ruby-fann 1.2.4 → 1.3.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1111,7 +1111,38 @@ static VALUE init_weights(VALUE self, VALUE train_data)
1111
1111
  return self;
1112
1112
  }
1113
1113
 
1114
+ /** call-seq: train(input, expected_output)
1114
1115
 
1116
+ Train with a single input-output pair.
1117
+ input - The inputs given to the network
1118
+ expected_output - The outputs expected. */
1119
+ static VALUE train(VALUE self, VALUE input, VALUE expected_output)
1120
+ {
1121
+ Check_Type(input, T_ARRAY);
1122
+ Check_Type(expected_output, T_ARRAY);
1123
+
1124
+ struct fann* f;
1125
+ Data_Get_Struct(self, struct fann, f);
1126
+
1127
+ unsigned int num_input = RARRAY_LEN(input);
1128
+ unsigned int num_output = RARRAY_LEN(expected_output);
1129
+
1130
+ fann_type data_input[num_input], data_output[num_output];
1131
+
1132
+ int i;
1133
+
1134
+ for (i = 0; i < num_input; i++) {
1135
+ data_input[i] = NUM2DBL(RARRAY_PTR(input)[i]);
1136
+ }
1137
+
1138
+ for (i = 0; i < num_output; i++) {
1139
+ data_output[i] = NUM2DBL(RARRAY_PTR(expected_output)[i]);
1140
+ }
1141
+
1142
+ fann_train(f, data_input, data_output);
1143
+
1144
+ return rb_int_new(0);
1145
+ }
1115
1146
 
1116
1147
  /** call-seq: train_on_data(train_data, max_epochs, epochs_between_reports, desired_error)
1117
1148
 
@@ -1559,6 +1590,7 @@ void Init_ruby_fann ()
1559
1590
  rb_define_method(m_rb_fann_standard_class, "print_parameters", print_parameters, 0);
1560
1591
  rb_define_method(m_rb_fann_standard_class, "randomize_weights", randomize_weights, 2);
1561
1592
  rb_define_method(m_rb_fann_standard_class, "run", run, 1);
1593
+ rb_define_method(m_rb_fann_standard_class, "train", train, 2);
1562
1594
  rb_define_method(m_rb_fann_standard_class, "train_on_data", train_on_data, 4);
1563
1595
  rb_define_method(m_rb_fann_standard_class, "train_epoch", train_epoch, 1);
1564
1596
  rb_define_method(m_rb_fann_standard_class, "test_data", test_data, 1);
@@ -1658,6 +1690,7 @@ void Init_ruby_fann ()
1658
1690
  rb_define_method(m_rb_fann_shortcut_class, "print_parameters", print_parameters, 0);
1659
1691
  rb_define_method(m_rb_fann_shortcut_class, "randomize_weights", randomize_weights, 2);
1660
1692
  rb_define_method(m_rb_fann_shortcut_class, "run", run, 1);
1693
+ rb_define_method(m_rb_fann_shortcut_class, "train", train, 2);
1661
1694
  rb_define_method(m_rb_fann_shortcut_class, "train_on_data", train_on_data, 4);
1662
1695
  rb_define_method(m_rb_fann_shortcut_class, "train_epoch", train_epoch, 1);
1663
1696
  rb_define_method(m_rb_fann_shortcut_class, "test_data", test_data, 1);
data/lib/ruby-fann.rb CHANGED
@@ -1 +1 @@
1
- require "ruby_fann"
1
+ require 'ruby_fann'
@@ -1,43 +1,43 @@
1
- require "rubygems"
2
- require "graphviz"
1
+ require 'rubygems'
2
+ require 'graphviz'
3
3
 
