ruby-fann 1.4.2 → 2.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/ext/ruby_fann/fann_augment.h +25 -25
- data/ext/ruby_fann/fann_train.h +268 -268
- data/ext/ruby_fann/ruby_fann.c +301 -298
- data/lib/ruby_fann/version.rb +3 -3
- metadata +4 -3
data/ext/ruby_fann/ruby_fann.c
CHANGED
@@ -12,7 +12,7 @@ static VALUE m_rb_fann_train_data_class;
|
|
12
12
|
#define RETURN_FANN_INT(fn) \
|
13
13
|
struct fann* f; \
|
14
14
|
Data_Get_Struct (self, struct fann, f); \
|
15
|
-
return INT2NUM(fn(f));
|
15
|
+
return INT2NUM(fn(f));
|
16
16
|
|
17
17
|
#define SET_FANN_INT(attr_name, fann_fn) \
|
18
18
|
Check_Type(attr_name, T_FIXNUM); \
|
@@ -24,7 +24,7 @@ return 0;
|
|
24
24
|
#define RETURN_FANN_UINT(fn) \
|
25
25
|
struct fann* f; \
|
26
26
|
Data_Get_Struct (self, struct fann, f); \
|
27
|
-
return
|
27
|
+
return rb_int_new(fn(f));
|
28
28
|
|
29
29
|
#define SET_FANN_UINT(attr_name, fann_fn) \
|
30
30
|
Check_Type(attr_name, T_FIXNUM); \
|
@@ -39,7 +39,7 @@ struct fann* f; \
|
|
39
39
|
Data_Get_Struct (self, struct fann, f); \
|
40
40
|
char buffy[20]; \
|
41
41
|
sprintf(buffy, "%0.6g", fn(f)); \
|
42
|
-
return rb_float_new(atof(buffy));
|
42
|
+
return rb_float_new(atof(buffy));
|
43
43
|
|
44
44
|
#define SET_FANN_FLT(attr_name, fann_fn) \
|
45
45
|
Check_Type(attr_name, T_FLOAT); \
|
@@ -51,7 +51,7 @@ return self;
|
|
51
51
|
#define RETURN_FANN_DBL(fn) \
|
52
52
|
struct fann* f; \
|
53
53
|
Data_Get_Struct (self, struct fann, f); \
|
54
|
-
return rb_float_new(fn(f));
|
54
|
+
return rb_float_new(fn(f));
|
55
55
|
|
56
56
|
#define SET_FANN_DBL SET_FANN_FLT
|
57
57
|
|
@@ -61,44 +61,44 @@ enum fann_activationfunc_enum sym_to_activation_function(VALUE activation_func)
|
|
61
61
|
ID id=SYM2ID(activation_func);
|
62
62
|
enum fann_activationfunc_enum activation_function;
|
63
63
|
if(id==rb_intern("linear")) {
|
64
|
-
activation_function = FANN_LINEAR;
|
64
|
+
activation_function = FANN_LINEAR;
|
65
65
|
} else if(id==rb_intern("threshold")) {
|
66
|
-
activation_function = FANN_THRESHOLD;
|
66
|
+
activation_function = FANN_THRESHOLD;
|
67
67
|
} else if(id==rb_intern("threshold_symmetric")) {
|
68
|
-
activation_function = FANN_THRESHOLD_SYMMETRIC;
|
68
|
+
activation_function = FANN_THRESHOLD_SYMMETRIC;
|
69
69
|
} else if(id==rb_intern("sigmoid")) {
|
70
|
-
activation_function = FANN_SIGMOID;
|
70
|
+
activation_function = FANN_SIGMOID;
|
71
71
|
} else if(id==rb_intern("sigmoid_stepwise")) {
|
72
|
-
activation_function = FANN_SIGMOID_STEPWISE;
|
72
|
+
activation_function = FANN_SIGMOID_STEPWISE;
|
73
73
|
} else if(id==rb_intern("sigmoid_symmetric")) {
|
74
|
-
activation_function = FANN_SIGMOID_SYMMETRIC;
|
74
|
+
activation_function = FANN_SIGMOID_SYMMETRIC;
|
75
75
|
} else if(id==rb_intern("sigmoid_symmetric_stepwise")) {
|
76
|
-
activation_function = FANN_SIGMOID_SYMMETRIC_STEPWISE;
|
76
|
+
activation_function = FANN_SIGMOID_SYMMETRIC_STEPWISE;
|
77
77
|
} else if(id==rb_intern("gaussian")) {
|
78
|
-
activation_function = FANN_GAUSSIAN;
|
78
|
+
activation_function = FANN_GAUSSIAN;
|
79
79
|
} else if(id==rb_intern("gaussian_symmetric")) {
|
80
|
-
activation_function = FANN_GAUSSIAN_SYMMETRIC;
|
80
|
+
activation_function = FANN_GAUSSIAN_SYMMETRIC;
|
81
81
|
} else if(id==rb_intern("gaussian_stepwise")) {
|
82
|
-
activation_function = FANN_GAUSSIAN_STEPWISE;
|
82
|
+
activation_function = FANN_GAUSSIAN_STEPWISE;
|
83
83
|
} else if(id==rb_intern("elliot")) {
|
84
|
-
activation_function = FANN_ELLIOT;
|
84
|
+
activation_function = FANN_ELLIOT;
|
85
85
|
} else if(id==rb_intern("elliot_symmetric")) {
|
86
|
-
activation_function = FANN_ELLIOT_SYMMETRIC;
|
86
|
+
activation_function = FANN_ELLIOT_SYMMETRIC;
|
87
87
|
} else if(id==rb_intern("linear_piece")) {
|
88
|
-
activation_function = FANN_LINEAR_PIECE;
|
88
|
+
activation_function = FANN_LINEAR_PIECE;
|
89
89
|
} else if(id==rb_intern("linear_piece_symmetric")) {
|
90
|
-
activation_function = FANN_LINEAR_PIECE_SYMMETRIC;
|
90
|
+
activation_function = FANN_LINEAR_PIECE_SYMMETRIC;
|
91
91
|
} else if(id==rb_intern("sin_symmetric")) {
|
92
|
-
activation_function = FANN_SIN_SYMMETRIC;
|
92
|
+
activation_function = FANN_SIN_SYMMETRIC;
|
93
93
|
} else if(id==rb_intern("cos_symmetric")) {
|
94
|
-
activation_function = FANN_COS_SYMMETRIC;
|
94
|
+
activation_function = FANN_COS_SYMMETRIC;
|
95
95
|
} else if(id==rb_intern("sin")) {
|
96
|
-
activation_function = FANN_SIN;
|
96
|
+
activation_function = FANN_SIN;
|
97
97
|
} else if(id==rb_intern("cos")) {
|
98
|
-
activation_function = FANN_COS;
|
98
|
+
activation_function = FANN_COS;
|
99
99
|
} else {
|
100
100
|
rb_raise(rb_eRuntimeError, "Unrecognized activation function: [%s]", rb_id2name(SYM2ID(activation_func)));
|
101
|
-
}
|
101
|
+
}
|
102
102
|
return activation_function;
|
103
103
|
}
|
104
104
|
|
@@ -106,46 +106,46 @@ enum fann_activationfunc_enum sym_to_activation_function(VALUE activation_func)
|
|
106
106
|
VALUE activation_function_to_sym(enum fann_activationfunc_enum fn)
|
107
107
|
{
|
108
108
|
VALUE activation_function;
|
109
|
-
|
109
|
+
|
110
110
|
if(fn==FANN_LINEAR) {
|
111
|
-
activation_function = ID2SYM(rb_intern("linear"));
|
111
|
+
activation_function = ID2SYM(rb_intern("linear"));
|
112
112
|
} else if(fn==FANN_THRESHOLD) {
|
113
|
-
activation_function = ID2SYM(rb_intern("threshold"));
|
113
|
+
activation_function = ID2SYM(rb_intern("threshold"));
|
114
114
|
} else if(fn==FANN_THRESHOLD_SYMMETRIC) {
|
115
|
-
activation_function = ID2SYM(rb_intern("threshold_symmetric"));
|
115
|
+
activation_function = ID2SYM(rb_intern("threshold_symmetric"));
|
116
116
|
} else if(fn==FANN_SIGMOID) {
|
117
|
-
activation_function = ID2SYM(rb_intern("sigmoid"));
|
117
|
+
activation_function = ID2SYM(rb_intern("sigmoid"));
|
118
118
|
} else if(fn==FANN_SIGMOID_STEPWISE) {
|
119
|
-
activation_function = ID2SYM(rb_intern("sigmoid_stepwise"));
|
119
|
+
activation_function = ID2SYM(rb_intern("sigmoid_stepwise"));
|
120
120
|
} else if(fn==FANN_SIGMOID_SYMMETRIC) {
|
121
|
-
activation_function = ID2SYM(rb_intern("sigmoid_symmetric"));
|
121
|
+
activation_function = ID2SYM(rb_intern("sigmoid_symmetric"));
|
122
122
|
} else if(fn==FANN_SIGMOID_SYMMETRIC_STEPWISE) {
|
123
|
-
activation_function = ID2SYM(rb_intern("sigmoid_symmetric_stepwise"));
|
123
|
+
activation_function = ID2SYM(rb_intern("sigmoid_symmetric_stepwise"));
|
124
124
|
} else if(fn==FANN_GAUSSIAN) {
|
125
|
-
activation_function = ID2SYM(rb_intern("gaussian"));
|
125
|
+
activation_function = ID2SYM(rb_intern("gaussian"));
|
126
126
|
} else if(fn==FANN_GAUSSIAN_SYMMETRIC) {
|
127
|
-
activation_function = ID2SYM(rb_intern("gaussian_symmetric"));
|
127
|
+
activation_function = ID2SYM(rb_intern("gaussian_symmetric"));
|
128
128
|
} else if(fn==FANN_GAUSSIAN_STEPWISE) {
|
129
|
-
activation_function = ID2SYM(rb_intern("gaussian_stepwise"));
|
129
|
+
activation_function = ID2SYM(rb_intern("gaussian_stepwise"));
|
130
130
|
} else if(fn==FANN_ELLIOT) {
|
131
|
-
activation_function = ID2SYM(rb_intern("elliot"));
|
131
|
+
activation_function = ID2SYM(rb_intern("elliot"));
|
132
132
|
} else if(fn==FANN_ELLIOT_SYMMETRIC) {
|
133
|
-
activation_function = ID2SYM(rb_intern("elliot_symmetric"));
|
133
|
+
activation_function = ID2SYM(rb_intern("elliot_symmetric"));
|
134
134
|
} else if(fn==FANN_LINEAR_PIECE) {
|
135
|
-
activation_function = ID2SYM(rb_intern("linear_piece"));
|
135
|
+
activation_function = ID2SYM(rb_intern("linear_piece"));
|
136
136
|
} else if(fn==FANN_LINEAR_PIECE_SYMMETRIC) {
|
137
|
-
activation_function = ID2SYM(rb_intern("linear_piece_symmetric"));
|
137
|
+
activation_function = ID2SYM(rb_intern("linear_piece_symmetric"));
|
138
138
|
} else if(fn==FANN_SIN_SYMMETRIC) {
|
139
|
-
activation_function = ID2SYM(rb_intern("sin_symmetric"));
|
139
|
+
activation_function = ID2SYM(rb_intern("sin_symmetric"));
|
140
140
|
} else if(fn==FANN_COS_SYMMETRIC) {
|
141
|
-
activation_function = ID2SYM(rb_intern("cos_symmetric"));
|
141
|
+
