by-N lower
1454
+ * triangular part of A contains the lower triangular part of
1455
+ * the matrix A, and the strictly upper triangular part of A is
1456
+ * not referenced.
1457
+ *
1458
+ * LDA (input) INTEGER
1459
+ * The leading dimension of the array A. LDA >= max(1,N).
1460
+ *
1461
+ * AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
1462
+ * The factored form of the matrix A. AF contains the block
1463
+ * diagonal matrix D and the multipliers used to obtain the
1464
+ * factor U or L from the factorization A = U*D*U**T or
1465
+ * A = L*D*L**T as computed by DSYTRF.
1466
+ *
1467
+ * LDAF (input) INTEGER
1468
+ * The leading dimension of the array AF. LDAF >= max(1,N).
1469
+ *
1470
+ * IPIV (input) INTEGER array, dimension (N)
1471
+ * Details of the interchanges and the block structure of D
1472
+ * as determined by DSYTRF.
1473
+ *
1474
+ * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
1475
+ * The right hand side matrix B.
1476
+ *
1477
+ * LDB (input) INTEGER
1478
+ * The leading dimension of the array B. LDB >= max(1,N).
1479
+ *
1480
+ * X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
1481
+ * On entry, the solution matrix X, as computed by DSYTRS.
1482
+ * On exit, the improved solution matrix X.
1483
+ *
1484
+ * LDX (input) INTEGER
1485
+ * The leading dimension of the array X. LDX >= max(1,N).
1486
+ *
1487
+ * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
1488
+ * The estimated forward error bound for each solution vector
1489
+ * X(j) (the j-th column of the solution matrix X).
1490
+ * If XTRUE is the true solution corresponding to X(j), FERR(j)
1491
+ * is an estimated upper bound for the magnitude of the largest
1492
+ * element in (X(j) - XTRUE) divided by the magnitude of the
1493
+ * largest element in X(j). The estimate is as reliable as
1494
+ * the estimate for RCOND, and is almost always a slight
1495
+ * overestimate of the true error.
1496
+ *
1497
+ * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1498
+ * The componentwise relative backward error of each solution
1499
+ * vector X(j) (i.e., the smallest relative change in
1500
+ * any element of A or B that makes X(j) an exact solution).
1501
+ *
1502
+ * WORK (workspace) DOUBLE PRECISION array, dimension (3*N)
1503
+ *
1504
+ * IWORK (workspace) INTEGER array, dimension (N)
1505
+ *
1506
+ * INFO (output) INTEGER
1507
+ * = 0: successful exit
1508
+ * < 0: if INFO = -i, the i-th argument had an illegal value
1509
+ *
1510
+ * Internal Parameters
1511
+ * ===================
1512
+ *
1513
+ * ITMAX is the maximum number of steps of iterative refinement.
1514
+ *
1515
+
1516
+ * =====================================================================
1517
+ *
1518
+
1519
+
1520
+ </PRE>
1521
+ <A HREF="#top">go to the page top</A>
1522
+
1523
+ <A NAME="dsyrfsx"></A>
1524
+ <H2>dsyrfsx</H2>
1525
+ <PRE>
1526
+ USAGE:
1527
+ rcond, berr, err_bnds_norm, err_bnds_comp, info, s, x, params = NumRu::Lapack.dsyrfsx( uplo, equed, a, af, ipiv, s, b, x, params, [:usage => usage, :help => help])
1528
+
1529
+
1530
+ FORTRAN MANUAL
1531
+ SUBROUTINE DSYRFSX( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
1532
+
1533
+ * Purpose
1534
+ * =======
1535
+ *
1536
+ * DSYRFSX improves the computed solution to a system of linear
1537
+ * equations when the coefficient matrix is symmetric indefinite, and
1538
+ * provides error bounds and backward error estimates for the
1539
+ * solution. In addition to normwise error bound, the code provides
1540
+ * maximum componentwise error bound if possible. See comments for
1541
+ * ERR_BNDS_NORM and ERR_BNDS_COMP for details of the error bounds.
1542
+ *
1543
+ * The original system of linear equations may have been equilibrated
1544
+ * before calling this routine, as described by arguments EQUED and S
1545
+ * below. In this case, the solution and error bounds returned are
1546
+ * for the original unequilibrated system.
1547
+ *
1548
+
1549
+ * Arguments
1550
+ * =========
1551
+ *
1552
+ * Some optional parameters are bundled in the PARAMS array. These
1553
+ * settings determine how refinement is performed, but often the
1554
+ * defaults are acceptable. If the defaults are acceptable, users
1555
+ * can pass NPARAMS = 0 which prevents the source code from accessing
1556
+ * the PARAMS argument.
1557
+ *
1558
+ * UPLO (input) CHARACTER*1
1559
+ * = 'U': Upper triangle of A is stored;
1560
+ * = 'L': Lower triangle of A is stored.
1561
+ *
1562
+ * EQUED (input) CHARACTER*1
1563
+ * Specifies the form of equilibration that was done to A
1564
+ * before calling this routine. This is needed to compute
1565
+ * the solution and error bounds correctly.
1566
+ * = 'N': No equilibration
1567
+ * = 'Y': Both row and column equilibration, i.e., A has been
1568
+ * replaced by diag(S) * A * diag(S).
1569
+ * The right hand side B has been changed accordingly.
1570
+ *
1571
+ * N (input) INTEGER
1572
+ * The order of the matrix A. N >= 0.
1573
+ *
1574
+ * NRHS (input) INTEGER
1575
+ * The number of right hand sides, i.e., the number of columns
1576
+ * of the matrices B and X. NRHS >= 0.
1577
+ *
1578
+ * A (input) DOUBLE PRECISION array, dimension (LDA,N)
1579
+ * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
1580
+ * upper triangular part of A contains the upper triangular
1581
+ * part of the matrix A, and the strictly lower triangular
1582
+ * part of A is not referenced. If UPLO = 'L', the leading
1583
+ * N-by-N lower triangular part of A contains the lower
1584
+ * triangular part of the matrix A, and the strictly upper
1585
+ * triangular part of A is not referenced.
1586
+ *
1587
+ * LDA (input) INTEGER
1588
+ * The leading dimension of the array A. LDA >= max(1,N).
1589
+ *
1590
+ * AF (input) DOUBLE PRECISION array, dimension (LDAF,N)
1591
+ * The factored form of the matrix A. AF contains the block
1592
+ * diagonal matrix D and the multipliers used to obtain the
1593
+ * factor U or L from the factorization A = U*D*U**T or A =
1594
+ * L*D*L**T as computed by DSYTRF.
1595
+ *
1596
+ * LDAF (input) INTEGER
1597
+ * The leading dimension of the array AF. LDAF >= max(1,N).
1598
+ *
1599
+ * IPIV (input) INTEGER array, dimension (N)
1600
+ * Details of the interchanges and the block structure of D
1601
+ * as determined by DSYTRF.
1602
+ *
1603
+ * S (input or output) DOUBLE PRECISION array, dimension (N)
1604
+ * The scale factors for A. If EQUED = 'Y', A is multiplied on
1605
+ * the left and right by diag(S). S is an input argument if FACT =
1606
+ * 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
1607
+ * = 'Y', each element of S must be positive. If S is output, each
1608
+ * element of S is a power of the radix. If S is input, each element
1609
+ * of S should be a power of the radix to ensure a reliable solution
1610
+ * and error estimates. Scaling by powers of the radix does not cause
1611
+ * rounding errors unless the result underflows or overflows.
1612
+ * Rounding errors during scaling lead to refining with a matrix that
1613
+ * is not equivalent to the input matrix, producing error estimates
1614
+ * that may not be reliable.
1615
+ *
1616
+ * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
1617
+ * The right hand side matrix B.
1618
+ *
1619
+ * LDB (input) INTEGER
1620
+ * The leading dimension of the array B. LDB >= max(1,N).
1621
+ *
1622
+ * X (input/output) DOUBLE PRECISION array, dimension (LDX,NRHS)
1623
+ * On entry, the solution matrix X, as computed by DGETRS.
1624
+ * On exit, the improved solution matrix X.
1625
+ *
1626
+ * LDX (input) INTEGER
1627
+ * The leading dimension of the array X. LDX >= max(1,N).
1628
+ *
1629
+ * RCOND (output) DOUBLE PRECISION
1630
+ * Reciprocal scaled condition number. This is an estimate of the
1631
+ * reciprocal Skeel condition number of the matrix A after
1632
+ * equilibration (if done). If this is less than the machine
1633
+ * precision (in particular, if it is zero), the matrix is singular
1634
+ * to working precision. Note that the error may still be small even
1635
+ * if this number is very small and the matrix appears ill-
1636
+ * conditioned.
1637
+ *
1638
+ * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
1639
+ * Componentwise relative backward error. This is the
1640
+ * componentwise relative backward error of each solution vector X(j)
1641
+ * (i.e., the smallest relative change in any element of A or B that
1642
+ * makes X(j) an exact solution).
1643
+ *
1644
+ * N_ERR_BNDS (input) INTEGER
1645
+ * Number of error bounds to return for each right hand side
1646
+ * and each type (normwise or componentwise). See ERR_BNDS_NORM and
1647
+ * ERR_BNDS_COMP below.
1648
+ *
1649
+ * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1650
+ * For each right-hand side, this array contains information about
1651
+ * various error bounds and condition numbers corresponding to the
1652
+ * normwise relative error, which is defined as follows:
1653
+ *
1654
+ * Normwise relative error in the ith solution vector:
1655
+ * max_j (abs(XTRUE(j,i) - X(j,i)))
1656
+ * ------------------------------
1657
+ * max_j abs(X(j,i))
1658
+ *
1659
+ * The array is indexed by the type of error information as described
1660
+ * below. There currently are up to three pieces of information
1661
+ * returned.
1662
+ *
1663
+ * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
1664
+ * right-hand side.
1665
+ *
1666
+ * The second index in ERR_BNDS_NORM(:,err) contains the following
1667
+ * three fields:
1668
+ * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1669
+ * reciprocal condition number is less than the threshold
1670
+ * sqrt(n) * dlamch('Epsilon').
1671
+ *
1672
+ * err = 2 "Guaranteed" error bound: The estimated forward error,
1673
+ * almost certainly within a factor of 10 of the true error
1674
+ * so long as the next entry is greater than the threshold
1675
+ * sqrt(n) * dlamch('Epsilon'). This error bound should only
1676
+ * be trusted if the previous boolean is true.
1677
+ *
1678
+ * err = 3 Reciprocal condition number: Estimated normwise
1679
+ * reciprocal condition number. Compared with the threshold
1680
+ * sqrt(n) * dlamch('Epsilon') to determine if the error
1681
+ * estimate is "guaranteed". These reciprocal condition
1682
+ * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1683
+ * appropriately scaled matrix Z.
1684
+ * Let Z = S*A, where S scales each row by a power of the
1685
+ * radix so all absolute row sums of Z are approximately 1.
1686
+ *
1687
+ * See Lapack Working Note 165 for further details and extra
1688
+ * cautions.