4
4
  module RubyFann
5
5
  # Generates directed graph from a RubyFann neural network.
6
- # Requires the GraphViz gem 0.8.0 (or higher) to be installed,
6
+ # Requires the GraphViz gem 0.8.0 (or higher) to be installed,
7
7
  # as well as graphviz proper 2.14.1 (or higher).
8
8
  class Neurotica # :nodoc:
9
9
  attr_accessor :connector_colors
10
10
  attr_accessor :input_layer_color
11
11
  attr_accessor :hidden_layer_colors
12
12
  attr_accessor :output_layer_color
13
-
13
+
14
14
  # Initialize neurotica grapher with the following args:
15
15
  # :connector_colors - array of graphviz-friendly color names/numbers
16
16
  # :input_layer_color - graphviz-friendly color name/number
17
17
  # :hidden_layer_colors - array of graphviz-friendly color names/numbers
18
18
  # :output_layer_color - graphviz-friendly color name/number
19
- def initialize(args={})
19
+ def initialize(args = {})
20
20
  @connector_colors = args[:connector_colors]
21
21
  @input_layer_color = args[:input_layer_color]
22
22
  @hidden_layer_colors = args[:hidden_layer_colors]
23
23
  @output_layer_color = args[:output_layer_color]
24
- @connector_colors ||= ['red', 'blue', 'yellow', 'green', 'orange', 'black', 'pink', 'gold', 'lightblue', 'firebrick4', 'purple']
24
+ @connector_colors ||= ['red', 'blue', 'yellow', 'green', 'orange', 'black', 'pink', 'gold', 'lightblue', 'firebrick4', 'purple']
25
25
  @input_layer_color ||= 'green'
26
- @hidden_layer_colors ||= ['bisque2', 'yellow', 'blue', 'orange', 'khaki3']
26
+ @hidden_layer_colors ||= ['bisque2', 'yellow', 'blue', 'orange', 'khaki3']
27
27
  @output_layer_color ||= 'purple'
28
28
  end
29
-
29
+
30
30
  # Generate output graph with given neural network to the given output path (PNG)
31
31
  # If args[:three_dimensional] is set, then a 3d VRML graph will be generated (experimental)
32
- def graph(neural_net, output_path, args={})
33
- if(args[:three_dimensional])
34
- graph_viz = GraphViz::new( "G", :output => "vrml", :dim=>'3') # , :size=>"17,11"
35
- shape="point"
32
+ def graph(neural_net, output_path, args = {})
33
+ if args[:three_dimensional]
34
+ graph_viz = GraphViz::new( 'G', :dim=>'3') # , :size=>'17,11'
35
+ shape = 'point'
36
36
  else
37
- graph_viz = GraphViz::new( "G", :output => "png", :dim=>'2') # , :size=>"17,11"
38
- shape="egg"
37
+ graph_viz = GraphViz::new( 'G', :dim=>'2') # , :size=>'17,11'
38
+ shape = 'egg'
39
39
  end
40
-
40
+
41
41
  neurons = neural_net.get_neurons()
42
42
  graph_node_hash = {}
43
43
  max_layer = neurons.max {|a,b| a[:layer] <=> b[:layer] }[:layer]
@@ -45,7 +45,7 @@ module RubyFann
45
45
 
