ruby-fann 1.4.2 → 2.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -9,96 +9,133 @@ static VALUE m_rb_fann_standard_class;
9
9
  static VALUE m_rb_fann_shortcut_class;
10
10
  static VALUE m_rb_fann_train_data_class;
11
11
 
12
- #define RETURN_FANN_INT(fn) \
13
- struct fann* f; \
14
- Data_Get_Struct (self, struct fann, f); \
15
- return INT2NUM(fn(f));
16
-
17
- #define SET_FANN_INT(attr_name, fann_fn) \
18
- Check_Type(attr_name, T_FIXNUM); \
19
- struct fann* f; \
20
- Data_Get_Struct(self, struct fann, f); \
21
- fann_fn(f, NUM2INT(attr_name)); \
22
- return 0;
23
-
24
- #define RETURN_FANN_UINT(fn) \
25
- struct fann* f; \
26
- Data_Get_Struct (self, struct fann, f); \
27
- return UINT2NUM(fn(f));
28
-
29
- #define SET_FANN_UINT(attr_name, fann_fn) \
30
- Check_Type(attr_name, T_FIXNUM); \
31
- struct fann* f; \
32
- Data_Get_Struct(self, struct fann, f); \
33
- fann_fn(f, NUM2UINT(attr_name)); \
34
- return 0;
12
+ #define RETURN_FANN_INT(fn) \
13
+ struct fann *f; \
14
+ Data_Get_Struct(self, struct fann, f); \
15
+ return INT2NUM(fn(f));
16
+
17
+ #define SET_FANN_INT(attr_name, fann_fn) \
18
+ Check_Type(attr_name, T_FIXNUM); \
19
+ struct fann *f; \
20
+ Data_Get_Struct(self, struct fann, f); \
21
+ fann_fn(f, NUM2INT(attr_name)); \
22
+ return 0;
23
+
24
+ #define RETURN_FANN_UINT(fn) \
25
+ struct fann *f; \
26
+ Data_Get_Struct(self, struct fann, f); \
27
+ return rb_int_new(fn(f));
28
+
29
+ #define SET_FANN_UINT(attr_name, fann_fn) \
30
+ Check_Type(attr_name, T_FIXNUM); \
31
+ struct fann *f; \
32
+ Data_Get_Struct(self, struct fann, f); \
33
+ fann_fn(f, NUM2UINT(attr_name)); \
34
+ return 0;
35
35
 
36
36
  // Converts float return values to a double with same precision, avoids floating point errors.
37
- #define RETURN_FANN_FLT(fn) \
38
- struct fann* f; \
39
- Data_Get_Struct (self, struct fann, f); \
40
- char buffy[20]; \
41
- sprintf(buffy, "%0.6g", fn(f)); \
42
- return rb_float_new(atof(buffy));
43
-
44
- #define SET_FANN_FLT(attr_name, fann_fn) \
45
- Check_Type(attr_name, T_FLOAT); \
46
- struct fann* f; \
47
- Data_Get_Struct(self, struct fann, f); \
48
- fann_fn(f, NUM2DBL(attr_name)); \
49
- return self;
50
-
51
- #define RETURN_FANN_DBL(fn) \
52
- struct fann* f; \
53
- Data_Get_Struct (self, struct fann, f); \
54
- return rb_float_new(fn(f));
37
+ #define RETURN_FANN_FLT(fn) \
38
+ struct fann *f; \
39
+ Data_Get_Struct(self, struct fann, f); \
40
+ char buffy[20]; \
41
+ sprintf(buffy, "%0.6g", fn(f)); \
42
+ return rb_float_new(atof(buffy));
43
+
44
+ #define SET_FANN_FLT(attr_name, fann_fn) \
45
+ Check_Type(attr_name, T_FLOAT); \
46
+ struct fann *f; \
47
+ Data_Get_Struct(self, struct fann, f); \
48
+ fann_fn(f, NUM2DBL(attr_name)); \
49
+ return self;
50
+
51
+ #define RETURN_FANN_DBL(fn) \
52
+ struct fann *f; \
53
+ Data_Get_Struct(self, struct fann, f); \
54
+ return rb_float_new(fn(f));
55
55
 
56
56
  #define SET_FANN_DBL SET_FANN_FLT
57
57
 
58
58
  // Convert ruby symbol to corresponding FANN enum type for activation function:
59
59
  enum fann_activationfunc_enum sym_to_activation_function(VALUE activation_func)
60
60
  {
61
- ID id=SYM2ID(activation_func);
61
+ ID id = SYM2ID(activation_func);
62
62
  enum fann_activationfunc_enum activation_function;
63
- if(id==rb_intern("linear")) {
64
- activation_function = FANN_LINEAR;
65
- } else if(id==rb_intern("threshold")) {
66
- activation_function = FANN_THRESHOLD;
67
- } else if(id==rb_intern("threshold_symmetric")) {
68
- activation_function = FANN_THRESHOLD_SYMMETRIC;
69
- } else if(id==rb_intern("sigmoid")) {
70
- activation_function = FANN_SIGMOID;
71
- } else if(id==rb_intern("sigmoid_stepwise")) {
72
- activation_function = FANN_SIGMOID_STEPWISE;
73
- } else if(id==rb_intern("sigmoid_symmetric")) {
74
- activation_function = FANN_SIGMOID_SYMMETRIC;
75
- } else if(id==rb_intern("sigmoid_symmetric_stepwise")) {
76
- activation_function = FANN_SIGMOID_SYMMETRIC_STEPWISE;
77
- } else if(id==rb_intern("gaussian")) {
78
- activation_function = FANN_GAUSSIAN;
79
- } else if(id==rb_intern("gaussian_symmetric")) {
80
- activation_function = FANN_GAUSSIAN_SYMMETRIC;
81
- } else if(id==rb_intern("gaussian_stepwise")) {
82
- activation_function = FANN_GAUSSIAN_STEPWISE;
83
- } else if(id==rb_intern("elliot")) {
84
- activation_function = FANN_ELLIOT;
85
- } else if(id==rb_intern("elliot_symmetric")) {
86
- activation_function = FANN_ELLIOT_SYMMETRIC;
87
- } else if(id==rb_intern("linear_piece")) {
88
- activation_function = FANN_LINEAR_PIECE;
89
- } else if(id==rb_intern("linear_piece_symmetric")) {
90
- activation_function = FANN_LINEAR_PIECE_SYMMETRIC;
91
- } else if(id==rb_intern("sin_symmetric")) {
92
- activation_function = FANN_SIN_SYMMETRIC;
93
- } else if(id==rb_intern("cos_symmetric")) {
94
- activation_function = FANN_COS_SYMMETRIC;
95
- } else if(id==rb_intern("sin")) {
96
- activation_function = FANN_SIN;
97
- } else if(id==rb_intern("cos")) {
98
- activation_function = FANN_COS;
99
- } else {
63
+ if (id == rb_intern("linear"))
64
+ {
65
+ activation_function = FANN_LINEAR;
66
+ }
67
+ else if (id == rb_intern("threshold"))
68
+ {
69
+ activation_function = FANN_THRESHOLD;
70
+ }
71
+ else if (id == rb_intern("threshold_symmetric"))
72
+ {
73
+ activation_function = FANN_THRESHOLD_SYMMETRIC;
74
+ }
75
+ else if (id == rb_intern("sigmoid"))
76
+ {
77
+ activation_function = FANN_SIGMOID;
78
+ }
79
+ else if (id == rb_intern("sigmoid_stepwise"))
80
+ {
81
+ activation_function = FANN_SIGMOID_STEPWISE;
82
+ }
83
+ else if (id == rb_intern("sigmoid_symmetric"))
84
+ {
85
+ activation_function = FANN_SIGMOID_SYMMETRIC;
86
+ }
87
+ else if (id == rb_intern("sigmoid_symmetric_stepwise"))
88
+ {
89
+ activation_function = FANN_SIGMOID_SYMMETRIC_STEPWISE;
90
+ }
91
+ else if (id == rb_intern("gaussian"))
92
+ {
93
+ activation_function = FANN_GAUSSIAN;
94
+ }
95
+ else if (id == rb_intern("gaussian_symmetric"))
96
+ {
97
+ activation_function = FANN_GAUSSIAN_SYMMETRIC;
98
+ }
99
+ else if (id == rb_intern("gaussian_stepwise"))
100
+ {
101
+ activation_function = FANN_GAUSSIAN_STEPWISE;
102
+ }
103
+ else if (id == rb_intern("elliot"))
104
+ {
105
+ activation_function = FANN_ELLIOT;
106
+ }
107
+ else if (id == rb_intern("elliot_symmetric"))
108
+ {
109
+ activation_function = FANN_ELLIOT_SYMMETRIC;
110
+ }
111
+ else if (id == rb_intern("linear_piece"))
112
+ {
113
+ activation_function = FANN_LINEAR_PIECE;
114
+ }
115
+ else if (id == rb_intern("linear_piece_symmetric"))
116
+ {
117
+ activation_function = FANN_LINEAR_PIECE_SYMMETRIC;
118
+ }
119
+ else if (id == rb_intern("sin_symmetric"))
120
+ {
121
+ activation_function = FANN_SIN_SYMMETRIC;
122
+ }
123
+ else if (id == rb_intern("cos_symmetric"))
124
+ {
125
+ activation_function = FANN_COS_SYMMETRIC;
126
+ }
127
+ else if (id == rb_intern("sin"))
128
+ {
129
+ activation_function = FANN_SIN;
130
+ }
131
+ else if (id == rb_intern("cos"))
132
+ {
133
+ activation_function = FANN_COS;
134
+ }
135
+ else
136
+ {
100
137
  rb_raise(rb_eRuntimeError, "Unrecognized activation function: [%s]", rb_id2name(SYM2ID(activation_func)));
101
- }
138
+ }
102
139
  return activation_function;
103
140
  }
104
141
 