1689
+ *
1690
+ * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
1691
+ * For each right-hand side, this array contains information about
1692
+ * various error bounds and condition numbers corresponding to the
1693
+ * componentwise relative error, which is defined as follows:
1694
+ *
1695
+ * Componentwise relative error in the ith solution vector:
1696
+ * abs(XTRUE(j,i) - X(j,i))
1697
+ * max_j ----------------------
1698
+ * abs(X(j,i))
1699
+ *
1700
+ * The array is indexed by the right-hand side i (on which the
1701
+ * componentwise relative error depends), and the type of error
1702
+ * information as described below. There currently are up to three
1703
+ * pieces of information returned for each right-hand side. If
1704
+ * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
1705
+ * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
1706
+ * the first (:,N_ERR_BNDS) entries are returned.
1707
+ *
1708
+ * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
1709
+ * right-hand side.
1710
+ *
1711
+ * The second index in ERR_BNDS_COMP(:,err) contains the following
1712
+ * three fields:
1713
+ * err = 1 "Trust/don't trust" boolean. Trust the answer if the
1714
+ * reciprocal condition number is less than the threshold
1715
+ * sqrt(n) * dlamch('Epsilon').
1716
+ *
1717
+ * err = 2 "Guaranteed" error bound: The estimated forward error,
1718
+ * almost certainly within a factor of 10 of the true error
1719
+ * so long as the next entry is greater than the threshold
1720
+ * sqrt(n) * dlamch('Epsilon'). This error bound should only
1721
+ * be trusted if the previous boolean is true.
1722
+ *
1723
+ * err = 3 Reciprocal condition number: Estimated componentwise
1724
+ * reciprocal condition number. Compared with the threshold
1725
+ * sqrt(n) * dlamch('Epsilon') to determine if the error
1726
+ * estimate is "guaranteed". These reciprocal condition
1727
+ * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
1728
+ * appropriately scaled matrix Z.
1729
+ * Let Z = S*(A*diag(x)), where x is the solution for the
1730
+ * current right-hand side and S scales each row of
1731
+ * A*diag(x) by a power of the radix so all absolute row
1732
+ * sums of Z are approximately 1.
1733
+ *
1734
+ * See Lapack Working Note 165 for further details and extra
1735
+ * cautions.
1736
+ *
1737
+ * NPARAMS (input) INTEGER
1738
+ * Specifies the number of parameters set in PARAMS. If .LE. 0, the
1739
+ * PARAMS array is never referenced and default values are used.
1740
+ *
1741
+ * PARAMS (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
1742
+ * Specifies algorithm parameters. If an entry is .LT. 0.0, then
1743
+ * that entry will be filled with default value used for that
1744
+ * parameter. Only positions up to NPARAMS are accessed; defaults
1745
+ * are used for higher-numbered parameters.
1746
+ *
1747
+ * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
1748
+ * refinement or not.
1749
+ * Default: 1.0D+0
1750
+ * = 0.0 : No refinement is performed, and no error bounds are
1751
+ * computed.
1752
+ * = 1.0 : Use the double-precision refinement algorithm,
1753
+ * possibly with doubled-single computations if the
1754
+ * compilation environment does not support DOUBLE
1755
+ * PRECISION.
1756
+ * (other values are reserved for future use)
1757
+ *
1758
+ * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
1759
+ * computations allowed for refinement.
1760
+ * Default: 10
1761
+ * Aggressive: Set to 100 to permit convergence using approximate
1762
+ * factorizations or factorizations other than LU. If
1763
+ * the factorization uses a technique other than
1764
+ * Gaussian elimination, the guarantees in
1765
+ * err_bnds_norm and err_bnds_comp may no longer be
1766
+ * trustworthy.
1767
+ *
1768
+ * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
1769
+ * will attempt to find a solution with small componentwise
1770
+ * relative error in the double-precision algorithm. Positive
1771
+ * is true, 0.0 is false.
1772
+ * Default: 1.0 (attempt componentwise convergence)
1773
+ *
1774
+ * WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
1775
+ *
1776
+ * IWORK (workspace) INTEGER array, dimension (N)
1777
+ *
1778
+ * INFO (output) INTEGER
1779
+ * = 0: Successful exit. The solution to every right-hand side is
1780
+ * guaranteed.
1781
+ * < 0: If INFO = -i, the i-th argument had an illegal value
1782
+ * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
1783
+ * has been completed, but the factor U is exactly singular, so
1784
+ * the solution and error bounds could not be computed. RCOND = 0
1785
+ * is returned.
1786
+ * = N+J: The solution corresponding to the Jth right-hand side is
1787
+ * not guaranteed. The solutions corresponding to other right-
1788
+ * hand sides K with K > J may not be guaranteed as well, but
1789
+ * only the first such right-hand side is reported. If a small
1790
+ * componentwise error is not requested (PARAMS(3) = 0.0) then
1791
+ * the Jth right-hand side is the first with a normwise error
1792
+ * bound that is not guaranteed (the smallest J such
1793
+ * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
1794
+ * the Jth right-hand side is the first with either a normwise or
1795
+ * componentwise error bound that is not guaranteed (the smallest
1796
+ * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
1797
+ * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
1798
+ * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
1799
+ * about all of the right-hand sides check ERR_BNDS_NORM or
1800
+ * ERR_BNDS_COMP.
1801
+ *
1802
+
1803
+ * ==================================================================
1804
+ *
1805
+
1806
+
1807
+ </PRE>
1808
+ <A HREF="#top">go to the page top</A>
1809
+
1810
+ <A NAME="dsysv"></A>
1811
+ <H2>dsysv</H2>
1812
+ <PRE>
1813
+ USAGE:
1814
+ ipiv, work, info, a, b = NumRu::Lapack.dsysv( uplo, a, b, [:lwork => lwork, :usage => usage, :help => help])
1815
+
1816
+
1817
+ FORTRAN MANUAL
1818
+ SUBROUTINE DSYSV( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, LWORK, INFO )
1819
+
1820
+ * Purpose
1821
+ * =======
1822
+ *
1823
+ * DSYSV computes the solution to a real system of linear equations
1824
+ * A * X = B,
1825
+ * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
1826
+ * matrices.
1827
+ *
1828
+ * The diagonal pivoting method is used to factor A as
1829
+ * A = U * D * U**T, if UPLO = 'U', or
1830
+ * A = L * D * L**T, if UPLO = 'L',
1831
+ * where U (or L) is a product of permutation and unit upper (lower)
1832
+ * triangular matrices, and D is symmetric and block diagonal with
1833
+ * 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then
1834
+ * used to solve the system of equations A * X = B.
1835
+ *
1836
+
1837
+ * Arguments
1838
+ * =========
1839
+ *
1840
+ * UPLO (input) CHARACTER*1
1841
+ * = 'U': Upper triangle of A is stored;
1842
+ * = 'L': Lower triangle of A is stored.
1843
+ *
1844
+ * N (input) INTEGER
1845
+ * The number of linear equations, i.e., the order of the
1846
+ * matrix A. N >= 0.
1847
+ *
1848
+ * NRHS (input) INTEGER
1849
+ * The number of right hand sides, i.e., the number of columns
1850
+ * of the matrix B. NRHS >= 0.
1851
+ *
1852
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
1853
+ * On entry, the symmetric matrix A. If UPLO = 'U', the leading
1854
+ * N-by-N upper triangular part of A contains the upper
1855
+ * triangular part of the matrix A, and the strictly lower
1856
+ * triangular part of A is not referenced. If UPLO = 'L', the
1857
+ * leading N-by-N lower triangular part of A contains the lower
1858
+ * triangular part of the matrix A, and the strictly upper
1859
+ * triangular part of A is not referenced.
1860
+ *
1861
+ * On exit, if INFO = 0, the block diagonal matrix D and the
1862
+ * multipliers used to obtain the factor U or L from the
1863
+ * factorization A = U*D*U**T or A = L*D*L**T as computed by
1864
+ * DSYTRF.
1865
+ *
1866
+ * LDA (input) INTEGER
1867
+ * The leading dimension of the array A. LDA >= max(1,N).
1868
+ *
1869
+ * IPIV (output) INTEGER array, dimension (N)
1870
+ * Details of the interchanges and the block structure of D, as
1871
+ * determined by DSYTRF. If IPIV(k) > 0, then rows and columns
1872
+ * k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
1873
+ * diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
1874
+ * then rows and columns k-1 and -IPIV(k) were interchanged and
1875
+ * D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and
1876
+ * IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
1877
+ * -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
1878
+ * diagonal block.
1879
+ *
1880
+ * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
1881
+ * On entry, the N-by-NRHS right hand side matrix B.
1882
+ * On exit, if INFO = 0, the N-by-NRHS solution matrix X.
1883
+ *
1884
+ * LDB (input) INTEGER
1885
+ * The leading dimension of the array B. LDB >= max(1,N).
1886
+ *
1887
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
1888
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
1889
+ *
1890
+ * LWORK (input) INTEGER
1891
+ * The length of WORK. LWORK >= 1, and for best performance
1892
+ * LWORK >= max(1,N*NB), where NB is the optimal blocksize for
1893
+ * DSYTRF.
1894
+ *
1895
+ * If LWORK = -1, then a workspace query is assumed; the routine
1896
+ * only calculates the optimal size of the WORK array, returns
1897
+ * this value as the first entry of the WORK array, and no error
1898
+ * message related to LWORK is issued by XERBLA.
1899
+ *
1900
+ * INFO (output) INTEGER
1901
+ * = 0: successful exit
1902
+ * < 0: if INFO = -i, the i-th argument had an illegal value
1903
+ * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
1904
+ * has been completed, but the block diagonal matrix D is
1905
+ * exactly singular, so the solution could not be computed.
1906
+ *
1907
+
1908
+ * =====================================================================
1909
+ *
1910
+ * .. Local Scalars ..
1911
+ LOGICAL LQUERY
1912
+ INTEGER LWKOPT, NB
1913
+ * ..
1914
+ * .. External Functions ..
1915
+ LOGICAL LSAME
1916
+ INTEGER ILAENV
1917
+ EXTERNAL LSAME, ILAENV
1918
+ * ..
1919
+ * .. External Subroutines ..
1920
+ EXTERNAL DSYTRF, DSYTRS2, XERBLA
1921
+ * ..
1922
+ * .. Intrinsic Functions ..
1923
+ INTRINSIC MAX
1924
+ * ..
1925
+
1926
+
1927
+ </PRE>
1928
+ <A HREF="#top">go to the page top</A>
1929
+
1930
+ <A NAME="dsysvx"></A>
1931
+ <H2>dsysvx</H2>
1932
+ <PRE>
1933
+ USAGE:
1934
+ x, rcond, ferr, berr, work, info, af, ipiv = NumRu::Lapack.dsysvx( fact, uplo, a, af, ipiv, b, [:lwork => lwork, :usage => usage, :help => help])
1935
+
1936
+
1937
+ FORTRAN MANUAL
1938
+ SUBROUTINE DSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, IWORK, INFO )
1939
+
1940
+ * Purpose
1941
+ * =======
1942
+ *
1943
+ * DSYSVX uses the diagonal pivoting factorization to compute the
1944
+ * solution to a real system of linear equations A * X = B,
1945
+ * where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
1946
+ * matrices.