46
46
  # Add nodes:
47
47
  neurons.each do |neuron|
48
- fillcolor = "transparent" # : "khaki3"
48
+ fillcolor = 'transparent' # : "khaki3"
49
49
  layer = neuron[:layer]
50
50
  fillcolor = case layer
51
51
  when 0
@@ -55,52 +55,57 @@ module RubyFann
55
55
  else
56
56
  @hidden_layer_colors[(layer-1) % @hidden_layer_colors.length]
57
57
  end
58
-
58
+
59
59
  #puts "adding neuron with #{neuron[:value]}"
60
60
  node_id = neuron.object_id.to_s
61
- # label = (layer==0) ? ("%d-%0.3f-%0.3f" % [neuron[:layer], neuron[:value], neuron[:sum]]) : ("%d-%0.3f-%0.3f" % [neuron[:layer], neuron[:value], neuron[:sum]])
62
- label = (layer==0 || layer==max_layer) ? ("%0.3f" % neuron[:value]) : ("%0.3f" % rand) #neuron[:sum])
61
+ # label = (layer==0) ? ("%d-%0.3f-%0.3f" % [neuron[:layer], neuron[:value], neuron[:sum]]) : ("%d-%0.3f-%0.3f" % [neuron[:layer], neuron[:value], neuron[:sum]])
62
+ label = (layer == 0 || layer == max_layer) ? ('%0.3f' % neuron[:value]) : ('%0.3f' % rand) #neuron[:sum])
63
63
  graph_node_hash[node_id] = graph_viz.add_node(
64
64
  node_id,
65
- :label=>label,
66
- :style=>"filled",
67
- :fillcolor=>fillcolor,
68
- #:color=>fillcolor,
69
- :shape=>shape,
70
- :z=>"#{rand(100)}", # TODO
71
- # :z=>"0", # TODO
72
- # :width=>"1",
73
- # :height=>"1",
74
- :fontname=>"Verdana"
75
- )
65
+ label: label,
66
+ style: 'filled',
67
+ fillcolor: fillcolor,
68
+ # color: fillcolor,
69
+ shape: shape,
70
+ z: '#{rand(100)}', # TODO
71
+ # z: '0', # TODO
72
+ # width: '1',
73
+ # height: '1',
74
+ fontname: 'Verdana'
75
+ )
76
76
  end
77
-
77
+
78
78
  previous_neurons = nil
79
79
  layer_neurons = nil
80
80
  0.upto(max_layer) do |layer|
81
81
  previous_neurons = layer_neurons
82
- layer_neurons = neurons.find_all{|n| n[:layer]==layer}
83
-
82
+ layer_neurons = neurons.find_all { |n| n[:layer] == layer }
83
+
84
84
  if previous_neurons
85
85
  previous_neurons.each do |pn|
86
86
  node_id = pn.object_id.to_s
87
-
87
+
88
88
  layer_neurons.each do |n|
89
89
  dest_id = n.object_id.to_s
90
90
  graph_viz.add_edge(
91
- graph_node_hash[node_id],
92
- graph_node_hash[dest_id],
93
- :weight=>"10",
94
- :color=>"#{connector_colors[layer % connector_colors.length]}"
95
- )
91
+ graph_node_hash[node_id],
92
+ graph_node_hash[dest_id],
93
+ weight: '10',
94
+ color: "#{connector_colors[layer % connector_colors.length]}"
95
+ )
96
96
  end
97
97
  end
98
98
  end
99
-
100
- end
101
-
102
- graph_viz.output(:file=>output_path)
103
-
99
+
100
+ end
101
+
102
+ if args[:three_dimensional]
103
+ graph_viz.output(vrml: output_path)
104
+ else
105
+ graph_viz.output(png: output_path)
106
+ end
107
+
108
+
104
109
  end
105
110
  end
106
111
  end
@@ -1,8 +1,8 @@
1
1
  module RubyFann
2
2
  module VERSION
3
3
  MAJOR = 1
4
- MINOR = 2
5
- TINY = 4
4
+ MINOR = 3
5
+ TINY = 1
6
6
 
7
7
  STRING = [MAJOR, MINOR, TINY].join('.')
8
8
  end
data/lib/ruby_fann.rb CHANGED
@@ -1,9 +1,9 @@
1
- require "ruby_fann/version"
2
- require "ruby_fann/ruby_fann"
1
+ require 'ruby_fann/version'
2
+ require 'ruby_fann/ruby_fann'
3
3
 