activation_function = ID2SYM(rb_intern("cos_symmetric"));
|
142
142
|
} else if(fn==FANN_SIN) {
|
143
|
-
activation_function = ID2SYM(rb_intern("sin"));
|
143
|
+
activation_function = ID2SYM(rb_intern("sin"));
|
144
144
|
} else if(fn==FANN_COS) {
|
145
|
-
activation_function = ID2SYM(rb_intern("cos"));
|
145
|
+
activation_function = ID2SYM(rb_intern("cos"));
|
146
146
|
} else {
|
147
147
|
rb_raise(rb_eRuntimeError, "Unrecognized activation function: [%d]", fn);
|
148
|
-
}
|
148
|
+
}
|
149
149
|
return activation_function;
|
150
150
|
}
|
151
151
|
|
@@ -169,14 +169,14 @@ static void fann_training_data_free (struct fann_train_data* train_data)
|
|
169
169
|
// printf("Destroyed Training data [%d].\n", train_data);
|
170
170
|
}
|
171
171
|
|
172
|
-
// Create wrapper, but don't allocate anything...do that in
|
172
|
+
// Create wrapper, but don't allocate anything...do that in
|
173
173
|
// initialize, so we can construct with args:
|
174
174
|
static VALUE fann_allocate (VALUE klass)
|
175
175
|
{
|
176
176
|
return Data_Wrap_Struct (klass, fann_mark, fann_free, 0);
|
177
177
|
}
|
178
178
|
|
179
|
-
// Create wrapper, but don't allocate annything...do that in
|
179
|
+
// Create wrapper, but don't allocate annything...do that in
|
180
180
|
// initialize, so we can construct with args:
|
181
181
|
static VALUE fann_training_data_allocate (VALUE klass)
|
182
182
|
{
|
@@ -184,13 +184,13 @@ static VALUE fann_training_data_allocate (VALUE klass)
|
|
184
184
|
}
|
185
185
|
|
186
186
|
|
187
|
-
// static VALUE invoke_training_callback(VALUE self)
|
187
|
+
// static VALUE invoke_training_callback(VALUE self)
|
188
188
|
// {
|
189
189
|
// VALUE callback = rb_funcall(self, rb_intern("training_callback"), 0);
|
190
190
|
// return callback;
|
191
191
|
// }
|
192
192
|
|
193
|
-
// static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
|
193
|
+
// static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
|
194
194
|
// unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error, unsigned int epochs)
|
195
195
|
|
196
196
|
static int FANN_API fann_training_callback(struct fann *ann, struct fann_train_data *train,
|
@@ -199,49 +199,49 @@ static int FANN_API fann_training_callback(struct fann *ann, struct fann_train_d
|
|
199
199
|
{
|
200
200
|
VALUE self = (VALUE)fann_get_user_data(ann);
|
201
201
|
VALUE args = rb_hash_new();
|
202
|
-
|
202
|
+
|
203
203
|
// Set attributes on hash & push on array:
|
204
204
|
VALUE max_epochs_sym = ID2SYM(rb_intern("max_epochs"));
|
205
205
|
VALUE epochs_between_reports_sym = ID2SYM(rb_intern("epochs_between_reports"));
|
206
206
|
VALUE desired_error_sym = ID2SYM(rb_intern("desired_error"));
|
207
207
|
VALUE epochs_sym = ID2SYM(rb_intern("epochs"));
|
208
|
-
|
208
|
+
|
209
209
|
rb_hash_aset(args, max_epochs_sym, INT2NUM(max_epochs));
|
210
210
|
rb_hash_aset(args, epochs_between_reports_sym, INT2NUM(epochs_between_reports));
|
211
211
|
rb_hash_aset(args, desired_error_sym, rb_float_new(desired_error));
|
212
212
|
rb_hash_aset(args, epochs_sym, INT2NUM(epochs));
|
213
|
-
|
213
|
+
|
214
214
|
VALUE callback = rb_funcall(self, rb_intern("training_callback"), 1, args);
|
215
|
-
|
215
|
+
|
216
216
|
if (TYPE(callback)!=T_FIXNUM)
|
217
217
|
{
|
218
218
|
rb_raise (rb_eRuntimeError, "Callback method must return an integer (-1 to stop training).");
|
219
219
|
}
|
220
220
|
|
221
|
-
int status = NUM2INT(callback);
|
221
|
+
int status = NUM2INT(callback);
|
222
222
|
if (status==-1)
|
223
223
|
{
|
224
224
|
printf("Callback method returned -1; training will stop.\n");
|
225
225
|
}
|
226
|
-
|
226
|
+
|
227
227
|
return status;
|
228
228
|
}
|
229
229
|
|
230
|
-
/** call-seq: new(hash) -> new ruby-fann neural network object
|
230
|
+
/** call-seq: new(hash) -> new ruby-fann neural network object
|
231
231
|
|
232
232
|
Initialization routine for both standard, shortcut & filename forms of FANN:
|
233
233
|
|
234
234
|
Standard Initialization:
|
235
235
|
RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
|
236
|
-
|
236
|
+
|
237
237
|
Shortcut Initialization (e.g., for use in cascade training):
|
238
|
-
RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
|
239
|
-
|
238
|
+
RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
|
239
|
+
|
240
240
|
File Initialization
|
241
|
-
RubyFann::Standard.new(:filename=>'xor_float.net')
|
242
|
-
|
243
|
-
|
244
|
-
|
241
|
+
RubyFann::Standard.new(:filename=>'xor_float.net')
|
242
|
+
|
243
|
+
|
244
|
+
|
245
245
|
*/
|
246
246
|
static VALUE fann_initialize(VALUE self, VALUE hash)
|
247
247
|
{
|
@@ -250,24 +250,24 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
250
250
|
VALUE num_inputs = rb_hash_aref(hash, ID2SYM(rb_intern("num_inputs")));
|
251
251
|
VALUE num_outputs = rb_hash_aref(hash, ID2SYM(rb_intern("num_outputs")));
|
252
252
|
VALUE hidden_neurons = rb_hash_aref(hash, ID2SYM(rb_intern("hidden_neurons")));
|
253
|
-
|
253
|
+
// printf("initializing\n\n\n");
|
254
254
|
struct fann* ann;
|
255
|
-
if (TYPE(filename)==T_STRING)
|
255
|
+
if (TYPE(filename)==T_STRING)
|
256
256
|
{
|
257
257
|
// Initialize with file:
|
258
258
|
// train_data = fann_read_train_from_file(StringValuePtr(filename));
|
259
259
|
// DATA_PTR(self) = train_data;
|
260
260
|
ann = fann_create_from_file(StringValuePtr(filename));
|
261
|
-
// printf("Created RubyFann::Standard [%d] from file [%s].\n", ann, StringValuePtr(filename));
|
262
|
-
}
|
261
|
+
// printf("Created RubyFann::Standard [%d] from file [%s].\n", ann, StringValuePtr(filename));
|
262
|
+
}
|
263
263
|
else if(rb_obj_is_kind_of(self, m_rb_fann_shortcut_class))
|
264
264
|
{
|
265
265
|
// Initialize as shortcut, suitable for cascade training:
|
266
|
-
//ann = fann_create_shortcut_array(num_layers, layers);
|
266
|
+
//ann = fann_create_shortcut_array(num_layers, layers);
|
267
267
|
Check_Type(num_inputs, T_FIXNUM);
|
268
268
|
Check_Type(num_outputs, T_FIXNUM);
|
269
|
-
|
270
|
-
ann = fann_create_shortcut(2, NUM2INT(num_inputs), NUM2INT(num_outputs));
|
269
|
+
|
270
|
+
ann = fann_create_shortcut(2, NUM2INT(num_inputs), NUM2INT(num_outputs));
|
271
271
|
// printf("Created RubyFann::Shortcut [%d].\n", ann);
|
272
272
|
}
|
273
273
|
else
|
@@ -276,29 +276,27 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
276
276
|
Check_Type(num_inputs, T_FIXNUM);
|
277
277
|
Check_Type(hidden_neurons, T_ARRAY);
|
278
278
|
Check_Type(num_outputs, T_FIXNUM);
|
279
|
-
|
279
|
+
|
280
280
|
// Initialize layers:
|
281
|
-
unsigned int num_layers=
|
281
|
+
unsigned int num_layers=RARRAY_LEN(hidden_neurons) + 2;
|
282
282
|
unsigned int layers[num_layers];
|
283
283
|
|
284
284
|
// Input:
|
285
|
-
layers[0]=NUM2INT(num_inputs);
|
285
|
+
layers[0]=NUM2INT(num_inputs);
|
286
286
|
// Output:
|
287
|
-
layers[num_layers-1]=NUM2INT(num_outputs);
|
287
|
+
layers[num_layers-1]=NUM2INT(num_outputs);
|
288
288
|
// Hidden:
|
289
289
|
unsigned int i;
|
290
290
|
for (i=1; i<=num_layers-2; i++) {
|
291
|
-
layers[i]=
|
291
|
+
layers[i]=NUM2INT(RARRAY_PTR(hidden_neurons)[i-1]);
|
292
292
|
}
|
293
|
-
|
294
|
-
|
295
|
-
// printf("Created RubyFann::Standard [%d].\n", ann);
|
296
|
-
}
|
293
|
+
ann = fann_create_standard_array(num_layers, layers);
|
294
|
+
}
|
297
295
|
|
298
296
|
DATA_PTR(self) = ann;
|
299
|
-
|
297
|
+
|
300
298
|
// printf("Checking for callback...");
|
301
|
-
|
299
|
+
|
302
300
|
//int callback = rb_protect(invoke_training_callback, (self), &status);
|
303
301
|
// VALUE callback = rb_funcall(DATA_PTR(self), "training_callback", 0);
|
304
302
|
if(rb_respond_to(self, rb_intern("training_callback")))
|
@@ -311,14 +309,14 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
311
309
|
{
|
312
310
|
// printf("none found.\n");
|
313
311
|
}
|
314
|
-
|
315
|
-
return (VALUE)ann;
|
312
|
+
|
313
|
+
return (VALUE)ann;
|
316
314
|
}
|
317
315
|
|
318
316
|
/** call-seq: new(hash) -> new ruby-fann training data object (RubyFann::TrainData)
|
319
|
-
|
317
|
+
|
320
318
|
Initialize in one of the following forms:
|
321
|
-
|
319
|
+
|
322
320
|
# This is a flat file with training data as described in FANN docs.
|
323
321
|
RubyFann::TrainData.new(:filename => 'path/to/training_file.train')
|
324
322
|
OR
|
@@ -327,23 +325,23 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
327
325
|
# All sub-arrays on inputs should be of same length
|
328
326
|
# All sub-arrays on desired_outputs should be of same length
|
329
327
|
# Sub-arrays on inputs & desired_outputs can be different sizes from one another
|
330
|
-
RubyFann::TrainData.new(:inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]], :desired_outputs=>[[3.14], [6.33]])
|
328
|
+
RubyFann::TrainData.new(:inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]], :desired_outputs=>[[3.14], [6.33]])
|
331
329
|
*/
|
332
330
|
static VALUE fann_train_data_initialize(VALUE self, VALUE hash)
|
333
331
|
{
|
334
332
|
struct fann_train_data* train_data;
|
335
333
|
Check_Type(hash, T_HASH);
|
336
|
-
|
334
|
+
|
337
335
|
VALUE filename = rb_hash_aref(hash, ID2SYM(rb_intern("filename")));
|
338
336
|
VALUE inputs = rb_hash_aref(hash, ID2SYM(rb_intern("inputs")));
|
339
337
|
VALUE desired_outputs = rb_hash_aref(hash, ID2SYM(rb_intern("desired_outputs")));
|
340
338
|
|
341
|
-
if (TYPE(filename)==T_STRING)
|
339
|
+
if (TYPE(filename)==T_STRING)
|
342
340
|
{
|
343
341
|
train_data = fann_read_train_from_file(StringValuePtr(filename));
|
344
342
|
DATA_PTR(self) = train_data;
|
345
|
-
}
|
346
|
-
else if (TYPE(inputs)==T_ARRAY)
|
343
|
+
}
|
344
|
+
else if (TYPE(inputs)==T_ARRAY)
|
347
345
|
{
|
348
346
|
if (TYPE(desired_outputs)!=T_ARRAY)
|
349
347
|
{
|
@@ -352,50 +350,55 @@ static VALUE fann_train_data_initialize(VALUE self, VALUE hash)
|
|
352
350
|
|
353
351
|
if (RARRAY_LEN(inputs) < 1)
|
354
352
|
{
|
355
|
-
rb_raise (rb_eRuntimeError, "[inputs
|
353
|
+
rb_raise (rb_eRuntimeError, "[inputs] must contain at least one value.");
|
354
|
+
}
|
355
|
+
|
356
|
+
if (RARRAY_LEN(desired_outputs) < 1)
|
357
|
+
{
|
358
|
+
rb_raise (rb_eRuntimeError, "[desired_outputs] must contain at least one value.");
|
356
359
|
}
|
357
360
|
|
358
361
|
// The data is here, start constructing:
|
359
|
-
if(RARRAY_LEN(inputs) != RARRAY_LEN(desired_outputs))
|
362
|
+
if(RARRAY_LEN(inputs) != RARRAY_LEN(desired_outputs))
|
360
363
|
{
|
361
364
|
rb_raise (
|
362
|
-
rb_eRuntimeError,
|
363
|
-
"Number of inputs must match number of outputs: (%d != %d)",
|
364
|
-
(int)RARRAY_LEN(inputs),
|
365
|
+
rb_eRuntimeError,
|
366
|
+
"Number of inputs must match number of outputs: (%d != %d)",
|
367
|
+
(int)RARRAY_LEN(inputs),
|
365
368
|
(int)RARRAY_LEN(desired_outputs));
|
366
369
|
}
|
367
370
|
|
368
|
-
train_data = fann_create_train_from_rb_ary(inputs, desired_outputs);
|
369
|
-
DATA_PTR(self) = train_data;
|
370
|
-
}
|
371
|
-
else
|
371
|
+
train_data = fann_create_train_from_rb_ary(inputs, desired_outputs);
|
372
|
+
DATA_PTR(self) = train_data;
|
373
|
+
}
|
374
|
+
else
|
372
375
|
{
|
373
376
|
rb_raise (rb_eRuntimeError, "Must construct with a filename(string) or inputs/desired_outputs(arrays). All args passed via hash with symbols as keys.");
|
374
377
|
}
|
375
|
-
|
378
|
+
|
376
379
|
return (VALUE)train_data;
|
377
380
|
}
|
378
381
|
|
379
382
|
|
380
383
|
/** call-seq: save(filename)
|
381
384
|
|
382
|
-
Save to given filename
|
385
|
+
Save to given filename
|
383
386
|
*/
|
384
387
|
static VALUE training_save(VALUE self, VALUE filename)
|
385
388
|
{
|
386
|
-
Check_Type(filename, T_STRING);
|
389
|
+
Check_Type(filename, T_STRING);
|
387
390
|
struct fann_train_data* t;
|
388
|
-
Data_Get_Struct (self, struct fann_train_data, t);
|
391
|
+
Data_Get_Struct (self, struct fann_train_data, t);
|
389
392
|
fann_save_train(t, StringValuePtr(filename));
|
390
|
-
return self;
|
393
|
+
return self;
|
391
394
|
}
|
392
395
|
|
393
|
-
/** Shuffles training data, randomizing the order.
|
396
|
+
/** Shuffles training data, randomizing the order.
|
394
397
|
This is recommended for incremental training, while it will have no influence during batch training.*/
|
395
398
|
static VALUE shuffle(VALUE self)
|
396
399
|
{
|
397
|
-
struct fann_train_data* t;
|
398
|
-
Data_Get_Struct (self, struct fann_train_data, t);
|
400
|
+
struct fann_train_data* t;
|
401
|
+
Data_Get_Struct (self, struct fann_train_data, t);
|
399
402
|
fann_shuffle_train_data(t);
|
400
403
|
return self;
|
401
404
|
}
|
@@ -403,26 +406,26 @@ static VALUE shuffle(VALUE self)
|
|
403
406
|
/** Length of training data*/
|
404
407
|
static VALUE length_train_data(VALUE self)
|
405
408
|
{
|
406
|
-
struct fann_train_data* t;
|
407
|
-
Data_Get_Struct (self, struct fann_train_data, t);
|
409
|
+
struct fann_train_data* t;
|
410
|
+
Data_Get_Struct (self, struct fann_train_data, t);
|
408
411
|
return(UINT2NUM(fann_length_train_data(t)));
|
409
412
|
return self;
|
410
413
|
}
|
411
414
|
|
412
415
|
/** call-seq: set_activation_function(activation_func, layer, neuron)
|
413
416
|
|
414
|
-
Set the activation function for neuron number *neuron* in layer number *layer*,
|
417
|
+
Set the activation function for neuron number *neuron* in layer number *layer*,
|
415
418
|
counting the input layer as layer 0. activation_func must be one of the following symbols:
|
416
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
417
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
418
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
419
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
420
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
421
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
419
422
|
:sin, :cos*/
|
420
423
|
static VALUE set_activation_function(VALUE self, VALUE activation_func, VALUE layer, VALUE neuron)
|
421
424
|
{
|
422
425
|
Check_Type(activation_func, T_SYMBOL);
|
423
426
|
Check_Type(layer, T_FIXNUM);
|
424
427
|
Check_Type(neuron, T_FIXNUM);
|
425
|
-
|
428
|
+
|
426
429
|
struct fann* f;
|
427
430
|
Data_Get_Struct(self, struct fann, f);
|
428
431
|
fann_set_activation_function(f, sym_to_activation_function(activation_func), NUM2INT(layer), NUM2INT(neuron));
|
@@ -432,9 +435,9 @@ static VALUE set_activation_function(VALUE self, VALUE activation_func, VALUE la
|
|
432
435
|
/** call-seq: set_activation_function_hidden(activation_func)
|
433
436
|
|
434
437
|
Set the activation function for all of the hidden layers. activation_func must be one of the following symbols:
|
435
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
436
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
437
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
438
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
439
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
440
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
438
441
|
:sin, :cos*/
|
439
442
|
static VALUE set_activation_function_hidden(VALUE self, VALUE activation_func)
|
440
443
|
{
|
@@ -447,15 +450,15 @@ static VALUE set_activation_function_hidden(VALUE self, VALUE activation_func)
|
|
447
450
|
|
448
451
|
/** call-seq: set_activation_function_layer(activation_func, layer)
|
449
452
|
|
450
|
-
Set the activation function for all the neurons in the layer number *layer*,
|
453
|
+
Set the activation function for all the neurons in the layer number *layer*,
|
451
454
|
counting the input layer as layer 0. activation_func must be one of the following symbols:
|
452
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
453
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
454
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
455
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
456
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
457
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
455
458
|
:sin, :cos
|
456
|
-
|
459
|
+
|
457
460
|
It is not possible to set activation functions for the neurons in the input layer.
|
458
|
-
*/
|
461
|
+
*/
|
459
462
|
static VALUE set_activation_function_layer(VALUE self, VALUE activation_func, VALUE layer)
|
460
463
|
{
|
461
464
|
Check_Type(activation_func, T_SYMBOL);
|
@@ -466,12 +469,12 @@ static VALUE set_activation_function_layer(VALUE self, VALUE activation_func, VA
|
|
466
469
|
return self;
|
467
470
|
}
|
468
471
|
|
469
|
-
/** call-seq: get_activation_function(layer) -> return value
|
470
|
-
|
471
|
-
Get the activation function for neuron number *neuron* in layer number *layer*,
|
472
|
-
counting the input layer as layer 0.
|
472
|
+
/** call-seq: get_activation_function(layer) -> return value
|
473
473
|
|
474
|
-
|
474
|
+
Get the activation function for neuron number *neuron* in layer number *layer*,
|
475
|
+
counting the input layer as layer 0.
|
476
|
+
|
477
|
+
It is not possible to get activation functions for the neurons in the input layer.