1947
+ *
1948
+ * Error bounds on the solution and a condition estimate are also
1949
+ * provided.
1950
+ *
1951
+ * Description
1952
+ * ===========
1953
+ *
1954
+ * The following steps are performed:
1955
+ *
1956
+ * 1. If FACT = 'N', the diagonal pivoting method is used to factor A.
1957
+ * The form of the factorization is
1958
+ * A = U * D * U**T, if UPLO = 'U', or
1959
+ * A = L * D * L**T, if UPLO = 'L',
1960
+ * where U (or L) is a product of permutation and unit upper (lower)
1961
+ * triangular matrices, and D is symmetric and block diagonal with
1962
+ * 1-by-1 and 2-by-2 diagonal blocks.
1963
+ *
1964
+ * 2. If some D(i,i)=0, so that D is exactly singular, then the routine
1965
+ * returns with INFO = i. Otherwise, the factored form of A is used
1966
+ * to estimate the condition number of the matrix A. If the
1967
+ * reciprocal of the condition number is less than machine precision,
1968
+ * INFO = N+1 is returned as a warning, but the routine still goes on
1969
+ * to solve for X and compute error bounds as described below.
1970
+ *
1971
+ * 3. The system of equations is solved for X using the factored form
1972
+ * of A.
1973
+ *
1974
+ * 4. Iterative refinement is applied to improve the computed solution
1975
+ * matrix and calculate error bounds and backward error estimates
1976
+ * for it.
1977
+ *
1978
+
1979
+ * Arguments
1980
+ * =========
1981
+ *
1982
+ * FACT (input) CHARACTER*1
1983
+ * Specifies whether or not the factored form of A has been
1984
+ * supplied on entry.
1985
+ * = 'F': On entry, AF and IPIV contain the factored form of
1986
+ * A. AF and IPIV will not be modified.
1987
+ * = 'N': The matrix A will be copied to AF and factored.
1988
+ *
1989
+ * UPLO (input) CHARACTER*1
1990
+ * = 'U': Upper triangle of A is stored;
1991
+ * = 'L': Lower triangle of A is stored.
1992
+ *
1993
+ * N (input) INTEGER
1994
+ * The number of linear equations, i.e., the order of the
1995
+ * matrix A. N >= 0.
1996
+ *
1997
+ * NRHS (input) INTEGER
1998
+ * The number of right hand sides, i.e., the number of columns
1999
+ * of the matrices B and X. NRHS >= 0.
2000
+ *
2001
+ * A (input) DOUBLE PRECISION array, dimension (LDA,N)
2002
+ * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
2003
+ * upper triangular part of A contains the upper triangular part
2004
+ * of the matrix A, and the strictly lower triangular part of A
2005
+ * is not referenced. If UPLO = 'L', the leading N-by-N lower
2006
+ * triangular part of A contains the lower triangular part of
2007
+ * the matrix A, and the strictly upper triangular part of A is
2008
+ * not referenced.
2009
+ *
2010
+ * LDA (input) INTEGER
2011
+ * The leading dimension of the array A. LDA >= max(1,N).
2012
+ *
2013
+ * AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
2014
+ * If FACT = 'F', then AF is an input argument and on entry
2015
+ * contains the block diagonal matrix D and the multipliers used
2016
+ * to obtain the factor U or L from the factorization
2017
+ * A = U*D*U**T or A = L*D*L**T as computed by DSYTRF.
2018
+ *
2019
+ * If FACT = 'N', then AF is an output argument and on exit
2020
+ * returns the block diagonal matrix D and the multipliers used
2021
+ * to obtain the factor U or L from the factorization
2022
+ * A = U*D*U**T or A = L*D*L**T.
2023
+ *
2024
+ * LDAF (input) INTEGER
2025
+ * The leading dimension of the array AF. LDAF >= max(1,N).
2026
+ *
2027
+ * IPIV (input or output) INTEGER array, dimension (N)
2028
+ * If FACT = 'F', then IPIV is an input argument and on entry
2029
+ * contains details of the interchanges and the block structure
2030
+ * of D, as determined by DSYTRF.
2031
+ * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2032
+ * interchanged and D(k,k) is a 1-by-1 diagonal block.
2033
+ * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2034
+ * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2035
+ * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2036
+ * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
2037
+ * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2038
+ *
2039
+ * If FACT = 'N', then IPIV is an output argument and on exit
2040
+ * contains details of the interchanges and the block structure
2041
+ * of D, as determined by DSYTRF.
2042
+ *
2043
+ * B (input) DOUBLE PRECISION array, dimension (LDB,NRHS)
2044
+ * The N-by-NRHS right hand side matrix B.
2045
+ *
2046
+ * LDB (input) INTEGER
2047
+ * The leading dimension of the array B. LDB >= max(1,N).
2048
+ *
2049
+ * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
2050
+ * If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X.
2051
+ *
2052
+ * LDX (input) INTEGER
2053
+ * The leading dimension of the array X. LDX >= max(1,N).
2054
+ *
2055
+ * RCOND (output) DOUBLE PRECISION
2056
+ * The estimate of the reciprocal condition number of the matrix
2057
+ * A. If RCOND is less than the machine precision (in
2058
+ * particular, if RCOND = 0), the matrix is singular to working
2059
+ * precision. This condition is indicated by a return code of
2060
+ * INFO > 0.
2061
+ *
2062
+ * FERR (output) DOUBLE PRECISION array, dimension (NRHS)
2063
+ * The estimated forward error bound for each solution vector
2064
+ * X(j) (the j-th column of the solution matrix X).
2065
+ * If XTRUE is the true solution corresponding to X(j), FERR(j)
2066
+ * is an estimated upper bound for the magnitude of the largest
2067
+ * element in (X(j) - XTRUE) divided by the magnitude of the
2068
+ * largest element in X(j). The estimate is as reliable as
2069
+ * the estimate for RCOND, and is almost always a slight
2070
+ * overestimate of the true error.
2071
+ *
2072
+ * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
2073
+ * The componentwise relative backward error of each solution
2074
+ * vector X(j) (i.e., the smallest relative change in
2075
+ * any element of A or B that makes X(j) an exact solution).
2076
+ *
2077
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
2078
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2079
+ *
2080
+ * LWORK (input) INTEGER
2081
+ * The length of WORK. LWORK >= max(1,3*N), and for best
2082
+ * performance, when FACT = 'N', LWORK >= max(1,3*N,N*NB), where
2083
+ * NB is the optimal blocksize for DSYTRF.
2084
+ *
2085
+ * If LWORK = -1, then a workspace query is assumed; the routine
2086
+ * only calculates the optimal size of the WORK array, returns
2087
+ * this value as the first entry of the WORK array, and no error
2088
+ * message related to LWORK is issued by XERBLA.
2089
+ *
2090
+ * IWORK (workspace) INTEGER array, dimension (N)
2091
+ *
2092
+ * INFO (output) INTEGER
2093
+ * = 0: successful exit
2094
+ * < 0: if INFO = -i, the i-th argument had an illegal value
2095
+ * > 0: if INFO = i, and i is
2096
+ * <= N: D(i,i) is exactly zero. The factorization
2097
+ * has been completed but the factor D is exactly
2098
+ * singular, so the solution and error bounds could
2099
+ * not be computed. RCOND = 0 is returned.
2100
+ * = N+1: D is nonsingular, but RCOND is less than machine
2101
+ * precision, meaning that the matrix is singular
2102
+ * to working precision. Nevertheless, the
2103
+ * solution and error bounds are computed because
2104
+ * there are a number of situations where the
2105
+ * computed solution can be more accurate than the
2106
+ * value of RCOND would suggest.
2107
+ *
2108
+
2109
+ * =====================================================================
2110
+ *
2111
+
2112
+
2113
+ </PRE>
2114
+ <A HREF="#top">go to the page top</A>
2115
+
2116
+ <A NAME="dsysvxx"></A>
2117
+ <H2>dsysvxx</H2>
2118
+ <PRE>
2119
+ USAGE:
2120
+ x, rcond, rpvgrw, berr, err_bnds_norm, err_bnds_comp, info, a, af, ipiv, equed, s, b, params = NumRu::Lapack.dsysvxx( fact, uplo, a, af, ipiv, equed, s, b, params, [:usage => usage, :help => help])
2121
+
2122
+
2123
+ FORTRAN MANUAL
2124
+ SUBROUTINE DSYSVXX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, S, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, IWORK, INFO )
2125
+
2126
+ * Purpose
2127
+ * =======
2128
+ *
2129
+ * DSYSVXX uses the diagonal pivoting factorization to compute the
2130
+ * solution to a double precision system of linear equations A * X = B, where A
2131
+ * is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices.
2132
+ *
2133
+ * If requested, both normwise and maximum componentwise error bounds
2134
+ * are returned. DSYSVXX will return a solution with a tiny
2135
+ * guaranteed error (O(eps) where eps is the working machine
2136
+ * precision) unless the matrix is very ill-conditioned, in which
2137
+ * case a warning is returned. Relevant condition numbers also are
2138
+ * calculated and returned.
2139
+ *
2140
+ * DSYSVXX accepts user-provided factorizations and equilibration
2141
+ * factors; see the definitions of the FACT and EQUED options.
2142
+ * Solving with refinement and using a factorization from a previous
2143
+ * DSYSVXX call will also produce a solution with either O(eps)
2144
+ * errors or warnings, but we cannot make that claim for general
2145
+ * user-provided factorizations and equilibration factors if they
2146
+ * differ from what DSYSVXX would itself produce.
2147
+ *
2148
+ * Description
2149
+ * ===========
2150
+ *
2151
+ * The following steps are performed:
2152
+ *
2153
+ * 1. If FACT = 'E', double precision scaling factors are computed to equilibrate
2154
+ * the system:
2155
+ *
2156
+ * diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B
2157
+ *
2158
+ * Whether or not the system will be equilibrated depends on the
2159
+ * scaling of the matrix A, but if equilibration is used, A is
2160
+ * overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
2161
+ *
2162
+ * 2. If FACT = 'N' or 'E', the LU decomposition is used to factor
2163
+ * the matrix A (after equilibration if FACT = 'E') as
2164
+ *
2165
+ * A = U * D * U**T, if UPLO = 'U', or
2166
+ * A = L * D * L**T, if UPLO = 'L',
2167
+ *
2168
+ * where U (or L) is a product of permutation and unit upper (lower)
2169
+ * triangular matrices, and D is symmetric and block diagonal with
2170
+ * 1-by-1 and 2-by-2 diagonal blocks.
2171
+ *
2172
+ * 3. If some D(i,i)=0, so that D is exactly singular, then the
2173
+ * routine returns with INFO = i. Otherwise, the factored form of A
2174
+ * is used to estimate the condition number of the matrix A (see
2175
+ * argument RCOND). If the reciprocal of the condition number is
2176
+ * less than machine precision, the routine still goes on to solve
2177
+ * for X and compute error bounds as described below.
