ruby-fann 1.1.3 → 1.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,34 +0,0 @@
1
- desc 'Release the website and new gem version'
2
- task :deploy => [:check_version, :website, :release] do
3
- puts "Remember to create SVN tag:"
4
- puts "svn copy svn+ssh://#{rubyforge_username}@rubyforge.org/var/svn/#{PATH}/trunk " +
5
- "svn+ssh://#{rubyforge_username}@rubyforge.org/var/svn/#{PATH}/tags/REL-#{VERS} "
6
- puts "Suggested comment:"
7
- puts "Tagging release #{CHANGES}"
8
- end
9
-
10
- desc 'Runs tasks website_generate and install_gem as a local deployment of the gem'
11
- task :local_deploy => [:website_generate, :install_gem]
12
-
13
- task :check_version do
14
- unless ENV['VERSION']
15
- puts 'Must pass a VERSION=x.y.z release version'
16
- exit
17
- end
18
- unless ENV['VERSION'] == VERS
19
- puts "Please update your version.rb to match the release version, currently #{VERS}"
20
- exit
21
- end
22
- end
23
-
24
- desc 'Install the package as a gem, without generating documentation(ri/rdoc)'
25
- task :install_gem_no_doc => [:clean, :package] do
26
- sh "#{'sudo ' unless Hoe::WINDOZE }gem install pkg/*.gem --no-rdoc --no-ri"
27
- end
28
-
29
- namespace :manifest do
30
- desc 'Recreate Manifest.txt to include ALL files'
31
- task :refresh do
32
- `rake check_manifest | patch -p0 > Manifest.txt`
33
- end
34
- end
@@ -1,7 +0,0 @@
1
- task :ruby_env do
2
- RUBY_APP = if RUBY_PLATFORM =~ /java/
3
- "jruby"
4
- else
5
- "ruby"
6
- end unless defined? RUBY_APP
7
- end
@@ -1,17 +0,0 @@
1
- desc 'Generate website files'
2
- task :website_generate => :ruby_env do
3
- (Dir['website/**/*.txt'] - Dir['website/version*.txt']).each do |txt|
4
- sh %{ #{RUBY_APP} script/txt2html #{txt} > #{txt.gsub(/txt$/,'html')} }
5
- end
6
- end
7
-
8
- desc 'Upload website files to rubyforge'
9
- task :website_upload do
10
- host = "#{rubyforge_username}@rubyforge.org"
11
- remote_dir = "/var/www/gforge-projects/#{PATH}/"
12
- local_dir = 'website'
13
- sh %{rsync -aCv #{local_dir}/ #{host}:#{remote_dir}}
14
- end
15
-
16
- desc 'Generate and upload website files'
17
- task :website => [:website_generate, :website_upload, :publish_docs]
@@ -1,3 +0,0 @@
1
- 1 3 1
2
- 0.200000 0.300000 0.400000
3
- 3.140000
@@ -1,2 +0,0 @@
1
- require 'test/unit'
2
- require File.dirname(__FILE__) + '/../lib/ruby_fann'
@@ -1,39 +0,0 @@
1
- require 'test/unit'
2
- require "rubygems"
3
- require "graphviz"
4
- require 'ruby_fann/neural_network'
5
- require 'ruby_fann/neurotica'
6
-
7
- class NeuroticaTest < Test::Unit::TestCase
8
- def test_basic_output
9
- neurotica = RubyFann::Neurotica.new
10
-
11
- train = RubyFann::TrainData.new(
12
- :inputs=>[[0.3, 0.4, 0.5, 1.0, -1.0], [0.1, 0.2, 0.3, 1.0, 1.0], [0.6, 0.74, 0.58, -1.0, -1.0], [0.109, 0.677, 0.21, -1.0, 1.0]],
13
- :desired_outputs=>[[0.7, 0.4, 0.9], [0.8, -0.2, -0.5], [-0.33, 0.34, -0.22], [0.129, -0.87, 0.25]])
14
-
15
- neural_net = RubyFann::Standard.new(:num_inputs=>3, :hidden_neurons=>[4, 2, 1], :num_outputs=>3)
16
- neural_net.train_on_data(train, 100, 20, 0.01)
17
-
18
- neurotica.graph(neural_net, "neurotica1.png")
19
-
20
- # train = RubyFann::TrainData.new(:inputs=>[[0.3, 0.4, 0.5], [0.1, 0.2, 0.3]], :desired_outputs=>[[0.7], [0.8]])
21
- neural_net = RubyFann::Shortcut.new(:num_inputs=>3, :num_outputs=>3)
22
- neural_net.cascadetrain_on_data(train, 5, 10, 0.1)
23
- neural_net.train_on_data(train, 5, 10, 0.1)
24
-
25
-
26
-
27
- neurotica.graph(neural_net, "neurotica2.png")
28
- end
29
-
30
- def test_3d_output
31
- train = RubyFann::TrainData.new(:inputs=>[[0.3, 0.4, 0.5], [0.1, 0.2, 0.3]], :desired_outputs=>[[0.7], [0.8]])
32
- #neural_net = RubyFann::Shortcut.new(9, 5, [2, 4, 12, 8, 4, 3, 4], 1)
33
- neural_net = RubyFann::Shortcut.new(:num_inputs=>4, :num_outputs=>1)
34
- neural_net.cascadetrain_on_data(train, 1000, 100, 0.1)
35
- neurotica = RubyFann::Neurotica.new
36
- neurotica.graph(neural_net, "neurotica2.vrml", :three_dimensional=>true)
