ruby-fann 1.4.1 → 2.0.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +1 -1
- data/ext/ruby_fann/fann_augment.h +25 -25
- data/ext/ruby_fann/fann_train.h +268 -268
- data/ext/ruby_fann/ruby_fann.c +301 -298
- data/lib/ruby_fann/version.rb +3 -3
- metadata +7 -5
data/ext/ruby_fann/ruby_fann.c
CHANGED
@@ -12,7 +12,7 @@ static VALUE m_rb_fann_train_data_class;
|
|
12
12
|
#define RETURN_FANN_INT(fn) \
|
13
13
|
struct fann* f; \
|
14
14
|
Data_Get_Struct (self, struct fann, f); \
|
15
|
-
return INT2NUM(fn(f));
|
15
|
+
return INT2NUM(fn(f));
|
16
16
|
|
17
17
|
#define SET_FANN_INT(attr_name, fann_fn) \
|
18
18
|
Check_Type(attr_name, T_FIXNUM); \
|
@@ -24,7 +24,7 @@ return 0;
|
|
24
24
|
#define RETURN_FANN_UINT(fn) \
|
25
25
|
struct fann* f; \
|
26
26
|
Data_Get_Struct (self, struct fann, f); \
|
27
|
-
return
|
27
|
+
return rb_int_new(fn(f));
|
28
28
|
|
29
29
|
#define SET_FANN_UINT(attr_name, fann_fn) \
|
30
30
|
Check_Type(attr_name, T_FIXNUM); \
|
@@ -39,7 +39,7 @@ struct fann* f; \
|
|
39
39
|
Data_Get_Struct (self, struct fann, f); \
|
40
40
|
char buffy[20]; \
|
41
41
|
sprintf(buffy, "%0.6g", fn(f)); \
|
42
|
-
return rb_float_new(atof(buffy));
|
42
|
+
return rb_float_new(atof(buffy));
|
43
43
|
|
44
44
|
#define SET_FANN_FLT(attr_name, fann_fn) \
|
45
45
|
Check_Type(attr_name, T_FLOAT); \
|
@@ -51,7 +51,7 @@ return self;
|
|
51
51
|
#define RETURN_FANN_DBL(fn) \
|
52
52
|
struct fann* f; \
|
53
53
|
Data_Get_Struct (self, struct fann, f); \
|
54
|
-
return rb_float_new(fn(f));
|
54
|
+
return rb_float_new(fn(f));
|
55
55
|
|
56
56
|
#define SET_FANN_DBL SET_FANN_FLT
|
57
57
|
|
@@ -61,44 +61,44 @@ enum fann_activationfunc_enum sym_to_activation_function(VALUE activation_func)
|
|
61
61
|
ID id=SYM2ID(activation_func);
|
62
62
|
enum fann_activationfunc_enum activation_function;
|
63
63
|
if(id==rb_intern("linear")) {
|
64
|
-
activation_function = FANN_LINEAR;
|
64
|
+
activation_function = FANN_LINEAR;
|
65
65
|
} else if(id==rb_intern("threshold")) {
|
66
|
-
activation_function = FANN_THRESHOLD;
|
66
|
+
activation_function = FANN_THRESHOLD;
|
67
67
|
} else if(id==rb_intern("threshold_symmetric")) {
|
68
|
-
activation_function = FANN_THRESHOLD_SYMMETRIC;
|
68
|
+
activation_function = FANN_THRESHOLD_SYMMETRIC;
|
69
69
|
} else if(id==rb_intern("sigmoid")) {
|
70
|
-
activation_function = FANN_SIGMOID;
|
70
|
+
activation_function = FANN_SIGMOID;
|
71
71
|
} else if(id==rb_intern("sigmoid_stepwise")) {
|
72
|
-
activation_function = FANN_SIGMOID_STEPWISE;
|
72
|
+
activation_function = FANN_SIGMOID_STEPWISE;
|
73
73
|
} else if(id==rb_intern("sigmoid_symmetric")) {
|
74
|
-
activation_function = FANN_SIGMOID_SYMMETRIC;
|
74
|
+
activation_function = FANN_SIGMOID_SYMMETRIC;
|
75
75
|
} else if(id==rb_intern("sigmoid_symmetric_stepwise")) {
|
76
|
-
activation_function = FANN_SIGMOID_SYMMETRIC_STEPWISE;
|
76
|
+
activation_function = FANN_SIGMOID_SYMMETRIC_STEPWISE;
|
77
77
|
} else if(id==rb_intern("gaussian")) {
|
78
|
-
activation_function = FANN_GAUSSIAN;
|
78
|
+
activation_function = FANN_GAUSSIAN;
|
79
79
|
} else if(id==rb_intern("gaussian_symmetric")) {
|
80
|
-
activation_function = FANN_GAUSSIAN_SYMMETRIC;
|
80
|
+
activation_function = FANN_GAUSSIAN_SYMMETRIC;
|
81
81
|
} else if(id==rb_intern("gaussian_stepwise")) {
|
82
|
-
activation_function = FANN_GAUSSIAN_STEPWISE;
|
82
|
+
activation_function = FANN_GAUSSIAN_STEPWISE;
|
83
83
|
} else if(id==rb_intern("elliot")) {
|
84
|
-
activation_function = FANN_ELLIOT;
|
84
|
+
activation_function = FANN_ELLIOT;
|
85
85
|
} else if(id==rb_intern("elliot_symmetric")) {
|
86
|
-
activation_function = FANN_ELLIOT_SYMMETRIC;
|
86
|
+
activation_function = FANN_ELLIOT_SYMMETRIC;
|
87
87
|
} else if(id==rb_intern("linear_piece")) {
|
88
|
-
activation_function = FANN_LINEAR_PIECE;
|
88
|
+
activation_function = FANN_LINEAR_PIECE;
|
89
89
|
} else if(id==rb_intern("linear_piece_symmetric")) {
|
90
|
-
activation_function = FANN_LINEAR_PIECE_SYMMETRIC;
|
90
|
+
activation_function = FANN_LINEAR_PIECE_SYMMETRIC;
|
91
91
|
} else if(id==rb_intern("sin_symmetric")) {
|
92
|
-
activation_function = FANN_SIN_SYMMETRIC;
|
92
|
+
activation_function = FANN_SIN_SYMMETRIC;
|
93
93
|
} else if(id==rb_intern("cos_symmetric")) {
|
94
|
-
activation_function = FANN_COS_SYMMETRIC;
|
94
|
+
activation_function = FANN_COS_SYMMETRIC;
|
95
95
|
} else if(id==rb_intern("sin")) {
|
96
|
-
activation_function = FANN_SIN;
|
96
|
+
activation_function = FANN_SIN;
|
97
97
|
} else if(id==rb_intern("cos")) {
|
98
|
-
activation_function = FANN_COS;
|
98
|
+
activation_function = FANN_COS;
|
99
99
|
} else {
|
100
100
|
rb_raise(rb_eRuntimeError, "Unrecognized activation function: [%s]", rb_id2name(SYM2ID(activation_func)));
|
101
|
-
}
|
101
|
+
}
|
102
102
|
return activation_function;
|
103
103
|
}
|
104
104
|
|
@@ -106,46 +106,46 @@ enum fann_activationfunc_enum sym_to_activation_function(VALUE activation_func)
|
|
106
106
|
VALUE activation_function_to_sym(enum fann_activationfunc_enum fn)
|
107
107
|
{
|
108
108
|
VALUE activation_function;
|
109
|
-
|
109
|
+
|
110
110
|
if(fn==FANN_LINEAR) {
|
111
|
-
activation_function = ID2SYM(rb_intern("linear"));
|
111
|
+
activation_function = ID2SYM(rb_intern("linear"));
|
112
112
|
} else if(fn==FANN_THRESHOLD) {
|
113
|
-
activation_function = ID2SYM(rb_intern("threshold"));
|
113
|
+
activation_function = ID2SYM(rb_intern("threshold"));
|
114
114
|
} else if(fn==FANN_THRESHOLD_SYMMETRIC) {
|
115
|
-
activation_function = ID2SYM(rb_intern("threshold_symmetric"));
|
115
|
+
activation_function = ID2SYM(rb_intern("threshold_symmetric"));
|
116
116
|
} else if(fn==FANN_SIGMOID) {
|
117
|
-
activation_function = ID2SYM(rb_intern("sigmoid"));
|
117
|
+
activation_function = ID2SYM(rb_intern("sigmoid"));
|
118
118
|
} else if(fn==FANN_SIGMOID_STEPWISE) {
|
119
|
-
activation_function = ID2SYM(rb_intern("sigmoid_stepwise"));
|
119
|
+
activation_function = ID2SYM(rb_intern("sigmoid_stepwise"));
|
120
120
|
} else if(fn==FANN_SIGMOID_SYMMETRIC) {
|
121
|
-
activation_function = ID2SYM(rb_intern("sigmoid_symmetric"));
|
121
|
+
activation_function = ID2SYM(rb_intern("sigmoid_symmetric"));
|
122
122
|
} else if(fn==FANN_SIGMOID_SYMMETRIC_STEPWISE) {
|
123
|
-
activation_function = ID2SYM(rb_intern("sigmoid_symmetric_stepwise"));
|
123
|
+
activation_function = ID2SYM(rb_intern("sigmoid_symmetric_stepwise"));
|
124
124
|
} else if(fn==FANN_GAUSSIAN) {
|
125
|
-
activation_function = ID2SYM(rb_intern("gaussian"));
|
125
|
+
activation_function = ID2SYM(rb_intern("gaussian"));
|
126
126
|
} else if(fn==FANN_GAUSSIAN_SYMMETRIC) {
|
127
|
-
activation_function = ID2SYM(rb_intern("gaussian_symmetric"));
|
127
|
+
activation_function = ID2SYM(rb_intern("gaussian_symmetric"));
|
128
128
|
} else if(fn==FANN_GAUSSIAN_STEPWISE) {
|
129
|
-
activation_function = ID2SYM(rb_intern("gaussian_stepwise"));
|
129
|
+
activation_function = ID2SYM(rb_intern("gaussian_stepwise"));
|
130
130
|
} else if(fn==FANN_ELLIOT) {
|
131
|
-
activation_function = ID2SYM(rb_intern("elliot"));
|
131
|
+
activation_function = ID2SYM(rb_intern("elliot"));
|
132
132
|
} else if(fn==FANN_ELLIOT_SYMMETRIC) {
|
133
|
-
activation_function = ID2SYM(rb_intern("elliot_symmetric"));
|
133
|
+
activation_function = ID2SYM(rb_intern("elliot_symmetric"));
|
134
134
|
} else if(fn==FANN_LINEAR_PIECE) {
|
135
|
-
activation_function = ID2SYM(rb_intern("linear_piece"));
|
135
|
+
activation_function = ID2SYM(rb_intern("linear_piece"));
|
136
136
|
} else if(fn==FANN_LINEAR_PIECE_SYMMETRIC) {
|
137
|
-
activation_function = ID2SYM(rb_intern("linear_piece_symmetric"));
|
137
|
+
activation_function = ID2SYM(rb_intern("linear_piece_symmetric"));
|
138
138
|
} else if(fn==FANN_SIN_SYMMETRIC) {
|
139
|
-
activation_function = ID2SYM(rb_intern("sin_symmetric"));
|
139
|
+
activation_function = ID2SYM(rb_intern("sin_symmetric"));
|
140
140
|
} else if(fn==FANN_COS_SYMMETRIC) {
|
141
|
-
activation_function = ID2SYM(rb_intern("cos_symmetric"));
|
141
|
+
activation_function = ID2SYM(rb_intern("cos_symmetric"));