2178
+ *
2179
+ * 4. The system of equations is solved for X using the factored form
2180
+ * of A.
2181
+ *
2182
+ * 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
2183
+ * the routine will use iterative refinement to try to get a small
2184
+ * error and error bounds. Refinement calculates the residual to at
2185
+ * least twice the working precision.
2186
+ *
2187
+ * 6. If equilibration was used, the matrix X is premultiplied by
2188
+ * diag(R) so that it solves the original system before
2189
+ * equilibration.
2190
+ *
2191
+
2192
+ * Arguments
2193
+ * =========
2194
+ *
2195
+ * Some optional parameters are bundled in the PARAMS array. These
2196
+ * settings determine how refinement is performed, but often the
2197
+ * defaults are acceptable. If the defaults are acceptable, users
2198
+ * can pass NPARAMS = 0 which prevents the source code from accessing
2199
+ * the PARAMS argument.
2200
+ *
2201
+ * FACT (input) CHARACTER*1
2202
+ * Specifies whether or not the factored form of the matrix A is
2203
+ * supplied on entry, and if not, whether the matrix A should be
2204
+ * equilibrated before it is factored.
2205
+ * = 'F': On entry, AF and IPIV contain the factored form of A.
2206
+ * If EQUED is not 'N', the matrix A has been
2207
+ * equilibrated with scaling factors given by S.
2208
+ * A, AF, and IPIV are not modified.
2209
+ * = 'N': The matrix A will be copied to AF and factored.
2210
+ * = 'E': The matrix A will be equilibrated if necessary, then
2211
+ * copied to AF and factored.
2212
+ *
2213
+ * UPLO (input) CHARACTER*1
2214
+ * = 'U': Upper triangle of A is stored;
2215
+ * = 'L': Lower triangle of A is stored.
2216
+ *
2217
+ * N (input) INTEGER
2218
+ * The number of linear equations, i.e., the order of the
2219
+ * matrix A. N >= 0.
2220
+ *
2221
+ * NRHS (input) INTEGER
2222
+ * The number of right hand sides, i.e., the number of columns
2223
+ * of the matrices B and X. NRHS >= 0.
2224
+ *
2225
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2226
+ * The symmetric matrix A. If UPLO = 'U', the leading N-by-N
2227
+ * upper triangular part of A contains the upper triangular
2228
+ * part of the matrix A, and the strictly lower triangular
2229
+ * part of A is not referenced. If UPLO = 'L', the leading
2230
+ * N-by-N lower triangular part of A contains the lower
2231
+ * triangular part of the matrix A, and the strictly upper
2232
+ * triangular part of A is not referenced.
2233
+ *
2234
+ * On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
2235
+ * diag(S)*A*diag(S).
2236
+ *
2237
+ * LDA (input) INTEGER
2238
+ * The leading dimension of the array A. LDA >= max(1,N).
2239
+ *
2240
+ * AF (input or output) DOUBLE PRECISION array, dimension (LDAF,N)
2241
+ * If FACT = 'F', then AF is an input argument and on entry
2242
+ * contains the block diagonal matrix D and the multipliers
2243
+ * used to obtain the factor U or L from the factorization A =
2244
+ * U*D*U**T or A = L*D*L**T as computed by DSYTRF.
2245
+ *
2246
+ * If FACT = 'N', then AF is an output argument and on exit
2247
+ * returns the block diagonal matrix D and the multipliers
2248
+ * used to obtain the factor U or L from the factorization A =
2249
+ * U*D*U**T or A = L*D*L**T.
2250
+ *
2251
+ * LDAF (input) INTEGER
2252
+ * The leading dimension of the array AF. LDAF >= max(1,N).
2253
+ *
2254
+ * IPIV (input or output) INTEGER array, dimension (N)
2255
+ * If FACT = 'F', then IPIV is an input argument and on entry
2256
+ * contains details of the interchanges and the block
2257
+ * structure of D, as determined by DSYTRF. If IPIV(k) > 0,
2258
+ * then rows and columns k and IPIV(k) were interchanged and
2259
+ * D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and
2260
+ * IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
2261
+ * -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
2262
+ * diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
2263
+ * then rows and columns k+1 and -IPIV(k) were interchanged
2264
+ * and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2265
+ *
2266
+ * If FACT = 'N', then IPIV is an output argument and on exit
2267
+ * contains details of the interchanges and the block
2268
+ * structure of D, as determined by DSYTRF.
2269
+ *
2270
+ * EQUED (input or output) CHARACTER*1
2271
+ * Specifies the form of equilibration that was done.
2272
+ * = 'N': No equilibration (always true if FACT = 'N').
2273
+ * = 'Y': Both row and column equilibration, i.e., A has been
2274
+ * replaced by diag(S) * A * diag(S).
2275
+ * EQUED is an input argument if FACT = 'F'; otherwise, it is an
2276
+ * output argument.
2277
+ *
2278
+ * S (input or output) DOUBLE PRECISION array, dimension (N)
2279
+ * The scale factors for A. If EQUED = 'Y', A is multiplied on
2280
+ * the left and right by diag(S). S is an input argument if FACT =
2281
+ * 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED
2282
+ * = 'Y', each element of S must be positive. If S is output, each
2283
+ * element of S is a power of the radix. If S is input, each element
2284
+ * of S should be a power of the radix to ensure a reliable solution
2285
+ * and error estimates. Scaling by powers of the radix does not cause
2286
+ * rounding errors unless the result underflows or overflows.
2287
+ * Rounding errors during scaling lead to refining with a matrix that
2288
+ * is not equivalent to the input matrix, producing error estimates
2289
+ * that may not be reliable.
2290
+ *
2291
+ * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
2292
+ * On entry, the N-by-NRHS right hand side matrix B.
2293
+ * On exit,
2294
+ * if EQUED = 'N', B is not modified;
2295
+ * if EQUED = 'Y', B is overwritten by diag(S)*B;
2296
+ *
2297
+ * LDB (input) INTEGER
2298
+ * The leading dimension of the array B. LDB >= max(1,N).
2299
+ *
2300
+ * X (output) DOUBLE PRECISION array, dimension (LDX,NRHS)
2301
+ * If INFO = 0, the N-by-NRHS solution matrix X to the original
2302
+ * system of equations. Note that A and B are modified on exit if
2303
+ * EQUED .ne. 'N', and the solution to the equilibrated system is
2304
+ * inv(diag(S))*X.
2305
+ *
2306
+ * LDX (input) INTEGER
2307
+ * The leading dimension of the array X. LDX >= max(1,N).
2308
+ *
2309
+ * RCOND (output) DOUBLE PRECISION
2310
+ * Reciprocal scaled condition number. This is an estimate of the
2311
+ * reciprocal Skeel condition number of the matrix A after
2312
+ * equilibration (if done). If this is less than the machine
2313
+ * precision (in particular, if it is zero), the matrix is singular
2314
+ * to working precision. Note that the error may still be small even
2315
+ * if this number is very small and the matrix appears ill-
2316
+ * conditioned.
2317
+ *
2318
+ * RPVGRW (output) DOUBLE PRECISION
2319
+ * Reciprocal pivot growth. On exit, this contains the reciprocal
2320
+ * pivot growth factor norm(A)/norm(U). The "max absolute element"
2321
+ * norm is used. If this is much less than 1, then the stability of
2322
+ * the LU factorization of the (equilibrated) matrix A could be poor.
2323
+ * This also means that the solution X, estimated condition numbers,
2324
+ * and error bounds could be unreliable. If factorization fails with
2325
+ * 0<INFO<=N, then this contains the reciprocal pivot growth factor
2326
+ * for the leading INFO columns of A.
2327
+ *
2328
+ * BERR (output) DOUBLE PRECISION array, dimension (NRHS)
2329
+ * Componentwise relative backward error. This is the
2330
+ * componentwise relative backward error of each solution vector X(j)
2331
+ * (i.e., the smallest relative change in any element of A or B that
2332
+ * makes X(j) an exact solution).
2333
+ *
2334
+ * N_ERR_BNDS (input) INTEGER
2335
+ * Number of error bounds to return for each right hand side
2336
+ * and each type (normwise or componentwise). See ERR_BNDS_NORM and
2337
+ * ERR_BNDS_COMP below.
2338
+ *
2339
+ * ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
2340
+ * For each right-hand side, this array contains information about
2341
+ * various error bounds and condition numbers corresponding to the
2342
+ * normwise relative error, which is defined as follows:
2343
+ *
2344
+ * Normwise relative error in the ith solution vector:
2345
+ * max_j (abs(XTRUE(j,i) - X(j,i)))
2346
+ * ------------------------------
2347
+ * max_j abs(X(j,i))
2348
+ *
2349
+ * The array is indexed by the type of error information as described
2350
+ * below. There currently are up to three pieces of information
2351
+ * returned.
2352
+ *
2353
+ * The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
2354
+ * right-hand side.
2355
+ *
2356
+ * The second index in ERR_BNDS_NORM(:,err) contains the following
2357
+ * three fields:
2358
+ * err = 1 "Trust/don't trust" boolean. Trust the answer if the
2359
+ * reciprocal condition number is less than the threshold
2360
+ * sqrt(n) * dlamch('Epsilon').
2361
+ *
2362
+ * err = 2 "Guaranteed" error bound: The estimated forward error,
2363
+ * almost certainly within a factor of 10 of the true error
2364
+ * so long as the next entry is greater than the threshold
2365
+ * sqrt(n) * dlamch('Epsilon'). This error bound should only
2366
+ * be trusted if the previous boolean is true.
2367
+ *
2368
+ * err = 3 Reciprocal condition number: Estimated normwise
2369
+ * reciprocal condition number. Compared with the threshold
2370
+ * sqrt(n) * dlamch('Epsilon') to determine if the error
2371
+ * estimate is "guaranteed". These reciprocal condition
2372
+ * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
2373
+ * appropriately scaled matrix Z.
2374
+ * Let Z = S*A, where S scales each row by a power of the
2375
+ * radix so all absolute row sums of Z are approximately 1.
2376
+ *
2377
+ * See Lapack Working Note 165 for further details and extra
2378
+ * cautions.
2379
+ *
2380
+ * ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
2381
+ * For each right-hand side, this array contains information about
2382
+ * various error bounds and condition numbers corresponding to the
2383
+ * componentwise relative error, which is defined as follows:
2384
+ *
2385
+ * Componentwise relative error in the ith solution vector:
2386
+ * abs(XTRUE(j,i) - X(j,i))
2387
+ * max_j ----------------------
2388
+ * abs(X(j,i))
2389
+ *
2390
+ * The array is indexed by the right-hand side i (on which the
2391
+ * componentwise relative error depends), and the type of error
2392
+ * information as described below. There currently are up to three
2393
+ * pieces of information returned for each right-hand side. If
2394
+ * componentwise accuracy is not requested (PARAMS(3) = 0.0), then
2395
+ * ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most
2396
+ * the first (:,N_ERR_BNDS) entries are returned.
