ruby-fann 1.4.2 → 2.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/ext/ruby_fann/fann_augment.h +68 -68
- data/ext/ruby_fann/fann_train.h +268 -268
- data/ext/ruby_fann/ruby_fann.c +609 -512
- data/lib/ruby_fann/version.rb +3 -3
- metadata +4 -3
data/ext/ruby_fann/ruby_fann.c
CHANGED
@@ -9,96 +9,133 @@ static VALUE m_rb_fann_standard_class;
|
|
9
9
|
static VALUE m_rb_fann_shortcut_class;
|
10
10
|
static VALUE m_rb_fann_train_data_class;
|
11
11
|
|
12
|
-
#define RETURN_FANN_INT(fn)
|
13
|
-
struct fann*
|
14
|
-
Data_Get_Struct
|
15
|
-
return INT2NUM(fn(f));
|
16
|
-
|
17
|
-
#define SET_FANN_INT(attr_name, fann_fn)
|
18
|
-
Check_Type(attr_name, T_FIXNUM);
|
19
|
-
struct fann*
|
20
|
-
Data_Get_Struct(self, struct fann, f); \
|
21
|
-
fann_fn(f, NUM2INT(attr_name));
|
22
|
-
return 0;
|
23
|
-
|
24
|
-
#define RETURN_FANN_UINT(fn)
|
25
|
-
struct fann*
|
26
|
-
Data_Get_Struct
|
27
|
-
return
|
28
|
-
|
29
|
-
#define SET_FANN_UINT(attr_name, fann_fn)
|
30
|
-
Check_Type(attr_name, T_FIXNUM);
|
31
|
-
struct fann*
|
32
|
-
Data_Get_Struct(self, struct fann, f); \
|
33
|
-
fann_fn(f, NUM2UINT(attr_name));
|
34
|
-
return 0;
|
12
|
+
#define RETURN_FANN_INT(fn) \
|
13
|
+
struct fann *f; \
|
14
|
+
Data_Get_Struct(self, struct fann, f); \
|
15
|
+
return INT2NUM(fn(f));
|
16
|
+
|
17
|
+
#define SET_FANN_INT(attr_name, fann_fn) \
|
18
|
+
Check_Type(attr_name, T_FIXNUM); \
|
19
|
+
struct fann *f; \
|
20
|
+
Data_Get_Struct(self, struct fann, f); \
|
21
|
+
fann_fn(f, NUM2INT(attr_name)); \
|
22
|
+
return 0;
|
23
|
+
|
24
|
+
#define RETURN_FANN_UINT(fn) \
|
25
|
+
struct fann *f; \
|
26
|
+
Data_Get_Struct(self, struct fann, f); \
|
27
|
+
return rb_int_new(fn(f));
|
28
|
+
|
29
|
+
#define SET_FANN_UINT(attr_name, fann_fn) \
|
30
|
+
Check_Type(attr_name, T_FIXNUM); \
|
31
|
+
struct fann *f; \
|
32
|
+
Data_Get_Struct(self, struct fann, f); \
|
33
|
+
fann_fn(f, NUM2UINT(attr_name)); \
|
34
|
+
return 0;
|
35
35
|
|
36
36
|
// Converts float return values to a double with same precision, avoids floating point errors.
|
37
|
-
#define RETURN_FANN_FLT(fn)
|
38
|
-
struct fann*
|
39
|
-
Data_Get_Struct
|
40
|
-
char buffy[20];
|
41
|
-
sprintf(buffy, "%0.6g", fn(f));
|
42
|
-
return rb_float_new(atof(buffy));
|
43
|
-
|
44
|
-
#define SET_FANN_FLT(attr_name, fann_fn)
|
45
|
-
Check_Type(attr_name, T_FLOAT);
|
46
|
-
struct fann*
|
47
|
-
Data_Get_Struct(self, struct fann, f); \
|
48
|
-
fann_fn(f, NUM2DBL(attr_name));
|
49
|
-
return self;
|
50
|
-
|
51
|
-
#define RETURN_FANN_DBL(fn)
|
52
|
-
struct fann*
|
53
|
-
Data_Get_Struct
|
54
|
-
return rb_float_new(fn(f));
|
37
|
+
#define RETURN_FANN_FLT(fn) \
|
38
|
+
struct fann *f; \
|
39
|
+
Data_Get_Struct(self, struct fann, f); \
|
40
|
+
char buffy[20]; \
|
41
|
+
sprintf(buffy, "%0.6g", fn(f)); \
|
42
|
+
return rb_float_new(atof(buffy));
|
43
|
+
|
44
|
+
#define SET_FANN_FLT(attr_name, fann_fn) \
|
45
|
+
Check_Type(attr_name, T_FLOAT); \
|
46
|
+
struct fann *f; \
|
47
|
+
Data_Get_Struct(self, struct fann, f); \
|
48
|
+
fann_fn(f, NUM2DBL(attr_name)); \
|
49
|
+
return self;
|
50
|
+
|
51
|
+
#define RETURN_FANN_DBL(fn) \
|
52
|
+
struct fann *f; \
|
53
|
+
Data_Get_Struct(self, struct fann, f); \
|
54
|
+
return rb_float_new(fn(f));
|
55
55
|
|
56
56
|
#define SET_FANN_DBL SET_FANN_FLT
|
57
57
|
|
58
58
|
// Convert ruby symbol to corresponding FANN enum type for activation function:
|
59
59
|
enum fann_activationfunc_enum sym_to_activation_function(VALUE activation_func)
|
60
60
|
{
|
61
|
-
ID id=SYM2ID(activation_func);
|
61
|
+
ID id = SYM2ID(activation_func);
|
62
62
|
enum fann_activationfunc_enum activation_function;
|
63
|
-
if(id==rb_intern("linear"))
|
64
|
-
|
65
|
-
|
66
|
-
|
67
|
-
|
68
|
-
|
69
|
-
|
70
|
-
|
71
|
-
|
72
|
-
|
73
|
-
|
74
|
-
|
75
|
-
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
|
84
|
-
|
85
|
-
|
86
|
-
|
87
|
-
|
88
|
-
|
89
|
-
|
90
|
-
|
91
|
-
|
92
|
-
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
|
97
|
-
|
98
|
-
|
99
|
-
|
63
|
+
if (id == rb_intern("linear"))
|
64
|
+
{
|
65
|
+
activation_function = FANN_LINEAR;
|
66
|
+
}
|
67
|
+
else if (id == rb_intern("threshold"))
|
68
|
+
{
|
69
|
+
activation_function = FANN_THRESHOLD;
|
70
|
+
}
|
71
|
+
else if (id == rb_intern("threshold_symmetric"))
|
72
|
+
{
|
73
|
+
activation_function = FANN_THRESHOLD_SYMMETRIC;
|
74
|
+
}
|
75
|
+
else if (id == rb_intern("sigmoid"))
|
76
|
+
{
|
77
|
+
activation_function = FANN_SIGMOID;
|
78
|
+
}
|
79
|
+
else if (id == rb_intern("sigmoid_stepwise"))
|
80
|
+
{
|
81
|
+
activation_function = FANN_SIGMOID_STEPWISE;
|
82
|
+
}
|
83
|
+
else if (id == rb_intern("sigmoid_symmetric"))
|
84
|
+
{
|
85
|
+
activation_function = FANN_SIGMOID_SYMMETRIC;
|
86
|
+
}
|
87
|
+
else if (id == rb_intern("sigmoid_symmetric_stepwise"))
|
88
|
+
{
|
89
|
+
activation_function = FANN_SIGMOID_SYMMETRIC_STEPWISE;
|
90
|
+
}
|
91
|
+
else if (id == rb_intern("gaussian"))
|
92
|
+
{
|
93
|
+
activation_function = FANN_GAUSSIAN;
|
94
|
+
}
|
95
|
+
else if (id == rb_intern("gaussian_symmetric"))
|
96
|
+
{
|
97
|
+
activation_function = FANN_GAUSSIAN_SYMMETRIC;
|
98
|
+
}
|
99
|
+
else if (id == rb_intern("gaussian_stepwise"))
|
100
|
+
{
|
101
|
+
activation_function = FANN_GAUSSIAN_STEPWISE;
|
102
|
+
}
|
103
|
+
else if (id == rb_intern("elliot"))
|
104
|
+
{
|
105
|
+
activation_function = FANN_ELLIOT;
|
106
|
+
}
|
107
|
+
else if (id == rb_intern("elliot_symmetric"))
|
108
|
+
{
|
109
|
+
activation_function = FANN_ELLIOT_SYMMETRIC;
|
110
|
+
}
|
111
|
+
else if (id == rb_intern("linear_piece"))
|
112
|
+
{
|
113
|
+
activation_function = FANN_LINEAR_PIECE;
|
114
|
+
}
|
115
|
+
else if (id == rb_intern("linear_piece_symmetric"))
|
116
|
+
{
|
117
|
+
activation_function = FANN_LINEAR_PIECE_SYMMETRIC;
|
118
|
+
}
|
119
|
+
else if (id == rb_intern("sin_symmetric"))
|
120
|
+
{
|
121
|
+
activation_function = FANN_SIN_SYMMETRIC;
|
122
|
+
}
|
123
|
+
else if (id == rb_intern("cos_symmetric"))
|
124
|
+
{
|
125
|
+
activation_function = FANN_COS_SYMMETRIC;
|
126
|
+
}
|
127
|
+
else if (id == rb_intern("sin"))
|
128
|
+
{
|
129
|
+
activation_function = FANN_SIN;
|
130
|
+
}
|
131
|
+
else if (id == rb_intern("cos"))
|
132
|
+
{
|
133
|
+
activation_function = FANN_COS;
|
134
|
+
}
|
135
|
+
else
|
136
|
+
{
|
100
137
|
rb_raise(rb_eRuntimeError, "Unrecognized activation function: [%s]", rb_id2name(SYM2ID(activation_func)));
|
101
|
-
}
|
138
|
+
}
|
102
139
|
return activation_function;
|
103
140
|
}
|
104
141
|
|
@@ -106,142 +143,177 @@ enum fann_activationfunc_enum sym_to_activation_function(VALUE activation_func)
|
|
106
143
|
VALUE activation_function_to_sym(enum fann_activationfunc_enum fn)
|
107
144
|
{
|
108
145
|
VALUE activation_function;
|
109
|
-
|
110
|
-
if(fn==FANN_LINEAR)
|
111
|
-
|
112
|
-
|
113
|
-
|
114
|
-
|
115
|
-
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
|
123
|
-
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
134
|
-
|
135
|
-
|
136
|
-
|
137
|
-
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
143
|
-
|
144
|
-
|
145
|
-
|
146
|
-
|
146
|
+
|
147
|
+
if (fn == FANN_LINEAR)
|
148
|
+
{
|
149
|
+
activation_function = ID2SYM(rb_intern("linear"));
|
150
|
+
}
|
151
|
+
else if (fn == FANN_THRESHOLD)
|
152
|
+
{
|
153
|
+
activation_function = ID2SYM(rb_intern("threshold"));
|
154
|
+
}
|
155
|
+
else if (fn == FANN_THRESHOLD_SYMMETRIC)
|
156
|
+
{
|
157
|
+
activation_function = ID2SYM(rb_intern("threshold_symmetric"));
|
158
|
+
}
|
159
|
+
else if (fn == FANN_SIGMOID)
|
160
|
+
{
|
161
|
+
activation_function = ID2SYM(rb_intern("sigmoid"));
|
162
|
+
}
|
163
|
+
else if (fn == FANN_SIGMOID_STEPWISE)
|
164
|
+
{
|
165
|
+
activation_function = ID2SYM(rb_intern("sigmoid_stepwise"));
|
166
|
+
}
|
167
|
+
else if (fn == FANN_SIGMOID_SYMMETRIC)
|
168
|
+
{
|
169
|
+
activation_function = ID2SYM(rb_intern("sigmoid_symmetric"));
|
170
|
+
}
|
171
|
+
else if (fn == FANN_SIGMOID_SYMMETRIC_STEPWISE)
|
172
|
+
{
|
173
|
+
activation_function = ID2SYM(rb_intern("sigmoid_symmetric_stepwise"));
|
174
|
+
}
|
175
|
+
else if (fn == FANN_GAUSSIAN)
|
176
|
+
{
|
177
|
+
activation_function = ID2SYM(rb_intern("gaussian"));
|
178
|
+
}
|
179
|
+
else if (fn == FANN_GAUSSIAN_SYMMETRIC)
|
180
|
+
{
|
181
|
+
activation_function = ID2SYM(rb_intern("gaussian_symmetric"));
|
182
|
+
}
|
183
|
+
else if (fn == FANN_GAUSSIAN_STEPWISE)
|
184
|
+
{
|
185
|
+
activation_function = ID2SYM(rb_intern("gaussian_stepwise"));
|
186
|
+
}
|
187
|
+
else if (fn == FANN_ELLIOT)
|
188
|
+
{
|
189
|
+
activation_function = ID2SYM(rb_intern("elliot"));
|
190
|
+
}
|
191
|
+
else if (fn == FANN_ELLIOT_SYMMETRIC)
|
192
|
+
{
|
193
|
+
activation_function = ID2SYM(rb_intern("elliot_symmetric"));
|
194
|
+
}
|
195
|
+
else if (fn == FANN_LINEAR_PIECE)
|
196
|
+
{
|
197
|
+
activation_function = ID2SYM(rb_intern("linear_piece"));
|
198
|
+
}
|
199
|
+
else if (fn == FANN_LINEAR_PIECE_SYMMETRIC)
|
200
|
+
{
|
201
|
+
activation_function = ID2SYM(rb_intern("linear_piece_symmetric"));
|
202
|
+
}
|
203
|
+
else if (fn == FANN_SIN_SYMMETRIC)
|
204
|
+
{
|
205
|
+
activation_function = ID2SYM(rb_intern("sin_symmetric"));
|
206
|
+
}
|
207
|
+