|
142
142
|
} else if(fn==FANN_SIN) {
|
143
|
-
activation_function = ID2SYM(rb_intern("sin"));
|
143
|
+
activation_function = ID2SYM(rb_intern("sin"));
|
144
144
|
} else if(fn==FANN_COS) {
|
145
|
-
activation_function = ID2SYM(rb_intern("cos"));
|
145
|
+
activation_function = ID2SYM(rb_intern("cos"));
|
146
146
|
} else {
|
147
147
|
rb_raise(rb_eRuntimeError, "Unrecognized activation function: [%d]", fn);
|
148
|
-
}
|
148
|
+
}
|
149
149
|
return activation_function;
|
150
150
|
}
|
151
151
|
|
@@ -169,14 +169,14 @@ static void fann_training_data_free (struct fann_train_data* train_data)
|
|
169
169
|
// printf("Destroyed Training data [%d].\n", train_data);
|
170
170
|
}
|
171
171
|
|
172
|
-
// Create wrapper, but don't allocate anything...do that in
|
172
|
+
// Create wrapper, but don't allocate anything...do that in
|
173
173
|
// initialize, so we can construct with args:
|
174
174
|
static VALUE fann_allocate (VALUE klass)
|
175
175
|
{
|
176
176
|
return Data_Wrap_Struct (klass, fann_mark, fann_free, 0);
|
177
177
|
}
|
178
178
|
|
179
|
-
// Create wrapper, but don't allocate annything...do that in
|
179
|
+
// Create wrapper, but don't allocate annything...do that in
|
180
180
|
// initialize, so we can construct with args:
|
181
181
|
static VALUE fann_training_data_allocate (VALUE klass)
|
182
182
|
{
|
@@ -184,13 +184,13 @@ static VALUE fann_training_data_allocate (VALUE klass)
|
|
184
184
|
}
|
185
185
|
|
186
186
|
|
187
|
-
// static VALUE invoke_training_callback(VALUE self)
|
187
|
+
// static VALUE invoke_training_callback(VALUE self)
|
188
188
|
// {
|
189
189
|
// VALUE callback = rb_funcall(self, rb_intern("training_callback"), 0);
|
190
190
|
// return callback;
|
191
191
|
// }
|
192
192
|
|
193
|
-
// static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
|
193
|
+
// static int FANN_API internal_callback(struct fann *ann, struct fann_train_data *train,
|
194
194
|
// unsigned int max_epochs, unsigned int epochs_between_reports, float desired_error, unsigned int epochs)
|
195
195
|
|
196
196
|
static int FANN_API fann_training_callback(struct fann *ann, struct fann_train_data *train,
|
@@ -199,49 +199,49 @@ static int FANN_API fann_training_callback(struct fann *ann, struct fann_train_d
|
|
199
199
|
{
|
200
200
|
VALUE self = (VALUE)fann_get_user_data(ann);
|
201
201
|
VALUE args = rb_hash_new();
|
202
|
-
|
202
|
+
|
203
203
|
// Set attributes on hash & push on array:
|
204
204
|
VALUE max_epochs_sym = ID2SYM(rb_intern("max_epochs"));
|
205
205
|
VALUE epochs_between_reports_sym = ID2SYM(rb_intern("epochs_between_reports"));
|
206
206
|
VALUE desired_error_sym = ID2SYM(rb_intern("desired_error"));
|
207
207
|
VALUE epochs_sym = ID2SYM(rb_intern("epochs"));
|
208
|
-
|
208
|
+
|
209
209
|
rb_hash_aset(args, max_epochs_sym, INT2NUM(max_epochs));
|
210
210
|
rb_hash_aset(args, epochs_between_reports_sym, INT2NUM(epochs_between_reports));
|
211
211
|
rb_hash_aset(args, desired_error_sym, rb_float_new(desired_error));
|
212
212
|
rb_hash_aset(args, epochs_sym, INT2NUM(epochs));
|
213
|
-
|
213
|
+
|
214
214
|
VALUE callback = rb_funcall(self, rb_intern("training_callback"), 1, args);
|
215
|
-
|
215
|
+
|
216
216
|
if (TYPE(callback)!=T_FIXNUM)
|
217
217
|
{
|
218
218
|
rb_raise (rb_eRuntimeError, "Callback method must return an integer (-1 to stop training).");
|
219
219
|
}
|
220
220
|
|
221
|
-
int status = NUM2INT(callback);
|
221
|
+
int status = NUM2INT(callback);
|
222
222
|
if (status==-1)
|
223
223
|
{
|
224
224
|
printf("Callback method returned -1; training will stop.\n");
|
225
225
|
}
|
226
|
-
|
226
|
+
|
227
227
|
return status;
|
228
228
|
}
|
229
229
|
|
230
|
-
/** call-seq: new(hash) -> new ruby-fann neural network object
|
230
|
+
/** call-seq: new(hash) -> new ruby-fann neural network object
|
231
231
|
|
232
232
|
Initialization routine for both standard, shortcut & filename forms of FANN:
|
233
233
|
|
234
234
|
Standard Initialization:
|
235
235
|
RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
|
236
|
-
|
236
|
+
|
237
237
|
Shortcut Initialization (e.g., for use in cascade training):
|
238
|
-
RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
|
239
|
-
|
238
|
+
RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
|
239
|
+
|
240
240
|
File Initialization
|
241
|
-
RubyFann::Standard.new(:filename=>'xor_float.net')
|
242
|
-
|
243
|
-
|
244
|
-
|
241
|
+
RubyFann::Standard.new(:filename=>'xor_float.net')
|
242
|
+
|
243
|
+
|
244
|
+
|
245
245
|
*/
|
246
246
|
static VALUE fann_initialize(VALUE self, VALUE hash)
|
247
247
|
{
|
@@ -250,24 +250,24 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
250
250
|
VALUE num_inputs = rb_hash_aref(hash, ID2SYM(rb_intern("num_inputs")));
|
251
251
|
VALUE num_outputs = rb_hash_aref(hash, ID2SYM(rb_intern("num_outputs")));
|
252
252
|
VALUE hidden_neurons = rb_hash_aref(hash, ID2SYM(rb_intern("hidden_neurons")));
|
253
|
-
|
253
|
+
// printf("initializing\n\n\n");
|
254
254
|
struct fann* ann;
|
255
|
-
if (TYPE(filename)==T_STRING)
|
255
|
+
if (TYPE(filename)==T_STRING)
|
256
256
|
{
|
257
257
|
// Initialize with file:
|
258
258
|
// train_data = fann_read_train_from_file(StringValuePtr(filename));
|
259
259
|
// DATA_PTR(self) = train_data;
|
260
260
|
ann = fann_create_from_file(StringValuePtr(filename));
|
261
|
-
// printf("Created RubyFann::Standard [%d] from file [%s].\n", ann, StringValuePtr(filename));
|
262
|
-
}
|
261
|
+
// printf("Created RubyFann::Standard [%d] from file [%s].\n", ann, StringValuePtr(filename));
|
262
|
+
}
|
263
263
|
else if(rb_obj_is_kind_of(self, m_rb_fann_shortcut_class))
|
264
264
|
{
|
265
265
|
// Initialize as shortcut, suitable for cascade training:
|
266
|
-
//ann = fann_create_shortcut_array(num_layers, layers);
|
266
|
+
//ann = fann_create_shortcut_array(num_layers, layers);
|
267
267
|
Check_Type(num_inputs, T_FIXNUM);
|
268
268
|
Check_Type(num_outputs, T_FIXNUM);
|
269
|
-
|
270
|
-
ann = fann_create_shortcut(2, NUM2INT(num_inputs), NUM2INT(num_outputs));
|
269
|
+
|
270
|
+
ann = fann_create_shortcut(2, NUM2INT(num_inputs), NUM2INT(num_outputs));
|
271
271
|
// printf("Created RubyFann::Shortcut [%d].\n", ann);
|
272
272
|
}
|
273
273
|
else
|
@@ -276,29 +276,27 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
276
276
|
Check_Type(num_inputs, T_FIXNUM);
|
277
277
|
Check_Type(hidden_neurons, T_ARRAY);
|
278
278
|
Check_Type(num_outputs, T_FIXNUM);
|
279
|
-
|
279
|
+
|
280
280
|
// Initialize layers:
|
281
|
-
unsigned int num_layers=
|
281
|
+
unsigned int num_layers=RARRAY_LEN(hidden_neurons) + 2;
|
282
282
|
unsigned int layers[num_layers];
|
283
283
|
|
284
284
|
// Input:
|
285
|
-
layers[0]=NUM2INT(num_inputs);
|
285
|
+
layers[0]=NUM2INT(num_inputs);
|
286
286
|
// Output:
|
287
|
-
layers[num_layers-1]=NUM2INT(num_outputs);
|
287
|
+
layers[num_layers-1]=NUM2INT(num_outputs);
|
288
288
|
// Hidden:
|
289
289
|
unsigned int i;
|
290
290
|
for (i=1; i<=num_layers-2; i++) {
|
291
|
-
layers[i]=
|
291
|
+
layers[i]=NUM2INT(RARRAY_PTR(hidden_neurons)[i-1]);
|
292
292
|
}
|
293
|
-
|
294
|
-
|
295
|
-
// printf("Created RubyFann::Standard [%d].\n", ann);
|
296
|
-
}
|
293
|
+
ann = fann_create_standard_array(num_layers, layers);
|
294
|
+
}
|
297
295
|
|
298
296
|
DATA_PTR(self) = ann;
|
299
|
-
|
297
|
+
|
300
298
|
// printf("Checking for callback...");
|
301
|
-
|
299
|
+
|
302
300
|
//int callback = rb_protect(invoke_training_callback, (self), &status);
|
303
301
|
// VALUE callback = rb_funcall(DATA_PTR(self), "training_callback", 0);
|
304
302
|
if(rb_respond_to(self, rb_intern("training_callback")))
|
@@ -311,14 +309,14 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
311
309
|
{
|
312
310
|
// printf("none found.\n");
|
313
311
|
}
|
314
|
-
|
315
|
-
return (VALUE)ann;
|
312
|
+
|
313
|
+
return (VALUE)ann;
|
316
314
|
}
|
317
315
|
|
318
316
|
/** call-seq: new(hash) -> new ruby-fann training data object (RubyFann::TrainData)
|
319
|
-
|
317
|
+
|
320
318
|
Initialize in one of the following forms:
|
321
|
-
|
319
|
+
|
322
320
|
# This is a flat file with training data as described in FANN docs.
|
323
321
|
RubyFann::TrainData.new(:filename => 'path/to/training_file.train')
|
324
322
|
OR
|
@@ -327,23 +325,23 @@ static VALUE fann_initialize(VALUE self, VALUE hash)
|
|
327
325
|
# All sub-arrays on inputs should be of same length
|
328
326
|
# All sub-arrays on desired_outputs should be of same length
|
329
327
|
# Sub-arrays on inputs & desired_outputs can be different sizes from one another
|
330
|
-
RubyFann::TrainData.new(:inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]], :desired_outputs=>[[3.14], [6.33]])
|
328
|
+
RubyFann::TrainData.new(:inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]], :desired_outputs=>[[3.14], [6.33]])
|
331
329
|
*/
|
332
330
|
static VALUE fann_train_data_initialize(VALUE self, VALUE hash)
|
333
331
|
{
|
334
332
|
struct fann_train_data* train_data;
|
335
333
|
Check_Type(hash, T_HASH);
|
336
|
-
|
334
|
+
|
337
335
|
VALUE filename = rb_hash_aref(hash, ID2SYM(rb_intern("filename")));
|
338
336
|
VALUE inputs = rb_hash_aref(hash, ID2SYM(rb_intern("inputs")));
|
339
337
|
VALUE desired_outputs = rb_hash_aref(hash, ID2SYM(rb_intern("desired_outputs")));
|
340
338
|
|
341
|
-
if (TYPE(filename)==T_STRING)
|
339
|
+
if (TYPE(filename)==T_STRING)
|
342
340
|
{
|
343
341
|
train_data = fann_read_train_from_file(StringValuePtr(filename));
|
344
342
|
DATA_PTR(self) = train_data;
|
345
|
-
}
|
346
|
-
else if (TYPE(inputs)==T_ARRAY)
|
343
|
+
}
|
344
|
+
else if (TYPE(inputs)==T_ARRAY)
|
347
345
|
{
|
348
346
|
if (TYPE(desired_outputs)!=T_ARRAY)
|
349
347
|
{
|
@@ -352,50 +350,55 @@ static VALUE fann_train_data_initialize(VALUE self, VALUE hash)
|
|
352
350
|
|
353
351
|
if (RARRAY_LEN(inputs) < 1)
|
354
352
|
{
|
355
|
-
rb_raise (rb_eRuntimeError, "[inputs
|
353
|
+
rb_raise (rb_eRuntimeError, "[inputs] must contain at least one value.");
|
354
|
+
}
|
355
|
+
|
356
|
+
if (RARRAY_LEN(desired_outputs) < 1)
|
357
|
+
{
|
358
|
+
rb_raise (rb_eRuntimeError, "[desired_outputs] must contain at least one value.");
|
356
359
|
}
|
357
360
|
|
358
361
|
// The data is here, start constructing:
|
359
|
-
if(RARRAY_LEN(inputs) != RARRAY_LEN(desired_outputs))
|
362
|
+
if(RARRAY_LEN(inputs) != RARRAY_LEN(desired_outputs))
|
360
363
|
{
|
361
364
|
rb_raise (
|
362
|
-
rb_eRuntimeError,
|
363
|
-
"Number of inputs must match number of outputs: (%d != %d)",
|
364
|
-
(int)RARRAY_LEN(inputs),
|
365
|
+
rb_eRuntimeError,
|
366
|
+
"Number of inputs must match number of outputs: (%d != %d)",
|
367
|
+
(int)RARRAY_LEN(inputs),
|
365
368
|
(int)RARRAY_LEN(desired_outputs));
|
366
369
|
}
|
367
370
|
|
368
|
-
train_data = fann_create_train_from_rb_ary(inputs, desired_outputs);
|
369
|
-
DATA_PTR(self) = train_data;
|
370
|
-
}
|
371
|
-
else
|
371
|
+
train_data = fann_create_train_from_rb_ary(inputs, desired_outputs);
|
372
|
+
DATA_PTR(self) = train_data;
|
373
|
+
}
|
374
|
+
else
|
372
375
|
{
|
373
376
|
rb_raise (rb_eRuntimeError, "Must construct with a filename(string) or inputs/desired_outputs(arrays). All args passed via hash with symbols as keys.");
|
374
377
|
}
|
375
|
-
|
378
|
+
|
376
379
|
return (VALUE)train_data;
|
377
380
|
}
|
378
381
|
|
379
382
|
|
380
383
|
/** call-seq: save(filename)
|
381
384
|
|
382
|
-
Save to given filename
|
385
|
+
Save to given filename
|
383
386
|
*/
|
384
387
|
static VALUE training_save(VALUE self, VALUE filename)
|
385
388
|
{
|
386
|
-
Check_Type(filename, T_STRING);
|
389
|
+
Check_Type(filename, T_STRING);
|
387
390
|
struct fann_train_data* t;
|
388
|
-
Data_Get_Struct (self, struct fann_train_data, t);
|
391
|
+
Data_Get_Struct (self, struct fann_train_data, t);
|
389
392
|
fann_save_train(t, StringValuePtr(filename));
|
390
|
-
return self;
|
393
|
+
return self;
|
391
394
|
}
|
392
395
|
|
393
|
-
/** Shuffles training data, randomizing the order.
|
396
|
+
/** Shuffles training data, randomizing the order.
|
394
397
|
This is recommended for incremental training, while it will have no influence during batch training.*/
|
395
398
|
static VALUE shuffle(VALUE self)
|
396
399
|
{
|
397
|
-
struct fann_train_data* t;
|
398
|
-
Data_Get_Struct (self, struct fann_train_data, t);
|
400
|
+
struct fann_train_data* t;
|
401
|
+
Data_Get_Struct (self, struct fann_train_data, t);
|
399
402
|
fann_shuffle_train_data(t);
|
400
403
|
return self;
|
401
404
|
}
|
@@ -403,26 +406,26 @@ static VALUE shuffle(VALUE self)
|
|
403
406
|
/** Length of training data*/
|
404
407
|
static VALUE length_train_data(VALUE self)
|
405
408
|
{
|
406
|
-
struct fann_train_data* t;
|
407
|
-
Data_Get_Struct (self, struct fann_train_data, t);
|
409
|
+
struct fann_train_data* t;
|
410
|
+
Data_Get_Struct (self, struct fann_train_data, t);
|
408
411
|
return(UINT2NUM(fann_length_train_data(t)));
|
409
412
|
return self;
|
410
413
|
}
|
411
414
|
|
412
415
|
/** call-seq: set_activation_function(activation_func, layer, neuron)
|
413
416
|
|
414
|
-
Set the activation function for neuron number *neuron* in layer number *layer*,
|
417
|
+
Set the activation function for neuron number *neuron* in layer number *layer*,
|
415
418
|
counting the input layer as layer 0. activation_func must be one of the following symbols:
|
416
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
417
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
418
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
419
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
420
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
421
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
419
422
|
:sin, :cos*/
|
420
423
|
static VALUE set_activation_function(VALUE self, VALUE activation_func, VALUE layer, VALUE neuron)
|
421
424
|
{
|
422
425
|
Check_Type(activation_func, T_SYMBOL);
|
423
426
|
Check_Type(layer, T_FIXNUM);
|
424
427
|
Check_Type(neuron, T_FIXNUM);
|
425
|
-
|
428
|
+
|
426
429
|
struct fann* f;
|
427
430
|
Data_Get_Struct(self, struct fann, f);
|
428
431
|
fann_set_activation_function(f, sym_to_activation_function(activation_func), NUM2INT(layer), NUM2INT(neuron));
|
@@ -432,9 +435,9 @@ static VALUE set_activation_function(VALUE self, VALUE activation_func, VALUE la
|
|
432
435
|
/** call-seq: set_activation_function_hidden(activation_func)
|
433
436
|
|
434
437
|
Set the activation function for all of the hidden layers. activation_func must be one of the following symbols:
|
435
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
436
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
437
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
438
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
439
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
440
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
438
441
|
:sin, :cos*/
|
439
442
|
static VALUE set_activation_function_hidden(VALUE self, VALUE activation_func)
|
440
443
|
{
|
@@ -447,15 +450,15 @@ static VALUE set_activation_function_hidden(VALUE self, VALUE activation_func)
|
|
447
450
|
|
448
451
|
/** call-seq: set_activation_function_layer(activation_func, layer)
|
449
452
|
|
450
|
-
Set the activation function for all the neurons in the layer number *layer*,
|
453
|
+
Set the activation function for all the neurons in the layer number *layer*,
|
451
454
|
counting the input layer as layer 0. activation_func must be one of the following symbols:
|
452
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
453
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
454
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
455
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
456
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
457
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
455
458
|
:sin, :cos
|
456
|
-
|
459
|
+
|
457
460
|
It is not possible to set activation functions for the neurons in the input layer.
|
458
|
-
*/
|
461
|
+
*/
|
459
462
|
static VALUE set_activation_function_layer(VALUE self, VALUE activation_func, VALUE layer)
|
460
463
|
{
|
461
464
|
Check_Type(activation_func, T_SYMBOL);
|
@@ -466,12 +469,12 @@ static VALUE set_activation_function_layer(VALUE self, VALUE activation_func, VA
|
|
466
469
|
return self;
|
467
470
|
}
|
468
471
|
|
469
|
-
/** call-seq: get_activation_function(layer) -> return value
|
470
|
-
|
471
|
-
Get the activation function for neuron number *neuron* in layer number *layer*,
|
472
|
-
counting the input layer as layer 0.
|
472
|
+
/** call-seq: get_activation_function(layer) -> return value
|
473
473
|
|
474
|
-
|
474
|
+
Get the activation function for neuron number *neuron* in layer number *layer*,
|
475
|
+
counting the input layer as layer 0.
|
476
|
+
|
477
|
+
It is not possible to get activation functions for the neurons in the input layer.
|
475
478
|
*/
|
476
479
|
static VALUE get_activation_function(VALUE self, VALUE layer, VALUE neuron)
|
477
480
|
{
|
@@ -486,9 +489,9 @@ static VALUE get_activation_function(VALUE self, VALUE layer, VALUE neuron)
|
|
486
489
|
/** call-seq: set_activation_function_output(activation_func)
|
487
490
|
|
488
491
|
Set the activation function for the output layer. activation_func must be one of the following symbols:
|
489
|
-
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
490
|
-
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
491
|
-
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
492
|
+
:linear, :threshold, :threshold_symmetric, :sigmoid, :sigmoid_stepwise, :sigmoid_symmetric,
|
493
|
+
:sigmoid_symmetric_stepwise, :gaussian, :gaussian_symmetric, :gaussian_stepwise, :elliot,
|
494
|
+
:elliot_symmetric, :linear_piece, :linear_piece_symmetric, :sin_symmetric, :cos_symmetric,
|
492
495
|
:sin, :cos*/
|
493
496
|
|
494
497
|
static VALUE set_activation_function_output(VALUE self, VALUE activation_func)
|
@@ -500,9 +503,9 @@ static VALUE set_activation_function_output(VALUE self, VALUE activation_func)
|
|
500
503
|
return self;
|
501
504
|
}
|
502
505
|
|
503
|
-
/** call-seq: get_activation_steepness(layer, neuron) -> return value
|
504
|
-
|
505
|
-
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
|
506
|
+
/** call-seq: get_activation_steepness(layer, neuron) -> return value
|
507
|
+
|
508
|
+
Get the activation steepness for neuron number neuron in layer number layer, counting the input layer as layer 0.