37
- assert(File.exist?('neurotica2.vrml'))
38
- end
39
- end
@@ -1,444 +0,0 @@
1
- require 'test/unit'
2
- require 'rubygems'
3
- require 'ruby_fann/neural_network'
4
-
5
- class MyShortcut < RubyFann::Shortcut
6
- def initialize
7
- super(:num_inputs=>5, :num_outputs=>1)
8
- end
9
- end
10
-
11
- class MyFann < RubyFann::Standard
12
- attr_accessor :callback_invoked
13
- # def initialize
14
- # super(:num_inputs=>5, :num_outputs=>1)
15
- # end
16
- def training_callback(args)
17
- puts "ARGS: #{args.inspect}"
18
- @callback_invoked=true
19
- 0
20
- end
21
- end
22
-
23
-
24
-
25
-
26
- class RubyFannTest < Test::Unit::TestCase
27
- def test_create_standard
28
- fann = RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
29
- assert(fann)
30
- end
31
-
32
- def test_create_shortcut
33
- fann = RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1)
34
-
35
- assert(fann)
36
-
37
- assert_equal(2, fann.get_num_layers)
38
- assert_equal(5, fann.get_num_input)
39
- assert_equal(1, fann.get_num_output)
40
-
41
- fann2 = RubyFann::Shortcut.new(:num_inputs=>1, :num_outputs=>2)
42
- assert(fann2)
43
- assert_equal(2, fann2.get_num_layers)
44
- assert_equal(1, fann2.get_num_input)
45
- assert_equal(2, fann2.get_num_output)
46
- assert_equal(:shortcut, fann.get_network_type)
47
-
48
- sc = MyShortcut.new
49
- end
50
-
51
- def test_raises
52
- fann = nil
53
- assert_raises(TypeError) { fann = RubyFann::Standard.new(:num_inputs=>'foo', :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)}
54
- assert_nil(fann)
55
- assert_raises(ArgumentError) { fann = RubyFann::Standard.new(4, 1, [3, 4], 1) }
56
- assert_nil(fann)
57
- assert_nothing_raised { fann = RubyFann::Standard.new(:num_inputs=>4, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1) }
58
- assert(fann)
59
- end
60
-
61
- def test_run
62
- fann = RubyFann::Standard.new(:num_inputs=>4, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
63
- outputs = fann.run([3.0, 2.0, 3.0, 4.0])
64
- assert_equal(1, outputs.length)
65
- end
66
-
67
- def test_print_parameters
68
- fann = RubyFann::Standard.new(:num_inputs=>4, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
69
- fann.print_parameters
70
- end
71
-
72
- def test_accessors
73
- fann = RubyFann::Standard.new(:num_inputs=>4, :hidden_neurons=>[3, 4, 3], :num_outputs=>1)
74
- assert_equal(5, fann.get_num_layers)
75
- assert_equal(4, fann.get_num_input)
76
- assert_equal(1, fann.get_num_output)
77
- puts "TN: #{fann.get_total_neurons}"
78
- puts "TC: #{fann.get_total_connections}"
79
- fann.print_parameters
80
- assert_equal(19, fann.get_total_neurons)
81
- end
82
-
83
- def test_randomize_weights
84
- fann = RubyFann::Standard.new(:num_inputs=>4, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
85
- fann.randomize_weights(-1.0, 1.0)
86
- end
87
-
88
- def test_init_weights
89
- fann = RubyFann::Standard.new(:num_inputs=>4, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
90
- training = RubyFann::TrainData.new(:filename=>'test/test.train')
91
- fann.init_weights(training)
92
- end
93
-
94
-
95
- def test_print_connections
96
- fann = RubyFann::Standard.new(:num_inputs=>4, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
97
- fann.print_connections
98
- end
99
-
100
- def test_connection_rate
101
- fann = RubyFann::Standard.new(:num_inputs=>4, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
102
- cr = fann.get_connection_rate
103
- assert_equal(1, cr)
104
- end
105
-
106
- def test_layer_array
107
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
108
- layers = fann.get_layer_array
109
- assert_equal([5, 2, 8, 4, 3, 4, 1], layers)
110
- end
111
-
112
- def test_bias_array
113
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 4, 3, 4], :num_outputs=>1)
114
- bias = fann.get_bias_array
115
- assert_equal([1, 1, 1, 1, 1, 0], bias)
116
- end
117
-
118
-
119
- def test_get_network_type
120