else if (fn == FANN_COS_SYMMETRIC)
|
208
|
+
{
|
209
|
+
activation_function = ID2SYM(rb_intern("cos_symmetric"));
|
210
|
+
}
|
211
|
+
else if (fn == FANN_SIN)
|
212
|
+
{
|
213
|
+
activation_function = ID2SYM(rb_intern("sin"));
|
214
|
+
}
|
215
|
+
else if (fn == FANN_COS)
|
216
|
+
{
|
217
|
+
activation_function = ID2SYM(rb_intern("cos"));
|
218
|
+
}
|
219
|
+
else
|
220
|
+
{
|
147
221
|
rb_raise(rb_eRuntimeError, "Unrecognized activation function: [%d]", fn);
|
148
|
-
}
|
222
|
+
}
|
149
223
|
return activation_function;
|
150
224
|
}
|
151
225
|
|
152
|
-
|
153
226
|
// Unused for now:
|
154
|
-
static void fann_mark
|
227
|
+
static void fann_mark(struct fann *ann) {}
|
155
228
|
|
156
229
|
// #define DEBUG 1
|
157
230
|
|
158
231
|
// Free memory associated with FANN:
|
159
|
-
static void fann_free
|
232
|
+
static void fann_free(struct fann *ann)
|
160
233
|
{
|
161
|
-
|
234
|
+
fann_destroy(ann);
|
162
235
|
// ("Destroyed FANN network [%d].\n", ann);
|
163
236
|
}
|
164
237
|
|
165
238
|
// Free memory associated with FANN Training data:
|
166
|
-
static void fann_training_data_free
|
239
|
+
static void fann_training_data_free(struct fann_train_data *train_data)
|
167
240
|
{
|
168
|
-
|
241
|
+
fann_destroy_train(train_data);
|
169
242
|
// printf("Destroyed Training data [%d].\n", train_data);
|
170
243
|
}
|
171
244
|
|
172
|
-
// Create wrapper, but don't allocate anything...do that in
|
245
|
+
// Create wrapper, but don't allocate anything...do that in
|
173
246
|
// initialize, so we can construct with args:
|
174
|
-
static VALUE fann_allocate
|
247
|
+
static VALUE fann_allocate(VALUE klass)
|
175
248
|
{
|
176
|
-
return Data_Wrap_Struct
|
249
|
+
return Data_Wrap_Struct(klass, fann_mark, fann_free, 0);
|
177
250
|
}
|
178
251
|
|
179
|
-
// Create wrapper, but don't allocate annything...do that in
|
252
|
+
// Create wrapper, but don't allocate annything...do that in
|
180
253
|
// initialize, so we can construct with args:
|
181
|
-
static VALUE fann_training_data_allocate
|
254
|
+
static VALUE fann_training_data_allocate(VALUE klass)
|
182
255
|
{
|
183
|
-
return Data_Wrap_Struct
|
256
|
+
return Data_Wrap_Struct(klass, fann_mark, fann_training_data_free, 0);
|
184
257
|
}
|
185
258
|
|
186
|
-
|
187
|
-
// static VALUE invoke_training_callback(VALUE self)
|
259
|
+
// static VALUE invoke_training_callback(VALUE self)
|
188
260
|
// {
|
189
261
|
// VALUE callback = rb_funcall(self, rb_intern("training_callback"), 0);
|
190
262
|
// return callback;
|
191
263
|
// }
|
192
264
|
|
193
|
-
// static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
|
265
|
+
// static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
|
194
266
|
// unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error, unsigned int epochs)
|
195
267
|
|
196
268
|
static int FANN_API fann_training_callback(struct fann *ann, struct fann_train_data *train,
|
197
|
-
|
198
|
-
|
269
|
+
unsigned int max_epochs, unsigned int epochs_between_reports,
|
270
|
+
float desired_error, unsigned int epochs)
|
199
271
|
{
|
200
272
|
VALUE self = (VALUE)fann_get_user_data(ann);
|
201
273
|
VALUE args = rb_hash_new();
|
202
|
-
|
274
|
+
|
203
275
|
// Set attributes on hash & push on array:
|
204
276
|
VALUE max_epochs_sym = ID2SYM(rb_intern("max_epochs"));
|
205
277
|
VALUE epochs_between_reports_sym = ID2SYM(rb_intern("epochs_between_reports"));
|
206
278
|
VALUE desired_error_sym = ID2SYM(rb_intern("desired_error"));
|
207
279
|
VALUE epochs_sym = ID2SYM(rb_intern("epochs"));
|
208
|
-
|
280
|
+
|
209
281
|
rb_hash_aset(args, max_epochs_sym, INT2NUM(max_epochs));
|
210
282
|
rb_hash_aset(args, epochs_between_reports_sym, INT2NUM(epochs_between_reports));
|
211
283
|
rb_hash_aset(args, desired_error_sym, rb_float_new(desired_error));
|
212
284
|
rb_hash_aset(args, epochs_sym, INT2NUM(epochs));
|
213
|
-
|
285
|
+
|
214
286
|
VALUE callback = rb_funcall(self, rb_intern("training_callback"), 1, args);
|
215
|
-
|
216
|
-
if (TYPE(callback)!=T_FIXNUM)
|
287
|
+
|
288
|
+
if (TYPE(callback) != T_FIXNUM)
|
217
289
|
{
|
218
|
-
rb_raise
|
290
|
+
rb_raise(rb_eRuntimeError, "Callback method must return an integer (-1 to stop training).");
|
219
291
|
}
|
220
292
|
|
221
|
-
int status = NUM2INT(callback);
|
222
|
-
if (status
|
293
|
+
int status = NUM2INT(callback);
|
294
|
+
if (status == -1)
|
223
295
|
{
|
224
296
|
printf("Callback method returned -1; training will stop.\n");
|
225
297
|
}
|
226
|
-
|
298
|
+
|
227
299
|
return status;
|
228
300
|
}
|
229
301
|
|
230
|
-
/** call-seq: new(hash) -> new ruby-fann neural network object
|
302
|
+
/** call-seq: new(hash) -> new ruby-fann neural network object
|
231
303
|
|
232
304
|
Initialization routine for both standard, shortcut & filename forms of FANN:
|
233
305
|
|
234
306
|
Standard Initialization:
|
235
307
|
RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
|
236
|
-
|
308
|
+
|
237
309
|
Shortcut Initialization (e.g., for use in cascade training):
|
238
|
-
RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
|
239
|
-
|
310
|
+
RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
|
311
|
+
|
240
312
|
File Initialization
|
241
|
-
RubyFann::Standard.new(:filename=>'xor_float.net')
|
242
|
-
|
243
|
-
|
244
|
-
|
313
|
+
RubyFann::Standard.new(:filename=>'xor_float.net')
|
314
|
+
|
315
|
+
|
316
|
+
|
245
317
|
*/
|
246
318
|
static VALUE fann_initialize(VALUE self, VALUE hash)
|
247
319
|
{
|
@@ -250,24 +322,24 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
250
322
|
VALUE num_inputs = rb_hash_aref(hash, ID2SYM(rb_intern("num_inputs")));
|
251
323
|
VALUE num_outputs = rb_hash_aref(hash, ID2SYM(rb_intern("num_outputs")));
|
252
324
|
VALUE hidden_neurons = rb_hash_aref(hash, ID2SYM(rb_intern("hidden_neurons")));
|
253
|
-
|
254
|
-
struct fann*
|
255
|
-
if (TYPE(filename)==T_STRING)
|
325
|
+
// printf("initializing\n\n\n");
|
326
|
+
struct fann *ann;
|
327
|
+
if (TYPE(filename) == T_STRING)
|
256
328
|
{
|
257
329
|
// Initialize with file:
|
258
330
|
// train_data = fann_read_train_from_file(StringValuePtr(filename));
|
259
331
|
// DATA_PTR(self) = train_data;
|
260
332
|
ann = fann_create_from_file(StringValuePtr(filename));
|
261
|
-
|
262
|
-
}
|
263
|
-
else if(rb_obj_is_kind_of(self, m_rb_fann_shortcut_class))
|
333
|
+
// printf("Created RubyFann::Standard [%d] from file [%s].\n", ann, StringValuePtr(filename));
|
334
|
+
}
|
335
|
+
else if (rb_obj_is_kind_of(self, m_rb_fann_shortcut_class))
|
264
336
|
{
|
265
337
|
// Initialize as shortcut, suitable for cascade training:
|
266
|
-
//ann = fann_create_shortcut_array(num_layers, layers);
|
338
|
+
// ann = fann_create_shortcut_array(num_layers, layers);
|
267
339
|
Check_Type(num_inputs, T_FIXNUM);
|
268
340
|
Check_Type(num_outputs, T_FIXNUM);
|
269
|
-
|
270
|
-
ann = fann_create_shortcut(2, NUM2INT(num_inputs), NUM2INT(num_outputs));
|
341
|
+
|
342
|
+
ann = fann_create_shortcut(2, NUM2INT(num_inputs), NUM2INT(num_outputs));
|
271
343
|
// printf("Created RubyFann::Shortcut [%d].\n", ann);
|
272
344
|
}
|
273
345
|
else
|
@@ -276,32 +348,31 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
276
348
|
Check_Type(num_inputs, T_FIXNUM);
|
277
349
|
Check_Type(hidden_neurons, T_ARRAY);
|
278
350
|
Check_Type(num_outputs, T_FIXNUM);
|
279
|
-
|
351
|
+
|
280
352
|
// Initialize layers:
|
281
|
-
unsigned int num_layers=
|
353
|
+
unsigned int num_layers = RARRAY_LEN(hidden_neurons) + 2;
|
282
354
|
unsigned int layers[num_layers];
|
283
355
|
|
284
356
|
// Input:
|
285
|
-
layers[0]=NUM2INT(num_inputs);
|
357
|
+
layers[0] = NUM2INT(num_inputs);
|
286
358
|
// Output:
|
287
|
-
layers[num_layers-1]=NUM2INT(num_outputs);
|
359
|
+
layers[num_layers - 1] = NUM2INT(num_outputs);
|
288
360
|
// Hidden:
|
289
361
|
unsigned int i;
|
290
|
-
for (i=1; i<=num_layers-2; i++)
|
291
|
-
|
362
|
+
for (i = 1; i <= num_layers - 2; i++)
|
363
|
+
{
|
364
|
+
layers[i] = NUM2INT(RARRAY_PTR(hidden_neurons)[i - 1]);
|
292
365
|
}
|
293
|
-
|
294
|
-
|
295
|
-
// printf("Created RubyFann::Standard [%d].\n", ann);
|
296
|
-
}
|
366
|
+
ann = fann_create_standard_array(num_layers, layers);
|
367
|
+
}
|
297
368
|
|
298
369
|
DATA_PTR(self) = ann;
|
299
|
-
|
370
|
+
|
300
371
|
// printf("Checking for callback...");
|
301
|
-
|
302
|
-
//int callback = rb_protect(invoke_training_callback, (self), &status);
|
303
|
-
//
|
304
|
-
if(rb_respond_to(self, rb_intern("training_callback")))
|
372
|
+
|
373
|
+
// int callback = rb_protect(invoke_training_callback, (self), &status);
|
374
|
+
// VALUE callback = rb_funcall(DATA_PTR(self), "training_callback", 0);
|
375
|
+
if (rb_respond_to(self, rb_intern("training_callback")))
|
305
376
|
{
|
306
377
|
fann_set_callback(ann, &fann_training_callback);
|
307
378
|
fann_set_user_data(ann, self);
|
@@ -311,14 +382,14 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
311
382
|
{
|
312
383
|
// printf("none found.\n");
|
313
384
|
}
|
314
|
-
|
315
|
-
return (VALUE)ann;
|
385
|
+
|
386
|
+
return (VALUE)ann;
|
316
387
|
}
|
317
388
|
|
318
389
|
/** call-seq: new(hash) -> new ruby-fann training data object (RubyFann::TrainData)
|
319
|
-
|
390
|
+
|
320
391
|
Initialize in one of the following forms:
|
321
|
-
|
392
|
+
|
322
393
|
# This is a flat file with training data as described in FANN docs.
|
323
394
|
RubyFann::TrainData.new(:filename => 'path/to/training_file.train')
|
324
395
|
OR
|
@@ -327,75 +398,79 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
327
398
|
# All sub-arrays on inputs should be of same length
|
328
399
|
# All sub-arrays on desired_outputs should be of same length
|
329
400
|
# Sub-arrays on inputs & desired_outputs can be different sizes from one another
|
330
|
-
RubyFann::TrainData.new(:inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]], :desired_outputs=>[[3.14], [6.33]])
|
401
|
+
RubyFann::TrainData.new(:inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]], :desired_outputs=>[[3.14], [6.33]])
|
331
402
|
*/
|
332
403
|
static VALUE fann_train_data_initialize(VALUE self, VALUE hash)
|
333
404
|
{
|
334
|
-
struct fann_train_data*
|
405
|
+
struct fann_train_data *train_data;
|
335
406
|
Check_Type(hash, T_HASH);
|
336
|
-
|
407
|
+
|
337
408
|
VALUE filename = rb_hash_aref(hash, ID2SYM(rb_intern("filename")));
|
338
409
|
VALUE inputs = rb_hash_aref(hash, ID2SYM(rb_intern("inputs")));
|
339
410
|
VALUE desired_outputs = rb_hash_aref(hash, ID2SYM(rb_intern("desired_outputs")));
|
340
411
|
|
341
|
-
if (TYPE(filename)==T_STRING)
|
412
|
+
if (TYPE(filename) == T_STRING)
|
342
413
|
{
|
343
414
|
train_data = fann_read_train_from_file(StringValuePtr(filename));
|
344
415
|
DATA_PTR(self) = train_data;
|
345
|
-
}
|
346
|
-
else if (TYPE(inputs)==T_ARRAY)
|
416
|
+
}
|
417
|
+
else if (TYPE(inputs) == T_ARRAY)
|
347
418
|
{
|
348
|
-
if (TYPE(desired_outputs)!=T_ARRAY)
|
419
|
+
if (TYPE(desired_outputs) != T_ARRAY)
|
349
420
|
{
|
350
|
-
rb_raise
|
421
|
+
rb_raise(rb_eRuntimeError, "[desired_outputs] must be present when [inputs] used.");
|
351
422
|
}
|
352
423
|
|
353
424
|
if (RARRAY_LEN(inputs) < 1)
|
354
425
|
{
|
355
|
-
rb_raise
|
426
|
+
rb_raise(rb_eRuntimeError, "[inputs] must contain at least one value.");
|
427
|
+
}
|
428
|
+
|
429
|
+
if (RARRAY_LEN(desired_outputs) < 1)
|
430
|
+
{
|
431
|
+
rb_raise(rb_eRuntimeError, "[desired_outputs] must contain at least one value.");
|
356
432
|
}
|
357
433
|
|
358
434
|
// The data is here, start constructing:
|
359
|
-
if(RARRAY_LEN(inputs) != RARRAY_LEN(desired_outputs))
|
435
|
+
if (RARRAY_LEN(inputs) != RARRAY_LEN(desired_outputs))
|
360
436
|
{
|
361
|
-
rb_raise
|
362
|
-
rb_eRuntimeError,
|
363
|
-
"Number of inputs must match number of outputs: (%d != %d)",
|
364
|
-
(int)RARRAY_LEN(inputs),
|
437
|
+
rb_raise(
|
438
|
+
rb_eRuntimeError,
|
439
|
+
"Number of inputs must match number of outputs: (%d != %d)",
|
440
|
+
(int)RARRAY_LEN(inputs),
|
365
441
|
(int)RARRAY_LEN(desired_outputs));
|
366
442
|
}
|
367
443
|
|
368
|
-
train_data = fann_create_train_from_rb_ary(inputs, desired_outputs);
|
369
|
-
DATA_PTR(self) = train_data;
|
370
|
-
}
|
371
|
-
else
|
444
|
+
train_data = fann_create_train_from_rb_ary(inputs, desired_outputs);
|
445
|
+
DATA_PTR(self) = train_data;
|
446
|
+
}
|
447
|
+
else
|
372
448
|
{
|
373
|
-
rb_raise
|
449
|
+
rb_raise(rb_eRuntimeError, "Must construct with a filename(string) or inputs/desired_outputs(arrays). All args passed via hash with symbols as keys.");
|
374
450
|
}
|
375
|
-
|
451
|
+
|
376
452
|
return (VALUE)train_data;
|
377
453
|
}
|
378
454
|
|
379
|
-
|
380
455
|
/** call-seq: save(filename)
|
381
456
|
|
382
|
-
Save to given filename
|
457
|
+
Save to given filename
|
383
458
|
*/
|
384
459
|
static VALUE training_save(VALUE self, VALUE filename)
|
385
460
|
{
|
386
|
-
Check_Type(filename, T_STRING);
|
387
|
-
struct fann_train_data*
|
388
|
-
Data_Get_Struct
|
461
|
+
Check_Type(filename, T_STRING);
|
462
|
+
struct fann_train_data *t;
|
463
|
+
Data_Get_Struct(self, struct fann_train_data, t);
|
389
464
|
fann_save_train(t, StringValuePtr(filename));
|
390
|
-
return self;
|
465
|
+
return self;
|
391
466
|
}
|
392
467
|
|
393
|
-
/** Shuffles training data, randomizing the order.
|
468
|
+
/** Shuffles training data, randomizing the order.
|
394
469
|
This is recommended for incremental training, while it will have no influence during batch training.*/
|
395
470
|
static VALUE shuffle(VALUE self)
|
396
471
|
{
|
397
|
-
struct fann_train_data*
|
398
|
-
Data_Get_Struct
|
472
|
+
struct fann_train_data *t;
|
473
|
+
Data_Get_Struct(self, struct fann_train_data, t);
|
399
474
|
fann_shuffle_train_data(t);
|
400
475
|
return self;
|
401
476
|
}
|
@@ -403,27 +478,27 @@ static VALUE shuffle(VALUE self)
|
|
403
478
|
/** Length of training data*/
|
404
479
|
static VALUE length_train_data(VALUE self)
|
405
480
|
{
|
406
|
-
struct fann_train_data*
|
407
|
-
Data_Get_Struct
|
408
|
-
return(UINT2NUM(fann_length_train_data(t)));
|
481
|
+
struct fann_train_data *t;
|
482
|
+
Data_Get_Struct(self, struct fann_train_data, t);
|
483
|
+
return (UINT2NUM(fann_length_train_data(t)));
|
409
484
|
return self;
|
410
485
|
}
|
411
486
|
|
412
487
|
/** call-seq: set_activation_function(activation_func, layer, neuron)
|
413
488
|
|
414
|
-
Set the activation function for neuron number *neuron* in layer number *layer*,
|
489
|
+
Set the activation function for neuron number *neuron* in layer number *layer*,
|
415
490
|
counting the input layer as layer 0. activation_func must be one of the following symbols:
|
416
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
417
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
418
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
491
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
492
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
493
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
419
494
|
:sin, :cos*/
|
420
495
|
static VALUE set_activation_function(VALUE self, VALUE activation_func, VALUE layer, VALUE neuron)
|
421
496
|
{
|
422
497
|
Check_Type(activation_func, T_SYMBOL);
|
423
498
|
Check_Type(layer, T_FIXNUM);
|
424
499
|
Check_Type(neuron, T_FIXNUM);
|
425
|
-
|
426
|
-
struct fann*
|
500
|
+
|
501
|
+
struct fann *f;
|
427
502
|
Data_Get_Struct(self, struct fann, f);
|
428
503
|
fann_set_activation_function(f, sym_to_activation_function(activation_func), NUM2INT(layer), NUM2INT(neuron));
|
429
504
|
return self;
|
@@ -432,14 +507,14 @@ static VALUE set_activation_function(VALUE self, VALUE activation_func, VALUE la
|
|
432
507
|
/** call-seq: set_activation_function_hidden(activation_func)
|
433
508
|
|
434
509
|
Set the activation function for all of the hidden layers. activation_func must be one of the following symbols:
|
435
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
436
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
437
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
510
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
511
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
512
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
438
513
|
:sin, :cos*/
|
439
514
|
static VALUE set_activation_function_hidden(VALUE self, VALUE activation_func)
|
440
515
|
{
|
441
516
|
Check_Type(activation_func, T_SYMBOL);
|
442
|
-
struct fann*
|
517
|
+
struct fann *f;
|
443
518
|
Data_Get_Struct(self, struct fann, f);
|
444
519
|
fann_set_activation_function_hidden(f, sym_to_activation_function(activation_func));
|
445
520
|
return self;
|
@@ -447,37 +522,37 @@ static VALUE set_activation_function_hidden(VALUE self, VALUE activation_func)
|
|
447
522
|
|
448
523
|
/** call-seq: set_activation_function_layer(activation_func, layer)
|
449
524
|
|
450
|
-
Set the activation function for all the neurons in the layer number *layer*,
|
525
|
+
Set the activation function for all the neurons in the layer number *layer*,
|
451
526
|
counting the input layer as layer 0. activation_func must be one of the following symbols:
|
452
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
453
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
454
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
527
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
528
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
529
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
455
530
|
:sin, :cos
|
456
|
-
|
531
|
+
|
457
532
|
It is not possible to set activation functions for the neurons in the input layer.
|
458
|
-
*/
|
533
|
+
*/
|
459
534
|
static VALUE set_activation_function_layer(VALUE self, VALUE activation_func, VALUE layer)
|
460
535
|
{
|
461
536
|
Check_Type(activation_func, T_SYMBOL);
|
462
537
|
Check_Type(layer, T_FIXNUM);
|
463
|
-
struct fann*
|
538
|
+
struct fann *f;
|
464
539
|
Data_Get_Struct(self, struct fann, f);
|
465
540
|
fann_set_activation_function_layer(f, sym_to_activation_function(activation_func), NUM2INT(layer));
|
466
541
|
return self;
|
467
542
|
}
|
468
543
|
|
469
|
-
/** call-seq: get_activation_function(layer) -> return value
|
470
|
-
|
471
|
-
Get the activation function for neuron number *neuron* in layer number *layer*,
|
472
|
-
counting the input layer as layer 0.
|
544
|
+
/** call-seq: get_activation_function(layer) -> return value
|
473
545
|
|
474
|
-
|
546
|
+
Get the activation function for neuron number *neuron* in layer number *layer*,
|
547
|
+
counting the input layer as layer 0.
|
548
|
+
|
549
|
+
It is not possible to get activation functions for the neurons in the input layer.