|
506
509
|
*/
|
507
510
|
static VALUE get_activation_steepness(VALUE self, VALUE layer, VALUE neuron)
|
508
511
|
{
|
@@ -516,21 +519,21 @@ static VALUE get_activation_steepness(VALUE self, VALUE layer, VALUE neuron)
|
|
516
519
|
|
517
520
|
/** call-seq: set_activation_steepness(steepness, layer, neuron)
|
518
521
|
|
519
|
-
Set the activation steepness for neuron number {neuron} in layer number {layer},
|
522
|
+
Set the activation steepness for neuron number {neuron} in layer number {layer},
|
520
523
|
counting the input layer as layer 0.*/
|
521
524
|
static VALUE set_activation_steepness(VALUE self, VALUE steepness, VALUE layer, VALUE neuron)
|
522
525
|
{
|
523
526
|
Check_Type(steepness, T_FLOAT);
|
524
527
|
Check_Type(layer, T_FIXNUM);
|
525
528
|
Check_Type(neuron, T_FIXNUM);
|
526
|
-
|
529
|
+
|
527
530
|
struct fann* f;
|
528
531
|
Data_Get_Struct(self, struct fann, f);
|
529
532
|
fann_set_activation_steepness(f, NUM2DBL(steepness), NUM2INT(layer), NUM2INT(neuron));
|
530
533
|
return self;
|
531
534
|
}
|
532
535
|
|
533
|
-
/** call-seq: set_activation_steepness_hidden(arg) -> return value
|
536
|
+
/** call-seq: set_activation_steepness_hidden(arg) -> return value
|
534
537
|
|
535
538
|
Set the activation steepness in all of the hidden layers.*/
|
536
539
|
static VALUE set_activation_steepness_hidden(VALUE self, VALUE steepness)
|
@@ -540,13 +543,13 @@ static VALUE set_activation_steepness_hidden(VALUE self, VALUE steepness)
|
|
540
543
|
|
541
544
|
/** call-seq: set_activation_steepness_layer(steepness, layer)
|
542
545
|
|
543
|
-
Set the activation steepness all of the neurons in layer number *layer*,
|
546
|
+
Set the activation steepness all of the neurons in layer number *layer*,
|
544
547
|
counting the input layer as layer 0.*/
|
545
548
|
static VALUE set_activation_steepness_layer(VALUE self, VALUE steepness, VALUE layer)
|
546
549
|
{
|
547
550
|
Check_Type(steepness, T_FLOAT);
|
548
551
|
Check_Type(layer, T_FIXNUM);
|
549
|
-
|
552
|
+
|
550
553
|
struct fann* f;
|
551
554
|
Data_Get_Struct(self, struct fann, f);
|
552
555
|
fann_set_activation_steepness_layer(f, NUM2DBL(steepness), NUM2INT(layer));
|
@@ -575,8 +578,8 @@ static VALUE set_bit_fail_limit(VALUE self, VALUE bit_fail_limit)
|
|
575
578
|
SET_FANN_FLT(bit_fail_limit, fann_set_bit_fail_limit);
|
576
579
|
}
|
577
580
|
|
578
|
-
/** The decay is a small negative valued number which is the factor that the weights
|
579
|
-
should become smaller in each iteration during quickprop training. This is used
|
581
|
+
/** The decay is a small negative valued number which is the factor that the weights
|
582
|
+
should become smaller in each iteration during quickprop training. This is used
|
580
583
|
to make sure that the weights do not become too high during training.*/
|
581
584
|
static VALUE get_quickprop_decay(VALUE self)
|
582
585
|
{
|
@@ -591,8 +594,8 @@ static VALUE set_quickprop_decay(VALUE self, VALUE quickprop_decay)
|
|
591
594
|
SET_FANN_FLT(quickprop_decay, fann_set_quickprop_decay);
|
592
595
|
}
|
593
596
|
|
594
|
-
/** The mu factor is used to increase and decrease the step-size during quickprop training.
|
595
|
-
The mu factor should always be above 1, since it would otherwise decrease the step-size
|
597
|
+
/** The mu factor is used to increase and decrease the step-size during quickprop training.
|
598
|
+
The mu factor should always be above 1, since it would otherwise decrease the step-size
|
596
599
|
when it was suppose to increase it. */
|
597
600
|
static VALUE get_quickprop_mu(VALUE self)
|
598
601
|
{
|
@@ -607,7 +610,7 @@ static VALUE set_quickprop_mu(VALUE self, VALUE quickprop_mu)
|
|
607
610
|
SET_FANN_FLT(quickprop_mu, fann_set_quickprop_mu);
|
608
611
|
}
|
609
612
|
|
610
|
-
/** The increase factor is a value larger than 1, which is used to
|
613
|
+
/** The increase factor is a value larger than 1, which is used to
|
611
614
|
increase the step-size during RPROP training.*/
|
612
615
|
static VALUE get_rprop_increase_factor(VALUE self)
|
613
616
|
{
|
@@ -686,8 +689,8 @@ static VALUE get_bias_array(VALUE self)
|
|
686
689
|
Data_Get_Struct (self, struct fann, f);
|
687
690
|
num_layers = fann_get_num_layers(f);
|
688
691
|
unsigned int layers[num_layers];
|
689
|
-
fann_get_bias_array(f, layers);
|
690
|
-
|
692
|
+
fann_get_bias_array(f, layers);
|
693
|
+
|
691
694
|
// Create ruby array & set outputs:
|
692
695
|
VALUE arr;
|
693
696
|
arr = rb_ary_new();
|
@@ -696,12 +699,12 @@ static VALUE get_bias_array(VALUE self)
|
|
696
699
|
{
|
697
700
|
rb_ary_push(arr, INT2NUM(layers[i]));
|
698
701
|
}
|
699
|
-
|
702
|
+
|
700
703
|
return arr;
|
701
704
|
}
|
702
705
|
|
703
|
-
/** The number of fail bits; means the number of output neurons which differ more
|
704
|
-
than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
|
706
|
+
/** The number of fail bits; means the number of output neurons which differ more
|
707
|
+
than the bit fail limit (see <fann_get_bit_fail_limit>, <fann_set_bit_fail_limit>).
|
705
708
|
The bits are counted in all of the training data, so this number can be higher than
|
706
709
|
the number of training data.*/
|
707
710
|
static VALUE get_bit_fail(VALUE self)
|
@@ -715,7 +718,7 @@ static VALUE get_connection_rate(VALUE self)
|
|
715
718
|
RETURN_FANN_INT(fann_get_connection_rate);
|
716
719
|
}
|
717
720
|
|
718
|
-
/** call-seq: get_neurons(layer) -> return value
|
721
|
+
/** call-seq: get_neurons(layer) -> return value
|
719
722
|
|
720
723
|
Return array<hash> where each array element is a hash
|
721
724
|
representing a neuron. It contains the following keys:
|
@@ -724,16 +727,16 @@ static VALUE get_connection_rate(VALUE self)
|
|
724
727
|
:sum=float -- The sum of the inputs multiplied with the weights
|
725
728
|
:value=float -- The value of the activation fuction applied to the sum
|
726
729
|
:connections=array<int> -- indices of connected neurons(inputs)
|
727
|
-
|
730
|
+
|
728
731
|
This could be done more elegantly (e.g., defining more ruby ext classes).
|
729
732
|
This method does not directly correlate to anything in FANN, and accesses
|
730
|
-
structs that are not guaranteed to not change.
|
733
|
+
structs that are not guaranteed to not change.
|
731
734
|
*/
|
732
735
|
static VALUE get_neurons(VALUE self, VALUE layer)
|
733
736
|
{
|
734
737
|
struct fann_layer *layer_it;
|
735
738
|
struct fann_neuron *neuron_it;
|
736
|
-
|
739
|
+
|
737
740
|
struct fann* f;
|
738
741
|
unsigned int i;
|
739
742
|
Data_Get_Struct (self, struct fann, f);
|
@@ -746,8 +749,8 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
746
749
|
VALUE value_sym = ID2SYM(rb_intern("value"));
|
747
750
|
VALUE connections_sym = ID2SYM(rb_intern("connections"));
|
748
751
|
unsigned int layer_num = 0;
|
749
|
-
|
750
|
-
|
752
|
+
|
753
|
+
|
751
754
|
int nuke_bias_neuron = (fann_get_network_type(f)==FANN_NETTYPE_LAYER);
|
752
755
|
for(layer_it = f->first_layer; layer_it != f->last_layer; layer_it++)
|
753
756
|
{
|
@@ -756,12 +759,12 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
756
759
|
if (nuke_bias_neuron && (neuron_it==(layer_it->last_neuron)-1)) continue;
|
757
760
|
// Create array of connection indicies:
|
758
761
|
VALUE connection_array = rb_ary_new();
|
759
|
-
for (i = neuron_it->first_con; i < neuron_it->last_con; i++) {
|
760
|
-
rb_ary_push(connection_array, INT2NUM(f->connections[i] - f->first_layer->first_neuron));
|
762
|
+
for (i = neuron_it->first_con; i < neuron_it->last_con; i++) {
|
763
|
+
rb_ary_push(connection_array, INT2NUM(f->connections[i] - f->first_layer->first_neuron));
|
761
764
|
}
|
762
765
|
|
763
766
|
VALUE neuron = rb_hash_new();
|
764
|
-
|
767
|
+
|
765
768
|
// Set attributes on hash & push on array:
|
766
769
|
rb_hash_aset(neuron, activation_function_sym, activation_function_to_sym(neuron_it->activation_function));
|
767
770
|
rb_hash_aset(neuron, activation_steepness_sym, rb_float_new(neuron_it->activation_steepness));
|
@@ -769,8 +772,8 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
769
772
|
rb_hash_aset(neuron, sum_sym, rb_float_new(neuron_it->sum));
|
770
773
|
rb_hash_aset(neuron, value_sym, rb_float_new(neuron_it->value));
|
771
774
|
rb_hash_aset(neuron, connections_sym, connection_array);
|
772
|
-
|
773
|
-
rb_ary_push(neuron_array, neuron);
|
775
|
+
|
776
|
+
rb_ary_push(neuron_array, neuron);
|
774
777
|
}
|
775
778
|
++layer_num;
|
776
779
|
}
|
@@ -787,7 +790,7 @@ static VALUE get_neurons(VALUE self, VALUE layer)
|
|
787
790
|
// case FANN_NETTYPE_SHORTCUT: {
|
788
791
|
|
789
792
|
|
790
|
-
return neuron_array;
|
793
|
+
return neuron_array;
|
791
794
|
}
|
792
795
|
|
793
796
|
/** Get list of layers in array format where each element contains number of neurons in that layer*/
|
@@ -798,8 +801,8 @@ static VALUE get_layer_array(VALUE self)
|
|
798
801
|
Data_Get_Struct (self, struct fann, f);
|
799
802
|
num_layers = fann_get_num_layers(f);
|
800
803
|
unsigned int layers[num_layers];
|
801
|
-
fann_get_layer_array(f, layers);
|
802
|
-
|
804
|
+
fann_get_layer_array(f, layers);
|
805
|
+
|
803
806
|
// Create ruby array & set outputs:
|
804
807
|
VALUE arr;
|
805
808
|
arr = rb_ary_new();
|
@@ -808,7 +811,7 @@ static VALUE get_layer_array(VALUE self)
|
|
808
811
|
{
|
809
812
|
rb_ary_push(arr, INT2NUM(layers[i]));
|
810
813
|
}
|
811
|
-
|
814
|
+
|
812
815
|
return arr;
|
813
816
|
}
|
814
817
|
|
@@ -819,13 +822,13 @@ static VALUE get_MSE(VALUE self)
|
|
819
822
|
}
|
820
823
|
|
821
824
|
/** Resets the mean square error from the network.