@@ -106,142 +143,177 @@ enum fann_activationfunc_enum sym_to_activation_function(VALUE activation_func)
106
143
  VALUE activation_function_to_sym(enum fann_activationfunc_enum fn)
107
144
  {
108
145
  VALUE activation_function;
109
-
110
- if(fn==FANN_LINEAR) {
111
- activation_function = ID2SYM(rb_intern("linear"));
112
- } else if(fn==FANN_THRESHOLD) {
113
- activation_function = ID2SYM(rb_intern("threshold"));
114
- } else if(fn==FANN_THRESHOLD_SYMMETRIC) {
115
- activation_function = ID2SYM(rb_intern("threshold_symmetric"));
116
- } else if(fn==FANN_SIGMOID) {
117
- activation_function = ID2SYM(rb_intern("sigmoid"));
118
- } else if(fn==FANN_SIGMOID_STEPWISE) {
119
- activation_function = ID2SYM(rb_intern("sigmoid_stepwise"));
120
- } else if(fn==FANN_SIGMOID_SYMMETRIC) {
121
- activation_function = ID2SYM(rb_intern("sigmoid_symmetric"));
122
- } else if(fn==FANN_SIGMOID_SYMMETRIC_STEPWISE) {
123
- activation_function = ID2SYM(rb_intern("sigmoid_symmetric_stepwise"));
124
- } else if(fn==FANN_GAUSSIAN) {
125
- activation_function = ID2SYM(rb_intern("gaussian"));
126
- } else if(fn==FANN_GAUSSIAN_SYMMETRIC) {
127
- activation_function = ID2SYM(rb_intern("gaussian_symmetric"));
128
- } else if(fn==FANN_GAUSSIAN_STEPWISE) {
129
- activation_function = ID2SYM(rb_intern("gaussian_stepwise"));
130
- } else if(fn==FANN_ELLIOT) {
131
- activation_function = ID2SYM(rb_intern("elliot"));
132
- } else if(fn==FANN_ELLIOT_SYMMETRIC) {
133
- activation_function = ID2SYM(rb_intern("elliot_symmetric"));
134
- } else if(fn==FANN_LINEAR_PIECE) {
135
- activation_function = ID2SYM(rb_intern("linear_piece"));
136
- } else if(fn==FANN_LINEAR_PIECE_SYMMETRIC) {
137
- activation_function = ID2SYM(rb_intern("linear_piece_symmetric"));
138
- } else if(fn==FANN_SIN_SYMMETRIC) {
139
- activation_function = ID2SYM(rb_intern("sin_symmetric"));
140
- } else if(fn==FANN_COS_SYMMETRIC) {
141
- activation_function = ID2SYM(rb_intern("cos_symmetric"));
142
- } else if(fn==FANN_SIN) {
143
- activation_function = ID2SYM(rb_intern("sin"));
144
- } else if(fn==FANN_COS) {
145
- activation_function = ID2SYM(rb_intern("cos"));
146
- } else {
146
+
147
+ if (fn == FANN_LINEAR)
148
+ {
149
+ activation_function = ID2SYM(rb_intern("linear"));
150
+ }
151
+ else if (fn == FANN_THRESHOLD)
152
+ {
153
+ activation_function = ID2SYM(rb_intern("threshold"));
154
+ }
155
+ else if (fn == FANN_THRESHOLD_SYMMETRIC)
156
+ {
157
+ activation_function = ID2SYM(rb_intern("threshold_symmetric"));
158
+ }
159
+ else if (fn == FANN_SIGMOID)
160
+ {
161
+ activation_function = ID2SYM(rb_intern("sigmoid"));
162
+ }
163
+ else if (fn == FANN_SIGMOID_STEPWISE)
164
+ {
165
+ activation_function = ID2SYM(rb_intern("sigmoid_stepwise"));
166
+ }
167
+ else if (fn == FANN_SIGMOID_SYMMETRIC)
168
+ {
169
+ activation_function = ID2SYM(rb_intern("sigmoid_symmetric"));
170
+ }
171
+ else if (fn == FANN_SIGMOID_SYMMETRIC_STEPWISE)
172
+ {
173
+ activation_function = ID2SYM(rb_intern("sigmoid_symmetric_stepwise"));
174
+ }
175
+ else if (fn == FANN_GAUSSIAN)
176
+ {
177
+ activation_function = ID2SYM(rb_intern("gaussian"));
178
+ }
179
+ else if (fn == FANN_GAUSSIAN_SYMMETRIC)
180
+ {
181
+ activation_function = ID2SYM(rb_intern("gaussian_symmetric"));
182
+ }
183
+ else if (fn == FANN_GAUSSIAN_STEPWISE)
184
+ {
185
+ activation_function = ID2SYM(rb_intern("gaussian_stepwise"));
186
+ }
187
+ else if (fn == FANN_ELLIOT)
188
+ {
189
+ activation_function = ID2SYM(rb_intern("elliot"));
190
+ }
191
+ else if (fn == FANN_ELLIOT_SYMMETRIC)
192
+ {
193
+ activation_function = ID2SYM(rb_intern("elliot_symmetric"));
194
+ }
195
+ else if (fn == FANN_LINEAR_PIECE)
196
+ {
197
+ activation_function = ID2SYM(rb_intern("linear_piece"));
198
+ }
199
+ else if (fn == FANN_LINEAR_PIECE_SYMMETRIC)
200
+ {
201
+ activation_function = ID2SYM(rb_intern("linear_piece_symmetric"));
202
+ }
203
+ else if (fn == FANN_SIN_SYMMETRIC)
204
+ {
205
+ activation_function = ID2SYM(rb_intern("sin_symmetric"));
206
+ }
207
+ else if (fn == FANN_COS_SYMMETRIC)
208
+ {
209
+ activation_function = ID2SYM(rb_intern("cos_symmetric"));
210
+ }
211
+ else if (fn == FANN_SIN)
212
+ {
213
+ activation_function = ID2SYM(rb_intern("sin"));
214
+ }
215
+ else if (fn == FANN_COS)
216
+ {
217
+ activation_function = ID2SYM(rb_intern("cos"));
218
+ }
219
+ else
220
+ {
147
221
  rb_raise(rb_eRuntimeError, "Unrecognized activation function: [%d]", fn);
148
- }
222
+ }
149
223
  return activation_function;
150
224
  }
151
225
 
152
-
153
226
  // Unused for now:
154
- static void fann_mark (struct fann* ann){}
227
+ static void fann_mark(struct fann *ann) {}
155
228
 
156
229
  // #define DEBUG 1
157
230
 
158
231
  // Free memory associated with FANN:
159
- static void fann_free (struct fann* ann)
232
+ static void fann_free(struct fann *ann)
160
233
  {
161
- fann_destroy(ann);
234
+ fann_destroy(ann);
162
235
  // ("Destroyed FANN network [%d].\n", ann);
163
236
  }
164
237
 
165
238
  // Free memory associated with FANN Training data:
166
- static void fann_training_data_free (struct fann_train_data* train_data)
239
+ static void fann_training_data_free(struct fann_train_data *train_data)
167
240
  {
168
- fann_destroy_train(train_data);
241
+ fann_destroy_train(train_data);
169
242
  // printf("Destroyed Training data [%d].\n", train_data);
170
243
  }
171
244
 
172
- // Create wrapper, but don't allocate anything...do that in
245
+ // Create wrapper, but don't allocate anything...do that in
173
246
  // initialize, so we can construct with args:
174
- static VALUE fann_allocate (VALUE klass)
247
+ static VALUE fann_allocate(VALUE klass)
175
248
  {
176
- return Data_Wrap_Struct (klass, fann_mark, fann_free, 0);
249
+ return Data_Wrap_Struct(klass, fann_mark, fann_free, 0);
177
250
  }
178
251
 
179
- // Create wrapper, but don't allocate annything...do that in
252
+ // Create wrapper, but don't allocate annything...do that in
180
253
  // initialize, so we can construct with args:
181
- static VALUE fann_training_data_allocate (VALUE klass)
254
+ static VALUE fann_training_data_allocate(VALUE klass)
182
255
  {
183
- return Data_Wrap_Struct (klass, fann_mark, fann_training_data_free, 0);
256
+ return Data_Wrap_Struct(klass, fann_mark, fann_training_data_free, 0);
184
257
  }
185
258
 
186
-
187
- // static VALUE invoke_training_callback(VALUE self)
259
+ // static VALUE invoke_training_callback(VALUE self)
188
260
  // {
189
261
  // VALUE callback = rb_funcall(self, rb_intern("training_callback"), 0);
190
262
  // return callback;
191
263
  // }
192
264
 
193
- // static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
265
+ // static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
194
266
  // unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error, unsigned int epochs)
195
267
 
196
268
  static int FANN_API fann_training_callback(struct fann *ann, struct fann_train_data *train,
197
- unsigned int max_epochs, unsigned int epochs_between_reports,
198
- float desired_error, unsigned int epochs)
269
+ unsigned int max_epochs, unsigned int epochs_between_reports,
270
+ float desired_error, unsigned int epochs)
199
271
  {
200
272
  VALUE self = (VALUE)fann_get_user_data(ann);
201
273
  VALUE args = rb_hash_new();
202
-
274
+
203
275
  // Set attributes on hash & push on array:
204
276
  VALUE max_epochs_sym = ID2SYM(rb_intern("max_epochs"));
205
277
  VALUE epochs_between_reports_sym = ID2SYM(rb_intern("epochs_between_reports"));
206
278
  VALUE desired_error_sym = ID2SYM(rb_intern("desired_error"));
207
279
  VALUE epochs_sym = ID2SYM(rb_intern("epochs"));
208
-
280
+
209
281
  rb_hash_aset(args, max_epochs_sym, INT2NUM(max_epochs));
210
282
  rb_hash_aset(args, epochs_between_reports_sym, INT2NUM(epochs_between_reports));
211
283
  rb_hash_aset(args, desired_error_sym, rb_float_new(desired_error));
212
284
  rb_hash_aset(args, epochs_sym, INT2NUM(epochs));
213
-
285
+
214
286
  VALUE callback = rb_funcall(self, rb_intern("training_callback"), 1, args);
215
-
216
- if (TYPE(callback)!=T_FIXNUM)
287
+
288
+ if (TYPE(callback) != T_FIXNUM)
217
289
  {
218
- rb_raise (rb_eRuntimeError, "Callback method must return an integer (-1 to stop training).");
290
+ rb_raise(rb_eRuntimeError, "Callback method must return an integer (-1 to stop training).");
219
291
  }
220
292
 
221
- int status = NUM2INT(callback);
222
- if (status==-1)
293
+ int status = NUM2INT(callback);
294
+ if (status == -1)
223
295
  {
224
296
  printf("Callback method returned -1; training will stop.\n");
225
297
  }
226
-
298
+
227
299
  return status;
228
300
  }
229
301
 
230
- /** call-seq: new(hash) -> new ruby-fann neural network object
302
+ /** call-seq: new(hash) -> new ruby-fann neural network object
231
303
 
232
304
  Initialization routine for both standard, shortcut & filename forms of FANN:
233
305
 
234
306
  Standard Initialization:
235
307
  RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
236
-
308
+
237
309
  Shortcut Initialization (e.g., for use in cascade training):
238
- RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
239
-
310
+ RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
311
+
240
312
  File Initialization
241
- RubyFann::Standard.new(:filename=>'xor_float.net')
242
-
243
-
244
-
313
+ RubyFann::Standard.new(:filename=>'xor_float.net')
314
+
315
+
316
+
245
317
  */
246
318
  static VALUE fann_initialize(VALUE self, VALUE hash)
247
319
  {
@@ -250,24 +322,24 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
250
322
  VALUE num_inputs = rb_hash_aref(hash, ID2SYM(rb_intern("num_inputs")));
251
323
  VALUE num_outputs = rb_hash_aref(hash, ID2SYM(rb_intern("num_outputs")));
252
324
  VALUE hidden_neurons = rb_hash_aref(hash, ID2SYM(rb_intern("hidden_neurons")));
253
- // printf("initializing\n\n\n");
254
- struct fann* ann;
255
- if (TYPE(filename)==T_STRING)
325
+ // printf("initializing\n\n\n");
326
+ struct fann *ann;
327
+ if (TYPE(filename) == T_STRING)
256
328
  {
257
329
  // Initialize with file:
258
330
  // train_data = fann_read_train_from_file(StringValuePtr(filename));
259
331
  // DATA_PTR(self) = train_data;
260
332
  ann = fann_create_from_file(StringValuePtr(filename));
261
- // printf("Created RubyFann::Standard [%d] from file [%s].\n", ann, StringValuePtr(filename));
262
- }
263
- else if(rb_obj_is_kind_of(self, m_rb_fann_shortcut_class))
333
+ // printf("Created RubyFann::Standard [%d] from file [%s].\n", ann, StringValuePtr(filename));
334
+ }
335
+ else if (rb_obj_is_kind_of(self, m_rb_fann_shortcut_class))
264
336
  {
265
337
  // Initialize as shortcut, suitable for cascade training:
266
- //ann = fann_create_shortcut_array(num_layers, layers);
338
+ // ann = fann_create_shortcut_array(num_layers, layers);
267
339
  Check_Type(num_inputs, T_FIXNUM);
268
340
  Check_Type(num_outputs, T_FIXNUM);
269
-
270
- ann = fann_create_shortcut(2, NUM2INT(num_inputs), NUM2INT(num_outputs));
341
+
342
+ ann = fann_create_shortcut(2, NUM2INT(num_inputs), NUM2INT(num_outputs));
271
343
  // printf("Created RubyFann::Shortcut [%d].\n", ann);
272
344
  }
273
345
  else
@@ -276,32 +348,31 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
276
348
  Check_Type(num_inputs, T_FIXNUM);
277
349
  Check_Type(hidden_neurons, T_ARRAY);
278
350
  Check_Type(num_outputs, T_FIXNUM);
279
-
351
+
280
352
  // Initialize layers:
281
- unsigned int num_layers=NUM2UINT(RARRAY_LEN(hidden_neurons)) + 2;
353
+ unsigned int num_layers = RARRAY_LEN(hidden_neurons) + 2;
282
354
  unsigned int layers[num_layers];
283
355
 
284
356
  // Input:
285
- layers[0]=NUM2INT(num_inputs);
357
+ layers[0] = NUM2INT(num_inputs);
286
358
  // Output:
287
- layers[num_layers-1]=NUM2INT(num_outputs);
359
+ layers[num_layers - 1] = NUM2INT(num_outputs);
288
360
  // Hidden:
289
361
  unsigned int i;
290
- for (i=1; i<=num_layers-2; i++) {
291
- layers[i]=NUM2UINT(RARRAY_PTR(hidden_neurons)[i-1]);
362
+ for (i = 1; i <= num_layers - 2; i++)
363
+ {
364
+ layers[i] = NUM2INT(RARRAY_PTR(hidden_neurons)[i - 1]);
292
365
  }
293
-
294
- ann = fann_create_standard_array(num_layers, layers);
295
- // printf("Created RubyFann::Standard [%d].\n", ann);
296
- }
366
+ ann = fann_create_standard_array(num_layers, layers);
367
+ }
297
368
 