|
475
550
|
*/
|
476
551
|
static VALUE get_activation_function(VALUE self, VALUE layer, VALUE neuron)
|
477
552
|
{
|
478
553
|
Check_Type(layer, T_FIXNUM);
|
479
554
|
Check_Type(neuron, T_FIXNUM);
|
480
|
-
struct fann*
|
555
|
+
struct fann *f;
|
481
556
|
Data_Get_Struct(self, struct fann, f);
|
482
557
|
fann_type val = fann_get_activation_function(f, NUM2INT(layer), NUM2INT(neuron));
|
483
558
|
return activation_function_to_sym(val);
|
@@ -486,29 +561,29 @@ static VALUE get_activation_function(VALUE self, VALUE layer, VALUE neuron)
|
|
486
561
|
/** call-seq: set_activation_function_output(activation_func)
|
487
562
|
|
488
563
|
Set the activation function for the output layer. activation_func must be one of the following symbols:
|
489
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
490
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
491
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
564
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
565
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
566
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
492
567
|
:sin, :cos*/
|
493
568
|
|
494
569
|
static VALUE set_activation_function_output(VALUE self, VALUE activation_func)
|
495
570
|
{
|
496
571
|
Check_Type(activation_func, T_SYMBOL);
|
497
|
-
struct fann*
|
572
|
+
struct fann *f;
|
498
573
|
Data_Get_Struct(self, struct fann, f);
|
499
574
|
fann_set_activation_function_output(f, sym_to_activation_function(activation_func));
|
500
575
|
return self;
|
501
576
|
}
|
502
577
|
|
503
|
-
/** call-seq: get_activation_steepness(layer, neuron) -> return value
|
504
|
-
|
505
|
-
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
|
578
|
+
/** call-seq: get_activation_steepness(layer, neuron) -> return value
|
579
|
+
|
580
|
+
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
|
506
581
|
*/
|
507
582
|
static VALUE get_activation_steepness(VALUE self, VALUE layer, VALUE neuron)
|
508
583
|
{
|
509
584
|
Check_Type(layer, T_FIXNUM);
|
510
585
|
Check_Type(neuron, T_FIXNUM);
|
511
|
-
struct fann*
|
586
|
+
struct fann *f;
|
512
587
|
Data_Get_Struct(self, struct fann, f);
|
513
588
|
fann_type val = fann_get_activation_steepness(f, NUM2INT(layer), NUM2INT(neuron));
|
514
589
|
return rb_float_new(val);
|
@@ -516,21 +591,21 @@ static VALUE get_activation_steepness(VALUE self, VALUE layer, VALUE neuron)
|
|
516
591
|
|
517
592
|
/** call-seq: set_activation_steepness(steepness, layer, neuron)
|
518
593
|
|
519
|
-
Set the activation steepness for neuron number {neuron} in layer number {layer},
|
594
|
+
Set the activation steepness for neuron number {neuron} in layer number {layer},
|
520
595
|
counting the input layer as layer 0.*/
|
521
596
|
static VALUE set_activation_steepness(VALUE self, VALUE steepness, VALUE layer, VALUE neuron)
|
522
597
|
{
|
523
598
|
Check_Type(steepness, T_FLOAT);
|
524
599
|
Check_Type(layer, T_FIXNUM);
|
525
600
|
Check_Type(neuron, T_FIXNUM);
|
526
|
-
|
527
|
-
struct fann*
|
601
|
+
|
602
|
+
struct fann *f;
|
528
603
|
Data_Get_Struct(self, struct fann, f);
|
529
604
|
fann_set_activation_steepness(f, NUM2DBL(steepness), NUM2INT(layer), NUM2INT(neuron));
|
530
605
|
return self;
|
531
606
|
}
|
532
607
|
|
533
|
-
/** call-seq: set_activation_steepness_hidden(arg) -> return value
|
608
|
+
/** call-seq: set_activation_steepness_hidden(arg) -> return value
|
534
609
|
|
535
610
|
Set the activation steepness in all of the hidden layers.*/
|
536
611
|
static VALUE set_activation_steepness_hidden(VALUE self, VALUE steepness)
|
@@ -540,14 +615,14 @@ static VALUE set_activation_steepness_hidden(VALUE self, VALUE steepness)
|
|
540
615
|
|
541
616
|
/** call-seq: set_activation_steepness_layer(steepness, layer)
|
542
617
|
|
543
|
-
Set the activation steepness all of the neurons in layer number *layer*,
|
618
|
+
Set the activation steepness all of the neurons in layer number *layer*,
|
544
619
|
counting the input layer as layer 0.*/
|
545
620
|
static VALUE set_activation_steepness_layer(VALUE self, VALUE steepness, VALUE layer)
|
546
621
|
{
|
547
622
|
Check_Type(steepness, T_FLOAT);
|
548
623
|
Check_Type(layer, T_FIXNUM);
|
549
|
-
|
550
|
-
struct fann*
|
624
|
+
|
625
|
+
struct fann *f;
|
551
626
|
Data_Get_Struct(self, struct fann, f);
|
552
627
|
fann_set_activation_steepness_layer(f, NUM2DBL(steepness), NUM2INT(layer));
|
553
628
|
return self;
|
@@ -575,8 +650,8 @@ static VALUE set_bit_fail_limit(VALUE self, VALUE bit_fail_limit)
|
|
575
650
|
SET_FANN_FLT(bit_fail_limit, fann_set_bit_fail_limit);
|
576
651
|
}
|
577
652
|
|
578
|
-
/** The decay is a small negative valued number which is the factor that the weights
|
579
|
-
should become smaller in each iteration during quickprop training. This is used
|
653
|
+
/** The decay is a small negative valued number which is the factor that the weights
|
654
|
+
should become smaller in each iteration during quickprop training. This is used
|
580
655
|
to make sure that the weights do not become too high during training.*/
|
581
656
|
static VALUE get_quickprop_decay(VALUE self)
|
582
657
|
{
|
@@ -591,8 +666,8 @@ static VALUE set_quickprop_decay(VALUE self, VALUE quickprop_decay)
|
|
591
666
|
SET_FANN_FLT(quickprop_decay, fann_set_quickprop_decay);
|
592
667
|
}
|
593
668
|
|
594
|
-
/** The mu factor is used to increase and decrease the step-size during quickprop training.
|
595
|
-
The mu factor should always be above 1, since it would otherwise decrease the step-size
|
669
|
+
/** The mu factor is used to increase and decrease the step-size during quickprop training.
|
670
|
+
The mu factor should always be above 1, since it would otherwise decrease the step-size
|
596
671
|
when it was suppose to increase it. */
|
597
672
|
static VALUE get_quickprop_mu(VALUE self)
|
598
673
|
{
|
@@ -607,7 +682,7 @@ static VALUE set_quickprop_mu(VALUE self, VALUE quickprop_mu)
|
|
607
682
|
SET_FANN_FLT(quickprop_mu, fann_set_quickprop_mu);
|
608
683
|
}
|
609
684
|
|
610
|
-
/** The increase factor is a value larger than 1, which is used to
|
685
|
+
/** The increase factor is a value larger than 1, which is used to
|
611
686
|
increase the step-size during RPROP training.*/
|
612
687
|
static VALUE get_rprop_increase_factor(VALUE self)
|
613
688
|
{
|
@@ -681,27 +756,27 @@ static VALUE set_rprop_delta_zero(VALUE self, VALUE rprop_delta_zero)
|
|
681
756
|
/** Return array of bias(es)*/
|
682
757
|
static VALUE get_bias_array(VALUE self)
|
683
758
|
{
|
684
|
-
struct fann*
|
759
|
+
struct fann *f;
|
685
760
|
unsigned int num_layers;
|
686
|
-
Data_Get_Struct
|
761
|
+
Data_Get_Struct(self, struct fann, f);
|
687
762
|
num_layers = fann_get_num_layers(f);
|
688
763
|
unsigned int layers[num_layers];
|
689
|
-
fann_get_bias_array(f, layers);
|
690
|
-
|
764
|
+
fann_get_bias_array(f, layers);
|
765
|
+
|
691
766
|
// Create ruby array & set outputs:
|
692
767
|
VALUE arr;
|
693
768
|
arr = rb_ary_new();
|
694
769
|
unsigned int i;
|
695
|
-
for (i=0; i<num_layers; i++)
|
770
|
+
for (i = 0; i < num_layers; i++)
|
696
771
|
{
|
697
772
|
rb_ary_push(arr, INT2NUM(layers[i]));
|
698
773
|
}
|
699
|
-
|
774
|
+
|
700
775
|
return arr;
|
701
776
|
}
|
702
777
|
|
703
|
-
/** The number of fail bits; means the number of output neurons which differ more
|
704
|
-
than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
|
778
|
+
/** The number of fail bits; means the number of output neurons which differ more
|
779
|
+
than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
|
705
780
|
The bits are counted in all of the training data, so this number can be higher than
|
706
781
|
the number of training data.*/
|
707
782
|
static VALUE get_bit_fail(VALUE self)
|
@@ -715,7 +790,7 @@ static VALUE get_connection_rate(VALUE self)
|
|
715
790
|
RETURN_FANN_INT(fann_get_connection_rate);
|
716
791
|
}
|
717
792
|
|
718
|
-
/** call-seq: get_neurons(layer) -> return value
|
793
|
+
/** call-seq: get_neurons(layer) -> return value
|
719
794
|
|
720
795
|
Return array<hash> where each array element is a hash
|
721
796
|
representing a neuron. It contains the following keys:
|
@@ -724,19 +799,19 @@ static VALUE get_connection_rate(VALUE self)
|
|
724
799
|
:sum=float -- The sum of the inputs multiplied with the weights
|
725
800
|
:value=float -- The value of the activation fuction applied to the sum
|
726
801
|
:connections=array<int> -- indices of connected neurons(inputs)
|
727
|
-
|
802
|
+
|
728
803
|
This could be done more elegantly (e.g., defining more ruby ext classes).
|
729
804
|
This method does not directly correlate to anything in FANN, and accesses
|
730
|
-
structs that are not guaranteed to not change.
|
805
|
+
structs that are not guaranteed to not change.
|
731
806
|
*/
|
732
807
|
static VALUE get_neurons(VALUE self, VALUE layer)
|
733
808
|
{
|
734
809
|
struct fann_layer *layer_it;
|
735
810
|
struct fann_neuron *neuron_it;
|
736
|
-
|
737
|
-
struct fann*
|
811
|
+
|
812
|
+
struct fann *f;
|
738
813
|
unsigned int i;
|
739
|
-
Data_Get_Struct
|
814
|
+
Data_Get_Struct(self, struct fann, f);
|
740
815
|
|
741
816
|
VALUE neuron_array = rb_ary_new();
|
742
817
|
VALUE activation_function_sym = ID2SYM(rb_intern("activation_function"));
|
@@ -746,22 +821,23 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
746
821
|
VALUE value_sym = ID2SYM(rb_intern("value"));
|
747
822
|
VALUE connections_sym = ID2SYM(rb_intern("connections"));
|
748
823
|
unsigned int layer_num = 0;
|
749
|
-
|
750
|
-
|
751
|
-
|
752
|
-
for(layer_it = f->first_layer; layer_it != f->last_layer; layer_it++)
|
824
|
+
|
825
|
+
int nuke_bias_neuron = (fann_get_network_type(f) == FANN_NETTYPE_LAYER);
|
826
|
+
for (layer_it = f->first_layer; layer_it != f->last_layer; layer_it++)
|
753
827
|
{
|
754
|
-
for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
828
|
+
for (neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
|
755
829
|
{
|
756
|
-
if (nuke_bias_neuron && (neuron_it==(layer_it->last_neuron)-1))
|
830
|
+
if (nuke_bias_neuron && (neuron_it == (layer_it->last_neuron) - 1))
|
831
|
+
continue;
|
757
832
|
// Create array of connection indicies:
|
758
833
|
VALUE connection_array = rb_ary_new();
|
759
|
-
for (i = neuron_it->first_con; i < neuron_it->last_con; i++)
|
760
|
-
|
834
|
+
for (i = neuron_it->first_con; i < neuron_it->last_con; i++)
|
835
|
+
{
|
836
|
+
rb_ary_push(connection_array, INT2NUM(f->connections[i] - f->first_layer->first_neuron));
|
761
837
|
}
|
762
838
|
|
763
839
|
VALUE neuron = rb_hash_new();
|
764
|
-
|
840
|
+
|
765
841
|
// Set attributes on hash & push on array:
|
766
842
|
rb_hash_aset(neuron, activation_function_sym, activation_function_to_sym(neuron_it->activation_function));
|
767
843
|
rb_hash_aset(neuron, activation_steepness_sym, rb_float_new(neuron_it->activation_steepness));
|
@@ -769,47 +845,46 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
769
845
|
rb_hash_aset(neuron, sum_sym, rb_float_new(neuron_it->sum));
|
770
846
|
rb_hash_aset(neuron, value_sym, rb_float_new(neuron_it->value));
|
771
847
|
rb_hash_aset(neuron, connections_sym, connection_array);
|
772
|
-
|
773
|
-
rb_ary_push(neuron_array, neuron);
|
848
|
+
|
849
|
+
rb_ary_push(neuron_array, neuron);
|
774
850
|
}
|
775
851
|
++layer_num;
|
776
852
|
}
|
777
853
|
|
778
|
-
|
779
|
-
|
780
|
-
|
781
|
-
|
782
|
-
|
783
|
-
|
784
|
-
|
785
|
-
|
786
|
-
|
787
|
-
|
788
|
-
|
854
|
+
// switch (fann_get_network_type(ann)) {
|
855
|
+
// case FANN_NETTYPE_LAYER: {
|
856
|
+
// /* Report one bias in each layer except the last */
|
857
|
+
// if (layer_it != ann->last_layer-1)
|
858
|
+
// *bias = 1;
|
859
|
+
// else
|
860
|
+
// *bias = 0;
|
861
|
+
// break;
|
862
|
+
// }
|
863
|
+
// case FANN_NETTYPE_SHORTCUT: {
|
789
864
|
|
790
|
-
return neuron_array;
|
865
|
+
return neuron_array;
|
791
866
|
}
|
792
867
|
|
793
868
|
/** Get list of layers in array format where each element contains number of neurons in that layer*/
|
794
869
|
static VALUE get_layer_array(VALUE self)
|
795
870
|
{
|
796
|
-
struct fann*
|
871
|
+
struct fann *f;
|
797
872
|
unsigned int num_layers;
|
798
|
-
Data_Get_Struct
|
873
|
+
Data_Get_Struct(self, struct fann, f);
|
799
874
|
num_layers = fann_get_num_layers(f);
|
800
875
|
unsigned int layers[num_layers];
|
801
|
-
fann_get_layer_array(f, layers);
|
802
|
-
|
876
|
+
fann_get_layer_array(f, layers);
|
877
|
+
|
803
878
|
// Create ruby array & set outputs:
|
804
879
|
VALUE arr;
|
805
880
|
arr = rb_ary_new();
|
806
881
|
unsigned int i;
|
807
|
-
for (i=0; i<num_layers; i++)
|
882
|
+
for (i = 0; i < num_layers; i++)
|
808
883
|
{
|
809
884
|
rb_ary_push(arr, INT2NUM(layers[i]));
|
810
885
|
}
|
811
|
-
|
812
|
-
|
886
|
+
|
887
|
+
return arr;
|
813
888
|
}
|
814
889
|
|
815
890
|
/** Reads the mean square error from the network.*/
|
@@ -819,33 +894,33 @@ static VALUE get_MSE(VALUE self)
|
|
819
894
|
}
|
820
895
|
|
821
896
|
/** Resets the mean square error from the network.