|
475
478
|
*/
|
476
479
|
static VALUE get_activation_function(VALUE self, VALUE layer, VALUE neuron)
|
477
480
|
{
|
@@ -486,9 +489,9 @@ static VALUE get_activation_function(VALUE self, VALUE layer, VALUE neuron)
|
|
486
489
|
/** call-seq: set_activation_function_output(activation_func)
|
487
490
|
|
488
491
|
Set the activation function for the output layer. activation_func must be one of the following symbols:
|
489
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
490
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
491
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
492
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
493
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
494
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
492
495
|
:sin, :cos*/
|
493
496
|
|
494
497
|
static VALUE set_activation_function_output(VALUE self, VALUE activation_func)
|
@@ -500,9 +503,9 @@ static VALUE set_activation_function_output(VALUE self, VALUE activation_func)
|
|
500
503
|
return self;
|
501
504
|
}
|
502
505
|
|
503
|
-
/** call-seq: get_activation_steepness(layer, neuron) -> return value
|
504
|
-
|
505
|
-
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
|
506
|
+
/** call-seq: get_activation_steepness(layer, neuron) -> return value
|
507
|
+
|
508
|
+
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
|
506
509
|
*/
|
507
510
|
static VALUE get_activation_steepness(VALUE self, VALUE layer, VALUE neuron)
|
508
511
|
{
|
@@ -516,21 +519,21 @@ static VALUE get_activation_steepness(VALUE self, VALUE layer, VALUE neuron)
|
|
516
519
|
|
517
520
|
/** call-seq: set_activation_steepness(steepness, layer, neuron)
|
518
521
|
|
519
|
-
Set the activation steepness for neuron number {neuron} in layer number {layer},
|
522
|
+
Set the activation steepness for neuron number {neuron} in layer number {layer},
|
520
523
|
counting the input layer as layer 0.*/
|
521
524
|
static VALUE set_activation_steepness(VALUE self, VALUE steepness, VALUE layer, VALUE neuron)
|
522
525
|
{
|
523
526
|
Check_Type(steepness, T_FLOAT);
|
524
527
|
Check_Type(layer, T_FIXNUM);
|
525
528
|
Check_Type(neuron, T_FIXNUM);
|
526
|
-
|
529
|
+
|
527
530
|
struct fann* f;
|
528
531
|
Data_Get_Struct(self, struct fann, f);
|
529
532
|
fann_set_activation_steepness(f, NUM2DBL(steepness), NUM2INT(layer), NUM2INT(neuron));
|
530
533
|
return self;
|
531
534
|
}
|
532
535
|
|
533
|
-
/** call-seq: set_activation_steepness_hidden(arg) -> return value
|
536
|
+
/** call-seq: set_activation_steepness_hidden(arg) -> return value
|
534
537
|
|
535
538
|
Set the activation steepness in all of the hidden layers.*/
|
536
539
|
static VALUE set_activation_steepness_hidden(VALUE self, VALUE steepness)
|
@@ -540,13 +543,13 @@ static VALUE set_activation_steepness_hidden(VALUE self, VALUE steepness)
|
|
540
543
|
|
541
544
|
/** call-seq: set_activation_steepness_layer(steepness, layer)
|
542
545
|
|
543
|
-
Set the activation steepness all of the neurons in layer number *layer*,
|
546
|
+
Set the activation steepness all of the neurons in layer number *layer*,
|
544
547
|
counting the input layer as layer 0.*/
|
545
548
|
static VALUE set_activation_steepness_layer(VALUE self, VALUE steepness, VALUE layer)
|
546
549
|
{
|
547
550
|
Check_Type(steepness, T_FLOAT);
|
548
551
|
Check_Type(layer, T_FIXNUM);
|
549
|
-
|
552
|
+
|
550
553
|
struct fann* f;
|
551
554
|
Data_Get_Struct(self, struct fann, f);
|
552
555
|
fann_set_activation_steepness_layer(f, NUM2DBL(steepness), NUM2INT(layer));
|
@@ -575,8 +578,8 @@ static VALUE set_bit_fail_limit(VALUE self, VALUE bit_fail_limit)
|
|
575
578
|
SET_FANN_FLT(bit_fail_limit, fann_set_bit_fail_limit);
|
576
579
|
}
|
577
580
|
|
578
|
-
/** The decay is a small negative valued number which is the factor that the weights
|
579
|
-
should become smaller in each iteration during quickprop training. This is used
|
581
|
+
/** The decay is a small negative valued number which is the factor that the weights
|
582
|
+
should become smaller in each iteration during quickprop training. This is used
|
580
583
|
to make sure that the weights do not become too high during training.*/
|
581
584
|
static VALUE get_quickprop_decay(VALUE self)
|
582
585
|
{
|
@@ -591,8 +594,8 @@ static VALUE set_quickprop_decay(VALUE self, VALUE quickprop_decay)
|
|
591
594
|
SET_FANN_FLT(quickprop_decay, fann_set_quickprop_decay);
|
592
595
|
}
|
593
596
|
|
594
|
-
/** The mu factor is used to increase and decrease the step-size during quickprop training.
|
595
|
-
The mu factor should always be above 1, since it would otherwise decrease the step-size
|
597
|
+
/** The mu factor is used to increase and decrease the step-size during quickprop training.
|
598
|
+
The mu factor should always be above 1, since it would otherwise decrease the step-size
|
596
599
|
when it was suppose to increase it. */
|
597
600
|
static VALUE get_quickprop_mu(VALUE self)
|
598
601
|
{
|
@@ -607,7 +610,7 @@ static VALUE set_quickprop_mu(VALUE self, VALUE quickprop_mu)
|
|
607
610
|
SET_FANN_FLT(quickprop_mu, fann_set_quickprop_mu);
|
608
611
|
}
|
609
612
|
|
610
|
-
/** The increase factor is a value larger than 1, which is used to
|
613
|
+
/** The increase factor is a value larger than 1, which is used to
|
611
614
|
increase the step-size during RPROP training.*/
|
612
615
|
static VALUE get_rprop_increase_factor(VALUE self)
|
613
616
|
{
|
@@ -686,8 +689,8 @@ static VALUE get_bias_array(VALUE self)
|
|
686
689
|
Data_Get_Struct (self, struct fann, f);
|
687
690
|
num_layers = fann_get_num_layers(f);
|
688
691
|
unsigned int layers[num_layers];
|
689
|
-
fann_get_bias_array(f, layers);
|
690
|
-
|
692
|
+
fann_get_bias_array(f, layers);
|
693
|
+
|
691
694
|
// Create ruby array & set outputs:
|
692
695
|
VALUE arr;
|
693
696
|
arr = rb_ary_new();
|
@@ -696,12 +699,12 @@ static VALUE get_bias_array(VALUE self)
|
|
696
699
|
{
|
697
700
|
rb_ary_push(arr, INT2NUM(layers[i]));
|
698
701
|
}
|
699
|
-
|
702
|
+
|
700
703
|
return arr;
|
701
704
|
}
|
702
705
|
|
703
|
-
/** The number of fail bits; means the number of output neurons which differ more
|
704
|
-
than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
|
706
|
+
/** The number of fail bits; means the number of output neurons which differ more
|
707
|
+
than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
|
705
708
|
The bits are counted in all of the training data, so this number can be higher than
|
706
709
|
the number of training data.*/
|
707
710
|
static VALUE get_bit_fail(VALUE self)
|
@@ -715,7 +718,7 @@ static VALUE get_connection_rate(VALUE self)
|
|
715
718
|
RETURN_FANN_INT(fann_get_connection_rate);
|
716
719
|
}
|
717
720
|
|
718
|
-
/** call-seq: get_neurons(layer) -> return value
|
721
|
+
/** call-seq: get_neurons(layer) -> return value
|
719
722
|
|
720
723
|
Return array<hash> where each array element is a hash
|
721
724
|
representing a neuron. It contains the following keys:
|
@@ -724,16 +727,16 @@ static VALUE get_connection_rate(VALUE self)
|
|
724
727
|
:sum=float -- The sum of the inputs multiplied with the weights
|
725
728
|
:value=float -- The value of the activation fuction applied to the sum
|
726
729
|
:connections=array<int> -- indices of connected neurons(inputs)
|
727
|
-
|
730
|
+
|
728
731
|
This could be done more elegantly (e.g., defining more ruby ext classes).
|
729
732
|
This method does not directly correlate to anything in FANN, and accesses
|
730
|
-
structs that are not guaranteed to not change.
|
733
|
+
structs that are not guaranteed to not change.
|
731
734
|
*/
|
732
735
|
static VALUE get_neurons(VALUE self, VALUE layer)
|
733
736
|
{
|
734
737
|
struct fann_layer *layer_it;
|
735
738
|
struct fann_neuron *neuron_it;
|
736
|
-
|
739
|
+
|
737
740
|
struct fann* f;
|
738
741
|
unsigned int i;
|
739
742
|
Data_Get_Struct (self, struct fann, f);
|
@@ -746,8 +749,8 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
746
749
|
VALUE value_sym = ID2SYM(rb_intern("value"));
|
747
750
|
VALUE connections_sym = ID2SYM(rb_intern("connections"));
|
748
751
|
unsigned int layer_num = 0;
|
749
|
-
|
750
|
-
|
752
|
+
|
753
|
+
|
751
754
|
int nuke_bias_neuron = (fann_get_network_type(f)==FANN_NETTYPE_LAYER);
|
752
755
|
for(layer_it = f->first_layer; layer_it != f->last_layer; layer_it++)
|
753
756
|
{
|
@@ -756,12 +759,12 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
756
759
|
if (nuke_bias_neuron && (neuron_it==(layer_it->last_neuron)-1)) continue;
|
757
760
|
// Create array of connection indicies:
|
758
761
|
VALUE connection_array = rb_ary_new();
|
759
|
-
for (i = neuron_it->first_con; i < neuron_it->last_con; i++) {
|
760
|
-
rb_ary_push(connection_array, INT2NUM(f->connections[i] - f->first_layer->first_neuron));
|
762
|
+
for (i = neuron_it->first_con; i < neuron_it->last_con; i++) {
|
763
|
+
rb_ary_push(connection_array, INT2NUM(f->connections[i] - f->first_layer->first_neuron));
|
761
764
|
}
|
762
765
|
|
763
766
|
VALUE neuron = rb_hash_new();
|
764
|
-
|
767
|
+
|
765
768
|
// Set attributes on hash & push on array:
|
766
769
|
rb_hash_aset(neuron, activation_function_sym, activation_function_to_sym(neuron_it->activation_function));
|
767
770
|
rb_hash_aset(neuron, activation_steepness_sym, rb_float_new(neuron_it->activation_steepness));
|
@@ -769,8 +772,8 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
769
772
|
rb_hash_aset(neuron, sum_sym, rb_float_new(neuron_it->sum));
|
770
773
|
rb_hash_aset(neuron, value_sym, rb_float_new(neuron_it->value));
|
771
774
|
rb_hash_aset(neuron, connections_sym, connection_array);
|
772
|
-
|
773
|
-
rb_ary_push(neuron_array, neuron);
|
775
|
+
|
776
|
+
rb_ary_push(neuron_array, neuron);
|
774
777
|
}
|
775
778
|
++layer_num;
|
776
779
|
}
|
@@ -787,7 +790,7 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
787
790
|
// case FANN_NETTYPE_SHORTCUT: {
|
788
791
|
|
789
792
|
|
790
|
-
return neuron_array;
|
793
|
+
return neuron_array;
|
791
794
|
}
|
792
795
|
|
793
796
|
/** Get list of layers in array format where each element contains number of neurons in that layer*/
|
@@ -798,8 +801,8 @@ static VALUE get_layer_array(VALUE self)
|
|
798
801
|
Data_Get_Struct (self, struct fann, f);
|
799
802
|
num_layers = fann_get_num_layers(f);
|
800
803
|
unsigned int layers[num_layers];
|
801
|
-
fann_get_layer_array(f, layers);
|
802
|
-
|
804
|
+
fann_get_layer_array(f, layers);
|
805
|
+
|
803
806
|
// Create ruby array & set outputs:
|
804
807
|
VALUE arr;
|
805
808
|
arr = rb_ary_new();
|
@@ -808,7 +811,7 @@ static VALUE get_layer_array(VALUE self)
|
|
808
811
|
{
|
809
812
|
rb_ary_push(arr, INT2NUM(layers[i]));
|
810
813
|
}
|
811
|
-
|
814
|
+
|
812
815
|
return arr;
|
813
816
|
}
|
814
817
|
|
@@ -819,13 +822,13 @@ static VALUE get_MSE(VALUE self)
|
|
819
822
|
}
|
820
823
|
|
821
824
|
/** Resets the mean square error from the network.