298
369
  DATA_PTR(self) = ann;
299
-
370
+
300
371
  // printf("Checking for callback...");
301
-
302
- //int callback = rb_protect(invoke_training_callback, (self), &status);
303
- // VALUE callback = rb_funcall(DATA_PTR(self), "training_callback", 0);
304
- if(rb_respond_to(self, rb_intern("training_callback")))
372
+
373
+ // int callback = rb_protect(invoke_training_callback, (self), &status);
374
+ // VALUE callback = rb_funcall(DATA_PTR(self), "training_callback", 0);
375
+ if (rb_respond_to(self, rb_intern("training_callback")))
305
376
  {
306
377
  fann_set_callback(ann, &fann_training_callback);
307
378
  fann_set_user_data(ann, self);
@@ -311,14 +382,14 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
311
382
  {
312
383
  // printf("none found.\n");
313
384
  }
314
-
315
- return (VALUE)ann;
385
+
386
+ return (VALUE)ann;
316
387
  }
317
388
 
318
389
  /** call-seq: new(hash) -> new ruby-fann training data object (RubyFann::TrainData)
319
-
390
+
320
391
  Initialize in one of the following forms:
321
-
392
+
322
393
  # This is a flat file with training data as described in FANN docs.
323
394
  RubyFann::TrainData.new(:filename => 'path/to/training_file.train')
324
395
  OR
@@ -327,75 +398,79 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
327
398
  # All sub-arrays on inputs should be of same length
328
399
  # All sub-arrays on desired_outputs should be of same length
329
400
  # Sub-arrays on inputs & desired_outputs can be different sizes from one another
330
- RubyFann::TrainData.new(:inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]], :desired_outputs=>[[3.14], [6.33]])
401
+ RubyFann::TrainData.new(:inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]], :desired_outputs=>[[3.14], [6.33]])
331
402
  */
332
403
  static VALUE fann_train_data_initialize(VALUE self, VALUE hash)
333
404
  {
334
- struct fann_train_data* train_data;
405
+ struct fann_train_data *train_data;
335
406
  Check_Type(hash, T_HASH);
336
-
407
+
337
408
  VALUE filename = rb_hash_aref(hash, ID2SYM(rb_intern("filename")));
338
409
  VALUE inputs = rb_hash_aref(hash, ID2SYM(rb_intern("inputs")));
339
410
  VALUE desired_outputs = rb_hash_aref(hash, ID2SYM(rb_intern("desired_outputs")));
340
411
 
341
- if (TYPE(filename)==T_STRING)
412
+ if (TYPE(filename) == T_STRING)
342
413
  {
343
414
  train_data = fann_read_train_from_file(StringValuePtr(filename));
344
415
  DATA_PTR(self) = train_data;
345
- }
346
- else if (TYPE(inputs)==T_ARRAY)
416
+ }
417
+ else if (TYPE(inputs) == T_ARRAY)
347
418
  {
348
- if (TYPE(desired_outputs)!=T_ARRAY)
419
+ if (TYPE(desired_outputs) != T_ARRAY)
349
420
  {
350
- rb_raise (rb_eRuntimeError, "[desired_outputs] must be present when [inputs] used.");
421
+ rb_raise(rb_eRuntimeError, "[desired_outputs] must be present when [inputs] used.");
351
422
  }
352
423
 
353
424
  if (RARRAY_LEN(inputs) < 1)
354
425
  {
355
- rb_raise (rb_eRuntimeError, "[inputs/desired_outputs] must contain at least one value.");
426
+ rb_raise(rb_eRuntimeError, "[inputs] must contain at least one value.");
427
+ }
428
+
429
+ if (RARRAY_LEN(desired_outputs) < 1)
430
+ {
431
+ rb_raise(rb_eRuntimeError, "[desired_outputs] must contain at least one value.");
356
432
  }
357
433
 
358
434
  // The data is here, start constructing:
359
- if(RARRAY_LEN(inputs) != RARRAY_LEN(desired_outputs))
435
+ if (RARRAY_LEN(inputs) != RARRAY_LEN(desired_outputs))
360
436
  {
361
- rb_raise (
362
- rb_eRuntimeError,
363
- "Number of inputs must match number of outputs: (%d != %d)",
364
- (int)RARRAY_LEN(inputs),
437
+ rb_raise(
438
+ rb_eRuntimeError,
439
+ "Number of inputs must match number of outputs: (%d != %d)",
440
+ (int)RARRAY_LEN(inputs),
365
441
  (int)RARRAY_LEN(desired_outputs));
366
442
  }
367
443
 
368
- train_data = fann_create_train_from_rb_ary(inputs, desired_outputs);
369
- DATA_PTR(self) = train_data;
370
- }
371
- else
444
+ train_data = fann_create_train_from_rb_ary(inputs, desired_outputs);
445
+ DATA_PTR(self) = train_data;
446
+ }
447
+ else
372
448
  {
373
- rb_raise (rb_eRuntimeError, "Must construct with a filename(string) or inputs/desired_outputs(arrays). All args passed via hash with symbols as keys.");
449
+ rb_raise(rb_eRuntimeError, "Must construct with a filename(string) or inputs/desired_outputs(arrays). All args passed via hash with symbols as keys.");
374
450
  }
375
-
451
+
376
452
  return (VALUE)train_data;
377
453
  }
378
454
 
379
-
380
455
  /** call-seq: save(filename)
381
456
 
382
- Save to given filename
457
+ Save to given filename
383
458
  */
384
459
  static VALUE training_save(VALUE self, VALUE filename)
385
460
  {
386
- Check_Type(filename, T_STRING);
387
- struct fann_train_data* t;
388
- Data_Get_Struct (self, struct fann_train_data, t);
461
+ Check_Type(filename, T_STRING);
462
+ struct fann_train_data *t;
463
+ Data_Get_Struct(self, struct fann_train_data, t);
389
464
  fann_save_train(t, StringValuePtr(filename));
390
- return self;
465
+ return self;
391
466
  }
392
467
 
393
- /** Shuffles training data, randomizing the order.
468
+ /** Shuffles training data, randomizing the order.
394
469
  This is recommended for incremental training, while it will have no influence during batch training.*/
395
470
  static VALUE shuffle(VALUE self)
396
471
  {
397
- struct fann_train_data* t;
398
- Data_Get_Struct (self, struct fann_train_data, t);
472
+ struct fann_train_data *t;
473
+ Data_Get_Struct(self, struct fann_train_data, t);
399
474
  fann_shuffle_train_data(t);
400
475
  return self;
401
476
  }
@@ -403,27 +478,27 @@ static VALUE shuffle(VALUE self)
403
478
  /** Length of training data*/
404
479
  static VALUE length_train_data(VALUE self)
405
480
  {
406
- struct fann_train_data* t;
407
- Data_Get_Struct (self, struct fann_train_data, t);
408
- return(UINT2NUM(fann_length_train_data(t)));
481
+ struct fann_train_data *t;
482
+ Data_Get_Struct(self, struct fann_train_data, t);
483
+ return (UINT2NUM(fann_length_train_data(t)));
409
484
  return self;
410
485
  }
411
486
 
412
487
  /** call-seq: set_activation_function(activation_func, layer, neuron)
413
488
 
414
- Set the activation function for neuron number *neuron* in layer number *layer*,
489
+ Set the activation function for neuron number *neuron* in layer number *layer*,
415
490
  counting the input layer as layer 0. activation_func must be one of the following symbols:
416
- :linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
417
- :sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
418
- :elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
491
+ :linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
492
+ :sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
493
+ :elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
419
494
  :sin, :cos*/
420
495
  static VALUE set_activation_function(VALUE self, VALUE activation_func, VALUE layer, VALUE neuron)
421
496
  {
422
497
  Check_Type(activation_func, T_SYMBOL);
423
498
  Check_Type(layer, T_FIXNUM);
424
499
  Check_Type(neuron, T_FIXNUM);
425
-
426
- struct fann* f;
500
+
501
+ struct fann *f;
427
502
  Data_Get_Struct(self, struct fann, f);
428
503
  fann_set_activation_function(f, sym_to_activation_function(activation_func), NUM2INT(layer), NUM2INT(neuron));
429
504
  return self;
@@ -432,14 +507,14 @@ static VALUE set_activation_function(VALUE self, VALUE activation_func, VALUE la
432
507
  /** call-seq: set_activation_function_hidden(activation_func)
433
508
 
434
509
  Set the activation function for all of the hidden layers. activation_func must be one of the following symbols:
435
- :linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
436
- :sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
437
- :elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
510
+ :linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
511
+ :sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
512
+ :elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
438
513
  :sin, :cos*/
439
514
  static VALUE set_activation_function_hidden(VALUE self, VALUE activation_func)
440
515
  {
441
516
  Check_Type(activation_func, T_SYMBOL);
442
- struct fann* f;
517
+ struct fann *f;
443
518
  Data_Get_Struct(self, struct fann, f);
444
519
  fann_set_activation_function_hidden(f, sym_to_activation_function(activation_func));
445
520
  return self;
@@ -447,37 +522,37 @@ static VALUE set_activation_function_hidden(VALUE self, VALUE activation_func)
447
522
 
448
523
  /** call-seq: set_activation_function_layer(activation_func, layer)
449
524
 
450
- Set the activation function for all the neurons in the layer number *layer*,
525
+ Set the activation function for all the neurons in the layer number *layer*,
451
526
  counting the input layer as layer 0. activation_func must be one of the following symbols:
452
- :linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
453
- :sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
454
- :elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
527
+ :linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
528
+ :sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
529
+ :elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
455
530
  :sin, :cos
456
-
531
+
457
532
  It is not possible to set activation functions for the neurons in the input layer.
458
- */
533
+ */
459
534
  static VALUE set_activation_function_layer(VALUE self, VALUE activation_func, VALUE layer)
460
535
  {
461
536
  Check_Type(activation_func, T_SYMBOL);
462
537
  Check_Type(layer, T_FIXNUM);
463
- struct fann* f;
538
+ struct fann *f;
464
539
  Data_Get_Struct(self, struct fann, f);
465
540
  fann_set_activation_function_layer(f, sym_to_activation_function(activation_func), NUM2INT(layer));
466
541
  return self;
467
542
  }
468
543
 
469
- /** call-seq: get_activation_function(layer) -> return value
470
-
471
- Get the activation function for neuron number *neuron* in layer number *layer*,
472
- counting the input layer as layer 0.
544
+ /** call-seq: get_activation_function(layer) -> return value
473
545
 
474
- It is not possible to get activation functions for the neurons in the input layer.
546
+ Get the activation function for neuron number *neuron* in layer number *layer*,
547
+ counting the input layer as layer 0.
548
+
549
+ It is not possible to get activation functions for the neurons in the input layer.
475
550
  */
476
551
  static VALUE get_activation_function(VALUE self, VALUE layer, VALUE neuron)
477
552
  {
478
553
  Check_Type(layer, T_FIXNUM);
479
554
  Check_Type(neuron, T_FIXNUM);
480
- struct fann* f;
555
+ struct fann *f;
481
556
  Data_Get_Struct(self, struct fann, f);
482
557
  fann_type val = fann_get_activation_function(f, NUM2INT(layer), NUM2INT(neuron));
483
558
  return activation_function_to_sym(val);
@@ -486,29 +561,29 @@ static VALUE get_activation_function(VALUE self, VALUE layer, VALUE neuron)
486
561
  /** call-seq: set_activation_function_output(activation_func)
487
562
 
488
563
  Set the activation function for the output layer. activation_func must be one of the following symbols:
489
- :linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
490
- :sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
491
- :elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
564
+ :linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
565
+ :sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
566
+ :elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
492
567
  :sin, :cos*/
493
568
 
494
569
  static VALUE set_activation_function_output(VALUE self, VALUE activation_func)
495
570
  {
496
571
  Check_Type(activation_func, T_SYMBOL);
497
- struct fann* f;
572
+ struct fann *f;
498
573
  Data_Get_Struct(self, struct fann, f);
499
574
  fann_set_activation_function_output(f, sym_to_activation_function(activation_func));
500
575
  return self;
501
576
  }
502
577
 