|
822
|
-
This function also resets the number of bits that fail.*/
|
897
|
+
This function also resets the number of bits that fail.*/
|
823
898
|
static VALUE reset_MSE(VALUE self)
|
824
899
|
{
|
825
|
-
struct fann*
|
826
|
-
Data_Get_Struct
|
900
|
+
struct fann *f;
|
901
|
+
Data_Get_Struct(self, struct fann, f);
|
827
902
|
fann_reset_MSE(f);
|
828
|
-
return self;
|
903
|
+
return self;
|
829
904
|
}
|
830
905
|
|
831
906
|
/** Get the type of network. Returns as ruby symbol (one of :shortcut, :layer)*/
|
832
907
|
static VALUE get_network_type(VALUE self)
|
833
908
|
{
|
834
|
-
struct fann*
|
909
|
+
struct fann *f;
|
835
910
|
enum fann_nettype_enum net_type;
|
836
911
|
VALUE ret_val;
|
837
|
-
Data_Get_Struct
|
912
|
+
Data_Get_Struct(self, struct fann, f);
|
838
913
|
|
839
914
|
net_type = fann_get_network_type(f);
|
840
|
-
|
841
|
-
if(net_type==FANN_NETTYPE_LAYER)
|
915
|
+
|
916
|
+
if (net_type == FANN_NETTYPE_LAYER)
|
842
917
|
{
|
843
918
|
ret_val = ID2SYM(rb_intern("layer")); // (rb_str_new2("FANN_NETTYPE_LAYER"));
|
844
919
|
}
|
845
|
-
else if(net_type==FANN_NETTYPE_SHORTCUT)
|
920
|
+
else if (net_type == FANN_NETTYPE_SHORTCUT)
|
846
921
|
{
|
847
922
|
ret_val = ID2SYM(rb_intern("shortcut")); // (rb_str_new2("FANN_NETTYPE_SHORTCUT"));
|
848
|
-
}
|
923
|
+
}
|
849
924
|
return ret_val;
|
850
925
|
}
|
851
926
|
|
@@ -854,7 +929,7 @@ static VALUE get_num_input(VALUE self)
|
|
854
929
|
{
|
855
930
|
RETURN_FANN_INT(fann_get_num_input);
|
856
931
|
}
|
857
|
-
|
932
|
+
|
858
933
|
/** Get the number of layers in the network.*/
|
859
934
|
static VALUE get_num_layers(VALUE self)
|
860
935
|
{
|
@@ -886,43 +961,48 @@ static VALUE get_total_neurons(VALUE self)
|
|
886
961
|
static VALUE set_train_error_function(VALUE self, VALUE train_error_function)
|
887
962
|
{
|
888
963
|
Check_Type(train_error_function, T_SYMBOL);
|
889
|
-
|
890
|
-
ID id=SYM2ID(train_error_function);
|
964
|
+
|
965
|
+
ID id = SYM2ID(train_error_function);
|
891
966
|
enum fann_errorfunc_enum fann_train_error_function;
|
892
967
|
|
893
|
-
if(id==rb_intern("linear"))
|
894
|
-
|
895
|
-
|
896
|
-
|
897
|
-
|
968
|
+
if (id == rb_intern("linear"))
|
969
|
+
{
|
970
|
+
fann_train_error_function = FANN_ERRORFUNC_LINEAR;
|
971
|
+
}
|
972
|
+
else if (id == rb_intern("tanh"))
|
973
|
+
{
|
974
|
+
fann_train_error_function = FANN_ERRORFUNC_TANH;
|
975
|
+
}
|
976
|
+
else
|
977
|
+
{
|
898
978
|
rb_raise(rb_eRuntimeError, "Unrecognized train error function: [%s]", rb_id2name(SYM2ID(train_error_function)));
|
899
|
-
}
|
979
|
+
}
|
900
980
|
|
901
|
-
struct fann*
|
902
|
-
Data_Get_Struct
|
981
|
+
struct fann *f;
|
982
|
+
Data_Get_Struct(self, struct fann, f);
|
903
983
|
fann_set_train_error_function(f, fann_train_error_function);
|
904
|
-
return self;
|
984
|
+
return self;
|
905
985
|
}
|
906
986
|
|
907
987
|
/** Returns the error function used during training. One of the following symbols:
|
908
|
-
:linear, :tanh*/
|
988
|
+
:linear, :tanh*/
|
909
989
|
static VALUE get_train_error_function(VALUE self)
|
910
990
|
{
|
911
|
-
struct fann*
|
991
|
+
struct fann *f;
|
912
992
|
enum fann_errorfunc_enum train_error;
|
913
993
|
VALUE ret_val;
|
914
|
-
Data_Get_Struct
|
994
|
+
Data_Get_Struct(self, struct fann, f);
|
915
995
|
|
916
996
|
train_error = fann_get_train_error_function(f);
|
917
|
-
|
918
|
-
if(train_error==FANN_ERRORFUNC_LINEAR)
|
997
|
+
|
998
|
+
if (train_error == FANN_ERRORFUNC_LINEAR)
|
919
999
|
{
|
920
|
-
ret_val = ID2SYM(rb_intern("linear"));
|
1000
|
+
ret_val = ID2SYM(rb_intern("linear"));
|
921
1001
|
}
|
922
|
-
else
|
1002
|
+
else
|
923
1003
|
{
|
924
|
-
ret_val = ID2SYM(rb_intern("tanh"));
|
925
|
-
}
|
1004
|
+
ret_val = ID2SYM(rb_intern("tanh"));
|
1005
|
+
}
|
926
1006
|
return ret_val;
|
927
1007
|
}
|
928
1008
|
|
@@ -933,113 +1013,133 @@ static VALUE get_train_error_function(VALUE self)
|
|
933
1013
|
static VALUE set_training_algorithm(VALUE self, VALUE train_error_function)
|
934
1014
|
{
|
935
1015
|
Check_Type(train_error_function, T_SYMBOL);
|
936
|
-
|
937
|
-
ID id=SYM2ID(train_error_function);
|
1016
|
+
|
1017
|
+
ID id = SYM2ID(train_error_function);
|
938
1018
|
enum fann_train_enum fann_train_algorithm;
|
939
1019
|
|
940
|
-
if(id==rb_intern("incremental"))
|
941
|
-
|
942
|
-
|
943
|
-
|
944
|
-
|
945
|
-
|
946
|
-
|
947
|
-
|
948
|
-
|
1020
|
+
if (id == rb_intern("incremental"))
|
1021
|
+
{
|
1022
|
+
fann_train_algorithm = FANN_TRAIN_INCREMENTAL;
|
1023
|
+
}
|
1024
|
+
else if (id == rb_intern("batch"))
|
1025
|
+
{
|
1026
|
+
fann_train_algorithm = FANN_TRAIN_BATCH;
|
1027
|
+
}
|
1028
|
+
else if (id == rb_intern("rprop"))
|
1029
|
+
{
|
1030
|
+
fann_train_algorithm = FANN_TRAIN_RPROP;
|
1031
|
+
}
|
1032
|
+
else if (id == rb_intern("quickprop"))
|
1033
|
+
{
|
1034
|
+
fann_train_algorithm = FANN_TRAIN_QUICKPROP;
|
1035
|
+
}
|
1036
|
+
else
|
1037
|
+
{
|
949
1038
|
rb_raise(rb_eRuntimeError, "Unrecognized training algorithm function: [%s]", rb_id2name(SYM2ID(train_error_function)));
|
950
|
-
}
|
1039
|
+
}
|
951
1040
|
|
952
|
-
struct fann*
|
953
|
-
Data_Get_Struct
|
1041
|
+
struct fann *f;
|
1042
|
+
Data_Get_Struct(self, struct fann, f);
|
954
1043
|
fann_set_training_algorithm(f, fann_train_algorithm);
|
955
|
-
return self;
|
1044
|
+
return self;
|
956
1045
|
}
|
957
1046
|
|
958
1047
|
/** Returns the training algorithm. One of the following symbols:
|
959
1048
|
:incremental, :batch, :rprop, :quickprop */
|
960
1049
|
static VALUE get_training_algorithm(VALUE self)
|
961
1050
|
{
|
962
|
-
struct fann*
|
1051
|
+
struct fann *f;
|
963
1052
|
enum fann_train_enum fann_train_algorithm;
|
964
1053
|
VALUE ret_val;
|
965
|
-
Data_Get_Struct
|
1054
|
+
Data_Get_Struct(self, struct fann, f);
|
966
1055
|
|
967
1056
|
fann_train_algorithm = fann_get_training_algorithm(f);
|
968
|
-
|
969
|
-
if(fann_train_algorithm==FANN_TRAIN_INCREMENTAL)
|
1057
|
+
|
1058
|
+
if (fann_train_algorithm == FANN_TRAIN_INCREMENTAL)
|
1059
|
+
{
|
970
1060
|
ret_val = ID2SYM(rb_intern("incremental"));
|
971
|
-
}
|
972
|
-
|
973
|
-
|
974
|
-
ret_val = ID2SYM(rb_intern("
|
975
|
-
}
|
976
|
-
|
977
|
-
|
1061
|
+
}
|
1062
|
+
else if (fann_train_algorithm == FANN_TRAIN_BATCH)
|
1063
|
+
{
|
1064
|
+
ret_val = ID2SYM(rb_intern("batch"));
|
1065
|
+
}
|
1066
|
+
else if (fann_train_algorithm == FANN_TRAIN_RPROP)
|
1067
|
+
{
|
1068
|
+
ret_val = ID2SYM(rb_intern("rprop"));
|
1069
|
+
}
|
1070
|
+
else if (fann_train_algorithm == FANN_TRAIN_QUICKPROP)
|
1071
|
+
{
|
1072
|
+
ret_val = ID2SYM(rb_intern("quickprop"));
|
1073
|
+
}
|
978
1074
|
return ret_val;
|
979
1075
|
}
|
980
1076
|
|
981
|
-
/** call-seq: set_train_stop_function(train_stop_function) -> return value
|
1077
|
+
/** call-seq: set_train_stop_function(train_stop_function) -> return value
|
982
1078
|
|
983
1079
|
Set the training stop function. One of the following symbols:
|
984
1080
|
:mse, :bit */
|
985
1081
|
static VALUE set_train_stop_function(VALUE self, VALUE train_stop_function)
|
986
1082
|
{
|
987
1083
|
Check_Type(train_stop_function, T_SYMBOL);
|
988
|
-
ID id=SYM2ID(train_stop_function);
|
1084
|
+
ID id = SYM2ID(train_stop_function);
|
989
1085
|
enum fann_stopfunc_enum fann_train_stop_function;
|
990
1086
|
|
991
|
-
if(id==rb_intern("mse"))
|
992
|
-
|
993
|
-
|
994
|
-
|
995
|
-
|
1087
|
+
if (id == rb_intern("mse"))
|
1088
|
+
{
|
1089
|
+
fann_train_stop_function = FANN_STOPFUNC_MSE;
|
1090
|
+
}
|
1091
|
+
else if (id == rb_intern("bit"))
|
1092
|
+
{
|
1093
|
+
fann_train_stop_function = FANN_STOPFUNC_BIT;
|
1094
|
+
}
|
1095
|
+
else
|
1096
|
+
{
|
996
1097
|
rb_raise(rb_eRuntimeError, "Unrecognized stop function: [%s]", rb_id2name(SYM2ID(train_stop_function)));
|
997
|
-
}
|
1098
|
+
}
|
998
1099
|
|
999
|
-
struct fann*
|
1000
|
-
Data_Get_Struct
|
1100
|
+
struct fann *f;
|
1101
|
+
Data_Get_Struct(self, struct fann, f);
|
1001
1102
|
fann_set_train_stop_function(f, fann_train_stop_function);
|
1002
|
-
return self;
|
1103
|
+
return self;
|
1003
1104
|
}
|
1004
1105
|
|
1005
1106
|
/** Returns the training stop function. One of the following symbols:
|
1006
1107
|
:mse, :bit */
|
1007
1108
|
static VALUE get_train_stop_function(VALUE self)
|
1008
1109
|
{
|
1009
|
-
struct fann*
|
1110
|
+
struct fann *f;
|
1010
1111
|
enum fann_stopfunc_enum train_stop;
|
1011
1112
|
VALUE ret_val;
|
1012
|
-
Data_Get_Struct
|
1113
|
+
Data_Get_Struct(self, struct fann, f);
|
1013
1114
|
|
1014
1115
|
train_stop = fann_get_train_stop_function(f);
|
1015
|
-
|
1016
|
-
if(train_stop==FANN_STOPFUNC_MSE)
|
1116
|
+
|
1117
|
+
if (train_stop == FANN_STOPFUNC_MSE)
|
1017
1118
|
{
|
1018
1119
|
ret_val = ID2SYM(rb_intern("mse")); // (rb_str_new2("FANN_NETTYPE_LAYER"));
|
1019
1120
|
}
|
1020
1121
|
else // if(train_stop==FANN_STOPFUNC_BIT)
|
1021
1122
|
{
|
1022
1123
|
ret_val = ID2SYM(rb_intern("bit")); // (rb_str_new2("FANN_NETTYPE_SHORTCUT"));
|
1023
|
-
}
|
1124
|
+
}
|
1024
1125
|
return ret_val;
|
1025
1126
|
}
|
1026
1127
|
|
1027
|
-
|
1028
|
-
/** Will print the connections of the ann in a compact matrix,
|
1128
|
+
/** Will print the connections of the ann in a compact matrix,
|
1029
1129
|
for easy viewing of the internals of the ann. */
|
1030
1130
|
static VALUE print_connections(VALUE self)
|
1031
1131
|
{
|
1032
|
-
struct fann*
|
1033
|
-
Data_Get_Struct
|
1132
|
+
struct fann *f;
|
1133
|
+
Data_Get_Struct(self, struct fann, f);
|
1034
1134
|
fann_print_connections(f);
|
1035
|
-
return self;
|
1135
|
+
return self;
|
1036
1136
|
}
|
1037
1137
|
|
1038
1138
|
/** Print current NN parameters to stdout */
|
1039
1139
|
static VALUE print_parameters(VALUE self)
|
1040
1140
|
{
|
1041
|
-
struct fann*
|
1042
|
-
Data_Get_Struct
|
1141
|
+
struct fann *f;
|
1142
|
+
Data_Get_Struct(self, struct fann, f);
|
1043
1143
|
fann_print_parameters(f);
|
1044
1144
|
return Qnil;
|
1045
1145
|
}
|
@@ -1051,64 +1151,63 @@ static VALUE randomize_weights(VALUE self, VALUE min_weight, VALUE max_weight)
|
|
1051
1151
|
{
|
1052
1152
|
Check_Type(min_weight, T_FLOAT);
|
1053
1153
|
Check_Type(max_weight, T_FLOAT);
|
1054
|
-
struct fann*
|
1055
|
-
Data_Get_Struct
|
1154
|
+
struct fann *f;
|
1155
|
+
Data_Get_Struct(self, struct fann, f);
|
1056
1156
|
fann_randomize_weights(f, NUM2DBL(min_weight), NUM2DBL(max_weight));
|
1057
|
-
return self;
|
1157
|
+
return self;
|
1058
1158
|
}
|
1059
1159
|
|
1060
|
-
/** call-seq: run(inputs) -> return value
|
1160
|
+
/** call-seq: run(inputs) -> return value
|
1061
1161
|
|
1062
|
-
Run neural net on array<Float> of inputs with current parameters.