|
822
|
-
This function also resets the number of bits that fail.*/
|
825
|
+
This function also resets the number of bits that fail.*/
|
823
826
|
static VALUE reset_MSE(VALUE self)
|
824
827
|
{
|
825
828
|
struct fann* f;
|
826
829
|
Data_Get_Struct (self, struct fann, f);
|
827
830
|
fann_reset_MSE(f);
|
828
|
-
return self;
|
831
|
+
return self;
|
829
832
|
}
|
830
833
|
|
831
834
|
/** Get the type of network. Returns as ruby symbol (one of :shortcut, :layer)*/
|
@@ -837,15 +840,15 @@ static VALUE get_network_type(VALUE self)
|
|
837
840
|
Data_Get_Struct (self, struct fann, f);
|
838
841
|
|
839
842
|
net_type = fann_get_network_type(f);
|
840
|
-
|
841
|
-
if(net_type==FANN_NETTYPE_LAYER)
|
843
|
+
|
844
|
+
if(net_type==FANN_NETTYPE_LAYER)
|
842
845
|
{
|
843
846
|
ret_val = ID2SYM(rb_intern("layer")); // (rb_str_new2("FANN_NETTYPE_LAYER"));
|
844
847
|
}
|
845
848
|
else if(net_type==FANN_NETTYPE_SHORTCUT)
|
846
849
|
{
|
847
850
|
ret_val = ID2SYM(rb_intern("shortcut")); // (rb_str_new2("FANN_NETTYPE_SHORTCUT"));
|
848
|
-
}
|
851
|
+
}
|
849
852
|
return ret_val;
|
850
853
|
}
|
851
854
|
|
@@ -854,7 +857,7 @@ static VALUE get_num_input(VALUE self)
|
|
854
857
|
{
|
855
858
|
RETURN_FANN_INT(fann_get_num_input);
|
856
859
|
}
|
857
|
-
|
860
|
+
|
858
861
|
/** Get the number of layers in the network.*/
|
859
862
|
static VALUE get_num_layers(VALUE self)
|
860
863
|
{
|
@@ -886,26 +889,26 @@ static VALUE get_total_neurons(VALUE self)
|
|
886
889
|
static VALUE set_train_error_function(VALUE self, VALUE train_error_function)
|
887
890
|
{
|
888
891
|
Check_Type(train_error_function, T_SYMBOL);
|
889
|
-
|
892
|
+
|
890
893
|
ID id=SYM2ID(train_error_function);
|
891
894
|
enum fann_errorfunc_enum fann_train_error_function;
|
892
895
|
|
893
896
|
if(id==rb_intern("linear")) {
|
894
|
-
fann_train_error_function = FANN_ERRORFUNC_LINEAR;
|
897
|
+
fann_train_error_function = FANN_ERRORFUNC_LINEAR;
|
895
898
|
} else if(id==rb_intern("tanh")) {
|
896
|
-
fann_train_error_function = FANN_ERRORFUNC_TANH;
|
899
|
+
fann_train_error_function = FANN_ERRORFUNC_TANH;
|
897
900
|
} else {
|
898
901
|
rb_raise(rb_eRuntimeError, "Unrecognized train error function: [%s]", rb_id2name(SYM2ID(train_error_function)));
|
899
|
-
}
|
902
|
+
}
|
900
903
|
|
901
904
|
struct fann* f;
|
902
905
|
Data_Get_Struct (self, struct fann, f);
|
903
906
|
fann_set_train_error_function(f, fann_train_error_function);
|
904
|
-
return self;
|
907
|
+
return self;
|
905
908
|
}
|
906
909
|
|
907
910
|
/** Returns the error function used during training. One of the following symbols:
|
908
|
-
:linear, :tanh*/
|
911
|
+
:linear, :tanh*/
|
909
912
|
static VALUE get_train_error_function(VALUE self)
|
910
913
|
{
|
911
914
|
struct fann* f;
|
@@ -914,15 +917,15 @@ static VALUE get_train_error_function(VALUE self)
|
|
914
917
|
Data_Get_Struct (self, struct fann, f);
|
915
918
|
|
916
919
|
train_error = fann_get_train_error_function(f);
|
917
|
-
|
918
|
-
if(train_error==FANN_ERRORFUNC_LINEAR)
|
920
|
+
|
921
|
+
if(train_error==FANN_ERRORFUNC_LINEAR)
|
919
922
|
{
|
920
|
-
ret_val = ID2SYM(rb_intern("linear"));
|
923
|
+
ret_val = ID2SYM(rb_intern("linear"));
|
921
924
|
}
|
922
|
-
else
|
925
|
+
else
|
923
926
|
{
|
924
|
-
ret_val = ID2SYM(rb_intern("tanh"));
|
925
|
-
}
|
927
|
+
ret_val = ID2SYM(rb_intern("tanh"));
|
928
|
+
}
|
926
929
|
return ret_val;
|
927
930
|
}
|
928
931
|
|
@@ -933,26 +936,26 @@ static VALUE get_train_error_function(VALUE self)
|
|
933
936
|
static VALUE set_training_algorithm(VALUE self, VALUE train_error_function)
|
934
937
|
{
|
935
938
|
Check_Type(train_error_function, T_SYMBOL);
|
936
|
-
|
939
|
+
|
937
940
|
ID id=SYM2ID(train_error_function);
|
938
941
|
enum fann_train_enum fann_train_algorithm;
|
939
942
|
|
940
943
|
if(id==rb_intern("incremental")) {
|
941
|
-
fann_train_algorithm = FANN_TRAIN_INCREMENTAL;
|
944
|
+
fann_train_algorithm = FANN_TRAIN_INCREMENTAL;
|
942
945
|
} else if(id==rb_intern("batch")) {
|
943
|
-
fann_train_algorithm = FANN_TRAIN_BATCH;
|
946
|
+
fann_train_algorithm = FANN_TRAIN_BATCH;
|
944
947
|
} else if(id==rb_intern("rprop")) {
|
945
|
-
fann_train_algorithm = FANN_TRAIN_RPROP;
|
948
|
+
fann_train_algorithm = FANN_TRAIN_RPROP;
|
946
949
|
} else if(id==rb_intern("quickprop")) {
|
947
|
-
fann_train_algorithm = FANN_TRAIN_QUICKPROP;
|
950
|
+
fann_train_algorithm = FANN_TRAIN_QUICKPROP;
|
948
951
|
} else {
|
949
952
|
rb_raise(rb_eRuntimeError, "Unrecognized training algorithm function: [%s]", rb_id2name(SYM2ID(train_error_function)));
|
950
|
-
}
|
953
|
+
}
|
951
954
|
|
952
955
|
struct fann* f;
|
953
956
|
Data_Get_Struct (self, struct fann, f);
|
954
957
|
fann_set_training_algorithm(f, fann_train_algorithm);
|
955
|
-
return self;
|
958
|
+
return self;
|
956
959
|
}
|
957
960
|
|
958
961
|
/** Returns the training algorithm. One of the following symbols:
|
@@ -965,20 +968,20 @@ static VALUE get_training_algorithm(VALUE self)
|
|
965
968
|
Data_Get_Struct (self, struct fann, f);
|
966
969
|
|
967
970
|
fann_train_algorithm = fann_get_training_algorithm(f);
|
968
|
-
|
971
|
+
|
969
972
|
if(fann_train_algorithm==FANN_TRAIN_INCREMENTAL) {
|
970
973
|
ret_val = ID2SYM(rb_intern("incremental"));
|
971
974
|
} else if(fann_train_algorithm==FANN_TRAIN_BATCH) {
|
972
|
-
ret_val = ID2SYM(rb_intern("batch"));
|
975
|
+
ret_val = ID2SYM(rb_intern("batch"));
|
973
976
|
} else if(fann_train_algorithm==FANN_TRAIN_RPROP) {
|
974
|
-
ret_val = ID2SYM(rb_intern("rprop"));
|
977
|
+
ret_val = ID2SYM(rb_intern("rprop"));
|
975
978
|
} else if(fann_train_algorithm==FANN_TRAIN_QUICKPROP) {
|
976
|
-
ret_val = ID2SYM(rb_intern("quickprop"));
|
977
|
-
}
|
979
|
+
ret_val = ID2SYM(rb_intern("quickprop"));
|
980
|
+
}
|
978
981
|
return ret_val;
|
979
982
|
}
|
980
983
|
|
981
|
-
/** call-seq: set_train_stop_function(train_stop_function) -> return value
|
984
|
+
/** call-seq: set_train_stop_function(train_stop_function) -> return value
|
982
985
|
|
983
986
|
Set the training stop function. One of the following symbols:
|
984
987
|
:mse, :bit */
|
@@ -989,17 +992,17 @@ static VALUE set_train_stop_function(VALUE self, VALUE train_stop_function)
|
|
989
992
|
enum fann_stopfunc_enum fann_train_stop_function;
|
990
993
|
|
991
994
|
if(id==rb_intern("mse")) {
|
992
|
-
fann_train_stop_function = FANN_STOPFUNC_MSE;
|
995
|
+
fann_train_stop_function = FANN_STOPFUNC_MSE;
|
993
996
|
} else if(id==rb_intern("bit")) {
|
994
|
-
fann_train_stop_function = FANN_STOPFUNC_BIT;
|
997
|
+
fann_train_stop_function = FANN_STOPFUNC_BIT;
|
995
998
|
} else {
|
996
999
|
rb_raise(rb_eRuntimeError, "Unrecognized stop function: [%s]", rb_id2name(SYM2ID(train_stop_function)));
|
997
|
-
}
|
1000
|
+
}
|
998
1001
|
|
999
1002
|
struct fann* f;
|
1000
1003
|
Data_Get_Struct (self, struct fann, f);
|
1001
1004
|
fann_set_train_stop_function(f, fann_train_stop_function);
|
1002
|
-
return self;
|
1005
|
+
return self;
|
1003
1006
|
}
|
1004
1007
|
|
1005
1008
|
/** Returns the training stop function. One of the following symbols:
|
@@ -1012,27 +1015,27 @@ static VALUE get_train_stop_function(VALUE self)
|
|
1012
1015
|
Data_Get_Struct (self, struct fann, f);
|
1013
1016
|
|
1014
1017
|
train_stop = fann_get_train_stop_function(f);
|
1015
|
-
|
1016
|
-
if(train_stop==FANN_STOPFUNC_MSE)
|
1018
|
+
|
1019
|
+
if(train_stop==FANN_STOPFUNC_MSE)
|
1017
1020
|
{
|
1018
1021
|
ret_val = ID2SYM(rb_intern("mse")); // (rb_str_new2("FANN_NETTYPE_LAYER"));
|
1019
1022
|
}
|
1020
1023
|
else // if(train_stop==FANN_STOPFUNC_BIT)
|
1021
1024
|
{
|
1022
1025
|
ret_val = ID2SYM(rb_intern("bit")); // (rb_str_new2("FANN_NETTYPE_SHORTCUT"));
|
1023
|
-
}
|
1026
|
+
}
|
1024
1027
|
return ret_val;
|
1025
1028
|
}
|
1026
1029
|
|
1027
1030
|
|
1028
|
-
/** Will print the connections of the ann in a compact matrix,
|
1031
|
+
/** Will print the connections of the ann in a compact matrix,
|
1029
1032
|
for easy viewing of the internals of the ann. */
|
1030
1033
|
static VALUE print_connections(VALUE self)
|
1031
1034
|
{
|
1032
1035
|
struct fann* f;
|
1033
1036
|
Data_Get_Struct (self, struct fann, f);
|
1034
1037
|
fann_print_connections(f);
|
1035
|
-
return self;
|
1038
|
+
return self;
|
1036
1039
|
}
|
1037
1040
|
|
1038
1041
|
/** Print current NN parameters to stdout */
|
@@ -1052,14 +1055,14 @@ static VALUE randomize_weights(VALUE self, VALUE min_weight, VALUE max_weight)
|
|
1052
1055
|
Check_Type(min_weight, T_FLOAT);
|
1053
1056
|
Check_Type(max_weight, T_FLOAT);
|
1054
1057
|
struct fann* f;
|
1055
|
-
Data_Get_Struct (self, struct fann, f);
|
1058
|
+
Data_Get_Struct (self, struct fann, f);
|
1056
1059
|
fann_randomize_weights(f, NUM2DBL(min_weight), NUM2DBL(max_weight));
|
1057
|
-
return self;
|
1060
|
+
return self;
|
1058
1061
|
}
|
1059
1062
|
|
1060
|
-
/** call-seq: run(inputs) -> return value
|
1063
|
+
/** call-seq: run(inputs) -> return value
|
1061
1064
|
|
1062
|
-
Run neural net on array<Float> of inputs with current parameters.