503
- /** call-seq: get_activation_steepness(layer, neuron) -> return value
504
-
505
- Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
578
+ /** call-seq: get_activation_steepness(layer, neuron) -> return value
579
+
580
+ Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
506
581
  */
507
582
  static VALUE get_activation_steepness(VALUE self, VALUE layer, VALUE neuron)
508
583
  {
509
584
  Check_Type(layer, T_FIXNUM);
510
585
  Check_Type(neuron, T_FIXNUM);
511
- struct fann* f;
586
+ struct fann *f;
512
587
  Data_Get_Struct(self, struct fann, f);
513
588
  fann_type val = fann_get_activation_steepness(f, NUM2INT(layer), NUM2INT(neuron));
514
589
  return rb_float_new(val);
@@ -516,21 +591,21 @@ static VALUE get_activation_steepness(VALUE self, VALUE layer, VALUE neuron)
516
591
 
517
592
  /** call-seq: set_activation_steepness(steepness, layer, neuron)
518
593
 
519
- Set the activation steepness for neuron number {neuron} in layer number {layer},
594
+ Set the activation steepness for neuron number {neuron} in layer number {layer},
520
595
  counting the input layer as layer 0.*/
521
596
  static VALUE set_activation_steepness(VALUE self, VALUE steepness, VALUE layer, VALUE neuron)
522
597
  {
523
598
  Check_Type(steepness, T_FLOAT);
524
599
  Check_Type(layer, T_FIXNUM);
525
600
  Check_Type(neuron, T_FIXNUM);
526
-
527
- struct fann* f;
601
+
602
+ struct fann *f;
528
603
  Data_Get_Struct(self, struct fann, f);
529
604
  fann_set_activation_steepness(f, NUM2DBL(steepness), NUM2INT(layer), NUM2INT(neuron));
530
605
  return self;
531
606
  }
532
607
 
533
- /** call-seq: set_activation_steepness_hidden(arg) -> return value
608
+ /** call-seq: set_activation_steepness_hidden(arg) -> return value
534
609
 
535
610
  Set the activation steepness in all of the hidden layers.*/
536
611
  static VALUE set_activation_steepness_hidden(VALUE self, VALUE steepness)
@@ -540,14 +615,14 @@ static VALUE set_activation_steepness_hidden(VALUE self, VALUE steepness)
540
615
 
541
616
  /** call-seq: set_activation_steepness_layer(steepness, layer)
542
617
 
543
- Set the activation steepness all of the neurons in layer number *layer*,
618
+ Set the activation steepness all of the neurons in layer number *layer*,
544
619
  counting the input layer as layer 0.*/
545
620
  static VALUE set_activation_steepness_layer(VALUE self, VALUE steepness, VALUE layer)
546
621
  {
547
622
  Check_Type(steepness, T_FLOAT);
548
623
  Check_Type(layer, T_FIXNUM);
549
-
550
- struct fann* f;
624
+
625
+ struct fann *f;
551
626
  Data_Get_Struct(self, struct fann, f);
552
627
  fann_set_activation_steepness_layer(f, NUM2DBL(steepness), NUM2INT(layer));
553
628
  return self;
@@ -575,8 +650,8 @@ static VALUE set_bit_fail_limit(VALUE self, VALUE bit_fail_limit)
575
650
  SET_FANN_FLT(bit_fail_limit, fann_set_bit_fail_limit);
576
651
  }
577
652
 
578
- /** The decay is a small negative valued number which is the factor that the weights
579
- should become smaller in each iteration during quickprop training. This is used
653
+ /** The decay is a small negative valued number which is the factor that the weights
654
+ should become smaller in each iteration during quickprop training. This is used
580
655
  to make sure that the weights do not become too high during training.*/
581
656
  static VALUE get_quickprop_decay(VALUE self)
582
657
  {
@@ -591,8 +666,8 @@ static VALUE set_quickprop_decay(VALUE self, VALUE quickprop_decay)
591
666
  SET_FANN_FLT(quickprop_decay, fann_set_quickprop_decay);
592
667
  }
593
668
 
594
- /** The mu factor is used to increase and decrease the step-size during quickprop training.
595
- The mu factor should always be above 1, since it would otherwise decrease the step-size
669
+ /** The mu factor is used to increase and decrease the step-size during quickprop training.
670
+ The mu factor should always be above 1, since it would otherwise decrease the step-size
596
671
  when it was suppose to increase it. */
597
672
  static VALUE get_quickprop_mu(VALUE self)
598
673
  {
@@ -607,7 +682,7 @@ static VALUE set_quickprop_mu(VALUE self, VALUE quickprop_mu)
607
682
  SET_FANN_FLT(quickprop_mu, fann_set_quickprop_mu);
608
683
  }
609
684
 
610
- /** The increase factor is a value larger than 1, which is used to
685
+ /** The increase factor is a value larger than 1, which is used to
611
686
  increase the step-size during RPROP training.*/
612
687
  static VALUE get_rprop_increase_factor(VALUE self)
613
688
  {
@@ -681,27 +756,27 @@ static VALUE set_rprop_delta_zero(VALUE self, VALUE rprop_delta_zero)
681
756
  /** Return array of bias(es)*/
682
757
  static VALUE get_bias_array(VALUE self)
683
758
  {
684
- struct fann* f;
759
+ struct fann *f;
685
760
  unsigned int num_layers;
686
- Data_Get_Struct (self, struct fann, f);
761
+ Data_Get_Struct(self, struct fann, f);
687
762
  num_layers = fann_get_num_layers(f);
688
763
  unsigned int layers[num_layers];
689
- fann_get_bias_array(f, layers);
690
-
764
+ fann_get_bias_array(f, layers);
765
+
691
766
  // Create ruby array & set outputs:
692
767
  VALUE arr;
693
768
  arr = rb_ary_new();
694
769
  unsigned int i;
695
- for (i=0; i<num_layers; i++)
770
+ for (i = 0; i < num_layers; i++)
696
771
  {
697
772
  rb_ary_push(arr, INT2NUM(layers[i]));
698
773
  }
699
-
774
+
700
775
  return arr;
701
776
  }
702
777
 
703
- /** The number of fail bits; means the number of output neurons which differ more
704
- than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
778
+ /** The number of fail bits; means the number of output neurons which differ more
779
+ than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
705
780
  The bits are counted in all of the training data, so this number can be higher than
706
781
  the number of training data.*/
707
782
  static VALUE get_bit_fail(VALUE self)
@@ -715,7 +790,7 @@ static VALUE get_connection_rate(VALUE self)
715
790
  RETURN_FANN_INT(fann_get_connection_rate);
716
791
  }
717
792
 
718
- /** call-seq: get_neurons(layer) -> return value
793
+ /** call-seq: get_neurons(layer) -> return value
719
794
 
720
795
  Return array<hash> where each array element is a hash
721
796
  representing a neuron. It contains the following keys:
@@ -724,19 +799,19 @@ static VALUE get_connection_rate(VALUE self)
724
799
  :sum=float -- The sum of the inputs multiplied with the weights
725
800
  :value=float -- The value of the activation fuction applied to the sum
726
801
  :connections=array<int> -- indices of connected neurons(inputs)
727
-
802
+
728
803
  This could be done more elegantly (e.g., defining more ruby ext classes).
729
804
  This method does not directly correlate to anything in FANN, and accesses
730
- structs that are not guaranteed to not change.
805
+ structs that are not guaranteed to not change.
731
806
  */
732
807
  static VALUE get_neurons(VALUE self, VALUE layer)
733
808
  {
734
809
  struct fann_layer *layer_it;
735
810
  struct fann_neuron *neuron_it;
736
-
737
- struct fann* f;
811
+
812
+ struct fann *f;
738
813
  unsigned int i;
739
- Data_Get_Struct (self, struct fann, f);
814
+ Data_Get_Struct(self, struct fann, f);
740
815
 
741
816
  VALUE neuron_array = rb_ary_new();
742
817
  VALUE activation_function_sym = ID2SYM(rb_intern("activation_function"));
@@ -746,22 +821,23 @@ static VALUE get_neurons(VALUE self, VALUE layer)
746
821
  VALUE value_sym = ID2SYM(rb_intern("value"));
747
822
  VALUE connections_sym = ID2SYM(rb_intern("connections"));
748
823
  unsigned int layer_num = 0;
749
-
750
-
751
- int nuke_bias_neuron = (fann_get_network_type(f)==FANN_NETTYPE_LAYER);
752
- for(layer_it = f->first_layer; layer_it != f->last_layer; layer_it++)
824
+
825
+ int nuke_bias_neuron = (fann_get_network_type(f) == FANN_NETTYPE_LAYER);
826
+ for (layer_it = f->first_layer; layer_it != f->last_layer; layer_it++)
753
827
  {
754
- for(neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
828
+ for (neuron_it = layer_it->first_neuron; neuron_it != layer_it->last_neuron; neuron_it++)
755
829
  {
756
- if (nuke_bias_neuron && (neuron_it==(layer_it->last_neuron)-1)) continue;
830
+ if (nuke_bias_neuron && (neuron_it == (layer_it->last_neuron) - 1))
831
+ continue;
757
832
  // Create array of connection indicies:
758
833
  VALUE connection_array = rb_ary_new();
759
- for (i = neuron_it->first_con; i < neuron_it->last_con; i++) {
760
- rb_ary_push(connection_array, INT2NUM(f->connections[i] - f->first_layer->first_neuron));
834
+ for (i = neuron_it->first_con; i < neuron_it->last_con; i++)
835
+ {
836
+ rb_ary_push(connection_array, INT2NUM(f->connections[i] - f->first_layer->first_neuron));
761
837
  }
762
838
 
763
839
  VALUE neuron = rb_hash_new();
764
-
840
+
765
841
  // Set attributes on hash & push on array:
766
842
  rb_hash_aset(neuron, activation_function_sym, activation_function_to_sym(neuron_it->activation_function));
767
843
  rb_hash_aset(neuron, activation_steepness_sym, rb_float_new(neuron_it->activation_steepness));
@@ -769,47 +845,46 @@ static VALUE get_neurons(VALUE self, VALUE layer)
769
845
  rb_hash_aset(neuron, sum_sym, rb_float_new(neuron_it->sum));
770
846
  rb_hash_aset(neuron, value_sym, rb_float_new(neuron_it->value));
771
847
  rb_hash_aset(neuron, connections_sym, connection_array);
772
-
773
- rb_ary_push(neuron_array, neuron);
848
+
849
+ rb_ary_push(neuron_array, neuron);
774
850
  }
775
851
  ++layer_num;
776
852
  }
777
853
 
778
- // switch (fann_get_network_type(ann)) {
779
- // case FANN_NETTYPE_LAYER: {
780
- // /* Report one bias in each layer except the last */
781
- // if (layer_it != ann->last_layer-1)
782
- // *bias = 1;
783
- // else
784
- // *bias = 0;
785
- // break;
786
- // }
787
- // case FANN_NETTYPE_SHORTCUT: {
788
-
854
+ // switch (fann_get_network_type(ann)) {
855
+ // case FANN_NETTYPE_LAYER: {
856
+ // /* Report one bias in each layer except the last */
857
+ // if (layer_it != ann->last_layer-1)
858
+ // *bias = 1;
859
+ // else
860
+ // *bias = 0;
861
+ // break;
862
+ // }
863
+ // case FANN_NETTYPE_SHORTCUT: {
789
864
 
790
- return neuron_array;
865
+ return neuron_array;
791
866
  }
792
867
 
793
868
  /** Get list of layers in array format where each element contains number of neurons in that layer*/
794
869
  static VALUE get_layer_array(VALUE self)
795
870
  {
796
- struct fann* f;
871
+ struct fann *f;
797
872
  unsigned int num_layers;
798
- Data_Get_Struct (self, struct fann, f);
873
+ Data_Get_Struct(self, struct fann, f);
799
874
  num_layers = fann_get_num_layers(f);
800
875
  unsigned int layers[num_layers];
801
- fann_get_layer_array(f, layers);
802
-
876
+ fann_get_layer_array(f, layers);
877
+
803
878
  // Create ruby array & set outputs:
804
879
  VALUE arr;
805
880
  arr = rb_ary_new();
806
881
  unsigned int i;
807
- for (i=0; i<num_layers; i++)
882
+ for (i = 0; i < num_layers; i++)
808
883
  {
809
884
  rb_ary_push(arr, INT2NUM(layers[i]));
810
885
  }
811
-
812
- return arr;
886
+
887
+ return arr;
813
888
  }
814
889
 