|
1162
|
+
Run neural net on array<Float> of inputs with current parameters.
|
1063
1163
|
Returns array<Float> as output */
|
1064
|
-
static VALUE run
|
1164
|
+
static VALUE run(VALUE self, VALUE inputs)
|
1065
1165
|
{
|
1066
1166
|
Check_Type(inputs, T_ARRAY);
|
1067
1167
|
|
1068
|
-
|
1168
|
+
struct fann *f;
|
1069
1169
|
unsigned int i;
|
1070
|
-
fann_type*
|
1071
|
-
|
1170
|
+
fann_type *outputs;
|
1171
|
+
|
1072
1172
|
// Convert inputs to type needed for NN:
|
1073
|
-
unsigned int len =
|
1173
|
+
unsigned int len = RARRAY_LEN(inputs);
|
1074
1174
|
fann_type fann_inputs[len];
|
1075
|
-
for (i=0; i<len; i++)
|
1175
|
+
for (i = 0; i < len; i++)
|
1076
1176
|
{
|
1077
1177
|
fann_inputs[i] = NUM2DBL(RARRAY_PTR(inputs)[i]);
|
1078
1178
|
}
|
1079
|
-
|
1080
|
-
|
1179
|
+
|
1081
1180
|
// Obtain NN & run method:
|
1082
|
-
|
1181
|
+
Data_Get_Struct(self, struct fann, f);
|
1083
1182
|
outputs = fann_run(f, fann_inputs);
|
1084
1183
|
|
1085
1184
|
// Create ruby array & set outputs:
|
1086
1185
|
VALUE arr;
|
1087
1186
|
arr = rb_ary_new();
|
1088
|
-
unsigned int output_len=fann_get_num_output(f);
|
1089
|
-
for (i=0; i<output_len; i++)
|
1090
|
-
{
|
1187
|
+
unsigned int output_len = fann_get_num_output(f);
|
1188
|
+
for (i = 0; i < output_len; i++)
|
1189
|
+
{
|
1091
1190
|
rb_ary_push(arr, rb_float_new(outputs[i]));
|
1092
1191
|
}
|
1093
|
-
|
1094
|
-
|
1192
|
+
|
1193
|
+
return arr;
|
1095
1194
|
}
|
1096
1195
|
|
1097
|
-
/** call-seq: init_weights(train_data) -> return value
|
1196
|
+
/** call-seq: init_weights(train_data) -> return value
|
1098
1197
|
|
1099
1198
|
Initialize the weights using Widrow + Nguyen's algorithm. */
|
1100
1199
|
static VALUE init_weights(VALUE self, VALUE train_data)
|
1101
1200
|
{
|
1102
|
-
|
1201
|
+
|
1103
1202
|
Check_Type(train_data, T_DATA);
|
1104
|
-
|
1105
|
-
struct fann* f;
|
1106
|
-
struct fann_train_data* t;
|
1107
|
-
Data_Get_Struct (self, struct fann, f);
|
1108
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1109
1203
|
|
1110
|
-
|
1111
|
-
|
1204
|
+
struct fann *f;
|
1205
|
+
struct fann_train_data *t;
|
1206
|
+
Data_Get_Struct(self, struct fann, f);
|
1207
|
+
Data_Get_Struct(train_data, struct fann_train_data, t);
|
1208
|
+
|
1209
|
+
fann_init_weights(f, t);
|
1210
|
+
return self;
|
1112
1211
|
}
|
1113
1212
|
|
1114
1213
|
/** call-seq: train(input, expected_output)
|
@@ -1121,21 +1220,23 @@ static VALUE train(VALUE self, VALUE input, VALUE expected_output)
|
|
1121
1220
|
Check_Type(input, T_ARRAY);
|
1122
1221
|
Check_Type(expected_output, T_ARRAY);
|
1123
1222
|
|
1124
|
-
struct fann*
|
1223
|
+
struct fann *f;
|
1125
1224
|
Data_Get_Struct(self, struct fann, f);
|
1126
1225
|
|
1127
|
-
unsigned int num_input =
|
1128
|
-
unsigned int num_output =
|
1226
|
+
unsigned int num_input = RARRAY_LEN(input);
|
1227
|
+
unsigned int num_output = RARRAY_LEN(expected_output);
|
1129
1228
|
|
1130
1229
|
fann_type data_input[num_input], data_output[num_output];
|
1131
1230
|
|
1132
1231
|
unsigned int i;
|
1133
1232
|
|
1134
|
-
for (i = 0; i < num_input; i++)
|
1233
|
+
for (i = 0; i < num_input; i++)
|
1234
|
+
{
|
1135
1235
|
data_input[i] = NUM2DBL(RARRAY_PTR(input)[i]);
|
1136
1236
|
}
|
1137
1237
|
|
1138
|
-
for (i = 0; i < num_output; i++)
|
1238
|
+
for (i = 0; i < num_output; i++)
|
1239
|
+
{
|
1139
1240
|
data_output[i] = NUM2DBL(RARRAY_PTR(expected_output)[i]);
|
1140
1241
|
}
|
1141
1242
|
|
@@ -1157,42 +1258,42 @@ static VALUE train_on_data(VALUE self, VALUE train_data, VALUE max_epochs, VALUE
|
|
1157
1258
|
Check_Type(max_epochs, T_FIXNUM);
|
1158
1259
|
Check_Type(epochs_between_reports, T_FIXNUM);
|
1159
1260
|
Check_Type(desired_error, T_FLOAT);
|
1160
|
-
|
1161
|
-
struct fann*
|
1162
|
-
struct fann_train_data*
|
1163
|
-
Data_Get_Struct
|
1164
|
-
Data_Get_Struct
|
1261
|
+
|
1262
|
+
struct fann *f;
|
1263
|
+
struct fann_train_data *t;
|
1264
|
+
Data_Get_Struct(self, struct fann, f);
|
1265
|
+
Data_Get_Struct(train_data, struct fann_train_data, t);
|
1165
1266
|
|
1166
1267
|
unsigned int fann_max_epochs = NUM2INT(max_epochs);
|
1167
1268
|
unsigned int fann_epochs_between_reports = NUM2INT(epochs_between_reports);
|
1168
|
-
float fann_desired_error = NUM2DBL(desired_error);
|
1269
|
+
float fann_desired_error = NUM2DBL(desired_error);
|
1169
1270
|
fann_train_on_data(f, t, fann_max_epochs, fann_epochs_between_reports, fann_desired_error);
|
1170
1271
|
return rb_int_new(0);
|
1171
1272
|
}
|
1172
1273
|
|
1173
|
-
/** call-seq: train_epoch(train_data) -> return value
|
1274
|
+
/** call-seq: train_epoch(train_data) -> return value
|
1174
1275
|
|
1175
1276
|
Train one epoch with a set of training data, created with RubyFann::TrainData.new */
|
1176
1277
|
static VALUE train_epoch(VALUE self, VALUE train_data)
|
1177
1278
|
{
|
1178
1279
|
Check_Type(train_data, T_DATA);
|
1179
|
-
struct fann*
|
1180
|
-
struct fann_train_data*
|
1181
|
-
Data_Get_Struct
|
1182
|
-
Data_Get_Struct
|
1280
|
+
struct fann *f;
|
1281
|
+
struct fann_train_data *t;
|
1282
|
+
Data_Get_Struct(self, struct fann, f);
|
1283
|
+
Data_Get_Struct(train_data, struct fann_train_data, t);
|
1183
1284
|
return rb_float_new(fann_train_epoch(f, t));
|
1184
1285
|
}
|
1185
1286
|
|
1186
|
-
/** call-seq: test_data(train_data) -> return value
|
1287
|
+
/** call-seq: test_data(train_data) -> return value
|
1187
1288
|
|
1188
1289
|
Test a set of training data and calculates the MSE for the training data. */
|
1189
1290
|
static VALUE test_data(VALUE self, VALUE train_data)
|
1190
1291
|
{
|
1191
1292
|
Check_Type(train_data, T_DATA);
|
1192
|
-
struct fann*
|
1193
|
-
struct fann_train_data*
|
1194
|
-
Data_Get_Struct
|
1195
|
-
Data_Get_Struct
|
1293
|
+
struct fann *f;
|
1294
|
+
struct fann_train_data *t;
|
1295
|
+
Data_Get_Struct(self, struct fann, f);
|
1296
|
+
Data_Get_Struct(train_data, struct fann_train_data, t);
|
1196
1297
|
return rb_float_new(fann_test_data(f, t));
|
1197
1298
|
}
|
1198
1299
|
|
@@ -1204,7 +1305,7 @@ static VALUE test_data(VALUE self, VALUE train_data)
|
|
1204
1305
|
// Data_Get_Struct (self, struct fann, f);
|
1205
1306
|
// return INT2NUM(fann_get_decimal_point(f));
|
1206
1307
|
// }
|
1207
|
-
|
1308
|
+
|
1208
1309
|
// returns the multiplier that fix point data is multiplied with.