|
1065
|
+
Run neural net on array<Float> of inputs with current parameters.
|
1063
1066
|
Returns array<Float> as output */
|
1064
1067
|
static VALUE run (VALUE self, VALUE inputs)
|
1065
1068
|
{
|
@@ -1068,16 +1071,16 @@ static VALUE run (VALUE self, VALUE inputs)
|
|
1068
1071
|
struct fann* f;
|
1069
1072
|
unsigned int i;
|
1070
1073
|
fann_type* outputs;
|
1071
|
-
|
1074
|
+
|
1072
1075
|
// Convert inputs to type needed for NN:
|
1073
|
-
unsigned int len =
|
1076
|
+
unsigned int len = RARRAY_LEN(inputs);
|
1074
1077
|
fann_type fann_inputs[len];
|
1075
1078
|
for (i=0; i<len; i++)
|
1076
1079
|
{
|
1077
1080
|
fann_inputs[i] = NUM2DBL(RARRAY_PTR(inputs)[i]);
|
1078
1081
|
}
|
1079
|
-
|
1080
|
-
|
1082
|
+
|
1083
|
+
|
1081
1084
|
// Obtain NN & run method:
|
1082
1085
|
Data_Get_Struct (self, struct fann, f);
|
1083
1086
|
outputs = fann_run(f, fann_inputs);
|
@@ -1087,28 +1090,28 @@ static VALUE run (VALUE self, VALUE inputs)
|
|
1087
1090
|
arr = rb_ary_new();
|
1088
1091
|
unsigned int output_len=fann_get_num_output(f);
|
1089
1092
|
for (i=0; i<output_len; i++)
|
1090
|
-
{
|
1093
|
+
{
|
1091
1094
|
rb_ary_push(arr, rb_float_new(outputs[i]));
|
1092
1095
|
}
|
1093
|
-
|
1096
|
+
|
1094
1097
|
return arr;
|
1095
1098
|
}
|
1096
1099
|
|
1097
|
-
/** call-seq: init_weights(train_data) -> return value
|
1100
|
+
/** call-seq: init_weights(train_data) -> return value
|
1098
1101
|
|
1099
1102
|
Initialize the weights using Widrow + Nguyen's algorithm. */
|
1100
1103
|
static VALUE init_weights(VALUE self, VALUE train_data)
|
1101
1104
|
{
|
1102
|
-
|
1105
|
+
|
1103
1106
|
Check_Type(train_data, T_DATA);
|
1104
|
-
|
1107
|
+
|
1105
1108
|
struct fann* f;
|
1106
|
-
struct fann_train_data* t;
|
1107
|
-
Data_Get_Struct (self, struct fann, f);
|
1108
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1109
|
+
struct fann_train_data* t;
|
1110
|
+
Data_Get_Struct (self, struct fann, f);
|
1111
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1109
1112
|
|
1110
|
-
fann_init_weights(f, t);
|
1111
|
-
return self;
|
1113
|
+
fann_init_weights(f, t);
|
1114
|
+
return self;
|
1112
1115
|
}
|
1113
1116
|
|
1114
1117
|
/** call-seq: train(input, expected_output)
|
@@ -1124,8 +1127,8 @@ static VALUE train(VALUE self, VALUE input, VALUE expected_output)
|
|
1124
1127
|
struct fann* f;
|
1125
1128
|
Data_Get_Struct(self, struct fann, f);
|
1126
1129
|
|
1127
|
-
unsigned int num_input =
|
1128
|
-
unsigned int num_output =
|
1130
|
+
unsigned int num_input = RARRAY_LEN(input);
|
1131
|
+
unsigned int num_output = RARRAY_LEN(expected_output);
|
1129
1132
|
|
1130
1133
|
fann_type data_input[num_input], data_output[num_output];
|
1131
1134
|
|
@@ -1157,42 +1160,42 @@ static VALUE train_on_data(VALUE self, VALUE train_data, VALUE max_epochs, VALUE
|
|
1157
1160
|
Check_Type(max_epochs, T_FIXNUM);
|
1158
1161
|
Check_Type(epochs_between_reports, T_FIXNUM);
|
1159
1162
|
Check_Type(desired_error, T_FLOAT);
|
1160
|
-
|
1163
|
+
|
1161
1164
|
struct fann* f;
|
1162
|
-
struct fann_train_data* t;
|
1163
|
-
Data_Get_Struct (self, struct fann, f);
|
1164
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1165
|
+
struct fann_train_data* t;
|
1166
|
+
Data_Get_Struct (self, struct fann, f);
|
1167
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1165
1168
|
|
1166
1169
|
unsigned int fann_max_epochs = NUM2INT(max_epochs);
|
1167
1170
|
unsigned int fann_epochs_between_reports = NUM2INT(epochs_between_reports);
|
1168
|
-
float fann_desired_error = NUM2DBL(desired_error);
|
1171
|
+
float fann_desired_error = NUM2DBL(desired_error);
|
1169
1172
|
fann_train_on_data(f, t, fann_max_epochs, fann_epochs_between_reports, fann_desired_error);
|
1170
1173
|
return rb_int_new(0);
|
1171
1174
|
}
|
1172
1175
|
|
1173
|
-
/** call-seq: train_epoch(train_data) -> return value
|
1176
|
+
/** call-seq: train_epoch(train_data) -> return value
|
1174
1177
|
|
1175
1178
|
Train one epoch with a set of training data, created with RubyFann::TrainData.new */
|
1176
1179
|
static VALUE train_epoch(VALUE self, VALUE train_data)
|
1177
1180
|
{
|
1178
1181
|
Check_Type(train_data, T_DATA);
|
1179
1182
|
struct fann* f;
|
1180
|
-
struct fann_train_data* t;
|
1181
|
-
Data_Get_Struct (self, struct fann, f);
|
1182
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1183
|
+
struct fann_train_data* t;
|
1184
|
+
Data_Get_Struct (self, struct fann, f);
|
1185
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1183
1186
|
return rb_float_new(fann_train_epoch(f, t));
|
1184
1187
|
}
|
1185
1188
|
|
1186
|
-
/** call-seq: test_data(train_data) -> return value
|
1189
|
+
/** call-seq: test_data(train_data) -> return value
|
1187
1190
|
|
1188
1191
|
Test a set of training data and calculates the MSE for the training data. */
|
1189
1192
|
static VALUE test_data(VALUE self, VALUE train_data)
|
1190
1193
|
{
|
1191
1194
|
Check_Type(train_data, T_DATA);
|
1192
1195
|
struct fann* f;
|
1193
|
-
struct fann_train_data* t;
|
1194
|
-
Data_Get_Struct (self, struct fann, f);
|
1195
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1196
|
+
struct fann_train_data* t;
|
1197
|
+
Data_Get_Struct (self, struct fann, f);
|
1198
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1196
1199
|
return rb_float_new(fann_test_data(f, t));
|
1197
1200
|
}
|
1198
1201
|
|
@@ -1204,7 +1207,7 @@ static VALUE test_data(VALUE self, VALUE train_data)
|
|
1204
1207
|
// Data_Get_Struct (self, struct fann, f);
|
1205
1208
|
// return INT2NUM(fann_get_decimal_point(f));
|
1206
1209
|
// }
|
1207
|
-
|
1210
|
+
|
1208
1211
|
// returns the multiplier that fix point data is multiplied with.