815
890
  /** Reads the mean square error from the network.*/
@@ -819,33 +894,33 @@ static VALUE get_MSE(VALUE self)
819
894
  }
820
895
 
821
896
  /** Resets the mean square error from the network.
822
- This function also resets the number of bits that fail.*/
897
+ This function also resets the number of bits that fail.*/
823
898
  static VALUE reset_MSE(VALUE self)
824
899
  {
825
- struct fann* f;
826
- Data_Get_Struct (self, struct fann, f);
900
+ struct fann *f;
901
+ Data_Get_Struct(self, struct fann, f);
827
902
  fann_reset_MSE(f);
828
- return self;
903
+ return self;
829
904
  }
830
905
 
831
906
  /** Get the type of network. Returns as ruby symbol (one of :shortcut, :layer)*/
832
907
  static VALUE get_network_type(VALUE self)
833
908
  {
834
- struct fann* f;
909
+ struct fann *f;
835
910
  enum fann_nettype_enum net_type;
836
911
  VALUE ret_val;
837
- Data_Get_Struct (self, struct fann, f);
912
+ Data_Get_Struct(self, struct fann, f);
838
913
 
839
914
  net_type = fann_get_network_type(f);
840
-
841
- if(net_type==FANN_NETTYPE_LAYER)
915
+
916
+ if (net_type == FANN_NETTYPE_LAYER)
842
917
  {
843
918
  ret_val = ID2SYM(rb_intern("layer")); // (rb_str_new2("FANN_NETTYPE_LAYER"));
844
919
  }
845
- else if(net_type==FANN_NETTYPE_SHORTCUT)
920
+ else if (net_type == FANN_NETTYPE_SHORTCUT)
846
921
  {
847
922
  ret_val = ID2SYM(rb_intern("shortcut")); // (rb_str_new2("FANN_NETTYPE_SHORTCUT"));
848
- }
923
+ }
849
924
  return ret_val;
850
925
  }
851
926
 
@@ -854,7 +929,7 @@ static VALUE get_num_input(VALUE self)
854
929
  {
855
930
  RETURN_FANN_INT(fann_get_num_input);
856
931
  }
857
-
932
+
858
933
  /** Get the number of layers in the network.*/
859
934
  static VALUE get_num_layers(VALUE self)
860
935
  {
@@ -886,43 +961,48 @@ static VALUE get_total_neurons(VALUE self)
886
961
  static VALUE set_train_error_function(VALUE self, VALUE train_error_function)
887
962
  {
888
963
  Check_Type(train_error_function, T_SYMBOL);
889
-
890
- ID id=SYM2ID(train_error_function);
964
+
965
+ ID id = SYM2ID(train_error_function);
891
966
  enum fann_errorfunc_enum fann_train_error_function;
892
967
 
893
- if(id==rb_intern("linear")) {
894
- fann_train_error_function = FANN_ERRORFUNC_LINEAR;
895
- } else if(id==rb_intern("tanh")) {
896
- fann_train_error_function = FANN_ERRORFUNC_TANH;
897
- } else {
968
+ if (id == rb_intern("linear"))
969
+ {
970
+ fann_train_error_function = FANN_ERRORFUNC_LINEAR;
971
+ }
972
+ else if (id == rb_intern("tanh"))
973
+ {
974
+ fann_train_error_function = FANN_ERRORFUNC_TANH;
975
+ }
976
+ else
977
+ {
898
978
  rb_raise(rb_eRuntimeError, "Unrecognized train error function: [%s]", rb_id2name(SYM2ID(train_error_function)));
899
- }
979
+ }
900
980
 
901
- struct fann* f;
902
- Data_Get_Struct (self, struct fann, f);
981
+ struct fann *f;
982
+ Data_Get_Struct(self, struct fann, f);
903
983
  fann_set_train_error_function(f, fann_train_error_function);
904
- return self;
984
+ return self;
905
985
  }
906
986
 
907
987
  /** Returns the error function used during training. One of the following symbols:
908
- :linear, :tanh*/
988
+ :linear, :tanh*/
909
989
  static VALUE get_train_error_function(VALUE self)
910
990
  {
911
- struct fann* f;
991
+ struct fann *f;
912
992
  enum fann_errorfunc_enum train_error;
913
993
  VALUE ret_val;
914
- Data_Get_Struct (self, struct fann, f);
994
+ Data_Get_Struct(self, struct fann, f);
915
995
 
916
996
  train_error = fann_get_train_error_function(f);
917
-
918
- if(train_error==FANN_ERRORFUNC_LINEAR)
997
+
998
+ if (train_error == FANN_ERRORFUNC_LINEAR)
919
999
  {
920
- ret_val = ID2SYM(rb_intern("linear"));
1000
+ ret_val = ID2SYM(rb_intern("linear"));
921
1001
  }
922
- else if(train_error==FANN_ERRORFUNC_TANH)
1002
+ else
923
1003
  {
924
- ret_val = ID2SYM(rb_intern("tanh"));
925
- }
1004
+ ret_val = ID2SYM(rb_intern("tanh"));
1005
+ }
926
1006
  return ret_val;
927
1007
  }
928
1008
 
@@ -933,113 +1013,133 @@ static VALUE get_train_error_function(VALUE self)
933
1013
  static VALUE set_training_algorithm(VALUE self, VALUE train_error_function)
934
1014
  {
935
1015
  Check_Type(train_error_function, T_SYMBOL);
936
-
937
- ID id=SYM2ID(train_error_function);
1016
+
1017
+ ID id = SYM2ID(train_error_function);
938
1018
  enum fann_train_enum fann_train_algorithm;
939
1019
 
940
- if(id==rb_intern("incremental")) {
941
- fann_train_algorithm = FANN_TRAIN_INCREMENTAL;
942
- } else if(id==rb_intern("batch")) {
943
- fann_train_algorithm = FANN_TRAIN_BATCH;
944
- } else if(id==rb_intern("rprop")) {
945
- fann_train_algorithm = FANN_TRAIN_RPROP;
946
- } else if(id==rb_intern("quickprop")) {
947
- fann_train_algorithm = FANN_TRAIN_QUICKPROP;
948
- } else {
1020
+ if (id == rb_intern("incremental"))
1021
+ {
1022
+ fann_train_algorithm = FANN_TRAIN_INCREMENTAL;
1023
+ }
1024
+ else if (id == rb_intern("batch"))
1025
+ {
1026
+ fann_train_algorithm = FANN_TRAIN_BATCH;
1027
+ }
1028
+ else if (id == rb_intern("rprop"))
1029
+ {
1030
+ fann_train_algorithm = FANN_TRAIN_RPROP;
1031
+ }
1032
+ else if (id == rb_intern("quickprop"))
1033
+ {
1034
+ fann_train_algorithm = FANN_TRAIN_QUICKPROP;
1035
+ }
1036
+ else
1037
+ {
949
1038
  rb_raise(rb_eRuntimeError, "Unrecognized training algorithm function: [%s]", rb_id2name(SYM2ID(train_error_function)));
950
- }
1039
+ }
951
1040
 
952
- struct fann* f;
953
- Data_Get_Struct (self, struct fann, f);
1041
+ struct fann *f;
1042
+ Data_Get_Struct(self, struct fann, f);
954
1043
  fann_set_training_algorithm(f, fann_train_algorithm);
955
- return self;
1044
+ return self;
956
1045
  }
957
1046
 
958
1047
  /** Returns the training algorithm. One of the following symbols:
959
1048
  :incremental, :batch, :rprop, :quickprop */
960
1049
  static VALUE get_training_algorithm(VALUE self)
961
1050
  {
962
- struct fann* f;
1051
+ struct fann *f;
963
1052
  enum fann_train_enum fann_train_algorithm;
964
1053
  VALUE ret_val;
965
- Data_Get_Struct (self, struct fann, f);
1054
+ Data_Get_Struct(self, struct fann, f);
966
1055
 
967
1056
  fann_train_algorithm = fann_get_training_algorithm(f);
968
-
969
- if(fann_train_algorithm==FANN_TRAIN_INCREMENTAL) {
1057
+
1058
+ if (fann_train_algorithm == FANN_TRAIN_INCREMENTAL)
1059
+ {
970
1060
  ret_val = ID2SYM(rb_intern("incremental"));
971
- } else if(fann_train_algorithm==FANN_TRAIN_BATCH) {
972
- ret_val = ID2SYM(rb_intern("batch"));
973
- } else if(fann_train_algorithm==FANN_TRAIN_RPROP) {
974
- ret_val = ID2SYM(rb_intern("rprop"));
975
- } else if(fann_train_algorithm==FANN_TRAIN_QUICKPROP) {
976
- ret_val = ID2SYM(rb_intern("quickprop"));
977
- }
1061
+ }
1062
+ else if (fann_train_algorithm == FANN_TRAIN_BATCH)
1063
+ {
1064
+ ret_val = ID2SYM(rb_intern("batch"));
1065
+ }
1066
+ else if (fann_train_algorithm == FANN_TRAIN_RPROP)
1067
+ {
1068
+ ret_val = ID2SYM(rb_intern("rprop"));
1069
+ }
1070
+ else if (fann_train_algorithm == FANN_TRAIN_QUICKPROP)
1071
+ {
1072
+ ret_val = ID2SYM(rb_intern("quickprop"));
1073
+ }
978
1074
  return ret_val;
979
1075
  }
980
1076
 
981
- /** call-seq: set_train_stop_function(train_stop_function) -> return value
1077
+ /** call-seq: set_train_stop_function(train_stop_function) -> return value
982
1078
 
983
1079
  Set the training stop function. One of the following symbols:
984
1080
  :mse, :bit */
985
1081
  static VALUE set_train_stop_function(VALUE self, VALUE train_stop_function)
986
1082
  {
987
1083
  Check_Type(train_stop_function, T_SYMBOL);
988
- ID id=SYM2ID(train_stop_function);
1084
+ ID id = SYM2ID(train_stop_function);
989
1085
  enum fann_stopfunc_enum fann_train_stop_function;
990
1086
 
991
- if(id==rb_intern("mse")) {
992
- fann_train_stop_function = FANN_STOPFUNC_MSE;
993
- } else if(id==rb_intern("bit")) {
994
- fann_train_stop_function = FANN_STOPFUNC_BIT;
995
- } else {
1087
+ if (id == rb_intern("mse"))
1088
+ {
1089
+ fann_train_stop_function = FANN_STOPFUNC_MSE;
1090
+ }
1091
+ else if (id == rb_intern("bit"))
1092
+ {
1093
+ fann_train_stop_function = FANN_STOPFUNC_BIT;
1094
+ }
1095
+ else
1096
+ {
996
1097
  rb_raise(rb_eRuntimeError, "Unrecognized stop function: [%s]", rb_id2name(SYM2ID(train_stop_function)));
997
- }
1098
+ }
998
1099
 
999
- struct fann* f;
1000
- Data_Get_Struct (self, struct fann, f);
1100
+ struct fann *f;
1101
+ Data_Get_Struct(self, struct fann, f);
1001
1102
  fann_set_train_stop_function(f, fann_train_stop_function);
1002
- return self;
1103
+ return self;
1003
1104
  }
1004
1105
 
1005
1106
  /** Returns the training stop function. One of the following symbols:
1006
1107
  :mse, :bit */
1007
1108
  static VALUE get_train_stop_function(VALUE self)
1008
1109
  {
1009
- struct fann* f;
1110
+ struct fann *f;
1010
1111
  enum fann_stopfunc_enum train_stop;
1011
1112
  VALUE ret_val;
1012
- Data_Get_Struct (self, struct fann, f);
1113
+ Data_Get_Struct(self, struct fann, f);
1013
1114
 
1014
1115
  train_stop = fann_get_train_stop_function(f);
1015
-
1016
- if(train_stop==FANN_STOPFUNC_MSE)
1116
+
1117
+ if (train_stop == FANN_STOPFUNC_MSE)
1017
1118
  {
1018
1119
  ret_val = ID2SYM(rb_intern("mse")); // (rb_str_new2("FANN_NETTYPE_LAYER"));
1019
1120
  }
1020
1121
  else // if(train_stop==FANN_STOPFUNC_BIT)
1021
1122
  {
1022
1123
  ret_val = ID2SYM(rb_intern("bit")); // (rb_str_new2("FANN_NETTYPE_SHORTCUT"));
1023
- }
1124
+ }
1024
1125
  return ret_val;
1025
1126
  }
1026
1127
 