2397
+ *
2398
+ * The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
2399
+ * right-hand side.
2400
+ *
2401
+ * The second index in ERR_BNDS_COMP(:,err) contains the following
2402
+ * three fields:
2403
+ * err = 1 "Trust/don't trust" boolean. Trust the answer if the
2404
+ * reciprocal condition number is less than the threshold
2405
+ * sqrt(n) * dlamch('Epsilon').
2406
+ *
2407
+ * err = 2 "Guaranteed" error bound: The estimated forward error,
2408
+ * almost certainly within a factor of 10 of the true error
2409
+ * so long as the next entry is greater than the threshold
2410
+ * sqrt(n) * dlamch('Epsilon'). This error bound should only
2411
+ * be trusted if the previous boolean is true.
2412
+ *
2413
+ * err = 3 Reciprocal condition number: Estimated componentwise
2414
+ * reciprocal condition number. Compared with the threshold
2415
+ * sqrt(n) * dlamch('Epsilon') to determine if the error
2416
+ * estimate is "guaranteed". These reciprocal condition
2417
+ * numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
2418
+ * appropriately scaled matrix Z.
2419
+ * Let Z = S*(A*diag(x)), where x is the solution for the
2420
+ * current right-hand side and S scales each row of
2421
+ * A*diag(x) by a power of the radix so all absolute row
2422
+ * sums of Z are approximately 1.
2423
+ *
2424
+ * See Lapack Working Note 165 for further details and extra
2425
+ * cautions.
2426
+ *
2427
+ * NPARAMS (input) INTEGER
2428
+ * Specifies the number of parameters set in PARAMS. If .LE. 0, the
2429
+ * PARAMS array is never referenced and default values are used.
2430
+ *
2431
+ * PARAMS (input / output) DOUBLE PRECISION array, dimension (NPARAMS)
2432
+ * Specifies algorithm parameters. If an entry is .LT. 0.0, then
2433
+ * that entry will be filled with default value used for that
2434
+ * parameter. Only positions up to NPARAMS are accessed; defaults
2435
+ * are used for higher-numbered parameters.
2436
+ *
2437
+ * PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
2438
+ * refinement or not.
2439
+ * Default: 1.0D+0
2440
+ * = 0.0 : No refinement is performed, and no error bounds are
2441
+ * computed.
2442
+ * = 1.0 : Use the extra-precise refinement algorithm.
2443
+ * (other values are reserved for future use)
2444
+ *
2445
+ * PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
2446
+ * computations allowed for refinement.
2447
+ * Default: 10
2448
+ * Aggressive: Set to 100 to permit convergence using approximate
2449
+ * factorizations or factorizations other than LU. If
2450
+ * the factorization uses a technique other than
2451
+ * Gaussian elimination, the guarantees in
2452
+ * err_bnds_norm and err_bnds_comp may no longer be
2453
+ * trustworthy.
2454
+ *
2455
+ * PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
2456
+ * will attempt to find a solution with small componentwise
2457
+ * relative error in the double-precision algorithm. Positive
2458
+ * is true, 0.0 is false.
2459
+ * Default: 1.0 (attempt componentwise convergence)
2460
+ *
2461
+ * WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
2462
+ *
2463
+ * IWORK (workspace) INTEGER array, dimension (N)
2464
+ *
2465
+ * INFO (output) INTEGER
2466
+ * = 0: Successful exit. The solution to every right-hand side is
2467
+ * guaranteed.
2468
+ * < 0: If INFO = -i, the i-th argument had an illegal value
2469
+ * > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization
2470
+ * has been completed, but the factor U is exactly singular, so
2471
+ * the solution and error bounds could not be computed. RCOND = 0
2472
+ * is returned.
2473
+ * = N+J: The solution corresponding to the Jth right-hand side is
2474
+ * not guaranteed. The solutions corresponding to other right-
2475
+ * hand sides K with K > J may not be guaranteed as well, but
2476
+ * only the first such right-hand side is reported. If a small
2477
+ * componentwise error is not requested (PARAMS(3) = 0.0) then
2478
+ * the Jth right-hand side is the first with a normwise error
2479
+ * bound that is not guaranteed (the smallest J such
2480
+ * that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
2481
+ * the Jth right-hand side is the first with either a normwise or
2482
+ * componentwise error bound that is not guaranteed (the smallest
2483
+ * J such that either ERR_BNDS_NORM(J,1) = 0.0 or
2484
+ * ERR_BNDS_COMP(J,1) = 0.0). See the definition of
2485
+ * ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
2486
+ * about all of the right-hand sides check ERR_BNDS_NORM or
2487
+ * ERR_BNDS_COMP.
2488
+ *
2489
+
2490
+ * ==================================================================
2491
+ *
2492
+
2493
+
2494
+ </PRE>
2495
+ <A HREF="#top">go to the page top</A>
2496
+
2497
+ <A NAME="dsyswapr"></A>
2498
+ <H2>dsyswapr</H2>
2499
+ <PRE>
2500
+ USAGE:
2501
+ a = NumRu::Lapack.dsyswapr( uplo, a, i1, i2, [:usage => usage, :help => help])
2502
+
2503
+
2504
+ FORTRAN MANUAL
2505
+ SUBROUTINE DSYSWAPR( UPLO, N, A, I1, I2)
2506
+
2507
+ * Purpose
2508
+ * =======
2509
+ *
2510
+ * DSYSWAPR applies an elementary permutation on the rows and the columns of
2511
+ * a symmetric matrix.
2512
+ *
2513
+
2514
+ * Arguments
2515
+ * =========
2516
+ *
2517
+ * UPLO (input) CHARACTER*1
2518
+ * Specifies whether the details of the factorization are stored
2519
+ * as an upper or lower triangular matrix.
2520
+ * = 'U': Upper triangular, form is A = U*D*U**T;
2521
+ * = 'L': Lower triangular, form is A = L*D*L**T.
2522
+ *
2523
+ * N (input) INTEGER
2524
+ * The order of the matrix A. N >= 0.
2525
+ *
2526
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2527
+ * On entry, the NB diagonal matrix D and the multipliers
2528
+ * used to obtain the factor U or L as computed by DSYTRF.
2529
+ *
2530
+ * On exit, if INFO = 0, the (symmetric) inverse of the original
2531
+ * matrix. If UPLO = 'U', the upper triangular part of the
2532
+ * inverse is formed and the part of A below the diagonal is not
2533
+ * referenced; if UPLO = 'L' the lower triangular part of the
2534
+ * inverse is formed and the part of A above the diagonal is
2535
+ * not referenced.
2536
+ *
2537
+ * I1 (input) INTEGER
2538
+ * Index of the first row to swap
2539
+ *
2540
+ * I2 (input) INTEGER
2541
+ * Index of the second row to swap
2542
+ *
2543
+
2544
+ * =====================================================================
2545
+ *
2546
+ * ..
2547
+ * .. Local Scalars ..
2548
+ LOGICAL UPPER
2549
+ INTEGER I
2550
+ DOUBLE PRECISION TMP
2551
+ *
2552
+ * .. External Functions ..
2553
+ LOGICAL LSAME
2554
+ EXTERNAL LSAME
2555
+ * ..
2556
+ * .. External Subroutines ..
2557
+ EXTERNAL DSWAP
2558
+ * ..
2559
+
2560
+
2561
+ </PRE>
2562
+ <A HREF="#top">go to the page top</A>
2563
+
2564
+ <A NAME="dsytd2"></A>
2565
+ <H2>dsytd2</H2>
2566
+ <PRE>
2567
+ USAGE:
2568
+ d, e, tau, info, a = NumRu::Lapack.dsytd2( uplo, a, [:usage => usage, :help => help])
2569
+
2570
+
2571
+ FORTRAN MANUAL
2572
+ SUBROUTINE DSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
2573
+
2574
+ * Purpose
2575
+ * =======
2576
+ *
2577
+ * DSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
2578
+ * form T by an orthogonal similarity transformation: Q' * A * Q = T.
2579
+ *
2580
+
2581
+ * Arguments
2582
+ * =========
2583
+ *
2584
+ * UPLO (input) CHARACTER*1
2585
+ * Specifies whether the upper or lower triangular part of the
2586
+ * symmetric matrix A is stored:
2587
+ * = 'U': Upper triangular
2588
+ * = 'L': Lower triangular
2589
+ *
2590
+ * N (input) INTEGER
2591
+ * The order of the matrix A. N >= 0.
2592
+ *
2593
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2594
+ * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2595
+ * n-by-n upper triangular part of A contains the upper
2596
+ * triangular part of the matrix A, and the strictly lower
2597
+ * triangular part of A is not referenced. If UPLO = 'L', the
2598
+ * leading n-by-n lower triangular part of A contains the lower
2599
+ * triangular part of the matrix A, and the strictly upper
2600
+ * triangular part of A is not referenced.
2601
+ * On exit, if UPLO = 'U', the diagonal and first superdiagonal
2602
+ * of A are overwritten by the corresponding elements of the
2603
+ * tridiagonal matrix T, and the elements above the first
2604
+ * superdiagonal, with the array TAU, represent the orthogonal
2605
+ * matrix Q as a product of elementary reflectors; if UPLO
2606
+ * = 'L', the diagonal and first subdiagonal of A are over-
2607
+ * written by the corresponding elements of the tridiagonal
2608
+ * matrix T, and the elements below the first subdiagonal, with
2609
+ * the array TAU, represent the orthogonal matrix Q as a product
2610
+ * of elementary reflectors. See Further Details.
2611
+ *
2612
+ * LDA (input) INTEGER
2613
+ * The leading dimension of the array A. LDA >= max(1,N).
2614
+ *
2615
+ * D (output) DOUBLE PRECISION array, dimension (N)
2616
+ * The diagonal elements of the tridiagonal matrix T:
2617
+ * D(i) = A(i,i).
2618
+ *
2619
+ * E (output) DOUBLE PRECISION array, dimension (N-1)
2620
+ * The off-diagonal elements of the tridiagonal matrix T:
2621
+ * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
2622
+ *
2623
+ * TAU (output) DOUBLE PRECISION array, dimension (N-1)
2624
+ * The scalar factors of the elementary reflectors (see Further
2625
+ * Details).
2626
+ *
2627
+ * INFO (output) INTEGER
2628
+ * = 0: successful exit
2629
+ * < 0: if INFO = -i, the i-th argument had an illegal value.
2630
+ *
2631
+
2632
+ * Further Details
2633
+ * ===============
2634
+ *
2635
+ * If UPLO = 'U', the matrix Q is represented as a product of elementary
2636
+ * reflectors
2637
+ *
2638
+ * Q = H(n-1) . . . H(2) H(1).
2639
+ *
2640
+ * Each H(i) has the form
2641
+ *
2642
+ * H(i) = I - tau * v * v'
2643
+ *
2644
+ * where tau is a real scalar, and v is a real vector with
2645
+ * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
2646
+ * A(1:i-1,i+1), and tau in TAU(i).