|
1209
1212
|
|
1210
1213
|
// Only available in fixed-point mode, which we don't need:
|
@@ -1228,19 +1231,19 @@ static VALUE cascadetrain_on_data(VALUE self, VALUE train_data, VALUE max_neuron
|
|
1228
1231
|
Check_Type(max_neurons, T_FIXNUM);
|
1229
1232
|
Check_Type(neurons_between_reports, T_FIXNUM);
|
1230
1233
|
Check_Type(desired_error, T_FLOAT);
|
1231
|
-
|
1234
|
+
|
1232
1235
|
struct fann* f;
|
1233
|
-
struct fann_train_data* t;
|
1234
|
-
Data_Get_Struct (self, struct fann, f);
|
1235
|
-
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1236
|
+
struct fann_train_data* t;
|
1237
|
+
Data_Get_Struct (self, struct fann, f);
|
1238
|
+
Data_Get_Struct (train_data, struct fann_train_data, t);
|
1236
1239
|
|
1237
1240
|
unsigned int fann_max_neurons = NUM2INT(max_neurons);
|
1238
1241
|
unsigned int fann_neurons_between_reports = NUM2INT(neurons_between_reports);
|
1239
1242
|
float fann_desired_error = NUM2DBL(desired_error);
|
1240
|
-
|
1243
|
+
|
1241
1244
|
fann_cascadetrain_on_data(f, t, fann_max_neurons, fann_neurons_between_reports, fann_desired_error);
|
1242
|
-
return self;
|
1243
|
-
}
|
1245
|
+
return self;
|
1246
|
+
}
|
1244
1247
|
|
1245
1248
|
/** The cascade output change fraction is a number between 0 and 1 */
|
1246
1249
|
static VALUE get_cascade_output_change_fraction(VALUE self)
|
@@ -1256,7 +1259,7 @@ static VALUE set_cascade_output_change_fraction(VALUE self, VALUE cascade_output
|
|
1256
1259
|
SET_FANN_FLT(cascade_output_change_fraction, fann_set_cascade_output_change_fraction);
|
1257
1260
|
}
|
1258
1261
|
|
1259
|
-
/** The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1262
|
+
/** The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1260
1263
|
continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>. */
|
1261
1264
|
static VALUE get_cascade_output_stagnation_epochs(VALUE self)
|
1262
1265
|
{
|
@@ -1265,7 +1268,7 @@ static VALUE get_cascade_output_stagnation_epochs(VALUE self)
|
|
1265
1268
|
|
1266
1269
|
/** call-seq: set_cascade_output_stagnation_epochs(cascade_output_stagnation_epochs)
|
1267
1270
|
|
1268
|
-
The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1271
|
+
The number of cascade output stagnation epochs determines the number of epochs training is allowed to
|
1269
1272
|
continue without changing the MSE by a fraction of <get_cascade_output_change_fraction>. */
|
1270
1273
|
static VALUE set_cascade_output_stagnation_epochs(VALUE self, VALUE cascade_output_stagnation_epochs)
|
1271
1274
|
{
|
@@ -1300,7 +1303,8 @@ static VALUE get_cascade_candidate_stagnation_epochs(VALUE self)
|
|
1300
1303
|
static VALUE set_cascade_candidate_stagnation_epochs(VALUE self, VALUE cascade_candidate_stagnation_epochs)
|
1301
1304
|
{
|
1302
1305
|
SET_FANN_UINT(cascade_candidate_stagnation_epochs, fann_set_cascade_candidate_stagnation_epochs);
|
1303
|
-
}
|
1306
|
+
}
|
1307
|
+
|
1304
1308
|
|
1305
1309
|
/** The weight multiplier is a parameter which is used to multiply the weights from the candidate neuron
|
1306
1310
|
before adding the neuron to the neural network. This parameter is usually between 0 and 1, and is used
|
@@ -1352,7 +1356,7 @@ static VALUE set_cascade_max_out_epochs(VALUE self, VALUE cascade_max_out_epochs
|
|
1352
1356
|
SET_FANN_UINT(cascade_max_out_epochs, fann_set_cascade_max_out_epochs);
|
1353
1357
|
}
|
1354
1358
|
|
1355
|
-
/** The maximum candidate epochs determines the maximum number of epochs the input
|
1359
|
+
/** The maximum candidate epochs determines the maximum number of epochs the input
|
1356
1360
|
connections to the candidates may be trained before adding a new candidate neuron. */
|
1357
1361
|
static VALUE get_cascade_max_cand_epochs(VALUE self)
|
1358
1362
|
{
|
@@ -1361,7 +1365,7 @@ static VALUE get_cascade_max_cand_epochs(VALUE self)
|
|
1361
1365
|
|
1362
1366
|
/** call-seq: set_cascade_max_cand_epochs(cascade_max_cand_epochs)
|
1363
1367
|
|
1364
|
-
The maximum candidate epochs determines the maximum number of epochs the input
|
1368
|
+
The maximum candidate epochs determines the maximum number of epochs the input
|
1365
1369
|
connections to the candidates may be trained before adding a new candidate neuron. */
|
1366
1370
|
static VALUE set_cascade_max_cand_epochs(VALUE self, VALUE cascade_max_cand_epochs)
|
1367
1371
|
{
|
@@ -1383,18 +1387,18 @@ static VALUE get_cascade_activation_functions_count(VALUE self)
|
|
1383
1387
|
|
1384
1388
|
/** The learning rate is used to determine how aggressive training should be for some of the
|
1385
1389
|
training algorithms (:incremental, :batch, :quickprop).
|
1386
|
-
Do however note that it is not used in :rprop.
|
1390
|
+
Do however note that it is not used in :rprop.
|
1387
1391
|
The default learning rate is 0.7. */
|
1388
1392
|
static VALUE get_learning_rate(VALUE self)
|
1389
1393
|
{
|
1390
1394
|
RETURN_FANN_FLT(fann_get_learning_rate);
|
1391
1395
|
}
|
1392
1396
|
|
1393
|
-
/** call-seq: set_learning_rate(learning_rate) -> return value
|
1397
|
+
/** call-seq: set_learning_rate(learning_rate) -> return value
|
1394
1398
|
|
1395
1399
|
The learning rate is used to determine how aggressive training should be for some of the
|
1396
1400
|
training algorithms (:incremental, :batch, :quickprop).
|
1397
|
-
Do however note that it is not used in :rprop.
|
1401
|
+
Do however note that it is not used in :rprop.
|
1398
1402
|
The default learning rate is 0.7. */
|
1399
1403
|
static VALUE set_learning_rate(VALUE self, VALUE learning_rate)
|
1400
1404
|
{
|
@@ -1407,8 +1411,8 @@ static VALUE get_learning_momentum(VALUE self)
|
|
1407
1411
|
RETURN_FANN_FLT(fann_get_learning_momentum);
|
1408
1412
|
}
|
1409
1413
|
|
1410
|
-
/** call-seq: set_learning_momentum(learning_momentum) -> return value
|
1411
|
-
|
1414
|
+
/** call-seq: set_learning_momentum(learning_momentum) -> return value
|
1415
|
+
|
1412
1416
|
Set the learning momentum. */
|
1413
1417
|
static VALUE set_learning_momentum(VALUE self, VALUE learning_momentum)
|
1414
1418
|
{
|
@@ -1423,18 +1427,18 @@ static VALUE set_cascade_activation_functions(VALUE self, VALUE cascade_activati
|
|
1423
1427
|
{
|
1424
1428
|
Check_Type(cascade_activation_functions, T_ARRAY);
|
1425
1429
|
struct fann* f;
|
1426
|
-
Data_Get_Struct (self, struct fann, f);
|
1427
|
-
|
1428
|
-
unsigned
|
1430
|
+
Data_Get_Struct (self, struct fann, f);
|
1431
|
+
|
1432
|
+
unsigned long cnt = RARRAY_LEN(cascade_activation_functions);
|
1429
1433
|
enum fann_activationfunc_enum fann_activation_functions[cnt];
|
1430
1434
|
unsigned int i;
|
1431
1435
|
for (i=0; i<cnt; i++)
|
1432
1436
|
{
|
1433
1437
|
fann_activation_functions[i] = sym_to_activation_function(RARRAY_PTR(cascade_activation_functions)[i]);
|
1434
1438
|
}
|
1435
|
-
|
1439
|
+
|
1436
1440
|
fann_set_cascade_activation_functions(f, fann_activation_functions, cnt);
|
1437
|
-
return self;
|
1441
|
+
return self;
|
1438
1442
|
}
|
1439
1443
|
|
1440
1444
|
/** The cascade activation functions is an array of the different activation functions used by
|
@@ -1487,16 +1491,16 @@ static VALUE set_cascade_activation_steepnesses(VALUE self, VALUE cascade_activa
|
|
1487
1491
|
{
|
1488
1492
|
Check_Type(cascade_activation_steepnesses, T_ARRAY);
|
1489
1493
|
struct fann* f;
|
1490
|
-
Data_Get_Struct (self, struct fann, f);
|
1491
|
-
|
1492
|
-
unsigned int cnt =
|
1494
|
+
Data_Get_Struct (self, struct fann, f);
|
1495
|
+
|
1496
|
+
unsigned int cnt = RARRAY_LEN(cascade_activation_steepnesses);
|
1493
1497
|
fann_type fann_activation_steepnesses[cnt];
|
1494
1498
|
unsigned int i;
|
1495
1499
|
for (i=0; i<cnt; i++)
|
1496
1500
|
{
|
1497
1501
|
fann_activation_steepnesses[i] = NUM2DBL(RARRAY_PTR(cascade_activation_steepnesses)[i]);
|
1498
1502
|
}
|
1499
|
-
|
1503
|
+
|
1500
1504
|
fann_set_cascade_activation_steepnesses(f, fann_activation_steepnesses, cnt);
|
1501
1505
|
return self;
|
1502
1506
|
}
|
@@ -1544,11 +1548,11 @@ void Init_ruby_fann ()
|
|
1544
1548
|
rb_define_alloc_func (m_rb_fann_standard_class, fann_allocate);
|
1545
1549
|
rb_define_method(m_rb_fann_standard_class, "initialize", fann_initialize, 1);
|
1546
1550
|
rb_define_method(m_rb_fann_standard_class, "init_weights", init_weights, 1);
|
1547
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function", set_activation_function, 3);
|
1548
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1549
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1550
|
-
rb_define_method(m_rb_fann_standard_class, "get_activation_function", get_activation_function, 2);
|
1551
|
-
rb_define_method(m_rb_fann_standard_class, "set_activation_function_output", set_activation_function_output, 1);
|
1551
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function", set_activation_function, 3);
|
1552
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1553
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1554
|
+
rb_define_method(m_rb_fann_standard_class, "get_activation_function", get_activation_function, 2);
|
1555
|
+
rb_define_method(m_rb_fann_standard_class, "set_activation_function_output", set_activation_function_output, 1);
|
1552
1556
|
rb_define_method(m_rb_fann_standard_class, "get_activation_steepness", get_activation_steepness, 2);
|
1553
1557
|
rb_define_method(m_rb_fann_standard_class, "set_activation_steepness", set_activation_steepness, 3);
|
1554
1558
|
rb_define_method(m_rb_fann_standard_class, "set_activation_steepness_hidden", set_activation_steepness_hidden, 1);
|
@@ -1578,14 +1582,14 @@ void Init_ruby_fann ()
|
|
1578
1582
|
rb_define_method(m_rb_fann_standard_class, "get_connection_rate", get_connection_rate, 0);
|
1579
1583
|
rb_define_method(m_rb_fann_standard_class, "get_layer_array", get_layer_array, 0);
|
1580
1584
|
rb_define_method(m_rb_fann_standard_class, "get_network_type", get_network_type, 0);
|
1581
|
-
rb_define_method(m_rb_fann_standard_class, "get_neurons", get_neurons, 0);
|
1585
|
+
rb_define_method(m_rb_fann_standard_class, "get_neurons", get_neurons, 0);
|
1582
1586
|
rb_define_method(m_rb_fann_standard_class, "get_num_input", get_num_input, 0);
|
1583
1587
|
rb_define_method(m_rb_fann_standard_class, "get_num_layers", get_num_layers, 0);
|
1584
|
-
rb_define_method(m_rb_fann_standard_class, "get_num_output", get_num_output, 0);
|
1588
|
+
rb_define_method(m_rb_fann_standard_class, "get_num_output", get_num_output, 0);
|
1585
1589
|
rb_define_method(m_rb_fann_standard_class, "get_total_connections", get_total_connections, 0);
|
1586
1590
|