|
822
|
-
This function also resets the number of bits that fail.*/
|
825
|
+
This function also resets the number of bits that fail.*/
|
823
826
|
static VALUE reset_MSE(VALUE self)
|
824
827
|
{
|
825
828
|
struct fann* f;
|
826
829
|
Data_Get_Struct (self, struct fann, f);
|
827
830
|
fann_reset_MSE(f);
|
828
|
-
return self;
|
831
|
+
return self;
|
829
832
|
}
|
830
833
|
|
831
834
|
/** Get the type of network. Returns as ruby symbol (one of :shortcut, :layer)*/
|
@@ -837,15 +840,15 @@ static VALUE get_network_type(VALUE self)
|
|
837
840
|
Data_Get_Struct (self, struct fann, f);
|
838
841
|
|
839
842
|
net_type = fann_get_network_type(f);
|
840
|
-
|
841
|
-
if(net_type==FANN_NETTYPE_LAYER)
|
843
|
+
|
844
|
+
if(net_type==FANN_NETTYPE_LAYER)
|
842
845
|
{
|
843
846
|
ret_val = ID2SYM(rb_intern("layer")); // (rb_str_new2("FANN_NETTYPE_LAYER"));
|
844
847
|
}
|
845
848
|
else if(net_type==FANN_NETTYPE_SHORTCUT)
|
846
849
|
{
|
847
850
|
ret_val = ID2SYM(rb_intern("shortcut")); // (rb_str_new2("FANN_NETTYPE_SHORTCUT"));
|
848
|
-
}
|
851
|
+
}
|
849
852
|
return ret_val;
|
850
853
|
}
|
851
854
|
|
@@ -854,7 +857,7 @@ static VALUE get_num_input(VALUE self)
|
|
854
857
|
{
|
855
858
|
RETURN_FANN_INT(fann_get_num_input);
|
856
859
|
}
|
857
|
-
|
860
|
+
|
858
861
|
/** Get the number of layers in the network.*/
|
859
862
|
static VALUE get_num_layers(VALUE self)
|
860
863
|
{
|
@@ -886,26 +889,26 @@ static VALUE get_total_neurons(VALUE self)
|
|
886
889
|
static VALUE set_train_error_function(VALUE self, VALUE train_error_function)
|
887
890
|
{
|
888
891
|
Check_Type(train_error_function, T_SYMBOL);
|
889
|
-
|
892
|
+
|
890
893
|
ID id=SYM2ID(train_error_function);
|
891
894
|
enum fann_errorfunc_enum fann_train_error_function;
|
892
895
|
|
893
896
|
if(id==rb_intern("linear")) {
|
894
|
-
fann_train_error_function = FANN_ERRORFUNC_LINEAR;
|
897
|
+
fann_train_error_function = FANN_ERRORFUNC_LINEAR;
|
895
898
|
} else if(id==rb_intern("tanh")) {
|
896
|
-
fann_train_error_function = FANN_ERRORFUNC_TANH;
|
899
|
+
fann_train_error_function = FANN_ERRORFUNC_TANH;
|
897
900
|
} else {
|
898
901
|
rb_raise(rb_eRuntimeError, "Unrecognized train error function: [%s]", rb_id2name(SYM2ID(train_error_function)));
|
899
|
-
}
|
902
|
+
}
|
900
903
|
|
901
904
|
struct fann* f;
|
902
905
|
Data_Get_Struct (self, struct fann, f);
|
903
906
|
fann_set_train_error_function(f, fann_train_error_function);
|
904
|
-
return self;
|
907
|
+
return self;
|
905
908
|
}
|
906
909
|
|
907
910
|
/** Returns the error function used during training. One of the following symbols:
|
908
|
-
:linear, :tanh*/
|
911
|
+
:linear, :tanh*/
|
909
912
|
static VALUE get_train_error_function(VALUE self)
|
910
913
|
{
|
911
914
|
struct fann* f;
|
@@ -914,15 +917,15 @@ static VALUE get_train_error_function(VALUE self)
|
|
914
917
|
Data_Get_Struct (self, struct fann, f);
|
915
918
|
|
916
919
|
train_error = fann_get_train_error_function(f);
|
917
|
-
|
918
|
-
if(train_error==FANN_ERRORFUNC_LINEAR)
|
920
|
+
|
921
|
+
if(train_error==FANN_ERRORFUNC_LINEAR)
|
919
922
|
{
|
920
|
-
ret_val = ID2SYM(rb_intern("linear"));
|
923
|
+
ret_val = ID2SYM(rb_intern("linear"));
|
921
924
|
}
|
922
|
-
else
|
925
|
+
else
|
923
926
|
{
|
924
|
-
ret_val = ID2SYM(rb_intern("tanh"));
|
925
|
-
}
|
927
|
+
ret_val = ID2SYM(rb_intern("tanh"));
|
928
|
+
}
|
926
929
|
return ret_val;
|
927
930
|
}
|
928
931
|
|
@@ -933,26 +936,26 @@ static VALUE get_train_error_function(VALUE self)
|
|
933
936
|
static VALUE set_training_algorithm(VALUE self, VALUE train_error_function)
|
934
937
|
{
|
935
938
|
Check_Type(train_error_function, T_SYMBOL);
|
936
|
-
|
939
|
+
|
937
940
|
ID id=SYM2ID(train_error_function);
|
938
941
|
enum fann_train_enum fann_train_algorithm;
|
939
942
|
|
940
943
|
if(id==rb_intern("incremental")) {
|
941
|
-
fann_train_algorithm = FANN_TRAIN_INCREMENTAL;
|
944
|
+
fann_train_algorithm = FANN_TRAIN_INCREMENTAL;
|
942
945
|
} else if(id==rb_intern("batch")) {
|
943
|
-
fann_train_algorithm = FANN_TRAIN_BATCH;
|
946
|
+
fann_train_algorithm = FANN_TRAIN_BATCH;
|
944
947
|
} else if(id==rb_intern("rprop")) {
|
945
|
-
fann_train_algorithm = FANN_TRAIN_RPROP;
|
948
|
+
fann_train_algorithm = FANN_TRAIN_RPROP;
|
946
949
|
} else if(id==rb_intern("quickprop")) {
|
947
|
-
fann_train_algorithm = FANN_TRAIN_QUICKPROP;
|
950
|
+
fann_train_algorithm = FANN_TRAIN_QUICKPROP;
|
948
951
|
} else {
|
949
952
|
rb_raise(rb_eRuntimeError, "Unrecognized training algorithm function: [%s]", rb_id2name(SYM2ID(train_error_function)));
|
950
|
-
}
|
953
|
+
}
|
951
954
|
|
952
955
|
struct fann* f;
|
953
956
|
Data_Get_Struct (self, struct fann, f);
|
954
957
|
fann_set_training_algorithm(f, fann_train_algorithm);
|
955
|
-
return self;
|
958
|
+
return self;
|
956
959
|
}
|
957
960
|
|
958
961
|
/** Returns the training algorithm. One of the following symbols:
|
@@ -965,20 +968,20 @@ static VALUE get_training_algorithm(VALUE self)
|
|
965
968
|
Data_Get_Struct (self, struct fann, f);
|
966
969
|
|
967
970
|
fann_train_algorithm = fann_get_training_algorithm(f);
|
968
|
-
|
971
|
+
|
969
972
|
if(fann_train_algorithm==FANN_TRAIN_INCREMENTAL) {
|
970
973
|
ret_val = ID2SYM(rb_intern("incremental"));
|
971
974
|
} else if(fann_train_algorithm==FANN_TRAIN_BATCH) {
|
972
|
-
ret_val = ID2SYM(rb_intern("batch"));
|
975
|
+
ret_val = ID2SYM(rb_intern("batch"));
|
973
976
|
} else if(fann_train_algorithm==FANN_TRAIN_RPROP) {
|
974
|
-
ret_val = ID2SYM(rb_intern("rprop"));
|
977
|
+
ret_val = ID2SYM(rb_intern("rprop"));
|
975
978
|
} else if(fann_train_algorithm==FANN_TRAIN_QUICKPROP) {
|
976
|
-
ret_val = ID2SYM(rb_intern("quickprop"));
|
977
|
-
}
|
979
|
+
ret_val = ID2SYM(rb_intern("quickprop"));
|
980
|
+
}
|
978
981
|
return ret_val;
|
979
982
|
}
|
980
983
|
|
981
|
-
/** call-seq: set_train_stop_function(train_stop_function) -> return value
|
984
|
+
/** call-seq: set_train_stop_function(train_stop_function) -> return value
|
982
985
|
|
983
986
|
Set the training stop function. One of the following symbols:
|
984
987
|
:mse, :bit */
|
@@ -989,17 +992,17 @@ static VALUE set_train_stop_function(VALUE self, VALUE train_stop_function)
|
|
989
992
|
enum fann_stopfunc_enum fann_train_stop_function;
|
990
993
|
|
991
994
|
if(id==rb_intern("mse")) {
|
992
|
-
fann_train_stop_function = FANN_STOPFUNC_MSE;
|
995
|
+
fann_train_stop_function = FANN_STOPFUNC_MSE;
|
993
996
|
} else if(id==rb_intern("bit")) {
|
994
|
-
fann_train_stop_function = FANN_STOPFUNC_BIT;
|
997
|
+
fann_train_stop_function = FANN_STOPFUNC_BIT;
|
995
998
|
} else {
|
996
999
|
rb_raise(rb_eRuntimeError, "Unrecognized stop function: [%s]", rb_id2name(SYM2ID(train_stop_function)));
|
997
|
-
}
|
1000
|
+
}
|
998
1001
|
|
999
1002
|
struct fann* f;
|
1000
1003
|
Data_Get_Struct (self, struct fann, f);
|
1001
1004
|
fann_set_train_stop_function(f, fann_train_stop_function);
|
1002
|
-
return self;
|
1005
|
+
return self;
|
1003
1006
|
}
|
1004
1007
|
|
1005
1008
|
/** Returns the training stop function. One of the following symbols:
|
@@ -1012,27 +1015,27 @@ static VALUE get_train_stop_function(VALUE self)
|
|
1012
1015
|
Data_Get_Struct (self, struct fann, f);
|
1013
1016
|
|
1014
1017
|
train_stop = fann_get_train_stop_function(f);
|
1015
|
-
|
1016
|
-
if(train_stop==FANN_STOPFUNC_MSE)
|
1018
|
+
|
1019
|
+
if(train_stop==FANN_STOPFUNC_MSE)
|
1017
1020
|
{
|
1018
1021
|
ret_val = ID2SYM(rb_intern("mse")); // (rb_str_new2("FANN_NETTYPE_LAYER"));
|
1019
1022
|
}
|
1020
1023
|
else // if(train_stop==FANN_STOPFUNC_BIT)
|
1021
1024
|
{
|
1022
1025
|
ret_val = ID2SYM(rb_intern("bit")); // (rb_str_new2("FANN_NETTYPE_SHORTCUT"));
|
1023
|
-
}
|
1026
|
+
}
|
1024
1027
|
return ret_val;
|
1025
1028
|
}
|
1026
1029
|
|
1027
1030
|
|
1028
|
-
/** Will print the connections of the ann in a compact matrix,
|
1031
|
+
/** Will print the connections of the ann in a compact matrix,
|
1029
1032
|
for easy viewing of the internals of the ann. */
|
1030
1033
|
static VALUE print_connections(VALUE self)
|
1031
1034
|
{
|
1032
1035
|
struct fann* f;
|
1033
1036
|
Data_Get_Struct (self, struct fann, f);
|
1034
1037
|
fann_print_connections(f);
|
1035
|
-
return self;
|
1038
|
+
return self;
|
1036
1039
|
}
|
1037
1040
|
|
1038
1041
|
/** Print current NN parameters to stdout */
|
@@ -1052,14 +1055,14 @@ static VALUE randomize_weights(VALUE self, VALUE min_weight, VALUE max_weight)
|
|
1052
1055
|
Check_Type(min_weight, T_FLOAT);
|
1053
1056
|
Check_Type(max_weight, T_FLOAT);
|
1054
1057
|
struct fann* f;
|
1055
|
-
Data_Get_Struct (self, struct fann, f);
|
1058
|
+
Data_Get_Struct (self, struct fann, f);
|
1056
1059
|
fann_randomize_weights(f, NUM2DBL(min_weight), NUM2DBL(max_weight));
|
1057
|
-
return self;
|
1060
|
+
return self;
|
1058
1061
|
}
|
1059
1062
|
|
1060
|
-
/** call-seq: run(inputs) -> return value
|
1063
|
+
/** call-seq: run(inputs) -> return value
|
1061
1064
|
|
1062
|
-
Run neural net on array<Float> of inputs with current parameters.