2647
+ *
2648
+ * If UPLO = 'L', the matrix Q is represented as a product of elementary
2649
+ * reflectors
2650
+ *
2651
+ * Q = H(1) H(2) . . . H(n-1).
2652
+ *
2653
+ * Each H(i) has the form
2654
+ *
2655
+ * H(i) = I - tau * v * v'
2656
+ *
2657
+ * where tau is a real scalar, and v is a real vector with
2658
+ * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
2659
+ * and tau in TAU(i).
2660
+ *
2661
+ * The contents of A on exit are illustrated by the following examples
2662
+ * with n = 5:
2663
+ *
2664
+ * if UPLO = 'U': if UPLO = 'L':
2665
+ *
2666
+ * ( d e v2 v3 v4 ) ( d )
2667
+ * ( d e v3 v4 ) ( e d )
2668
+ * ( d e v4 ) ( v1 e d )
2669
+ * ( d e ) ( v1 v2 e d )
2670
+ * ( d ) ( v1 v2 v3 e d )
2671
+ *
2672
+ * where d and e denote diagonal and off-diagonal elements of T, and vi
2673
+ * denotes an element of the vector defining H(i).
2674
+ *
2675
+ * =====================================================================
2676
+ *
2677
+
2678
+
2679
+ </PRE>
2680
+ <A HREF="#top">go to the page top</A>
2681
+
2682
+ <A NAME="dsytf2"></A>
2683
+ <H2>dsytf2</H2>
2684
+ <PRE>
2685
+ USAGE:
2686
+ ipiv, info, a = NumRu::Lapack.dsytf2( uplo, a, [:usage => usage, :help => help])
2687
+
2688
+
2689
+ FORTRAN MANUAL
2690
+ SUBROUTINE DSYTF2( UPLO, N, A, LDA, IPIV, INFO )
2691
+
2692
+ * Purpose
2693
+ * =======
2694
+ *
2695
+ * DSYTF2 computes the factorization of a real symmetric matrix A using
2696
+ * the Bunch-Kaufman diagonal pivoting method:
2697
+ *
2698
+ * A = U*D*U' or A = L*D*L'
2699
+ *
2700
+ * where U (or L) is a product of permutation and unit upper (lower)
2701
+ * triangular matrices, U' is the transpose of U, and D is symmetric and
2702
+ * block diagonal with 1-by-1 and 2-by-2 diagonal blocks.
2703
+ *
2704
+ * This is the unblocked version of the algorithm, calling Level 2 BLAS.
2705
+ *
2706
+
2707
+ * Arguments
2708
+ * =========
2709
+ *
2710
+ * UPLO (input) CHARACTER*1
2711
+ * Specifies whether the upper or lower triangular part of the
2712
+ * symmetric matrix A is stored:
2713
+ * = 'U': Upper triangular
2714
+ * = 'L': Lower triangular
2715
+ *
2716
+ * N (input) INTEGER
2717
+ * The order of the matrix A. N >= 0.
2718
+ *
2719
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2720
+ * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2721
+ * n-by-n upper triangular part of A contains the upper
2722
+ * triangular part of the matrix A, and the strictly lower
2723
+ * triangular part of A is not referenced. If UPLO = 'L', the
2724
+ * leading n-by-n lower triangular part of A contains the lower
2725
+ * triangular part of the matrix A, and the strictly upper
2726
+ * triangular part of A is not referenced.
2727
+ *
2728
+ * On exit, the block diagonal matrix D and the multipliers used
2729
+ * to obtain the factor U or L (see below for further details).
2730
+ *
2731
+ * LDA (input) INTEGER
2732
+ * The leading dimension of the array A. LDA >= max(1,N).
2733
+ *
2734
+ * IPIV (output) INTEGER array, dimension (N)
2735
+ * Details of the interchanges and the block structure of D.
2736
+ * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2737
+ * interchanged and D(k,k) is a 1-by-1 diagonal block.
2738
+ * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2739
+ * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2740
+ * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2741
+ * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
2742
+ * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
2743
+ *
2744
+ * INFO (output) INTEGER
2745
+ * = 0: successful exit
2746
+ * < 0: if INFO = -k, the k-th argument had an illegal value
2747
+ * > 0: if INFO = k, D(k,k) is exactly zero. The factorization
2748
+ * has been completed, but the block diagonal matrix D is
2749
+ * exactly singular, and division by zero will occur if it
2750
+ * is used to solve a system of equations.
2751
+ *
2752
+
2753
+ * Further Details
2754
+ * ===============
2755
+ *
2756
+ * 09-29-06 - patch from
2757
+ * Bobby Cheng, MathWorks
2758
+ *
2759
+ * Replace l.204 and l.372
2760
+ * IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN
2761
+ * by
2762
+ * IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. DISNAN(ABSAKK) ) THEN
2763
+ *
2764
+ * 01-01-96 - Based on modifications by
2765
+ * J. Lewis, Boeing Computer Services Company
2766
+ * A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
2767
+ * 1-96 - Based on modifications by J. Lewis, Boeing Computer Services
2768
+ * Company
2769
+ *
2770
+ * If UPLO = 'U', then A = U*D*U', where
2771
+ * U = P(n)*U(n)* ... *P(k)U(k)* ...,
2772
+ * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
2773
+ * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2774
+ * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2775
+ * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
2776
+ * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2777
+ *
2778
+ * ( I v 0 ) k-s
2779
+ * U(k) = ( 0 I 0 ) s
2780
+ * ( 0 0 I ) n-k
2781
+ * k-s s n-k
2782
+ *
2783
+ * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
2784
+ * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
2785
+ * and A(k,k), and v overwrites A(1:k-2,k-1:k).
2786
+ *
2787
+ * If UPLO = 'L', then A = L*D*L', where
2788
+ * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
2789
+ * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
2790
+ * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
2791
+ * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
2792
+ * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
2793
+ * that if the diagonal block D(k) is of order s (s = 1 or 2), then
2794
+ *
2795
+ * ( I 0 0 ) k-1
2796
+ * L(k) = ( 0 I 0 ) s
2797
+ * ( 0 v I ) n-k-s+1
2798
+ * k-1 s n-k-s+1
2799
+ *
2800
+ * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
2801
+ * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
2802
+ * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
2803
+ *
2804
+ * =====================================================================
2805
+ *
2806
+
2807
+
2808
+ </PRE>
2809
+ <A HREF="#top">go to the page top</A>
2810
+
2811
+ <A NAME="dsytrd"></A>
2812
+ <H2>dsytrd</H2>
2813
+ <PRE>
2814
+ USAGE:
2815
+ d, e, tau, work, info, a = NumRu::Lapack.dsytrd( uplo, a, lwork, [:usage => usage, :help => help])
2816
+
2817
+
2818
+ FORTRAN MANUAL
2819
+ SUBROUTINE DSYTRD( UPLO, N, A, LDA, D, E, TAU, WORK, LWORK, INFO )
2820
+
2821
+ * Purpose
2822
+ * =======
2823
+ *
2824
+ * DSYTRD reduces a real symmetric matrix A to real symmetric
2825
+ * tridiagonal form T by an orthogonal similarity transformation:
2826
+ * Q**T * A * Q = T.
2827
+ *
2828
+
2829
+ * Arguments
2830
+ * =========
2831
+ *
2832
+ * UPLO (input) CHARACTER*1
2833
+ * = 'U': Upper triangle of A is stored;
2834
+ * = 'L': Lower triangle of A is stored.
2835
+ *
2836
+ * N (input) INTEGER
2837
+ * The order of the matrix A. N >= 0.
2838
+ *
2839
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2840
+ * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2841
+ * N-by-N upper triangular part of A contains the upper
2842
+ * triangular part of the matrix A, and the strictly lower
2843
+ * triangular part of A is not referenced. If UPLO = 'L', the
2844
+ * leading N-by-N lower triangular part of A contains the lower
2845
+ * triangular part of the matrix A, and the strictly upper
2846
+ * triangular part of A is not referenced.
2847
+ * On exit, if UPLO = 'U', the diagonal and first superdiagonal
2848
+ * of A are overwritten by the corresponding elements of the
2849
+ * tridiagonal matrix T, and the elements above the first
2850
+ * superdiagonal, with the array TAU, represent the orthogonal
2851
+ * matrix Q as a product of elementary reflectors; if UPLO
2852
+ * = 'L', the diagonal and first subdiagonal of A are over-
2853
+ * written by the corresponding elements of the tridiagonal
2854
+ * matrix T, and the elements below the first subdiagonal, with
2855
+ * the array TAU, represent the orthogonal matrix Q as a product
2856
+ * of elementary reflectors. See Further Details.
2857
+ *
2858
+ * LDA (input) INTEGER
2859
+ * The leading dimension of the array A. LDA >= max(1,N).
2860
+ *
2861
+ * D (output) DOUBLE PRECISION array, dimension (N)
2862
+ * The diagonal elements of the tridiagonal matrix T:
2863
+ * D(i) = A(i,i).
2864
+ *
2865
+ * E (output) DOUBLE PRECISION array, dimension (N-1)
2866
+ * The off-diagonal elements of the tridiagonal matrix T:
2867
+ * E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
2868
+ *
2869
+ * TAU (output) DOUBLE PRECISION array, dimension (N-1)
2870
+ * The scalar factors of the elementary reflectors (see Further
2871
+ * Details).
2872
+ *
2873
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
2874
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
2875
+ *
2876
+ * LWORK (input) INTEGER
2877
+ * The dimension of the array WORK. LWORK >= 1.
2878
+ * For optimum performance LWORK >= N*NB, where NB is the
2879
+ * optimal blocksize.
2880
+ *
2881
+ * If LWORK = -1, then a workspace query is assumed; the routine
2882
+ * only calculates the optimal size of the WORK array, returns
2883
+ * this value as the first entry of the WORK array, and no error
2884
+ * message related to LWORK is issued by XERBLA.
2885
+ *
2886
+ * INFO (output) INTEGER
2887
+ * = 0: successful exit
2888
+ * < 0: if INFO = -i, the i-th argument had an illegal value
2889
+ *
2890
+
2891
+ * Further Details
2892
+ * ===============
2893
+ *
2894
+ * If UPLO = 'U', the matrix Q is represented as a product of elementary
2895
+ * reflectors
2896
+ *
2897
+ * Q = H(n-1) . . . H(2) H(1).
2898
+ *
2899
+ * Each H(i) has the form
2900
+ *
2901
+ * H(i) = I - tau * v * v'
2902
+ *
2903
+ * where tau is a real scalar, and v is a real vector with
2904
+ * v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
2905
+ * A(1:i-1,i+1), and tau in TAU(i).
2906
+ *
2907
+ * If UPLO = 'L', the matrix Q is represented as a product of elementary
2908
+ * reflectors
2909
+ *
2910
+ * Q = H(1) H(2) . . . H(n-1).
2911
+ *
2912
+ * Each H(i) has the form
2913
+ *
2914
+ * H(i) = I - tau * v * v'
2915
+ *
2916
+ * where tau is a real scalar, and v is a real vector with
2917
+ * v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
2918
+ * and tau in TAU(i).