1027
-
1028
- /** Will print the connections of the ann in a compact matrix,
1128
+ /** Will print the connections of the ann in a compact matrix,
1029
1129
  for easy viewing of the internals of the ann. */
1030
1130
  static VALUE print_connections(VALUE self)
1031
1131
  {
1032
- struct fann* f;
1033
- Data_Get_Struct (self, struct fann, f);
1132
+ struct fann *f;
1133
+ Data_Get_Struct(self, struct fann, f);
1034
1134
  fann_print_connections(f);
1035
- return self;
1135
+ return self;
1036
1136
  }
1037
1137
 
1038
1138
  /** Print current NN parameters to stdout */
1039
1139
  static VALUE print_parameters(VALUE self)
1040
1140
  {
1041
- struct fann* f;
1042
- Data_Get_Struct (self, struct fann, f);
1141
+ struct fann *f;
1142
+ Data_Get_Struct(self, struct fann, f);
1043
1143
  fann_print_parameters(f);
1044
1144
  return Qnil;
1045
1145
  }
@@ -1051,64 +1151,63 @@ static VALUE randomize_weights(VALUE self, VALUE min_weight, VALUE max_weight)
1051
1151
  {
1052
1152
  Check_Type(min_weight, T_FLOAT);
1053
1153
  Check_Type(max_weight, T_FLOAT);
1054
- struct fann* f;
1055
- Data_Get_Struct (self, struct fann, f);
1154
+ struct fann *f;
1155
+ Data_Get_Struct(self, struct fann, f);
1056
1156
  fann_randomize_weights(f, NUM2DBL(min_weight), NUM2DBL(max_weight));
1057
- return self;
1157
+ return self;
1058
1158
  }
1059
1159
 
1060
- /** call-seq: run(inputs) -> return value
1160
+ /** call-seq: run(inputs) -> return value
1061
1161
 
1062
- Run neural net on array<Float> of inputs with current parameters.
1162
+ Run neural net on array<Float> of inputs with current parameters.
1063
1163
  Returns array<Float> as output */
1064
- static VALUE run (VALUE self, VALUE inputs)
1164
+ static VALUE run(VALUE self, VALUE inputs)
1065
1165
  {
1066
1166
  Check_Type(inputs, T_ARRAY);
1067
1167
 
1068
- struct fann* f;
1168
+ struct fann *f;
1069
1169
  unsigned int i;
1070
- fann_type* outputs;
1071
-
1170
+ fann_type *outputs;
1171
+
1072
1172
  // Convert inputs to type needed for NN:
1073
- unsigned int len = NUM2UINT(RARRAY_LEN(inputs));
1173
+ unsigned int len = RARRAY_LEN(inputs);
1074
1174
  fann_type fann_inputs[len];
1075
- for (i=0; i<len; i++)
1175
+ for (i = 0; i < len; i++)
1076
1176
  {
1077
1177
  fann_inputs[i] = NUM2DBL(RARRAY_PTR(inputs)[i]);
1078
1178
  }
1079
-
1080
-
1179
+
1081
1180
  // Obtain NN & run method:
1082
- Data_Get_Struct (self, struct fann, f);
1181
+ Data_Get_Struct(self, struct fann, f);
1083
1182
  outputs = fann_run(f, fann_inputs);
1084
1183
 
1085
1184
  // Create ruby array & set outputs:
1086
1185
  VALUE arr;
1087
1186
  arr = rb_ary_new();
1088
- unsigned int output_len=fann_get_num_output(f);
1089
- for (i=0; i<output_len; i++)
1090
- {
1187
+ unsigned int output_len = fann_get_num_output(f);
1188
+ for (i = 0; i < output_len; i++)
1189
+ {
1091
1190
  rb_ary_push(arr, rb_float_new(outputs[i]));
1092
1191
  }
1093
-
1094
- return arr;
1192
+
1193
+ return arr;
1095
1194
  }
1096
1195
 
1097
- /** call-seq: init_weights(train_data) -> return value
1196
+ /** call-seq: init_weights(train_data) -> return value
1098
1197
 
1099
1198
  Initialize the weights using Widrow + Nguyen's algorithm. */
1100
1199
  static VALUE init_weights(VALUE self, VALUE train_data)
1101
1200
  {
1102
-
1201
+
1103
1202
  Check_Type(train_data, T_DATA);
1104
-
1105
- struct fann* f;
1106
- struct fann_train_data* t;
1107
- Data_Get_Struct (self, struct fann, f);
1108
- Data_Get_Struct (train_data, struct fann_train_data, t);
1109
1203
 
1110
- fann_init_weights(f, t);
1111
- return self;
1204
+ struct fann *f;
1205
+ struct fann_train_data *t;
1206
+ Data_Get_Struct(self, struct fann, f);
1207
+ Data_Get_Struct(train_data, struct fann_train_data, t);
1208
+
1209
+ fann_init_weights(f, t);
1210
+ return self;
1112
1211
  }
1113
1212
 
1114
1213
  /** call-seq: train(input, expected_output)
@@ -1121,21 +1220,23 @@ static VALUE train(VALUE self, VALUE input, VALUE expected_output)
1121
1220
  Check_Type(input, T_ARRAY);
1122
1221
  Check_Type(expected_output, T_ARRAY);
1123
1222
 
1124
- struct fann* f;
1223
+ struct fann *f;
1125
1224
  Data_Get_Struct(self, struct fann, f);
1126
1225
 
1127
- unsigned int num_input = NUM2UINT(RARRAY_LEN(input));
1128
- unsigned int num_output = NUM2UINT(RARRAY_LEN(expected_output));
1226
+ unsigned int num_input = RARRAY_LEN(input);
1227
+ unsigned int num_output = RARRAY_LEN(expected_output);
1129
1228
 
1130
1229
  fann_type data_input[num_input], data_output[num_output];
1131
1230
 
1132
1231
  unsigned int i;
1133
1232
 
1134
- for (i = 0; i < num_input; i++) {
1233
+ for (i = 0; i < num_input; i++)
1234
+ {
1135
1235
  data_input[i] = NUM2DBL(RARRAY_PTR(input)[i]);
1136
1236
  }
1137
1237
 
1138
- for (i = 0; i < num_output; i++) {
1238
+ for (i = 0; i < num_output; i++)
1239
+ {
1139
1240
  data_output[i] = NUM2DBL(RARRAY_PTR(expected_output)[i]);
1140
1241
  }
1141
1242
 
@@ -1157,42 +1258,42 @@ static VALUE train_on_data(VALUE self, VALUE train_data, VALUE max_epochs, VALUE
1157
1258
  Check_Type(max_epochs, T_FIXNUM);
1158
1259
  Check_Type(epochs_between_reports, T_FIXNUM);
1159
1260
  Check_Type(desired_error, T_FLOAT);
1160
-
1161
- struct fann* f;
1162
- struct fann_train_data* t;
1163
- Data_Get_Struct (self, struct fann, f);
1164
- Data_Get_Struct (train_data, struct fann_train_data, t);
1261
+
1262
+ struct fann *f;
1263
+ struct fann_train_data *t;
1264
+ Data_Get_Struct(self, struct fann, f);
1265
+ Data_Get_Struct(train_data, struct fann_train_data, t);
1165
1266
 
1166
1267
  unsigned int fann_max_epochs = NUM2INT(max_epochs);
1167
1268
  unsigned int fann_epochs_between_reports = NUM2INT(epochs_between_reports);
1168
- float fann_desired_error = NUM2DBL(desired_error);
1269
+ float fann_desired_error = NUM2DBL(desired_error);
1169
1270
  fann_train_on_data(f, t, fann_max_epochs, fann_epochs_between_reports, fann_desired_error);
1170
1271
  return rb_int_new(0);
1171
1272
  }
1172
1273
 
1173
- /** call-seq: train_epoch(train_data) -> return value
1274
+ /** call-seq: train_epoch(train_data) -> return value
1174
1275
 
1175
1276
  Train one epoch with a set of training data, created with RubyFann::TrainData.new */
1176
1277
  static VALUE train_epoch(VALUE self, VALUE train_data)
1177
1278
  {
1178
1279
  Check_Type(train_data, T_DATA);
1179
- struct fann* f;
1180
- struct fann_train_data* t;
1181
- Data_Get_Struct (self, struct fann, f);
1182
- Data_Get_Struct (train_data, struct fann_train_data, t);
1280
+ struct fann *f;
1281
+ struct fann_train_data *t;
1282
+ Data_Get_Struct(self, struct fann, f);
1283
+ Data_Get_Struct(train_data, struct fann_train_data, t);
1183
1284
  return rb_float_new(fann_train_epoch(f, t));
1184
1285
  }
1185
1286
 
1186
- /** call-seq: test_data(train_data) -> return value
1287
+ /** call-seq: test_data(train_data) -> return value
1187
1288
 
1188
1289
  Test a set of training data and calculates the MSE for the training data. */
1189
1290
  static VALUE test_data(VALUE self, VALUE train_data)
1190
1291
  {
1191
1292
  Check_Type(train_data, T_DATA);
1192
- struct fann* f;
1193
- struct fann_train_data* t;
1194
- Data_Get_Struct (self, struct fann, f);
1195
- Data_Get_Struct (train_data, struct fann_train_data, t);
1293
+ struct fann *f;
1294
+ struct fann_train_data *t;
1295
+ Data_Get_Struct(self, struct fann, f);
1296
+ Data_Get_Struct(train_data, struct fann_train_data, t);
1196
1297
  return rb_float_new(fann_test_data(f, t));
1197
1298
  }
1198
1299
 
@@ -1204,7 +1305,7 @@ static VALUE test_data(VALUE self, VALUE train_data)
1204
1305
  // Data_Get_Struct (self, struct fann, f);
1205
1306
  // return INT2NUM(fann_get_decimal_point(f));
1206
1307
  // }
1207
-
1308
+
1208
1309
  // returns the multiplier that fix point data is multiplied with.
1209
1310
 
1210
1311
  // Only available in fixed-point mode, which we don't need:
@@ -1228,19 +1329,19 @@ static VALUE cascadetrain_on_data(VALUE self, VALUE train_data, VALUE max_neuron
1228
1329
  Check_Type(max_neurons, T_FIXNUM);
1229
1330
  Check_Type(neurons_between_reports, T_FIXNUM);
1230
1331
  Check_Type(desired_error, T_FLOAT);
1231
-
1232
- struct fann* f;
1233
- struct fann_train_data* t;
1234
- Data_Get_Struct (self, struct fann, f);
1235
- Data_Get_Struct (train_data, struct fann_train_data, t);
1332
+
1333
+ struct fann *f;
1334
+ struct fann_train_data *t;
1335
+ Data_Get_Struct(self, struct fann, f);
1336
+ Data_Get_Struct(train_data, struct fann_train_data, t);
1236
1337
 
1237
1338
  unsigned int fann_max_neurons = NUM2INT(max_neurons);
1238
1339
  unsigned int fann_neurons_between_reports = NUM2INT(neurons_between_reports);
1239
1340
  float fann_desired_error = NUM2DBL(desired_error);
1240
-
1341
+
1241
1342
  fann_cascadetrain_on_data(f, t, fann_max_neurons, fann_neurons_between_reports, fann_desired_error);
1242
- return self;
1243
- }
1343
+ return self;
1344
+ }
1244
1345
 
1245
1346
  /** The cascade output change fraction is a number between 0 and 1 */
1246
1347
  static VALUE get_cascade_output_change_fraction(VALUE self)
@@ -1256,7 +1357,7 @@ static VALUE set_cascade_output_change_fraction(VALUE self, VALUE cascade_output
1256
1357
  SET_FANN_FLT(cascade_output_change_fraction, fann_set_cascade_output_change_fraction);
1257
1358
  }
1258
1359
 
1259
- /** The number of cascade output stagnation epochs determines the number of epochs training is allowed to
1360
+ /** The number of cascade output stagnation epochs determines the number of epochs training is allowed to
1260
1361
  continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>. */
1261
1362
  static VALUE get_cascade_output_stagnation_epochs(VALUE self)
1262
1363
  {
@@ -1265,7 +1366,7 @@ static VALUE get_cascade_output_stagnation_epochs(VALUE self)
1265
1366
 
1266
1367
  /** call-seq: set_cascade_output_stagnation_epochs(cascade_output_stagnation_epochs)
1267
1368
 