|
1065
|
+
Run neural net on array<Float> of inputs with current parameters.
|
1063
1066
|
Returns array<Float> as output */
|
1064
1067
|
static VALUE run (VALUE self, VALUE inputs)
|
1065
1068
|
{
|
@@ -1068,16 +1071,16 @@ static VALUE run (VALUE self, VALUE inputs)
|
|
1068
1071
|
struct fann* f;
|
1069
1072
|
unsigned int i;
|
1070
1073
|
fann_type* outputs;
|
1071
|
-
|
1074
|
+
|
1072
1075
|
// Convert inputs to type needed for NN:
|
1073
|
-
unsigned int len =
|
1076
|
+
unsigned int len = RARRAY_LEN(inputs);
|
1074
1077
|
fann_type fann_inputs[len];
|
1075
1078
|
for (i=0; i<len; i++)
|
1076
1079
|
{
|
1077
1080
|
fann_inputs[i] = NUM2DBL(RARRAY_PTR(inputs)[i]);
|
1078
1081
|
}
|
1079
|
-
|
1080
|
-
|
1082
|
+
|
1083
|
+
|
1081
1084
|
// Obtain NN & run method:
|
1082
1085
|
Data_Get_Struct (self, struct fann, f);
|
1083
1086
|
outputs = fann_run(f, fann_inputs);
|
@@ -1087,28 +1090,28 @@ static VALUE run (VALUE self, VALUE inputs)
|
|
1087
1090
|
arr = rb_ary_new();
|
1088
1091
|
unsigned int output_len=fann_get_num_output(f);
|
1089
1092
|
for (i=0; i<output_len; i++)
|
1090
|
-
{
|
1093
|
+
{
|
1091
1094
|
rb_ary_push(arr, rb_float_new(outputs[i]));
|
1092
1095
|
}
|
1093
|
-
|
1096
|
+
|
1094
1097
|
return arr;
|
1095
1098
|
}
|
1096
1099
|
|
1097
|
-
/** call-seq: init_weights(train_data) -> return value
|
1100
|
+
/** call-seq: init_weights(train_data) -> return value
|
1098
1101
|
|
1099
1102
|
Initialize the weights using Widrow + Nguyen's algorithm. */
|
1100
1103
|
static VALUE init_weights(VALUE self, VALUE train_data)
|
1101
1104
|
{
|
1102
|
-
|
1105
|
+
|
1103
1106
|
Check_Type(train_data, T_DATA);
|
1104
|
-
|
1107
|
+
|
1105
1108
|
struct fann* f;
|
1106
|
-
struct fann_train_data* t;
|
1107
|
-
Data_Get_Struct (self, struct fann, f);
|
1108
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1109
|
+
struct fann_train_data* t;
|
1110
|
+
Data_Get_Struct (self, struct fann, f);
|
1111
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1109
1112
|
|
1110
|
-
fann_init_weights(f, t);
|
1111
|
-
return self;
|
1113
|
+
fann_init_weights(f, t);
|
1114
|
+
return self;
|
1112
1115
|
}
|
1113
1116
|
|
1114
1117
|
/** call-seq: train(input, expected_output)
|
@@ -1124,8 +1127,8 @@ static VALUE train(VALUE self, VALUE input, VALUE expected_output)
|
|
1124
1127
|
struct fann* f;
|
1125
1128
|
Data_Get_Struct(self, struct fann, f);
|
1126
1129
|
|
1127
|
-
unsigned int num_input =
|
1128
|
-
unsigned int num_output =
|
1130
|
+
unsigned int num_input = RARRAY_LEN(input);
|
1131
|
+
unsigned int num_output = RARRAY_LEN(expected_output);
|
1129
1132
|
|
1130
1133
|
fann_type data_input[num_input], data_output[num_output];
|
1131
1134
|
|
@@ -1157,42 +1160,42 @@ static VALUE train_on_data(VALUE self, VALUE train_data, VALUE max_epochs, VALUE
|
|
1157
1160
|
Check_Type(max_epochs, T_FIXNUM);
|
1158
1161
|
Check_Type(epochs_between_reports, T_FIXNUM);
|
1159
1162
|
Check_Type(desired_error, T_FLOAT);
|
1160
|
-
|
1163
|
+
|
1161
1164
|
struct fann* f;
|
1162
|
-
struct fann_train_data* t;
|
1163
|
-
Data_Get_Struct (self, struct fann, f);
|
1164
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1165
|
+
struct fann_train_data* t;
|
1166
|
+
Data_Get_Struct (self, struct fann, f);
|
1167
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1165
1168
|
|
1166
1169
|
unsigned int fann_max_epochs = NUM2INT(max_epochs);
|
1167
1170
|
unsigned int fann_epochs_between_reports = NUM2INT(epochs_between_reports);
|
1168
|
-
float fann_desired_error = NUM2DBL(desired_error);
|
1171
|
+
float fann_desired_error = NUM2DBL(desired_error);
|
1169
1172
|
fann_train_on_data(f, t, fann_max_epochs, fann_epochs_between_reports, fann_desired_error);
|
1170
1173
|
return rb_int_new(0);
|
1171
1174
|
}
|
1172
1175
|
|
1173
|
-
/** call-seq: train_epoch(train_data) -> return value
|
1176
|
+
/** call-seq: train_epoch(train_data) -> return value
|
1174
1177
|
|
1175
1178
|
Train one epoch with a set of training data, created with RubyFann::TrainData.new */
|
1176
1179
|
static VALUE train_epoch(VALUE self, VALUE train_data)
|
1177
1180
|
{
|
1178
1181
|
Check_Type(train_data, T_DATA);
|
1179
1182
|
struct fann* f;
|
1180
|
-
struct fann_train_data* t;
|
1181
|
-
Data_Get_Struct (self, struct fann, f);
|
1182
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1183
|
+
struct fann_train_data* t;
|
1184
|
+
Data_Get_Struct (self, struct fann, f);
|
1185
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1183
1186
|
return rb_float_new(fann_train_epoch(f, t));
|
1184
1187
|
}
|
1185
1188
|
|
1186
|
-
/** call-seq: test_data(train_data) -> return value
|
1189
|
+
/** call-seq: test_data(train_data) -> return value
|
1187
1190
|
|
1188
1191
|
Test a set of training data and calculates the MSE for the training data. */
|
1189
1192
|
static VALUE test_data(VALUE self, VALUE train_data)
|
1190
1193
|
{
|
1191
1194
|
Check_Type(train_data, T_DATA);
|
1192
1195
|
struct fann* f;
|
1193
|
-
struct fann_train_data* t;
|
1194
|
-
Data_Get_Struct (self, struct fann, f);
|
1195
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1196
|
+
struct fann_train_data* t;
|
1197
|
+
Data_Get_Struct (self, struct fann, f);
|
1198
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1196
1199
|
return rb_float_new(fann_test_data(f, t));
|
1197
1200
|
}
|
1198
1201
|
|
@@ -1204,7 +1207,7 @@ static VALUE test_data(VALUE self, VALUE train_data)
|
|
1204
1207
|
// Data_Get_Struct (self, struct fann, f);
|
1205
1208
|
// return INT2NUM(fann_get_decimal_point(f));
|
1206
1209
|
// }
|
1207
|
-
|
1210
|
+
|
1208
1211
|
// returns the multiplier that fix point data is multiplied with.