2919
+ *
2920
+ * The contents of A on exit are illustrated by the following examples
2921
+ * with n = 5:
2922
+ *
2923
+ * if UPLO = 'U': if UPLO = 'L':
2924
+ *
2925
+ * ( d e v2 v3 v4 ) ( d )
2926
+ * ( d e v3 v4 ) ( e d )
2927
+ * ( d e v4 ) ( v1 e d )
2928
+ * ( d e ) ( v1 v2 e d )
2929
+ * ( d ) ( v1 v2 v3 e d )
2930
+ *
2931
+ * where d and e denote diagonal and off-diagonal elements of T, and vi
2932
+ * denotes an element of the vector defining H(i).
2933
+ *
2934
+ * =====================================================================
2935
+ *
2936
+
2937
+
2938
+ </PRE>
2939
+ <A HREF="#top">go to the page top</A>
2940
+
2941
+ <A NAME="dsytrf"></A>
2942
+ <H2>dsytrf</H2>
2943
+ <PRE>
2944
+ USAGE:
2945
+ ipiv, work, info, a = NumRu::Lapack.dsytrf( uplo, a, lwork, [:usage => usage, :help => help])
2946
+
2947
+
2948
+ FORTRAN MANUAL
2949
+ SUBROUTINE DSYTRF( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
2950
+
2951
+ * Purpose
2952
+ * =======
2953
+ *
2954
+ * DSYTRF computes the factorization of a real symmetric matrix A using
2955
+ * the Bunch-Kaufman diagonal pivoting method. The form of the
2956
+ * factorization is
2957
+ *
2958
+ * A = U*D*U**T or A = L*D*L**T
2959
+ *
2960
+ * where U (or L) is a product of permutation and unit upper (lower)
2961
+ * triangular matrices, and D is symmetric and block diagonal with
2962
+ * 1-by-1 and 2-by-2 diagonal blocks.
2963
+ *
2964
+ * This is the blocked version of the algorithm, calling Level 3 BLAS.
2965
+ *
2966
+
2967
+ * Arguments
2968
+ * =========
2969
+ *
2970
+ * UPLO (input) CHARACTER*1
2971
+ * = 'U': Upper triangle of A is stored;
2972
+ * = 'L': Lower triangle of A is stored.
2973
+ *
2974
+ * N (input) INTEGER
2975
+ * The order of the matrix A. N >= 0.
2976
+ *
2977
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
2978
+ * On entry, the symmetric matrix A. If UPLO = 'U', the leading
2979
+ * N-by-N upper triangular part of A contains the upper
2980
+ * triangular part of the matrix A, and the strictly lower
2981
+ * triangular part of A is not referenced. If UPLO = 'L', the
2982
+ * leading N-by-N lower triangular part of A contains the lower
2983
+ * triangular part of the matrix A, and the strictly upper
2984
+ * triangular part of A is not referenced.
2985
+ *
2986
+ * On exit, the block diagonal matrix D and the multipliers used
2987
+ * to obtain the factor U or L (see below for further details).
2988
+ *
2989
+ * LDA (input) INTEGER
2990
+ * The leading dimension of the array A. LDA >= max(1,N).
2991
+ *
2992
+ * IPIV (output) INTEGER array, dimension (N)
2993
+ * Details of the interchanges and the block structure of D.
2994
+ * If IPIV(k) > 0, then rows and columns k and IPIV(k) were
2995
+ * interchanged and D(k,k) is a 1-by-1 diagonal block.
2996
+ * If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and
2997
+ * columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k)
2998
+ * is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) =
2999
+ * IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were
3000
+ * interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
3001
+ *
3002
+ * WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
3003
+ * On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
3004
+ *
3005
+ * LWORK (input) INTEGER
3006
+ * The length of WORK. LWORK >=1. For best performance
3007
+ * LWORK >= N*NB, where NB is the block size returned by ILAENV.
3008
+ *
3009
+ * If LWORK = -1, then a workspace query is assumed; the routine
3010
+ * only calculates the optimal size of the WORK array, returns
3011
+ * this value as the first entry of the WORK array, and no error
3012
+ * message related to LWORK is issued by XERBLA.
3013
+ *
3014
+ * INFO (output) INTEGER
3015
+ * = 0: successful exit
3016
+ * < 0: if INFO = -i, the i-th argument had an illegal value
3017
+ * > 0: if INFO = i, D(i,i) is exactly zero. The factorization
3018
+ * has been completed, but the block diagonal matrix D is
3019
+ * exactly singular, and division by zero will occur if it
3020
+ * is used to solve a system of equations.
3021
+ *
3022
+
3023
+ * Further Details
3024
+ * ===============
3025
+ *
3026
+ * If UPLO = 'U', then A = U*D*U', where
3027
+ * U = P(n)*U(n)* ... *P(k)U(k)* ...,
3028
+ * i.e., U is a product of terms P(k)*U(k), where k decreases from n to
3029
+ * 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
3030
+ * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
3031
+ * defined by IPIV(k), and U(k) is a unit upper triangular matrix, such
3032
+ * that if the diagonal block D(k) is of order s (s = 1 or 2), then
3033
+ *
3034
+ * ( I v 0 ) k-s
3035
+ * U(k) = ( 0 I 0 ) s
3036
+ * ( 0 0 I ) n-k
3037
+ * k-s s n-k
3038
+ *
3039
+ * If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k).
3040
+ * If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k),
3041
+ * and A(k,k), and v overwrites A(1:k-2,k-1:k).
3042
+ *
3043
+ * If UPLO = 'L', then A = L*D*L', where
3044
+ * L = P(1)*L(1)* ... *P(k)*L(k)* ...,
3045
+ * i.e., L is a product of terms P(k)*L(k), where k increases from 1 to
3046
+ * n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1
3047
+ * and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as
3048
+ * defined by IPIV(k), and L(k) is a unit lower triangular matrix, such
3049
+ * that if the diagonal block D(k) is of order s (s = 1 or 2), then
3050
+ *
3051
+ * ( I 0 0 ) k-1
3052
+ * L(k) = ( 0 I 0 ) s
3053
+ * ( 0 v I ) n-k-s+1
3054
+ * k-1 s n-k-s+1
3055
+ *
3056
+ * If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k).
3057
+ * If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k),
3058
+ * and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1).
3059
+ *
3060
+ * =====================================================================
3061
+ *
3062
+ * .. Local Scalars ..
3063
+ LOGICAL LQUERY, UPPER
3064
+ INTEGER IINFO, IWS, J, K, KB, LDWORK, LWKOPT, NB, NBMIN
3065
+ * ..
3066
+ * .. External Functions ..
3067
+ LOGICAL LSAME
3068
+ INTEGER ILAENV
3069
+ EXTERNAL LSAME, ILAENV
3070
+ * ..
3071
+ * .. External Subroutines ..
3072
+ EXTERNAL DLASYF, DSYTF2, XERBLA
3073
+ * ..
3074
+ * .. Intrinsic Functions ..
3075
+ INTRINSIC MAX
3076
+ * ..
3077
+
3078
+
3079
+ </PRE>
3080
+ <A HREF="#top">go to the page top</A>
3081
+
3082
+ <A NAME="dsytri"></A>
3083
+ <H2>dsytri</H2>
3084
+ <PRE>
3085
+ USAGE:
3086
+ info, a = NumRu::Lapack.dsytri( uplo, a, ipiv, [:usage => usage, :help => help])
3087
+
3088
+
3089
+ FORTRAN MANUAL
3090
+ SUBROUTINE DSYTRI( UPLO, N, A, LDA, IPIV, WORK, INFO )
3091
+
3092
+ * Purpose
3093
+ * =======
3094
+ *
3095
+ * DSYTRI computes the inverse of a real symmetric indefinite matrix
3096
+ * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3097
+ * DSYTRF.
3098
+ *
3099
+
3100
+ * Arguments
3101
+ * =========
3102
+ *
3103
+ * UPLO (input) CHARACTER*1
3104
+ * Specifies whether the details of the factorization are stored
3105
+ * as an upper or lower triangular matrix.
3106
+ * = 'U': Upper triangular, form is A = U*D*U**T;
3107
+ * = 'L': Lower triangular, form is A = L*D*L**T.
3108
+ *
3109
+ * N (input) INTEGER
3110
+ * The order of the matrix A. N >= 0.
3111
+ *
3112
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
3113
+ * On entry, the block diagonal matrix D and the multipliers
3114
+ * used to obtain the factor U or L as computed by DSYTRF.
3115
+ *
3116
+ * On exit, if INFO = 0, the (symmetric) inverse of the original
3117
+ * matrix. If UPLO = 'U', the upper triangular part of the
3118
+ * inverse is formed and the part of A below the diagonal is not
3119
+ * referenced; if UPLO = 'L' the lower triangular part of the
3120
+ * inverse is formed and the part of A above the diagonal is
3121
+ * not referenced.
3122
+ *
3123
+ * LDA (input) INTEGER
3124
+ * The leading dimension of the array A. LDA >= max(1,N).
3125
+ *
3126
+ * IPIV (input) INTEGER array, dimension (N)
3127
+ * Details of the interchanges and the block structure of D
3128
+ * as determined by DSYTRF.
3129
+ *
3130
+ * WORK (workspace) DOUBLE PRECISION array, dimension (N)
3131
+ *
3132
+ * INFO (output) INTEGER
3133
+ * = 0: successful exit
3134
+ * < 0: if INFO = -i, the i-th argument had an illegal value
3135
+ * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3136
+ * inverse could not be computed.
3137
+ *
3138
+
3139
+ * =====================================================================
3140
+ *
3141
+
3142
+
3143
+ </PRE>
3144
+ <A HREF="#top">go to the page top</A>
3145
+
3146
+ <A NAME="dsytri2"></A>
3147
+ <H2>dsytri2</H2>
3148
+ <PRE>
3149
+ USAGE:
3150
+ info, a = NumRu::Lapack.dsytri2( uplo, a, ipiv, [:lwork => lwork, :usage => usage, :help => help])
3151
+
3152
+
3153
+ FORTRAN MANUAL
3154
+ SUBROUTINE DSYTRI2( UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO )
3155
+
3156
+ * Purpose
3157
+ * =======
3158
+ *
3159
+ * DSYTRI2 computes the inverse of a real symmetric indefinite matrix
3160
+ * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3161
+ * DSYTRF. DSYTRI2 sets the LEADING DIMENSION of the workspace
3162
+ * before calling DSYTRI2X that actually computes the inverse.
3163
+ *
3164
+
3165
+ * Arguments
3166
+ * =========
3167
+ *
3168
+ * UPLO (input) CHARACTER*1
3169
+ * Specifies whether the details of the factorization are stored
3170
+ * as an upper or lower triangular matrix.
3171
+ * = 'U': Upper triangular, form is A = U*D*U**T;
3172
+ * = 'L': Lower triangular, form is A = L*D*L**T.