1268
- The number of cascade output stagnation epochs determines the number of epochs training is allowed to
1369
+ The number of cascade output stagnation epochs determines the number of epochs training is allowed to
1269
1370
  continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>. */
1270
1371
  static VALUE set_cascade_output_stagnation_epochs(VALUE self, VALUE cascade_output_stagnation_epochs)
1271
1372
  {
@@ -1300,7 +1401,7 @@ static VALUE get_cascade_candidate_stagnation_epochs(VALUE self)
1300
1401
  static VALUE set_cascade_candidate_stagnation_epochs(VALUE self, VALUE cascade_candidate_stagnation_epochs)
1301
1402
  {
1302
1403
  SET_FANN_UINT(cascade_candidate_stagnation_epochs, fann_set_cascade_candidate_stagnation_epochs);
1303
- }
1404
+ }
1304
1405
 
1305
1406
  /** The weight multiplier is a parameter which is used to multiply the weights from the candidate neuron
1306
1407
  before adding the neuron to the neural network. This parameter is usually between 0 and 1, and is used
@@ -1352,7 +1453,7 @@ static VALUE set_cascade_max_out_epochs(VALUE self, VALUE cascade_max_out_epochs
1352
1453
  SET_FANN_UINT(cascade_max_out_epochs, fann_set_cascade_max_out_epochs);
1353
1454
  }
1354
1455
 
1355
- /** The maximum candidate epochs determines the maximum number of epochs the input
1456
+ /** The maximum candidate epochs determines the maximum number of epochs the input
1356
1457
  connections to the candidates may be trained before adding a new candidate neuron. */
1357
1458
  static VALUE get_cascade_max_cand_epochs(VALUE self)
1358
1459
  {
@@ -1361,7 +1462,7 @@ static VALUE get_cascade_max_cand_epochs(VALUE self)
1361
1462
 
1362
1463
  /** call-seq: set_cascade_max_cand_epochs(cascade_max_cand_epochs)
1363
1464
 
1364
- The maximum candidate epochs determines the maximum number of epochs the input
1465
+ The maximum candidate epochs determines the maximum number of epochs the input
1365
1466
  connections to the candidates may be trained before adding a new candidate neuron. */
1366
1467
  static VALUE set_cascade_max_cand_epochs(VALUE self, VALUE cascade_max_cand_epochs)
1367
1468
  {
@@ -1383,18 +1484,18 @@ static VALUE get_cascade_activation_functions_count(VALUE self)
1383
1484
 
1384
1485
  /** The learning rate is used to determine how aggressive training should be for some of the
1385
1486
  training algorithms (:incremental, :batch, :quickprop).
1386
- Do however note that it is not used in :rprop.
1487
+ Do however note that it is not used in :rprop.
1387
1488
  The default learning rate is 0.7. */
1388
1489
  static VALUE get_learning_rate(VALUE self)
1389
1490
  {
1390
1491
  RETURN_FANN_FLT(fann_get_learning_rate);
1391
1492
  }
1392
1493
 
1393
- /** call-seq: set_learning_rate(learning_rate) -> return value
1494
+ /** call-seq: set_learning_rate(learning_rate) -> return value
1394
1495
 
1395
1496
  The learning rate is used to determine how aggressive training should be for some of the
1396
1497
  training algorithms (:incremental, :batch, :quickprop).
1397
- Do however note that it is not used in :rprop.
1498
+ Do however note that it is not used in :rprop.
1398
1499
  The default learning rate is 0.7. */
1399
1500
  static VALUE set_learning_rate(VALUE self, VALUE learning_rate)
1400
1501
  {
@@ -1407,8 +1508,8 @@ static VALUE get_learning_momentum(VALUE self)
1407
1508
  RETURN_FANN_FLT(fann_get_learning_momentum);
1408
1509
  }
1409
1510
 
1410
- /** call-seq: set_learning_momentum(learning_momentum) -> return value
1411
-
1511
+ /** call-seq: set_learning_momentum(learning_momentum) -> return value
1512
+
1412
1513
  Set the learning momentum. */
1413
1514
  static VALUE set_learning_momentum(VALUE self, VALUE learning_momentum)
1414
1515
  {
@@ -1422,35 +1523,35 @@ static VALUE set_learning_momentum(VALUE self, VALUE learning_momentum)
1422
1523
  static VALUE set_cascade_activation_functions(VALUE self, VALUE cascade_activation_functions)
1423
1524
  {
1424
1525
  Check_Type(cascade_activation_functions, T_ARRAY);
1425
- struct fann* f;
1426
- Data_Get_Struct (self, struct fann, f);
1427
-
1428
- unsigned int cnt = NUM2UINT(RARRAY_LEN(cascade_activation_functions));
1526
+ struct fann *f;
1527
+ Data_Get_Struct(self, struct fann, f);
1528
+
1529
+ unsigned long cnt = RARRAY_LEN(cascade_activation_functions);
1429
1530
  enum fann_activationfunc_enum fann_activation_functions[cnt];
1430
1531
  unsigned int i;
1431
- for (i=0; i<cnt; i++)
1532
+ for (i = 0; i < cnt; i++)
1432
1533
  {
1433
1534
  fann_activation_functions[i] = sym_to_activation_function(RARRAY_PTR(cascade_activation_functions)[i]);
1434
1535
  }
1435
-
1536
+
1436
1537
  fann_set_cascade_activation_functions(f, fann_activation_functions, cnt);
1437
- return self;
1538
+ return self;
1438
1539
  }
1439
1540
 
1440
1541
  /** The cascade activation functions is an array of the different activation functions used by
1441
1542
  the candidates. The default is [:sigmoid, :sigmoid_symmetric, :gaussian, :gaussian_symmetric, :elliot, :elliot_symmetric] */
1442
1543
  static VALUE get_cascade_activation_functions(VALUE self)
1443
1544
  {
1444
- struct fann* f;
1445
- Data_Get_Struct (self, struct fann, f);
1545
+ struct fann *f;
1546
+ Data_Get_Struct(self, struct fann, f);
1446
1547
  unsigned int cnt = fann_get_cascade_activation_functions_count(f);
1447
- enum fann_activationfunc_enum* fann_functions = fann_get_cascade_activation_functions(f);
1548
+ enum fann_activationfunc_enum *fann_functions = fann_get_cascade_activation_functions(f);
1448
1549
 
1449
1550
  // Create ruby array & set outputs:
1450
1551
  VALUE arr;
1451
1552
  arr = rb_ary_new();
1452
1553
  unsigned int i;
1453
- for (i=0; i<cnt; i++)
1554
+ for (i = 0; i < cnt; i++)
1454
1555
  {
1455
1556
  rb_ary_push(arr, activation_function_to_sym(fann_functions[i]));
1456
1557
  }
@@ -1486,17 +1587,17 @@ static VALUE set_cascade_num_candidate_groups(VALUE self, VALUE cascade_num_cand
1486
1587
  static VALUE set_cascade_activation_steepnesses(VALUE self, VALUE cascade_activation_steepnesses)
1487
1588
  {
1488
1589
  Check_Type(cascade_activation_steepnesses, T_ARRAY);
1489
- struct fann* f;
1490
- Data_Get_Struct (self, struct fann, f);
1491
-
1492
- unsigned int cnt = NUM2UINT(RARRAY_LEN(cascade_activation_steepnesses));
1590
+ struct fann *f;
1591
+ Data_Get_Struct(self, struct fann, f);
1592
+
1593
+ unsigned int cnt = RARRAY_LEN(cascade_activation_steepnesses);
1493
1594
  fann_type fann_activation_steepnesses[cnt];
1494
1595
  unsigned int i;
1495
- for (i=0; i<cnt; i++)
1596
+ for (i = 0; i < cnt; i++)
1496
1597
  {
1497
1598
  fann_activation_steepnesses[i] = NUM2DBL(RARRAY_PTR(cascade_activation_steepnesses)[i]);
1498
1599
  }
1499
-
1600
+
1500
1601
  fann_set_cascade_activation_steepnesses(f, fann_activation_steepnesses, cnt);
1501
1602
  return self;
1502
1603
  }
@@ -1505,16 +1606,16 @@ static VALUE set_cascade_activation_steepnesses(VALUE self, VALUE cascade_activa
1505
1606
  the candidates. */
1506
1607
  static VALUE get_cascade_activation_steepnesses(VALUE self)
1507
1608
  {
1508
- struct fann* f;
1509
- Data_Get_Struct (self, struct fann, f);
1510
- fann_type* fann_steepnesses = fann_get_cascade_activation_steepnesses(f);
1609
+ struct fann *f;
1610
+ Data_Get_Struct(self, struct fann, f);
1611
+ fann_type *fann_steepnesses = fann_get_cascade_activation_steepnesses(f);
1511
1612
  unsigned int cnt = fann_get_cascade_activation_steepnesses_count(f);
1512
1613
 
1513
1614
  // Create ruby array & set outputs:
1514
1615
  VALUE arr;
1515
1616
  arr = rb_ary_new();
1516
1617
  unsigned int i;
1517
- for (i=0; i<cnt; i++)
1618
+ for (i = 0; i < cnt; i++)
1518
1619
  {
1519
1620
  rb_ary_push(arr, rb_float_new(fann_steepnesses[i]));
1520
1621
  }
@@ -1527,28 +1628,28 @@ static VALUE get_cascade_activation_steepnesses(VALUE self)
1527
1628
  Save the entire network to configuration file with given name */
1528
1629
  static VALUE nn_save(VALUE self, VALUE filename)
1529
1630
  {
1530
- struct fann* f;
1531
- Data_Get_Struct (self, struct fann, f);
1631
+ struct fann *f;
1632
+ Data_Get_Struct(self, struct fann, f);
1532
1633
  int status = fann_save(f, StringValuePtr(filename));
1533
1634
  return INT2NUM(status);
1534
1635
  }
1535
1636
 
1536
1637
  /** Initializes class under RubyFann module/namespace. */
1537
- void Init_ruby_fann ()
1638
+ void Init_ruby_fann()
1538
1639
  {
1539
1640
  // RubyFann module/namespace:
1540
- m_rb_fann_module = rb_define_module ("RubyFann");
1641
+ m_rb_fann_module = rb_define_module("RubyFann");
1541
1642
 