|
1209
1212
|
|
1210
1213
|
// Only available in fixed-point mode, which we don't need:
|
@@ -1228,19 +1231,19 @@ static VALUE cascadetrain_on_data(VALUE self, VALUE train_data, VALUE max_neuron
|
|
1228
1231
|
Check_Type(max_neurons, T_FIXNUM);
|
1229
1232
|
Check_Type(neurons_between_reports, T_FIXNUM);
|
1230
1233
|
Check_Type(desired_error, T_FLOAT);
|
1231
|
-
|
1234
|
+
|
1232
1235
|
struct fann* f;
|
1233
|
-
struct fann_train_data* t;
|
1234
|
-
Data_Get_Struct (self, struct fann, f);
|
1235
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1236
|
+
struct fann_train_data* t;
|
1237
|
+
Data_Get_Struct (self, struct fann, f);
|
1238
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1236
1239
|
|
1237
1240
|
unsigned int fann_max_neurons = NUM2INT(max_neurons);
|
1238
1241
|
unsigned int fann_neurons_between_reports = NUM2INT(neurons_between_reports);
|
1239
1242
|
float fann_desired_error = NUM2DBL(desired_error);
|
1240
|
-
|
1243
|
+
|
1241
1244
|
fann_cascadetrain_on_data(f, t, fann_max_neurons, fann_neurons_between_reports, fann_desired_error);
|
1242
|
-
return self;
|
1243
|
-
}
|
1245
|
+
return self;
|
1246
|
+
}
|
1244
1247
|
|
1245
1248
|
/** The cascade output change fraction is a number between 0 and 1 */
|
1246
1249
|
static VALUE get_cascade_output_change_fraction(VALUE self)
|
@@ -1256,7 +1259,7 @@ static VALUE set_cascade_output_change_fraction(VALUE self, VALUE cascade_output
|
|
1256
1259
|
SET_FANN_FLT(cascade_output_change_fraction, fann_set_cascade_output_change_fraction);
|
1257
1260
|
}
|
1258
1261
|
|
1259
|
-
/** The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1262
|
+
/** The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1260
1263
|
continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>. */
|
1261
1264
|
static VALUE get_cascade_output_stagnation_epochs(VALUE self)
|
1262
1265
|
{
|
@@ -1265,7 +1268,7 @@ static VALUE get_cascade_output_stagnation_epochs(VALUE self)
|
|
1265
1268
|
|
1266
1269
|
/** call-seq: set_cascade_output_stagnation_epochs(cascade_output_stagnation_epochs)
|
1267
1270
|
|
1268
|
-
The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1271
|
+
The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1269
1272
|
continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>. */
|
1270
1273
|
static VALUE set_cascade_output_stagnation_epochs(VALUE self, VALUE cascade_output_stagnation_epochs)
|
1271
1274
|
{
|
@@ -1300,7 +1303,8 @@ static VALUE get_cascade_candidate_stagnation_epochs(VALUE self)
|
|
1300
1303
|
static VALUE set_cascade_candidate_stagnation_epochs(VALUE self, VALUE cascade_candidate_stagnation_epochs)
|
1301
1304
|
{
|
1302
1305
|
SET_FANN_UINT(cascade_candidate_stagnation_epochs, fann_set_cascade_candidate_stagnation_epochs);
|
1303
|
-
}
|
1306
|
+
}
|
1307
|
+
|
1304
1308
|
|
1305
1309
|
/** The weight multiplier is a parameter which is used to multiply the weights from the candidate neuron
|
1306
1310
|
before adding the neuron to the neural network. This parameter is usually between 0 and 1, and is used
|
@@ -1352,7 +1356,7 @@ static VALUE set_cascade_max_out_epochs(VALUE self, VALUE cascade_max_out_epochs
|
|
1352
1356
|
SET_FANN_UINT(cascade_max_out_epochs, fann_set_cascade_max_out_epochs);
|
1353
1357
|
}
|
1354
1358
|
|
1355
|
-
/** The maximum candidate epochs determines the maximum number of epochs the input
|
1359
|
+
/** The maximum candidate epochs determines the maximum number of epochs the input
|
1356
1360
|
connections to the candidates may be trained before adding a new candidate neuron. */
|
1357
1361
|
static VALUE get_cascade_max_cand_epochs(VALUE self)
|
1358
1362
|
{
|
@@ -1361,7 +1365,7 @@ static VALUE get_cascade_max_cand_epochs(VALUE self)
|
|
1361
1365
|
|
1362
1366
|
/** call-seq: set_cascade_max_cand_epochs(cascade_max_cand_epochs)
|
1363
1367
|
|
1364
|
-
The maximum candidate epochs determines the maximum number of epochs the input
|
1368
|
+
The maximum candidate epochs determines the maximum number of epochs the input
|
1365
1369
|
connections to the candidates may be trained before adding a new candidate neuron. */
|
1366
1370
|
static VALUE set_cascade_max_cand_epochs(VALUE self, VALUE cascade_max_cand_epochs)
|
1367
1371
|
{
|
@@ -1383,18 +1387,18 @@ static VALUE get_cascade_activation_functions_count(VALUE self)
|
|
1383
1387
|
|
1384
1388
|
/** The learning rate is used to determine how aggressive training should be for some of the
|
1385
1389
|
training algorithms (:incremental, :batch, :quickprop).
|
1386
|
-
Do however note that it is not used in :rprop.
|
1390
|
+
Do however note that it is not used in :rprop.
|
1387
1391
|
The default learning rate is 0.7. */
|
1388
1392
|
static VALUE get_learning_rate(VALUE self)
|
1389
1393
|
{
|
1390
1394
|
RETURN_FANN_FLT(fann_get_learning_rate);
|
1391
1395
|
}
|
1392
1396
|
|
1393
|
-
/** call-seq: set_learning_rate(learning_rate) -> return value
|
1397
|
+
/** call-seq: set_learning_rate(learning_rate) -> return value
|
1394
1398
|
|
1395
1399
|
The learning rate is used to determine how aggressive training should be for some of the
|
1396
1400
|
training algorithms (:incremental, :batch, :quickprop).
|
1397
|
-
Do however note that it is not used in :rprop.
|
1401
|
+
Do however note that it is not used in :rprop.
|
1398
1402
|
The default learning rate is 0.7. */
|
1399
1403
|
static VALUE set_learning_rate(VALUE self, VALUE learning_rate)
|
1400
1404
|
{
|
@@ -1407,8 +1411,8 @@ static VALUE get_learning_momentum(VALUE self)
|
|
1407
1411
|
RETURN_FANN_FLT(fann_get_learning_momentum);
|
1408
1412
|
}
|
1409
1413
|
|
1410
|
-
/** call-seq: set_learning_momentum(learning_momentum) -> return value
|
1411
|
-
|
1414
|
+
/** call-seq: set_learning_momentum(learning_momentum) -> return value
|
1415
|
+
|
1412
1416
|
Set the learning momentum. */
|
1413
1417
|
static VALUE set_learning_momentum(VALUE self, VALUE learning_momentum)
|
1414
1418
|
{
|
@@ -1423,18 +1427,18 @@ static VALUE set_cascade_activation_functions(VALUE self, VALUE cascade_activati
|
|
1423
1427
|
{
|
1424
1428
|
Check_Type(cascade_activation_functions, T_ARRAY);
|
1425
1429
|
struct fann* f;
|
1426
|
-
Data_Get_Struct (self, struct fann, f);
|
1427
|
-
|
1428
|
-
unsigned
|
1430
|
+
Data_Get_Struct (self, struct fann, f);
|
1431
|
+
|
1432
|
+
unsigned long cnt = RARRAY_LEN(cascade_activation_functions);
|
1429
1433
|
enum fann_activationfunc_enum fann_activation_functions[cnt];
|
1430
1434
|
unsigned int i;
|
1431
1435
|
for (i=0; i<cnt; i++)
|
1432
1436
|
{
|
1433
1437
|
fann_activation_functions[i] = sym_to_activation_function(RARRAY_PTR(cascade_activation_functions)[i]);
|
1434
1438
|
}
|
1435
|
-
|
1439
|
+
|
1436
1440
|
fann_set_cascade_activation_functions(f, fann_activation_functions, cnt);
|
1437
|
-
return self;
|
1441
|
+
return self;
|
1438
1442
|
}
|
1439
1443
|
|
1440
1444
|
/** The cascade activation functions is an array of the different activation functions used by
|
@@ -1487,16 +1491,16 @@ static VALUE set_cascade_activation_steepnesses(VALUE self, VALUE cascade_activa
|
|
1487
1491
|
{
|
1488
1492
|
Check_Type(cascade_activation_steepnesses, T_ARRAY);
|
1489
1493
|
struct fann* f;
|
1490
|
-
Data_Get_Struct (self, struct fann, f);
|
1491
|
-
|
1492
|
-
unsigned int cnt =
|
1494
|
+
Data_Get_Struct (self, struct fann, f);
|
1495
|
+
|
1496
|
+
unsigned int cnt = RARRAY_LEN(cascade_activation_steepnesses);
|
1493
1497
|
fann_type fann_activation_steepnesses[cnt];
|
1494
1498
|
unsigned int i;
|
1495
1499
|
for (i=0; i<cnt; i++)
|
1496
1500
|
{
|
1497
1501
|
fann_activation_steepnesses[i] = NUM2DBL(RARRAY_PTR(cascade_activation_steepnesses)[i]);
|
1498
1502
|
}
|
1499
|
-
|
1503
|
+
|
1500
1504
|
fann_set_cascade_activation_steepnesses(f, fann_activation_steepnesses, cnt);
|
1501
1505
|
return self;
|
1502
1506
|
}
|
@@ -1544,11 +1548,11 @@ void Init_ruby_fann ()
|
|
1544
1548
|
rb_define_alloc_func (m_rb_fann_standard_class, fann_allocate);
|
1545
1549
|
rb_define_method(m_rb_fann_standard_class, "initialize", fann_initialize, 1);
|
1546
1550
|
rb_define_method(m_rb_fann_standard_class, "init_weights", init_weights, 1);
|
1547
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function", set_activation_function, 3);
|
1548
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1549
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1550
|
-
rb_define_method(m_rb_fann_standard_class, "get_activation_function", get_activation_function, 2);
|
1551
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_output", set_activation_function_output, 1);
|
1551
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function", set_activation_function, 3);
|
1552
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1553
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1554
|
+
rb_define_method(m_rb_fann_standard_class, "get_activation_function", get_activation_function, 2);
|
1555
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_output", set_activation_function_output, 1);
|
1552
1556
|
rb_define_method(m_rb_fann_standard_class, "get_activation_steepness", get_activation_steepness, 2);
|
1553
1557
|
rb_define_method(m_rb_fann_standard_class, "set_activation_steepness", set_activation_steepness, 3);
|
1554
1558
|
rb_define_method(m_rb_fann_standard_class, "set_activation_steepness_hidden", set_activation_steepness_hidden, 1);
|
@@ -1578,14 +1582,14 @@ void Init_ruby_fann ()
|
|
1578
1582
|
rb_define_method(m_rb_fann_standard_class, "get_connection_rate", get_connection_rate, 0);
|
1579
1583
|
rb_define_method(m_rb_fann_standard_class, "get_layer_array", get_layer_array, 0);
|
1580
1584
|
rb_define_method(m_rb_fann_standard_class, "get_network_type", get_network_type, 0);
|
1581
|
-
rb_define_method(m_rb_fann_standard_class, "get_neurons", get_neurons, 0);
|
1585
|
+
rb_define_method(m_rb_fann_standard_class, "get_neurons", get_neurons, 0);
|
1582
1586
|
rb_define_method(m_rb_fann_standard_class, "get_num_input", get_num_input, 0);
|
1583
1587
|
rb_define_method(m_rb_fann_standard_class, "get_num_layers", get_num_layers, 0);
|
1584
|
-
rb_define_method(m_rb_fann_standard_class, "get_num_output", get_num_output, 0);
|
1588
|
+
rb_define_method(m_rb_fann_standard_class, "get_num_output", get_num_output, 0);
|
1585
1589
|
rb_define_method(m_rb_fann_standard_class, "get_total_connections", get_total_connections, 0);