rb_define_method(m_rb_fann_standard_class, "get_total_neurons", get_total_neurons, 0);
|
1587
1591
|
// rb_define_method(m_rb_fann_standard_class, "get_train_error_function", get_train_error_function, 0);
|
1588
|
-
// rb_define_method(m_rb_fann_standard_class, "set_train_error_function", set_train_error_function, 1);
|
1592
|
+
// rb_define_method(m_rb_fann_standard_class, "set_train_error_function", set_train_error_function, 1);
|
1589
1593
|
rb_define_method(m_rb_fann_standard_class, "print_connections", print_connections, 0);
|
1590
1594
|
rb_define_method(m_rb_fann_standard_class, "print_parameters", print_parameters, 0);
|
1591
1595
|
rb_define_method(m_rb_fann_standard_class, "randomize_weights", randomize_weights, 2);
|
@@ -1593,7 +1597,7 @@ void Init_ruby_fann ()
|
|
1593
1597
|
rb_define_method(m_rb_fann_standard_class, "train", train, 2);
|
1594
1598
|
rb_define_method(m_rb_fann_standard_class, "train_on_data", train_on_data, 4);
|
1595
1599
|
rb_define_method(m_rb_fann_standard_class, "train_epoch", train_epoch, 1);
|
1596
|
-
rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
|
1600
|
+
rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
|
1597
1601
|
rb_define_method(m_rb_fann_standard_class, "get_MSE", get_MSE, 0);
|
1598
1602
|
rb_define_method(m_rb_fann_standard_class, "get_bit_fail", get_bit_fail, 0);
|
1599
1603
|
rb_define_method(m_rb_fann_standard_class, "reset_MSE", reset_MSE, 0);
|
@@ -1603,8 +1607,8 @@ void Init_ruby_fann ()
|
|
1603
1607
|
rb_define_method(m_rb_fann_standard_class, "set_learning_momentum", set_learning_momentum, 1);
|
1604
1608
|
rb_define_method(m_rb_fann_standard_class, "get_training_algorithm", get_training_algorithm, 0);
|
1605
1609
|
rb_define_method(m_rb_fann_standard_class, "set_training_algorithm", set_training_algorithm, 1);
|
1606
|
-
|
1607
|
-
|
1610
|
+
|
1611
|
+
|
1608
1612
|
// Cascade functions:
|
1609
1613
|
rb_define_method(m_rb_fann_standard_class, "cascadetrain_on_data", cascadetrain_on_data, 4);
|
1610
1614
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_output_change_fraction", get_cascade_output_change_fraction, 0);
|
@@ -1630,25 +1634,25 @@ void Init_ruby_fann ()
|
|
1630
1634
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_activation_steepnesses_count", get_cascade_activation_steepnesses_count, 0);
|
1631
1635
|
rb_define_method(m_rb_fann_standard_class, "get_cascade_activation_steepnesses", get_cascade_activation_steepnesses, 0);
|
1632
1636
|
rb_define_method(m_rb_fann_standard_class, "set_cascade_activation_steepnesses", set_cascade_activation_steepnesses, 1);
|
1633
|
-
rb_define_method(m_rb_fann_standard_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1634
|
-
rb_define_method(m_rb_fann_standard_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1637
|
+
rb_define_method(m_rb_fann_standard_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1638
|
+
rb_define_method(m_rb_fann_standard_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1635
1639
|
rb_define_method(m_rb_fann_standard_class, "save", nn_save, 1);
|
1636
1640
|
|
1637
|
-
|
1641
|
+
|
1638
1642
|
// Uncomment for fixed-point mode (also recompile fann). Probably not going to be needed:
|
1639
|
-
//rb_define_method(clazz, "get_decimal_point", get_decimal_point, 0);
|
1640
|
-
//rb_define_method(clazz, "get_multiplier", get_multiplier, 0);
|
1641
|
-
|
1643
|
+
//rb_define_method(clazz, "get_decimal_point", get_decimal_point, 0);
|
1644
|
+
//rb_define_method(clazz, "get_multiplier", get_multiplier, 0);
|
1645
|
+
|
1642
1646
|
// Shortcut NN class (duplicated from above so that rdoc generation tools can find the methods:):
|
1643
|
-
m_rb_fann_shortcut_class = rb_define_class_under (m_rb_fann_module, "Shortcut", rb_cObject);
|
1647
|
+
m_rb_fann_shortcut_class = rb_define_class_under (m_rb_fann_module, "Shortcut", rb_cObject);
|
1644
1648
|
rb_define_alloc_func (m_rb_fann_shortcut_class, fann_allocate);
|
1645
1649
|
rb_define_method(m_rb_fann_shortcut_class, "initialize", fann_initialize, 1);
|
1646
1650
|
rb_define_method(m_rb_fann_shortcut_class, "init_weights", init_weights, 1);
|
1647
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function", set_activation_function, 3);
|
1648
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1649
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1650
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_activation_function", get_activation_function, 2);
|
1651
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_output", set_activation_function_output, 1);
|
1651
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function", set_activation_function, 3);
|
1652
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_hidden", set_activation_function_hidden, 1);
|
1653
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_layer", set_activation_function_layer, 2);
|
1654
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_activation_function", get_activation_function, 2);
|
1655
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_activation_function_output", set_activation_function_output, 1);
|
1652
1656
|
rb_define_method(m_rb_fann_shortcut_class, "get_activation_steepness", get_activation_steepness, 2);
|
1653
1657
|
rb_define_method(m_rb_fann_shortcut_class, "set_activation_steepness", set_activation_steepness, 3);
|
1654
1658
|
rb_define_method(m_rb_fann_shortcut_class, "set_activation_steepness_hidden", set_activation_steepness_hidden, 1);
|
@@ -1678,14 +1682,14 @@ void Init_ruby_fann ()
|
|
1678
1682
|
rb_define_method(m_rb_fann_shortcut_class, "get_connection_rate", get_connection_rate, 0);
|
1679
1683
|
rb_define_method(m_rb_fann_shortcut_class, "get_layer_array", get_layer_array, 0);
|
1680
1684
|
rb_define_method(m_rb_fann_shortcut_class, "get_network_type", get_network_type, 0);
|
1681
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_neurons", get_neurons, 0);
|
1685
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_neurons", get_neurons, 0);
|
1682
1686
|
rb_define_method(m_rb_fann_shortcut_class, "get_num_input", get_num_input, 0);
|
1683
1687
|
rb_define_method(m_rb_fann_shortcut_class, "get_num_layers", get_num_layers, 0);
|
1684
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_num_output", get_num_output, 0);
|
1688
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_num_output", get_num_output, 0);
|
1685
1689
|
rb_define_method(m_rb_fann_shortcut_class, "get_total_connections", get_total_connections, 0);
|
1686
1690
|
rb_define_method(m_rb_fann_shortcut_class, "get_total_neurons", get_total_neurons, 0);
|
1687
1691
|
// rb_define_method(m_rb_fann_shortcut_class, "get_train_error_function", get_train_error_function, 0);
|
1688
|
-
// rb_define_method(m_rb_fann_shortcut_class, "set_train_error_function", set_train_error_function, 1);
|
1692
|
+
// rb_define_method(m_rb_fann_shortcut_class, "set_train_error_function", set_train_error_function, 1);
|
1689
1693
|
rb_define_method(m_rb_fann_shortcut_class, "print_connections", print_connections, 0);
|
1690
1694
|
rb_define_method(m_rb_fann_shortcut_class, "print_parameters", print_parameters, 0);
|
1691
1695
|
rb_define_method(m_rb_fann_shortcut_class, "randomize_weights", randomize_weights, 2);
|
@@ -1693,7 +1697,7 @@ void Init_ruby_fann ()
|
|
1693
1697
|
rb_define_method(m_rb_fann_shortcut_class, "train", train, 2);
|
1694
1698
|
rb_define_method(m_rb_fann_shortcut_class, "train_on_data", train_on_data, 4);
|
1695
1699
|
rb_define_method(m_rb_fann_shortcut_class, "train_epoch", train_epoch, 1);
|
1696
|
-
rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
|
1700
|
+
rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
|
1697
1701
|
rb_define_method(m_rb_fann_shortcut_class, "get_MSE", get_MSE, 0);
|
1698
1702
|
rb_define_method(m_rb_fann_shortcut_class, "get_bit_fail", get_bit_fail, 0);
|
1699
1703
|
rb_define_method(m_rb_fann_shortcut_class, "reset_MSE", reset_MSE, 0);
|
@@ -1703,7 +1707,7 @@ void Init_ruby_fann ()
|
|
1703
1707
|
rb_define_method(m_rb_fann_shortcut_class, "set_learning_momentum", set_learning_momentum, 1);
|
1704
1708
|
rb_define_method(m_rb_fann_shortcut_class, "get_training_algorithm", get_training_algorithm, 0);
|
1705
1709
|
rb_define_method(m_rb_fann_shortcut_class, "set_training_algorithm", set_training_algorithm, 1);
|
1706
|
-
|
1710
|
+
|
1707
1711
|
// Cascade functions:
|
1708
1712
|
rb_define_method(m_rb_fann_shortcut_class, "cascadetrain_on_data", cascadetrain_on_data, 4);
|
1709
1713
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_output_change_fraction", get_cascade_output_change_fraction, 0);
|
@@ -1729,19 +1733,18 @@ void Init_ruby_fann ()
|
|
1729
1733
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_activation_steepnesses_count", get_cascade_activation_steepnesses_count, 0);
|
1730
1734
|
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_activation_steepnesses", get_cascade_activation_steepnesses, 0);
|
1731
1735
|
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_activation_steepnesses", set_cascade_activation_steepnesses, 1);
|
1732
|
-
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1733
|
-
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1736
|
+
rb_define_method(m_rb_fann_shortcut_class, "get_cascade_num_candidate_groups", get_cascade_num_candidate_groups, 0);
|
1737
|
+
rb_define_method(m_rb_fann_shortcut_class, "set_cascade_num_candidate_groups", set_cascade_num_candidate_groups, 1);
|
1734
1738
|
rb_define_method(m_rb_fann_shortcut_class, "save", nn_save, 1);
|
1735
|
-
|
1739
|
+
|
1736
1740
|
|
1737
1741
|
// TrainData NN class:
|
1738
|
-
m_rb_fann_train_data_class = rb_define_class_under (m_rb_fann_module, "TrainData", rb_cObject);
|
1739
|
-
rb_define_alloc_func (m_rb_fann_train_data_class, fann_training_data_allocate);
|
1742
|
+
m_rb_fann_train_data_class = rb_define_class_under (m_rb_fann_module, "TrainData", rb_cObject);
|
1743
|
+
rb_define_alloc_func (m_rb_fann_train_data_class, fann_training_data_allocate);
|
1740
1744
|
rb_define_method(m_rb_fann_train_data_class, "initialize", fann_train_data_initialize, 1);
|
1741
1745
|
rb_define_method(m_rb_fann_train_data_class, "length", length_train_data, 0);
|
1742
|
-
rb_define_method(m_rb_fann_train_data_class, "shuffle", shuffle, 0);
|
1746
|
+
rb_define_method(m_rb_fann_train_data_class, "shuffle", shuffle, 0);
|
1743
1747
|
rb_define_method(m_rb_fann_train_data_class, "save", training_save, 1);
|
1744
|
-
|
1748
|
+
|
1745
1749
|
// printf("Initialized Ruby Bindings for FANN.\n");
|
1746
1750
|
}
|
1747
|
-
|