3173
+ *
3174
+ * N (input) INTEGER
3175
+ * The order of the matrix A. N >= 0.
3176
+ *
3177
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
3178
+ * On entry, the NB diagonal matrix D and the multipliers
3179
+ * used to obtain the factor U or L as computed by DSYTRF.
3180
+ *
3181
+ * On exit, if INFO = 0, the (symmetric) inverse of the original
3182
+ * matrix. If UPLO = 'U', the upper triangular part of the
3183
+ * inverse is formed and the part of A below the diagonal is not
3184
+ * referenced; if UPLO = 'L' the lower triangular part of the
3185
+ * inverse is formed and the part of A above the diagonal is
3186
+ * not referenced.
3187
+ *
3188
+ * LDA (input) INTEGER
3189
+ * The leading dimension of the array A. LDA >= max(1,N).
3190
+ *
3191
+ * IPIV (input) INTEGER array, dimension (N)
3192
+ * Details of the interchanges and the NB structure of D
3193
+ * as determined by DSYTRF.
3194
+ *
3195
+ * WORK (workspace) DOUBLE PRECISION array, dimension (N+NB+1)*(NB+3)
3196
+ *
3197
+ * LWORK (input) INTEGER
3198
+ * The dimension of the array WORK.
3199
+ * WORK is size >= (N+NB+1)*(NB+3)
3200
+ * If LDWORK = -1, then a workspace query is assumed; the routine
3201
+ * calculates:
3202
+ * - the optimal size of the WORK array, returns
3203
+ * this value as the first entry of the WORK array,
3204
+ * - and no error message related to LDWORK is issued by XERBLA.
3205
+ *
3206
+ * INFO (output) INTEGER
3207
+ * = 0: successful exit
3208
+ * < 0: if INFO = -i, the i-th argument had an illegal value
3209
+ * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3210
+ * inverse could not be computed.
3211
+ *
3212
+
3213
+ * =====================================================================
3214
+ *
3215
+ * .. Local Scalars ..
3216
+ LOGICAL UPPER, LQUERY
3217
+ INTEGER MINSIZE, NBMAX
3218
+ * ..
3219
+ * .. External Functions ..
3220
+ LOGICAL LSAME
3221
+ INTEGER ILAENV
3222
+ EXTERNAL LSAME, ILAENV
3223
+ * ..
3224
+ * .. External Subroutines ..
3225
+ EXTERNAL DSYTRI2X
3226
+ * ..
3227
+
3228
+
3229
+ </PRE>
3230
+ <A HREF="#top">go to the page top</A>
3231
+
3232
+ <A NAME="dsytri2x"></A>
3233
+ <H2>dsytri2x</H2>
3234
+ <PRE>
3235
+ USAGE:
3236
+ info, a = NumRu::Lapack.dsytri2x( uplo, a, ipiv, nb, [:usage => usage, :help => help])
3237
+
3238
+
3239
+ FORTRAN MANUAL
3240
+ SUBROUTINE DSYTRI2X( UPLO, N, A, LDA, IPIV, WORK, NB, INFO )
3241
+
3242
+ * Purpose
3243
+ * =======
3244
+ *
3245
+ * DSYTRI2X computes the inverse of a real symmetric indefinite matrix
3246
+ * A using the factorization A = U*D*U**T or A = L*D*L**T computed by
3247
+ * DSYTRF.
3248
+ *
3249
+
3250
+ * Arguments
3251
+ * =========
3252
+ *
3253
+ * UPLO (input) CHARACTER*1
3254
+ * Specifies whether the details of the factorization are stored
3255
+ * as an upper or lower triangular matrix.
3256
+ * = 'U': Upper triangular, form is A = U*D*U**T;
3257
+ * = 'L': Lower triangular, form is A = L*D*L**T.
3258
+ *
3259
+ * N (input) INTEGER
3260
+ * The order of the matrix A. N >= 0.
3261
+ *
3262
+ * A (input/output) DOUBLE PRECISION array, dimension (LDA,N)
3263
+ * On entry, the NNB diagonal matrix D and the multipliers
3264
+ * used to obtain the factor U or L as computed by DSYTRF.
3265
+ *
3266
+ * On exit, if INFO = 0, the (symmetric) inverse of the original
3267
+ * matrix. If UPLO = 'U', the upper triangular part of the
3268
+ * inverse is formed and the part of A below the diagonal is not
3269
+ * referenced; if UPLO = 'L' the lower triangular part of the
3270
+ * inverse is formed and the part of A above the diagonal is
3271
+ * not referenced.
3272
+ *
3273
+ * LDA (input) INTEGER
3274
+ * The leading dimension of the array A. LDA >= max(1,N).
3275
+ *
3276
+ * IPIV (input) INTEGER array, dimension (N)
3277
+ * Details of the interchanges and the NNB structure of D
3278
+ * as determined by DSYTRF.
3279
+ *
3280
+ * WORK (workspace) DOUBLE PRECISION array, dimension (N+NNB+1,NNB+3)
3281
+ *
3282
+ * NB (input) INTEGER
3283
+ * Block size
3284
+ *
3285
+ * INFO (output) INTEGER
3286
+ * = 0: successful exit
3287
+ * < 0: if INFO = -i, the i-th argument had an illegal value
3288
+ * > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its
3289
+ * inverse could not be computed.
3290
+ *
3291
+
3292
+ * =====================================================================
3293
+ *
3294
+
3295
+
3296
+ </PRE>
3297
+ <A HREF="#top">go to the page top</A>
3298
+
3299
+ <A NAME="dsytrs"></A>
3300
+ <H2>dsytrs</H2>
3301
+ <PRE>
3302
+ USAGE:
3303
+ info, b = NumRu::Lapack.dsytrs( uplo, a, ipiv, b, [:usage => usage, :help => help])
3304
+
3305
+
3306
+ FORTRAN MANUAL
3307
+ SUBROUTINE DSYTRS( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO )
3308
+
3309
+ * Purpose
3310
+ * =======
3311
+ *
3312
+ * DSYTRS solves a system of linear equations A*X = B with a real
3313
+ * symmetric matrix A using the factorization A = U*D*U**T or
3314
+ * A = L*D*L**T computed by DSYTRF.
3315
+ *
3316
+
3317
+ * Arguments
3318
+ * =========
3319
+ *
3320
+ * UPLO (input) CHARACTER*1
3321
+ * Specifies whether the details of the factorization are stored
3322
+ * as an upper or lower triangular matrix.
3323
+ * = 'U': Upper triangular, form is A = U*D*U**T;
3324
+ * = 'L': Lower triangular, form is A = L*D*L**T.
3325
+ *
3326
+ * N (input) INTEGER
3327
+ * The order of the matrix A. N >= 0.
3328
+ *
3329
+ * NRHS (input) INTEGER
3330
+ * The number of right hand sides, i.e., the number of columns
3331
+ * of the matrix B. NRHS >= 0.
3332
+ *
3333
+ * A (input) DOUBLE PRECISION array, dimension (LDA,N)
3334
+ * The block diagonal matrix D and the multipliers used to
3335
+ * obtain the factor U or L as computed by DSYTRF.
3336
+ *
3337
+ * LDA (input) INTEGER
3338
+ * The leading dimension of the array A. LDA >= max(1,N).
3339
+ *
3340
+ * IPIV (input) INTEGER array, dimension (N)
3341
+ * Details of the interchanges and the block structure of D
3342
+ * as determined by DSYTRF.
3343
+ *
3344
+ * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
3345
+ * On entry, the right hand side matrix B.
3346
+ * On exit, the solution matrix X.
3347
+ *
3348
+ * LDB (input) INTEGER
3349
+ * The leading dimension of the array B. LDB >= max(1,N).
3350
+ *
3351
+ * INFO (output) INTEGER
3352
+ * = 0: successful exit
3353
+ * < 0: if INFO = -i, the i-th argument had an illegal value
3354
+ *
3355
+
3356
+ * =====================================================================
3357
+ *
3358
+
3359
+
3360
+ </PRE>
3361
+ <A HREF="#top">go to the page top</A>
3362
+
3363
+ <A NAME="dsytrs2"></A>
3364
+ <H2>dsytrs2</H2>
3365
+ <PRE>
3366
+ USAGE:
3367
+ info, b = NumRu::Lapack.dsytrs2( uplo, a, ipiv, b, [:usage => usage, :help => help])
3368
+
3369
+
3370
+ FORTRAN MANUAL
3371
+ SUBROUTINE DSYTRS2( UPLO, N, NRHS, A, LDA, IPIV, B, LDB, WORK, INFO )
3372
+
3373
+ * Purpose
3374
+ * =======
3375
+ *
3376
+ * DSYTRS2 solves a system of linear equations A*X = B with a real
3377
+ * symmetric matrix A using the factorization A = U*D*U**T or
3378
+ * A = L*D*L**T computed by DSYTRF and converted by DSYCONV.
3379
+ *
3380
+
3381
+ * Arguments
3382
+ * =========
3383
+ *
3384
+ * UPLO (input) CHARACTER*1
3385
+ * Specifies whether the details of the factorization are stored
3386
+ * as an upper or lower triangular matrix.
3387
+ * = 'U': Upper triangular, form is A = U*D*U**T;
3388
+ * = 'L': Lower triangular, form is A = L*D*L**T.
3389
+ *
3390
+ * N (input) INTEGER
3391
+ * The order of the matrix A. N >= 0.
3392
+ *
3393
+ * NRHS (input) INTEGER
3394
+ * The number of right hand sides, i.e., the number of columns
3395
+ * of the matrix B. NRHS >= 0.
3396
+ *
3397
+ * A (input) DOUBLE PRECISION array, dimension (LDA,N)
3398
+ * The block diagonal matrix D and the multipliers used to
3399
+ * obtain the factor U or L as computed by DSYTRF.
3400
+ *
3401
+ * LDA (input) INTEGER
3402
+ * The leading dimension of the array A. LDA >= max(1,N).
3403
+ *
3404
+ * IPIV (input) INTEGER array, dimension (N)
3405
+ * Details of the interchanges and the block structure of D
3406
+ * as determined by DSYTRF.
3407
+ *
3408
+ * B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS)
3409
+ * On entry, the right hand side matrix B.
3410
+ * On exit, the solution matrix X.
3411
+ *
3412
+ * LDB (input) INTEGER
3413
+ * The leading dimension of the array B. LDB >= max(1,N).
3414
+ *
3415
+ * WORK (workspace) REAL array, dimension (N)
3416
+ *
3417
+ * INFO (output) INTEGER
3418
+ * = 0: successful exit
3419
+ * < 0: if INFO = -i, the i-th argument had an illegal value
3420
+ *
3421
+
3422
+ * =====================================================================
3423
+ *
3424
+
3425
+
3426
+ </PRE>
3427
+ <A HREF="#top">go to the page top</A>
3428
+
3429
+ <HR />
3430
+ <A HREF="d.html">back to matrix types</A><BR>
3431
+ <A HREF="d.html">back to data types</A>
3432
+ </BODY>
3433
+ </HTML>