|
1586
1590
|
rb_define_method(m_rb_fann_standard_class, "get_total_neurons", get_total_neurons, 0);
|
1587
1591
|
// rb_define_method(m_rb_fann_standard_class, "get_train_error_function", get_train_error_function, 0);
|
1588
|
-
// rb_define_method(m_rb_fann_standard_class, "set_train_error_function", set_train_error_function, 1);
|
1592
|
+
// rb_define_method(m_rb_fann_standard_class, "set_train_error_function", set_train_error_function, 1);
|
1589
1593
|
rb_define_method(m_rb_fann_standard_class, "print_connections", print_connections, 0);
|
1590
1594
|
rb_define_method(m_rb_fann_standard_class, "print_parameters", print_parameters, 0);
|
1591
1595
|
rb_define_method(m_rb_fann_standard_class, "randomize_weights", randomize_weights, 2);
|
@@ -1593,7 +1597,7 @@ void Init_ruby_fann ()
|
|
1593
1597
|
rb_define_method(m_rb_fann_standard_class, "train", train, 2);
|
1594
1598
|
rb_define_method(m_rb_fann_standard_class, "train_on_data", train_on_data, 4);
|
1595
1599
|
rb_define_method(m_rb_fann_standard_class, "train_epoch", train_epoch, 1);
|
1596
|
-
rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
|
1600
|
+
rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
|
1597
1601
|
rb_define_method(m_rb_fann_standard_class, "get_MSE", get_MSE, 0);
|
1598
1602
|
rb_define_method(m_rb_fann_standard_class, "get_bit_fail", get_bit_fail, 0);
|
1599
1603
|
rb_define_method(m_rb_fann_standard_class, "reset_MSE", reset_MSE, 0);
|
@@ -1603,8 +1607,8 @@ void Init_ruby_fann ()
|
|
1603
1607
|
rb_define_method(m_rb_fann_standard_class, "set_learning_momentum", set_learning_momentum, 1);
|
1604
1608
|
rb_define_method(m_rb_fann_standard_class, "get_training_algorithm", get_training_algorithm, 0);
|
1605
1609
|
rb_define_method(m_rb_fann_standard_class, "set_training_algorithm", set_training_algorithm, 1);
|
1606
|
-
|
1607
|
-
|
1610
|
+
|
1611
|
+
|
1608
1612
|
// Cascade functions:
|
1609
1613
|
rb_define_method(m_rb_fann_standard_class, "cascadetrain_on_data", cascadetrain_on_data, 4);
|
1610
1614
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_output_change_fraction", get_cascade_output_change_fraction, 0);
|
@@ -1630,25 +1634,25 @@ void Init_ruby_fann ()
|
|
1630
1634
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_activation_steepnesses_count", get_cascade_activation_steepnesses_count, 0);
|
1631
1635
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_activation_steepnesses", get_cascade_activation_steepnesses, 0);
|
1632
1636
|
rb_define_method(m_rb_fann_standard_class, "set_cascade_activation_steepnesses", set_cascade_activation_steepnesses, 1);
|
1633
|
-
rb_define_method(m_rb_fann_standard_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1634
|
-
rb_define_method(m_rb_fann_standard_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1637
|
+
rb_define_method(m_rb_fann_standard_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1638
|
+
rb_define_method(m_rb_fann_standard_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1635
1639
|
rb_define_method(m_rb_fann_standard_class, "save", nn_save, 1);
|
1636
1640
|
|
1637
|
-
|
1641
|
+
|
1638
1642
|
// Uncomment for fixed-point mode (also recompile fann). Probably not going to be needed:
|
1639
|
-
//rb_define_method(clazz, "get_decimal_point", get_decimal_point, 0);
|
1640
|
-
//rb_define_method(clazz, "get_multiplier", get_multiplier, 0);
|
1641
|
-
|
1643
|
+
//rb_define_method(clazz, "get_decimal_point", get_decimal_point, 0);
|
1644
|
+
//rb_define_method(clazz, "get_multiplier", get_multiplier, 0);
|
1645
|
+
|
1642
1646
|
// Shortcut NN class (duplicated from above so that rdoc generation tools can find the methods:):
|
1643
|
-
m_rb_fann_shortcut_class = rb_define_class_under (m_rb_fann_module, "Shortcut", rb_cObject);
|
1647
|
+
m_rb_fann_shortcut_class = rb_define_class_under (m_rb_fann_module, "Shortcut", rb_cObject);
|
1644
1648
|
rb_define_alloc_func (m_rb_fann_shortcut_class, fann_allocate);
|
1645
1649
|
rb_define_method(m_rb_fann_shortcut_class, "initialize", fann_initialize, 1);
|
1646
1650
|
rb_define_method(m_rb_fann_shortcut_class, "init_weights", init_weights, 1);
|
1647
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function", set_activation_function, 3);
|
1648
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1649
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1650
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_activation_function", get_activation_function, 2);
|
1651
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_output", set_activation_function_output, 1);
|
1651
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function", set_activation_function, 3);
|
1652
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1653
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1654
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_activation_function", get_activation_function, 2);
|
1655
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_output", set_activation_function_output, 1);
|
1652
1656
|
rb_define_method(m_rb_fann_shortcut_class, "get_activation_steepness", get_activation_steepness, 2);
|
1653
1657
|
rb_define_method(m_rb_fann_shortcut_class, "set_activation_steepness", set_activation_steepness, 3);
|
1654
1658
|
rb_define_method(m_rb_fann_shortcut_class, "set_activation_steepness_hidden", set_activation_steepness_hidden, 1);
|
@@ -1678,14 +1682,14 @@ void Init_ruby_fann ()
|
|
1678
1682
|
rb_define_method(m_rb_fann_shortcut_class, "get_connection_rate", get_connection_rate, 0);
|
1679
1683
|
rb_define_method(m_rb_fann_shortcut_class, "get_layer_array", get_layer_array, 0);
|
1680
1684
|
rb_define_method(m_rb_fann_shortcut_class, "get_network_type", get_network_type, 0);
|
1681
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_neurons", get_neurons, 0);
|
1685
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_neurons", get_neurons, 0);
|
1682
1686
|
rb_define_method(m_rb_fann_shortcut_class, "get_num_input", get_num_input, 0);
|
1683
1687
|
rb_define_method(m_rb_fann_shortcut_class, "get_num_layers", get_num_layers, 0);
|
1684
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_num_output", get_num_output, 0);
|
1688
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_num_output", get_num_output, 0);
|
1685
1689
|
rb_define_method(m_rb_fann_shortcut_class, "get_total_connections", get_total_connections, 0);
|
1686
1690
|
rb_define_method(m_rb_fann_shortcut_class, "get_total_neurons", get_total_neurons, 0);
|
1687
1691
|
// rb_define_method(m_rb_fann_shortcut_class, "get_train_error_function", get_train_error_function, 0);
|
1688
|
-
// rb_define_method(m_rb_fann_shortcut_class, "set_train_error_function", set_train_error_function, 1);
|
1692
|
+
// rb_define_method(m_rb_fann_shortcut_class, "set_train_error_function", set_train_error_function, 1);
|
1689
1693
|
rb_define_method(m_rb_fann_shortcut_class, "print_connections", print_connections, 0);
|
1690
1694
|
rb_define_method(m_rb_fann_shortcut_class, "print_parameters", print_parameters, 0);
|
1691
1695
|
rb_define_method(m_rb_fann_shortcut_class, "randomize_weights", randomize_weights, 2);
|
@@ -1693,7 +1697,7 @@ void Init_ruby_fann ()
|
|
1693
1697
|
rb_define_method(m_rb_fann_shortcut_class, "train", train, 2);
|
1694
1698
|
rb_define_method(m_rb_fann_shortcut_class, "train_on_data", train_on_data, 4);
|
1695
1699
|
rb_define_method(m_rb_fann_shortcut_class, "train_epoch", train_epoch, 1);
|
1696
|
-
rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
|
1700
|
+
rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
|
1697
1701
|
rb_define_method(m_rb_fann_shortcut_class, "get_MSE", get_MSE, 0);
|
1698
1702
|
rb_define_method(m_rb_fann_shortcut_class, "get_bit_fail", get_bit_fail, 0);
|
1699
1703
|
rb_define_method(m_rb_fann_shortcut_class, "reset_MSE", reset_MSE, 0);
|
@@ -1703,7 +1707,7 @@ void Init_ruby_fann ()
|
|
1703
1707
|
rb_define_method(m_rb_fann_shortcut_class, "set_learning_momentum", set_learning_momentum, 1);
|
1704
1708
|
rb_define_method(m_rb_fann_shortcut_class, "get_training_algorithm", get_training_algorithm, 0);
|
1705
1709
|
rb_define_method(m_rb_fann_shortcut_class, "set_training_algorithm", set_training_algorithm, 1);
|
1706
|
-
|
1710
|
+
|
1707
1711
|
// Cascade functions:
|
1708
1712
|
rb_define_method(m_rb_fann_shortcut_class, "cascadetrain_on_data", cascadetrain_on_data, 4);
|
1709
1713
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_output_change_fraction", get_cascade_output_change_fraction, 0);
|
@@ -1729,19 +1733,18 @@ void Init_ruby_fann ()
|
|
1729
1733
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_activation_steepnesses_count", get_cascade_activation_steepnesses_count, 0);
|
1730
1734
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_activation_steepnesses", get_cascade_activation_steepnesses, 0);
|
1731
1735
|
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_activation_steepnesses", set_cascade_activation_steepnesses, 1);
|
1732
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1733
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1736
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1737
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1734
1738
|
rb_define_method(m_rb_fann_shortcut_class, "save", nn_save, 1);
|
1735
|
-
|
1739
|
+
|
1736
1740
|
|
1737
1741
|
// TrainData NN class:
|
1738
|
-
m_rb_fann_train_data_class = rb_define_class_under (m_rb_fann_module, "TrainData", rb_cObject);
|
1739
|
-
rb_define_alloc_func (m_rb_fann_train_data_class, fann_training_data_allocate);
|
1742
|
+
m_rb_fann_train_data_class = rb_define_class_under (m_rb_fann_module, "TrainData", rb_cObject);
|
1743
|
+
rb_define_alloc_func (m_rb_fann_train_data_class, fann_training_data_allocate);
|
1740
1744
|
rb_define_method(m_rb_fann_train_data_class, "initialize", fann_train_data_initialize, 1);
|
1741
1745
|
rb_define_method(m_rb_fann_train_data_class, "length", length_train_data, 0);
|
1742
|
-
rb_define_method(m_rb_fann_train_data_class, "shuffle", shuffle, 0);
|
1746
|
+
rb_define_method(m_rb_fann_train_data_class, "shuffle", shuffle, 0);
|
1743
1747
|
rb_define_method(m_rb_fann_train_data_class, "save", training_save, 1);
|
1744
|
-
|
1748
|
+
|
1745
1749
|
// printf("Initialized Ruby Bindings for FANN.\n");
|
1746
1750
|
}
|
1747
|
-
|