1542
1643
  // Standard NN class:
1543
- m_rb_fann_standard_class = rb_define_class_under (m_rb_fann_module, "Standard", rb_cObject);
1544
- rb_define_alloc_func (m_rb_fann_standard_class, fann_allocate);
1644
+ m_rb_fann_standard_class = rb_define_class_under(m_rb_fann_module, "Standard", rb_cObject);
1645
+ rb_define_alloc_func(m_rb_fann_standard_class, fann_allocate);
1545
1646
  rb_define_method(m_rb_fann_standard_class, "initialize", fann_initialize, 1);
1546
1647
  rb_define_method(m_rb_fann_standard_class, "init_weights", init_weights, 1);
1547
- rb_define_method(m_rb_fann_standard_class, "set_activation_function", set_activation_function, 3);
1548
- rb_define_method(m_rb_fann_standard_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
1549
- rb_define_method(m_rb_fann_standard_class, "set_activation_function_layer", set_activation_function_layer, 2);
1550
- rb_define_method(m_rb_fann_standard_class, "get_activation_function", get_activation_function, 2);
1551
- rb_define_method(m_rb_fann_standard_class, "set_activation_function_output", set_activation_function_output, 1);
1648
+ rb_define_method(m_rb_fann_standard_class, "set_activation_function", set_activation_function, 3);
1649
+ rb_define_method(m_rb_fann_standard_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
1650
+ rb_define_method(m_rb_fann_standard_class, "set_activation_function_layer", set_activation_function_layer, 2);
1651
+ rb_define_method(m_rb_fann_standard_class, "get_activation_function", get_activation_function, 2);
1652
+ rb_define_method(m_rb_fann_standard_class, "set_activation_function_output", set_activation_function_output, 1);
1552
1653
  rb_define_method(m_rb_fann_standard_class, "get_activation_steepness", get_activation_steepness, 2);
1553
1654
  rb_define_method(m_rb_fann_standard_class, "set_activation_steepness", set_activation_steepness, 3);
1554
1655
  rb_define_method(m_rb_fann_standard_class, "set_activation_steepness_hidden", set_activation_steepness_hidden, 1);
@@ -1578,14 +1679,14 @@ void Init_ruby_fann ()
1578
1679
  rb_define_method(m_rb_fann_standard_class, "get_connection_rate", get_connection_rate, 0);
1579
1680
  rb_define_method(m_rb_fann_standard_class, "get_layer_array", get_layer_array, 0);
1580
1681
  rb_define_method(m_rb_fann_standard_class, "get_network_type", get_network_type, 0);
1581
- rb_define_method(m_rb_fann_standard_class, "get_neurons", get_neurons, 0);
1682
+ rb_define_method(m_rb_fann_standard_class, "get_neurons", get_neurons, 0);
1582
1683
  rb_define_method(m_rb_fann_standard_class, "get_num_input", get_num_input, 0);
1583
1684
  rb_define_method(m_rb_fann_standard_class, "get_num_layers", get_num_layers, 0);
1584
- rb_define_method(m_rb_fann_standard_class, "get_num_output", get_num_output, 0);
1685
+ rb_define_method(m_rb_fann_standard_class, "get_num_output", get_num_output, 0);
1585
1686
  rb_define_method(m_rb_fann_standard_class, "get_total_connections", get_total_connections, 0);
1586
1687
  rb_define_method(m_rb_fann_standard_class, "get_total_neurons", get_total_neurons, 0);
1587
1688
  // rb_define_method(m_rb_fann_standard_class, "get_train_error_function", get_train_error_function, 0);
1588
- // rb_define_method(m_rb_fann_standard_class, "set_train_error_function", set_train_error_function, 1);
1689
+ // rb_define_method(m_rb_fann_standard_class, "set_train_error_function", set_train_error_function, 1);
1589
1690
  rb_define_method(m_rb_fann_standard_class, "print_connections", print_connections, 0);
1590
1691
  rb_define_method(m_rb_fann_standard_class, "print_parameters", print_parameters, 0);
1591
1692
  rb_define_method(m_rb_fann_standard_class, "randomize_weights", randomize_weights, 2);
@@ -1593,7 +1694,7 @@ void Init_ruby_fann ()
1593
1694
  rb_define_method(m_rb_fann_standard_class, "train", train, 2);
1594
1695
  rb_define_method(m_rb_fann_standard_class, "train_on_data", train_on_data, 4);
1595
1696
  rb_define_method(m_rb_fann_standard_class, "train_epoch", train_epoch, 1);
1596
- rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
1697
+ rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
1597
1698
  rb_define_method(m_rb_fann_standard_class, "get_MSE", get_MSE, 0);
1598
1699
  rb_define_method(m_rb_fann_standard_class, "get_bit_fail", get_bit_fail, 0);
1599
1700
  rb_define_method(m_rb_fann_standard_class, "reset_MSE", reset_MSE, 0);
@@ -1603,8 +1704,7 @@ void Init_ruby_fann ()
1603
1704
  rb_define_method(m_rb_fann_standard_class, "set_learning_momentum", set_learning_momentum, 1);
1604
1705
  rb_define_method(m_rb_fann_standard_class, "get_training_algorithm", get_training_algorithm, 0);
1605
1706
  rb_define_method(m_rb_fann_standard_class, "set_training_algorithm", set_training_algorithm, 1);
1606
-
1607
-
1707
+
1608
1708
  // Cascade functions:
1609
1709
  rb_define_method(m_rb_fann_standard_class, "cascadetrain_on_data", cascadetrain_on_data, 4);
1610
1710
  rb_define_method(m_rb_fann_standard_class, "get_cascade_output_change_fraction", get_cascade_output_change_fraction, 0);
@@ -1630,25 +1730,24 @@ void Init_ruby_fann ()
1630
1730
  rb_define_method(m_rb_fann_standard_class, "get_cascade_activation_steepnesses_count", get_cascade_activation_steepnesses_count, 0);
1631
1731
  rb_define_method(m_rb_fann_standard_class, "get_cascade_activation_steepnesses", get_cascade_activation_steepnesses, 0);
1632
1732
  rb_define_method(m_rb_fann_standard_class, "set_cascade_activation_steepnesses", set_cascade_activation_steepnesses, 1);
1633
- rb_define_method(m_rb_fann_standard_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
1634
- rb_define_method(m_rb_fann_standard_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
1733
+ rb_define_method(m_rb_fann_standard_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
1734
+ rb_define_method(m_rb_fann_standard_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
1635
1735
  rb_define_method(m_rb_fann_standard_class, "save", nn_save, 1);
1636
1736
 
1637
-
1638
1737
  // Uncomment for fixed-point mode (also recompile fann). Probably not going to be needed:
1639
- //rb_define_method(clazz, "get_decimal_point", get_decimal_point, 0);
1640
- //rb_define_method(clazz, "get_multiplier", get_multiplier, 0);
1641
-
1738
+ // rb_define_method(clazz, "get_decimal_point", get_decimal_point, 0);
1739
+ // rb_define_method(clazz, "get_multiplier", get_multiplier, 0);
1740
+
1642
1741
  // Shortcut NN class (duplicated from above so that rdoc generation tools can find the methods:):
1643
- m_rb_fann_shortcut_class = rb_define_class_under (m_rb_fann_module, "Shortcut", rb_cObject);
1644
- rb_define_alloc_func (m_rb_fann_shortcut_class, fann_allocate);
1742
+ m_rb_fann_shortcut_class = rb_define_class_under(m_rb_fann_module, "Shortcut", rb_cObject);
1743
+ rb_define_alloc_func(m_rb_fann_shortcut_class, fann_allocate);
1645
1744
  rb_define_method(m_rb_fann_shortcut_class, "initialize", fann_initialize, 1);
1646
1745
  rb_define_method(m_rb_fann_shortcut_class, "init_weights", init_weights, 1);
1647
- rb_define_method(m_rb_fann_shortcut_class, "set_activation_function", set_activation_function, 3);
1648
- rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
1649
- rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_layer", set_activation_function_layer, 2);
1650
- rb_define_method(m_rb_fann_shortcut_class, "get_activation_function", get_activation_function, 2);
1651
- rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_output", set_activation_function_output, 1);
1746
+ rb_define_method(m_rb_fann_shortcut_class, "set_activation_function", set_activation_function, 3);
1747
+ rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
1748
+ rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_layer", set_activation_function_layer, 2);
1749
+ rb_define_method(m_rb_fann_shortcut_class, "get_activation_function", get_activation_function, 2);
1750
+ rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_output", set_activation_function_output, 1);
1652
1751
  rb_define_method(m_rb_fann_shortcut_class, "get_activation_steepness", get_activation_steepness, 2);
1653
1752
  rb_define_method(m_rb_fann_shortcut_class, "set_activation_steepness", set_activation_steepness, 3);
1654
1753
  rb_define_method(m_rb_fann_shortcut_class, "set_activation_steepness_hidden", set_activation_steepness_hidden, 1);
@@ -1678,14 +1777,14 @@ void Init_ruby_fann ()
1678
1777
  rb_define_method(m_rb_fann_shortcut_class, "get_connection_rate", get_connection_rate, 0);
1679
1778
  rb_define_method(m_rb_fann_shortcut_class, "get_layer_array", get_layer_array, 0);
1680
1779
  rb_define_method(m_rb_fann_shortcut_class, "get_network_type", get_network_type, 0);
1681
- rb_define_method(m_rb_fann_shortcut_class, "get_neurons", get_neurons, 0);
1780
+ rb_define_method(m_rb_fann_shortcut_class, "get_neurons", get_neurons, 0);
1682
1781
  rb_define_method(m_rb_fann_shortcut_class, "get_num_input", get_num_input, 0);
1683
1782
  rb_define_method(m_rb_fann_shortcut_class, "get_num_layers", get_num_layers, 0);
1684
- rb_define_method(m_rb_fann_shortcut_class, "get_num_output", get_num_output, 0);
1783
+ rb_define_method(m_rb_fann_shortcut_class, "get_num_output", get_num_output, 0);
1685
1784
  rb_define_method(m_rb_fann_shortcut_class, "get_total_connections", get_total_connections, 0);
1686
1785
  rb_define_method(m_rb_fann_shortcut_class, "get_total_neurons", get_total_neurons, 0);
1687
1786
  // rb_define_method(m_rb_fann_shortcut_class, "get_train_error_function", get_train_error_function, 0);
1688
- // rb_define_method(m_rb_fann_shortcut_class, "set_train_error_function", set_train_error_function, 1);
1787
+ // rb_define_method(m_rb_fann_shortcut_class, "set_train_error_function", set_train_error_function, 1);
1689
1788
  rb_define_method(m_rb_fann_shortcut_class, "print_connections", print_connections, 0);
1690
1789
  rb_define_method(m_rb_fann_shortcut_class, "print_parameters", print_parameters, 0);
1691
1790
  rb_define_method(m_rb_fann_shortcut_class, "randomize_weights", randomize_weights, 2);
@@ -1693,7 +1792,7 @@ void Init_ruby_fann ()
1693
1792
  rb_define_method(m_rb_fann_shortcut_class, "train", train, 2);
1694
1793
  rb_define_method(m_rb_fann_shortcut_class, "train_on_data", train_on_data, 4);
1695
1794
  rb_define_method(m_rb_fann_shortcut_class, "train_epoch", train_epoch, 1);
1696
- rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
1795
+ rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
1697
1796
  rb_define_method(m_rb_fann_shortcut_class, "get_MSE", get_MSE, 0);
1698
1797
  rb_define_method(m_rb_fann_shortcut_class, "get_bit_fail", get_bit_fail, 0);
1699
1798
  rb_define_method(m_rb_fann_shortcut_class, "reset_MSE", reset_MSE, 0);
@@ -1703,7 +1802,7 @@ void Init_ruby_fann ()
1703
1802
  rb_define_method(m_rb_fann_shortcut_class, "set_learning_momentum", set_learning_momentum, 1);
1704
1803
  rb_define_method(m_rb_fann_shortcut_class, "get_training_algorithm", get_training_algorithm, 0);
1705
1804
  rb_define_method(m_rb_fann_shortcut_class, "set_training_algorithm", set_training_algorithm, 1);
1706
-
1805
+
1707
1806
  // Cascade functions:
1708
1807
  rb_define_method(m_rb_fann_shortcut_class, "cascadetrain_on_data", cascadetrain_on_data, 4);
1709
1808
  rb_define_method(m_rb_fann_shortcut_class, "get_cascade_output_change_fraction", get_cascade_output_change_fraction, 0);
@@ -1729,19 +1828,17 @@ void Init_ruby_fann ()
1729
1828
  rb_define_method(m_rb_fann_shortcut_class, "get_cascade_activation_steepnesses_count", get_cascade_activation_steepnesses_count, 0);
1730
1829
  rb_define_method(m_rb_fann_shortcut_class, "get_cascade_activation_steepnesses", get_cascade_activation_steepnesses, 0);
1731
1830
  rb_define_method(m_rb_fann_shortcut_class, "set_cascade_activation_steepnesses", set_cascade_activation_steepnesses, 1);
1732
- rb_define_method(m_rb_fann_shortcut_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
1733
- rb_define_method(m_rb_fann_shortcut_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
1831
+ rb_define_method(m_rb_fann_shortcut_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
1832
+ rb_define_method(m_rb_fann_shortcut_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
1734
1833
  rb_define_method(m_rb_fann_shortcut_class, "save", nn_save, 1);
1735
-
1736
1834
 
1737
1835
  // TrainData NN class:
1738
- m_rb_fann_train_data_class = rb_define_class_under (m_rb_fann_module, "TrainData", rb_cObject);
1739
- rb_define_alloc_func (m_rb_fann_train_data_class, fann_training_data_allocate);
1836
+ m_rb_fann_train_data_class = rb_define_class_under(m_rb_fann_module, "TrainData", rb_cObject);
1837
+ rb_define_alloc_func(m_rb_fann_train_data_class, fann_training_data_allocate);
1740
1838
  rb_define_method(m_rb_fann_train_data_class, "initialize", fann_train_data_initialize, 1);
1741
1839
  rb_define_method(m_rb_fann_train_data_class, "length", length_train_data, 0);
1742
- rb_define_method(m_rb_fann_train_data_class, "shuffle", shuffle, 0);
1840
+ rb_define_method(m_rb_fann_train_data_class, "shuffle", shuffle, 0);
1743
1841
  rb_define_method(m_rb_fann_train_data_class, "save", training_save, 1);
1744
-
1842
+
1745
1843
  // printf("Initialized Ruby Bindings for FANN.\n");
1746
1844
  }
1747
-