|
1209
1310
|
|
1210
1311
|
// Only available in fixed-point mode, which we don't need:
|
@@ -1228,19 +1329,19 @@ static VALUE cascadetrain_on_data(VALUE self, VALUE train_data, VALUE max_neuron
|
|
1228
1329
|
Check_Type(max_neurons, T_FIXNUM);
|
1229
1330
|
Check_Type(neurons_between_reports, T_FIXNUM);
|
1230
1331
|
Check_Type(desired_error, T_FLOAT);
|
1231
|
-
|
1232
|
-
struct fann*
|
1233
|
-
struct fann_train_data*
|
1234
|
-
Data_Get_Struct
|
1235
|
-
Data_Get_Struct
|
1332
|
+
|
1333
|
+
struct fann *f;
|
1334
|
+
struct fann_train_data *t;
|
1335
|
+
Data_Get_Struct(self, struct fann, f);
|
1336
|
+
Data_Get_Struct(train_data, struct fann_train_data, t);
|
1236
1337
|
|
1237
1338
|
unsigned int fann_max_neurons = NUM2INT(max_neurons);
|
1238
1339
|
unsigned int fann_neurons_between_reports = NUM2INT(neurons_between_reports);
|
1239
1340
|
float fann_desired_error = NUM2DBL(desired_error);
|
1240
|
-
|
1341
|
+
|
1241
1342
|
fann_cascadetrain_on_data(f, t, fann_max_neurons, fann_neurons_between_reports, fann_desired_error);
|
1242
|
-
return self;
|
1243
|
-
}
|
1343
|
+
return self;
|
1344
|
+
}
|
1244
1345
|
|
1245
1346
|
/** The cascade output change fraction is a number between 0 and 1 */
|
1246
1347
|
static VALUE get_cascade_output_change_fraction(VALUE self)
|
@@ -1256,7 +1357,7 @@ static VALUE set_cascade_output_change_fraction(VALUE self, VALUE cascade_output
|
|
1256
1357
|
SET_FANN_FLT(cascade_output_change_fraction, fann_set_cascade_output_change_fraction);
|
1257
1358
|
}
|
1258
1359
|
|
1259
|
-
/** The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1360
|
+
/** The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1260
1361
|
continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>. */
|
1261
1362
|
static VALUE get_cascade_output_stagnation_epochs(VALUE self)
|
1262
1363
|
{
|
@@ -1265,7 +1366,7 @@ static VALUE get_cascade_output_stagnation_epochs(VALUE self)
|
|
1265
1366
|
|
1266
1367
|
/** call-seq: set_cascade_output_stagnation_epochs(cascade_output_stagnation_epochs)
|
1267
1368
|
|
1268
|
-
The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1369
|
+
The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1269
1370
|
continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>. */
|
1270
1371
|
static VALUE set_cascade_output_stagnation_epochs(VALUE self, VALUE cascade_output_stagnation_epochs)
|
1271
1372
|
{
|
@@ -1300,7 +1401,7 @@ static VALUE get_cascade_candidate_stagnation_epochs(VALUE self)
|
|
1300
1401
|
static VALUE set_cascade_candidate_stagnation_epochs(VALUE self, VALUE cascade_candidate_stagnation_epochs)
|
1301
1402
|
{
|
1302
1403
|
SET_FANN_UINT(cascade_candidate_stagnation_epochs, fann_set_cascade_candidate_stagnation_epochs);
|
1303
|
-
}
|
1404
|
+
}
|
1304
1405
|
|
1305
1406
|
/** The weight multiplier is a parameter which is used to multiply the weights from the candidate neuron
|
1306
1407
|
before adding the neuron to the neural network. This parameter is usually between 0 and 1, and is used
|
@@ -1352,7 +1453,7 @@ static VALUE set_cascade_max_out_epochs(VALUE self, VALUE cascade_max_out_epochs
|
|
1352
1453
|
SET_FANN_UINT(cascade_max_out_epochs, fann_set_cascade_max_out_epochs);
|
1353
1454
|
}
|
1354
1455
|
|
1355
|
-
/** The maximum candidate epochs determines the maximum number of epochs the input
|
1456
|
+
/** The maximum candidate epochs determines the maximum number of epochs the input
|
1356
1457
|
connections to the candidates may be trained before adding a new candidate neuron. */
|
1357
1458
|
static VALUE get_cascade_max_cand_epochs(VALUE self)
|
1358
1459
|
{
|
@@ -1361,7 +1462,7 @@ static VALUE get_cascade_max_cand_epochs(VALUE self)
|
|
1361
1462
|
|
1362
1463
|
/** call-seq: set_cascade_max_cand_epochs(cascade_max_cand_epochs)
|
1363
1464
|
|
1364
|
-
The maximum candidate epochs determines the maximum number of epochs the input
|
1465
|
+
The maximum candidate epochs determines the maximum number of epochs the input
|
1365
1466
|
connections to the candidates may be trained before adding a new candidate neuron. */
|
1366
1467
|
static VALUE set_cascade_max_cand_epochs(VALUE self, VALUE cascade_max_cand_epochs)
|
1367
1468
|
{
|
@@ -1383,18 +1484,18 @@ static VALUE get_cascade_activation_functions_count(VALUE self)
|
|
1383
1484
|
|
1384
1485
|
/** The learning rate is used to determine how aggressive training should be for some of the
|
1385
1486
|
training algorithms (:incremental, :batch, :quickprop).
|
1386
|
-
Do however note that it is not used in :rprop.
|
1487
|
+
Do however note that it is not used in :rprop.
|
1387
1488
|
The default learning rate is 0.7. */
|
1388
1489
|
static VALUE get_learning_rate(VALUE self)
|
1389
1490
|
{
|
1390
1491
|
RETURN_FANN_FLT(fann_get_learning_rate);
|
1391
1492
|
}
|
1392
1493
|
|
1393
|
-
/** call-seq: set_learning_rate(learning_rate) -> return value
|
1494
|
+
/** call-seq: set_learning_rate(learning_rate) -> return value
|
1394
1495
|
|
1395
1496
|
The learning rate is used to determine how aggressive training should be for some of the
|
1396
1497
|
training algorithms (:incremental, :batch, :quickprop).
|
1397
|
-
Do however note that it is not used in :rprop.
|
1498
|
+
Do however note that it is not used in :rprop.
|
1398
1499
|
The default learning rate is 0.7. */
|
1399
1500
|
static VALUE set_learning_rate(VALUE self, VALUE learning_rate)
|
1400
1501
|
{
|
@@ -1407,8 +1508,8 @@ static VALUE get_learning_momentum(VALUE self)
|
|
1407
1508
|
RETURN_FANN_FLT(fann_get_learning_momentum);
|
1408
1509
|
}
|
1409
1510
|
|
1410
|
-
/** call-seq: set_learning_momentum(learning_momentum) -> return value
|
1411
|
-
|
1511
|
+
/** call-seq: set_learning_momentum(learning_momentum) -> return value
|
1512
|
+
|
1412
1513
|
Set the learning momentum. */
|
1413
1514
|
static VALUE set_learning_momentum(VALUE self, VALUE learning_momentum)
|
1414
1515
|
{
|
@@ -1422,35 +1523,35 @@ static VALUE set_learning_momentum(VALUE self, VALUE learning_momentum)
|
|
1422
1523
|
static VALUE set_cascade_activation_functions(VALUE self, VALUE cascade_activation_functions)
|
1423
1524
|
{
|
1424
1525
|
Check_Type(cascade_activation_functions, T_ARRAY);
|
1425
|
-
struct fann*
|
1426
|
-
Data_Get_Struct
|
1427
|
-
|
1428
|
-
unsigned
|
1526
|
+
struct fann *f;
|
1527
|
+
Data_Get_Struct(self, struct fann, f);
|
1528
|
+
|
1529
|
+
unsigned long cnt = RARRAY_LEN(cascade_activation_functions);
|
1429
1530
|
enum fann_activationfunc_enum fann_activation_functions[cnt];
|
1430
1531
|
unsigned int i;
|
1431
|
-
for (i=0; i<cnt; i++)
|
1532
|
+
for (i = 0; i < cnt; i++)
|
1432
1533
|
{
|
1433
1534
|
fann_activation_functions[i] = sym_to_activation_function(RARRAY_PTR(cascade_activation_functions)[i]);
|
1434
1535
|
}
|
1435
|
-
|
1536
|
+
|
1436
1537
|
fann_set_cascade_activation_functions(f, fann_activation_functions, cnt);
|
1437
|
-
return self;
|
1538
|
+
return self;
|
1438
1539
|
}
|
1439
1540
|
|
1440
1541
|
/** The cascade activation functions is an array of the different activation functions used by
|
1441
1542
|
the candidates. The default is [:sigmoid, :sigmoid_symmetric, :gaussian, :gaussian_symmetric, :elliot, :elliot_symmetric] */
|
1442
1543
|
static VALUE get_cascade_activation_functions(VALUE self)
|
1443
1544
|
{
|
1444
|
-
struct fann*
|
1445
|
-
Data_Get_Struct
|
1545
|
+
struct fann *f;
|
1546
|
+
Data_Get_Struct(self, struct fann, f);
|
1446
1547
|
unsigned int cnt = fann_get_cascade_activation_functions_count(f);
|
1447
|
-
enum fann_activationfunc_enum*
|
1548
|
+
enum fann_activationfunc_enum *fann_functions = fann_get_cascade_activation_functions(f);
|
1448
1549
|
|
1449
1550
|
// Create ruby array & set outputs:
|
1450
1551
|
VALUE arr;
|
1451
1552
|
arr = rb_ary_new();
|
1452
1553
|
unsigned int i;
|
1453
|
-
for (i=0; i<cnt; i++)
|
1554
|
+
for (i = 0; i < cnt; i++)
|
1454
1555
|
{
|
1455
1556
|
rb_ary_push(arr, activation_function_to_sym(fann_functions[i]));
|
1456
1557
|
}
|
@@ -1486,17 +1587,17 @@ static VALUE set_cascade_num_candidate_groups(VALUE self, VALUE cascade_num_cand
|
|
1486
1587
|
static VALUE set_cascade_activation_steepnesses(VALUE self, VALUE cascade_activation_steepnesses)
|
1487
1588
|
{
|
1488
1589
|
Check_Type(cascade_activation_steepnesses, T_ARRAY);
|
1489
|
-
struct fann*
|
1490
|
-
Data_Get_Struct
|
1491
|
-
|
1492
|
-
unsigned int cnt =
|
1590
|
+
struct fann *f;
|
1591
|
+
Data_Get_Struct(self, struct fann, f);
|
1592
|
+
|
1593
|
+
unsigned int cnt = RARRAY_LEN(cascade_activation_steepnesses);
|
1493
1594
|
fann_type fann_activation_steepnesses[cnt];
|
1494
1595
|
unsigned int i;
|
1495
|
-
for (i=0; i<cnt; i++)
|
1596
|
+
for (i = 0; i < cnt; i++)
|
1496
1597
|
{
|
1497
1598
|
fann_activation_steepnesses[i] = NUM2DBL(RARRAY_PTR(cascade_activation_steepnesses)[i]);
|
1498
1599
|
}
|
1499
|
-
|
1600
|
+
|
1500
1601
|
fann_set_cascade_activation_steepnesses(f, fann_activation_steepnesses, cnt);
|
1501
1602
|
return self;
|
1502
1603
|
}
|
@@ -1505,16 +1606,16 @@ static VALUE set_cascade_activation_steepnesses(VALUE self, VALUE cascade_activa
|
|
1505
1606
|
the candidates. */
|
1506
1607
|
static VALUE get_cascade_activation_steepnesses(VALUE self)
|
1507
1608
|
{
|
1508
|
-
struct fann*
|
1509
|
-
Data_Get_Struct
|
1510
|
-
fann_type*
|
1609
|
+
struct fann *f;
|
1610
|
+
Data_Get_Struct(self, struct fann, f);
|
1611
|
+
fann_type *fann_steepnesses = fann_get_cascade_activation_steepnesses(f);
|
1511
1612
|
unsigned int cnt = fann_get_cascade_activation_steepnesses_count(f);
|
1512
1613
|
|
1513
1614
|
// Create ruby array & set outputs:
|
1514
1615
|
VALUE arr;
|
1515
1616
|
arr = rb_ary_new();
|
1516
1617
|
unsigned int i;
|
1517
|
-
for (i=0; i<cnt; i++)
|
1618
|
+
for (i = 0; i < cnt; i++)
|
1518
1619
|
{
|
1519
1620
|
rb_ary_push(arr, rb_float_new(fann_steepnesses[i]));
|
1520
1621
|
}
|
@@ -1527,28 +1628,28 @@ static VALUE get_cascade_activation_steepnesses(VALUE self)
|
|
1527
1628
|
Save the entire network to configuration file with given name */
|
1528
1629
|
static VALUE nn_save(VALUE self, VALUE filename)
|
1529
1630
|
{
|
1530
|
-
struct fann*
|
1531
|
-
Data_Get_Struct
|
1631
|
+
struct fann *f;
|
1632
|
+
Data_Get_Struct(self, struct fann, f);
|
1532
1633
|
int status = fann_save(f, StringValuePtr(filename));
|
1533
1634
|
return INT2NUM(status);
|
1534
1635
|
}
|
1535
1636
|
|
1536
1637
|
/** Initializes class under RubyFann module/namespace. */
|
1537
|
-
void Init_ruby_fann
|
1638
|
+
void Init_ruby_fann()
|
1538
1639
|
{
|
1539
1640
|
// RubyFann module/namespace:
|
1540
|
-
m_rb_fann_module = rb_define_module
|
1641
|
+
m_rb_fann_module = rb_define_module("RubyFann");
|
1541
1642
|
|
1542
1643
|
// Standard NN class:
|
1543
|
-
m_rb_fann_standard_class = rb_define_class_under
|
1544
|
-
rb_define_alloc_func
|
1644
|
+
m_rb_fann_standard_class = rb_define_class_under(m_rb_fann_module, "Standard", rb_cObject);
|
1645
|
+
rb_define_alloc_func(m_rb_fann_standard_class, fann_allocate);
|
1545
1646
|
rb_define_method(m_rb_fann_standard_class, "initialize", fann_initialize, 1);
|
1546
1647
|
rb_define_method(m_rb_fann_standard_class, "init_weights", init_weights, 1);
|
1547
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function", set_activation_function, 3);
|
1548
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1549
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1550
|
-
rb_define_method(m_rb_fann_standard_class, "get_activation_function", get_activation_function, 2);
|
1551
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_output", set_activation_function_output, 1);
|
1648
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function", set_activation_function, 3);
|
1649
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1650