4
4
  # Namespace for ruby-fann functionality.
5
5
  #
6
6
  # See RubyFann::Shortcut, RubyFann::Standard, and RubyFann::TrainData for details.
7
- module RubyFann
8
-
7
+ module RubyFann
8
+
9
9
  end
metadata CHANGED
@@ -1,15 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: ruby-fann
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.2.4
5
- prerelease:
4
+ version: 1.3.1
6
5
  platform: ruby
7
6
  authors:
8
7
  - tangledpath
9
- autorequire:
8
+ autorequire:
10
9
  bindir: bin
11
10
  cert_chain: []
12
- date: 2013-05-06 00:00:00.000000000 Z
11
+ date: 2021-12-08 00:00:00.000000000 Z
13
12
  dependencies: []
14
13
  description: Bindings to use FANN from within ruby/rails environment
15
14
  email:
@@ -21,56 +20,54 @@ extra_rdoc_files:
21
20
  - README.md
22
21
  - ext/ruby_fann/ruby_fann.c
23
22
  files:
24
- - lib/ruby-fann.rb
25
- - lib/ruby_fann/neurotica.rb
26
- - lib/ruby_fann/version.rb
27
- - lib/ruby_fann.rb
28
- - ext/ruby_fann/doublefann.c
29
- - ext/ruby_fann/fann.c
30
- - ext/ruby_fann/fann_cascade.c
31
- - ext/ruby_fann/fann_error.c
32
- - ext/ruby_fann/fann_io.c
33
- - ext/ruby_fann/fann_train.c
34
- - ext/ruby_fann/fann_train_data.c
35
- - ext/ruby_fann/ruby_fann.c
23
+ - README.md
36
24
  - ext/ruby_fann/config.h
25
+ - ext/ruby_fann/doublefann.c
37
26
  - ext/ruby_fann/doublefann.h
27
+ - ext/ruby_fann/extconf.rb
28
+ - ext/ruby_fann/fann.c
38
29
  - ext/ruby_fann/fann.h
39
30
  - ext/ruby_fann/fann_activation.h
40
31
  - ext/ruby_fann/fann_augment.h
32
+ - ext/ruby_fann/fann_cascade.c
41
33
  - ext/ruby_fann/fann_cascade.h
42
34
  - ext/ruby_fann/fann_data.h
35
+ - ext/ruby_fann/fann_error.c
43
36
  - ext/ruby_fann/fann_error.h
44
37
  - ext/ruby_fann/fann_internal.h
38
+ - ext/ruby_fann/fann_io.c
45
39
  - ext/ruby_fann/fann_io.h
40
+ - ext/ruby_fann/fann_train.c
46
41
  - ext/ruby_fann/fann_train.h
42
+ - ext/ruby_fann/fann_train_data.c
47
43
  - ext/ruby_fann/ruby_compat.h
48
- - ext/ruby_fann/extconf.rb
49
- - README.md
44
+ - ext/ruby_fann/ruby_fann.c
45
+ - lib/ruby-fann.rb
46
+ - lib/ruby_fann.rb
47
+ - lib/ruby_fann/neurotica.rb
48
+ - lib/ruby_fann/version.rb
50
49
  homepage: http://github.com/tangledpath/ruby-fann
51
50
  licenses: []
52
- post_install_message:
51
+ metadata: {}
52
+ post_install_message:
53
53
  rdoc_options: []
54
54
  require_paths:
55
55
  - lib
56
56
  - ext
57
57
  required_ruby_version: !ruby/object:Gem::Requirement
58
- none: false
59
58
  requirements:
60
- - - ! '>='
59
+ - - ">="
61
60
  - !ruby/object:Gem::Version
62
61
  version: '0'
63
62
  required_rubygems_version: !ruby/object:Gem::Requirement
64
- none: false
65
63
  requirements:
66
- - - ! '>='
64
+ - - ">="
67
65
  - !ruby/object:Gem::Version
68
66
  version: '0'
69
67
  requirements: []
70
- rubyforge_project: ruby-fann
71
- rubygems_version: 1.8.25
72
- signing_key:
73
- specification_version: 3
68
+ rubygems_version: 3.1.4
69
+ signing_key:
70
+ specification_version: 4
74
71
  summary: Bindings to use FANN from within ruby/rails environment. Fann is a is a
75
72
  free open source neural network library, which implements multilayer artificial
76
73
  neural networks with support for both fully connected and sparsely connected networks. It
@@ -78,4 +75,3 @@ summary: Bindings to use FANN from within ruby/rails environment. Fann is a is
78
75
  neural networks a breeze using ruby, with the added benefit that most of the heavy
79
76
  lifting is done natively.
80
77
  test_files: []
81
- has_rdoc: true