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1651
|
+
rb_define_method(m_rb_fann_standard_class, "get_activation_function", get_activation_function, 2);
|
1652
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_output", set_activation_function_output, 1);
|
1552
1653
|
rb_define_method(m_rb_fann_standard_class, "get_activation_steepness", get_activation_steepness, 2);
|
1553
1654
|
rb_define_method(m_rb_fann_standard_class, "set_activation_steepness", set_activation_steepness, 3);
|
1554
1655
|
rb_define_method(m_rb_fann_standard_class, "set_activation_steepness_hidden", set_activation_steepness_hidden, 1);
|
@@ -1578,14 +1679,14 @@ void Init_ruby_fann ()
|
|
1578
1679
|
rb_define_method(m_rb_fann_standard_class, "get_connection_rate", get_connection_rate, 0);
|
1579
1680
|
rb_define_method(m_rb_fann_standard_class, "get_layer_array", get_layer_array, 0);
|
1580
1681
|
rb_define_method(m_rb_fann_standard_class, "get_network_type", get_network_type, 0);
|
1581
|
-
rb_define_method(m_rb_fann_standard_class, "get_neurons", get_neurons, 0);
|
1682
|
+
rb_define_method(m_rb_fann_standard_class, "get_neurons", get_neurons, 0);
|
1582
1683
|
rb_define_method(m_rb_fann_standard_class, "get_num_input", get_num_input, 0);
|
1583
1684
|
rb_define_method(m_rb_fann_standard_class, "get_num_layers", get_num_layers, 0);
|
1584
|
-
rb_define_method(m_rb_fann_standard_class, "get_num_output", get_num_output, 0);
|
1685
|
+
rb_define_method(m_rb_fann_standard_class, "get_num_output", get_num_output, 0);
|
1585
1686
|
rb_define_method(m_rb_fann_standard_class, "get_total_connections", get_total_connections, 0);
|
1586
1687
|
rb_define_method(m_rb_fann_standard_class, "get_total_neurons", get_total_neurons, 0);
|
1587
1688
|
// rb_define_method(m_rb_fann_standard_class, "get_train_error_function", get_train_error_function, 0);
|
1588
|
-
// rb_define_method(m_rb_fann_standard_class, "set_train_error_function", set_train_error_function, 1);
|
1689
|
+
// rb_define_method(m_rb_fann_standard_class, "set_train_error_function", set_train_error_function, 1);
|
1589
1690
|
rb_define_method(m_rb_fann_standard_class, "print_connections", print_connections, 0);
|
1590
1691
|
rb_define_method(m_rb_fann_standard_class, "print_parameters", print_parameters, 0);
|
1591
1692
|
rb_define_method(m_rb_fann_standard_class, "randomize_weights", randomize_weights, 2);
|
@@ -1593,7 +1694,7 @@ void Init_ruby_fann ()
|
|
1593
1694
|
rb_define_method(m_rb_fann_standard_class, "train", train, 2);
|
1594
1695
|
rb_define_method(m_rb_fann_standard_class, "train_on_data", train_on_data, 4);
|
1595
1696
|
rb_define_method(m_rb_fann_standard_class, "train_epoch", train_epoch, 1);
|
1596
|
-
rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
|
1697
|
+
rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
|
1597
1698
|
rb_define_method(m_rb_fann_standard_class, "get_MSE", get_MSE, 0);
|
1598
1699
|
rb_define_method(m_rb_fann_standard_class, "get_bit_fail", get_bit_fail, 0);
|
1599
1700
|
rb_define_method(m_rb_fann_standard_class, "reset_MSE", reset_MSE, 0);
|
@@ -1603,8 +1704,7 @@ void Init_ruby_fann ()
|
|
1603
1704
|
rb_define_method(m_rb_fann_standard_class, "set_learning_momentum", set_learning_momentum, 1);
|
1604
1705
|
rb_define_method(m_rb_fann_standard_class, "get_training_algorithm", get_training_algorithm, 0);
|
1605
1706
|
rb_define_method(m_rb_fann_standard_class, "set_training_algorithm", set_training_algorithm, 1);
|
1606
|
-
|
1607
|
-
|
1707
|
+
|
1608
1708
|
// Cascade functions:
|
1609
1709
|
rb_define_method(m_rb_fann_standard_class, "cascadetrain_on_data", cascadetrain_on_data, 4);
|
1610
1710
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_output_change_fraction", get_cascade_output_change_fraction, 0);
|
@@ -1630,25 +1730,24 @@ void Init_ruby_fann ()
|
|
1630
1730
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_activation_steepnesses_count", get_cascade_activation_steepnesses_count, 0);
|
1631
1731
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_activation_steepnesses", get_cascade_activation_steepnesses, 0);
|
1632
1732
|
rb_define_method(m_rb_fann_standard_class, "set_cascade_activation_steepnesses", set_cascade_activation_steepnesses, 1);
|
1633
|
-
rb_define_method(m_rb_fann_standard_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1634
|
-
rb_define_method(m_rb_fann_standard_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1733
|
+
rb_define_method(m_rb_fann_standard_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1734
|
+
rb_define_method(m_rb_fann_standard_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1635
1735
|
rb_define_method(m_rb_fann_standard_class, "save", nn_save, 1);
|
1636
1736
|
|
1637
|
-
|
1638
1737
|
// Uncomment for fixed-point mode (also recompile fann). Probably not going to be needed:
|
1639
|
-
//rb_define_method(clazz, "get_decimal_point", get_decimal_point, 0);
|
1640
|
-
//rb_define_method(clazz, "get_multiplier", get_multiplier, 0);
|
1641
|
-
|
1738
|
+
// rb_define_method(clazz, "get_decimal_point", get_decimal_point, 0);
|
1739
|
+
// rb_define_method(clazz, "get_multiplier", get_multiplier, 0);
|
1740
|
+
|
1642
1741
|
// Shortcut NN class (duplicated from above so that rdoc generation tools can find the methods:):
|
1643
|
-
m_rb_fann_shortcut_class = rb_define_class_under
|
1644
|
-
rb_define_alloc_func
|
1742
|
+
m_rb_fann_shortcut_class = rb_define_class_under(m_rb_fann_module, "Shortcut", rb_cObject);
|
1743
|
+
rb_define_alloc_func(m_rb_fann_shortcut_class, fann_allocate);
|
1645
1744
|
rb_define_method(m_rb_fann_shortcut_class, "initialize", fann_initialize, 1);
|
1646
1745
|
rb_define_method(m_rb_fann_shortcut_class, "init_weights", init_weights, 1);
|
1647
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function", set_activation_function, 3);
|
1648
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1649
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1650
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_activation_function", get_activation_function, 2);
|
1651
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_output", set_activation_function_output, 1);
|
1746
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function", set_activation_function, 3);
|
1747
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1748
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1749
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_activation_function", get_activation_function, 2);
|
1750
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_output", set_activation_function_output, 1);
|
1652
1751
|
rb_define_method(m_rb_fann_shortcut_class, "get_activation_steepness", get_activation_steepness, 2);
|
1653
1752
|
rb_define_method(m_rb_fann_shortcut_class, "set_activation_steepness", set_activation_steepness, 3);
|
1654
1753
|
rb_define_method(m_rb_fann_shortcut_class, "set_activation_steepness_hidden", set_activation_steepness_hidden, 1);
|
@@ -1678,14 +1777,14 @@ void Init_ruby_fann ()
|
|
1678
1777
|
rb_define_method(m_rb_fann_shortcut_class, "get_connection_rate", get_connection_rate, 0);
|
1679
1778
|
rb_define_method(m_rb_fann_shortcut_class, "get_layer_array", get_layer_array, 0);
|
1680
1779
|
rb_define_method(m_rb_fann_shortcut_class, "get_network_type", get_network_type, 0);
|
1681
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_neurons", get_neurons, 0);
|
1780
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_neurons", get_neurons, 0);
|
1682
1781
|
rb_define_method(m_rb_fann_shortcut_class, "get_num_input", get_num_input, 0);
|
1683
1782
|
rb_define_method(m_rb_fann_shortcut_class, "get_num_layers", get_num_layers, 0);
|
1684
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_num_output", get_num_output, 0);
|
1783
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_num_output", get_num_output, 0);
|
1685
1784
|
rb_define_method(m_rb_fann_shortcut_class, "get_total_connections", get_total_connections, 0);
|
1686
1785
|
rb_define_method(m_rb_fann_shortcut_class, "get_total_neurons", get_total_neurons, 0);
|
1687
1786
|
// rb_define_method(m_rb_fann_shortcut_class, "get_train_error_function", get_train_error_function, 0);
|
1688
|
-
// rb_define_method(m_rb_fann_shortcut_class, "set_train_error_function", set_train_error_function, 1);
|
1787
|
+
// rb_define_method(m_rb_fann_shortcut_class, "set_train_error_function", set_train_error_function, 1);
|
1689
1788
|
rb_define_method(m_rb_fann_shortcut_class, "print_connections", print_connections, 0);
|
1690
1789
|
rb_define_method(m_rb_fann_shortcut_class, "print_parameters", print_parameters, 0);
|
1691
1790
|
rb_define_method(m_rb_fann_shortcut_class, "randomize_weights", randomize_weights, 2);
|
@@ -1693,7 +1792,7 @@ void Init_ruby_fann ()
|
|
1693
1792
|
rb_define_method(m_rb_fann_shortcut_class, "train", train, 2);
|
1694
1793
|
rb_define_method(m_rb_fann_shortcut_class, "train_on_data", train_on_data, 4);
|
1695
1794
|
rb_define_method(m_rb_fann_shortcut_class, "train_epoch", train_epoch, 1);
|
1696
|
-
rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
|
1795
|
+
rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
|
1697
1796
|
rb_define_method(m_rb_fann_shortcut_class, "get_MSE", get_MSE, 0);
|
1698
1797
|
rb_define_method(m_rb_fann_shortcut_class, "get_bit_fail", get_bit_fail, 0);
|
1699
1798
|
rb_define_method(m_rb_fann_shortcut_class, "reset_MSE", reset_MSE, 0);
|
@@ -1703,7 +1802,7 @@ void Init_ruby_fann ()
|
|
1703
1802
|
rb_define_method(m_rb_fann_shortcut_class, "set_learning_momentum", set_learning_momentum, 1);
|
1704
1803
|
rb_define_method(m_rb_fann_shortcut_class, "get_training_algorithm", get_training_algorithm, 0);
|
1705
1804
|
rb_define_method(m_rb_fann_shortcut_class, "set_training_algorithm", set_training_algorithm, 1);
|
1706
|
-
|
1805
|
+
|
1707
1806
|
// Cascade functions:
|
1708
1807
|
rb_define_method(m_rb_fann_shortcut_class, "cascadetrain_on_data", cascadetrain_on_data, 4);
|
1709
1808
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_output_change_fraction", get_cascade_output_change_fraction, 0);
|
@@ -1729,19 +1828,17 @@ void Init_ruby_fann ()
|
|
1729
1828
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_activation_steepnesses_count", get_cascade_activation_steepnesses_count, 0);
|
1730
1829
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_activation_steepnesses", get_cascade_activation_steepnesses, 0);
|
1731
1830
|
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_activation_steepnesses", set_cascade_activation_steepnesses, 1);
|
1732
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1733
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1831
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1832
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1734
1833
|
rb_define_method(m_rb_fann_shortcut_class, "save", nn_save, 1);
|
1735
|
-
|
1736
1834
|
|
1737
1835
|
// TrainData NN class:
|
1738
|
-
m_rb_fann_train_data_class = rb_define_class_under
|
1739
|
-
rb_define_alloc_func
|
1836
|
+
m_rb_fann_train_data_class = rb_define_class_under(m_rb_fann_module, "TrainData", rb_cObject);
|
1837
|
+
rb_define_alloc_func(m_rb_fann_train_data_class, fann_training_data_allocate);
|
1740
1838
|
rb_define_method(m_rb_fann_train_data_class, "initialize", fann_train_data_initialize, 1);
|
1741
1839
|
rb_define_method(m_rb_fann_train_data_class, "length", length_train_data, 0);
|
1742
|
-
rb_define_method(m_rb_fann_train_data_class, "shuffle", shuffle, 0);
|
1840
|
+
rb_define_method(m_rb_fann_train_data_class, "shuffle", shuffle, 0);
|
1743
1841
|
rb_define_method(m_rb_fann_train_data_class, "save", training_save, 1);
|
1744
|
-
|
1842
|
+
|
1745
1843
|
// printf("Initialized Ruby Bindings for FANN.\n");
|
1746
1844
|
}
|
1747
|
-
|