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
121
- assert_equal(:layer, fann.get_network_type)
122
- puts "fann.get_network_type: #{fann.get_network_type}"
123
- end
124
-
125
- def test_train_file
126
- training = RubyFann::TrainData.new(:filename=>'test/test.train')
127
- training.save('verify.train')
128
- assert(File.exist?('verify.train'))
129
- test_train_txt = File.read('test/test.train')
130
- verify_train_txt = File.read('verify.train')
131
- assert_equal(verify_train_txt, test_train_txt)
132
- end
133
-
134
- def test_train_creation_data
135
- training = RubyFann::TrainData.new(:inputs=>[[0.3, 0.4, 0.5], [0.1, 0.2, 0.3]], :desired_outputs=>[[0.7], [0.8]])
136
- training.save('verify.train')
137
- verify_lines = File.readlines('verify.train')
138
- assert_equal(5, verify_lines.length)
139
- assert_match(/2 3 1/, verify_lines[0])
140
- assert_match(/0.30* 0.40* 0.50*/, verify_lines[1])
141
- assert_match(/0.7/, verify_lines[2])
142
- assert_match(/0.10* 0.20* 0.30*/, verify_lines[3])
143
- assert_match(/0.8/, verify_lines[4])
144
- end
145
-
146
- def test_train_on_data
147
- train = RubyFann::TrainData.new(:inputs=>[[0.3, 0.4, 0.5], [0.1, 0.2, 0.3]], :desired_outputs=>[[0.7], [0.8]])
148
- fann = RubyFann::Standard.new(:num_inputs=>3, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
149
- fann.train_on_data(train, 1000, 10, 0.1)
150
- outputs = fann.run([3.0, 2.0, 3.0])
151
- puts "OUTPUT FROM RUN WAS #{outputs.inspect}"
152
- end
153
-
154
- def test_train_callback
155
- puts "train callback"
156
- train = RubyFann::TrainData.new(:inputs=>[[0.3, 0.4, 0.5], [0.1, 0.2, 0.3]], :desired_outputs=>[[0.7], [0.8]])
157
- fann = MyFann.new(:num_inputs=>3, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
158
-
159
- assert(!fann.callback_invoked)
160
- fann.train_on_data(train, 1000, 1, 0.01)
161
- assert(fann.callback_invoked)
162
- end
163
-
164
- def test_train_bug
165
- require 'rubygems'
166
- require 'ruby_fann/neural_network'
167
- training_data = RubyFann::TrainData.new(
168
- :inputs=>[[0.3, 0.4, 0.5], [0.1, 0.2, 0.3]],
169
- :desired_outputs=>[[0.7], [0.8]])
170
-
171
- fann = RubyFann::Standard.new(
172
- :num_inputs=>3,
173
- :hidden_neurons=>[2, 8, 4, 3, 4],
174
- :num_outputs=>1)
175
-
176
- fann.train_on_data(training_data, 1000, 1, 0.1)
177
- end
178
-
179
- def test_activation_function
180
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
181
- fann.set_activation_function(:linear, 1, 2)
182
- assert_raises(TypeError) { fann.set_activation_function('linear', 1, 2) }
183
- end
184
-
185
- def test_activation_function_hidden
186
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
187
- fann.set_activation_function_hidden(:linear)
188
- assert_raises(RuntimeError) { fann.set_activation_function_hidden(:fake) }
189
- fann.set_activation_function_hidden(:elliot)
190
- end
191
-
192
- def test_activation_function_layer
193
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
194
- fann.set_activation_function_layer(:linear, 1)
195
- assert_raises(RuntimeError) { fann.set_activation_function_layer(:fake, 0) }
196
- assert_equal(:linear, fann.get_activation_function(1, 0))
197
- end
198
-
199
- def test_activation_function_output
200
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
201
- fann.set_activation_function_output(:linear)
202
- assert_raises(RuntimeError) { fann.set_activation_function_output(:fake) }
203
- fann.set_activation_function_output(:elliot)
204
- end
205
-
206
- def test_activation_steepness
207
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
208
- fann.set_activation_steepness(0.2, 2, 3)
209
- assert_equal(0.2, fann.get_activation_steepness(2, 3))
210
- end
211
-
212
- def test_activation_steepness_hidden
213
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
214
- fann.set_activation_steepness_hidden(0.345)
215
- 1.upto(5) {|i|assert_equal(0.345, fann.get_activation_steepness(i, 1)) }
216
- end
217
-
218
- def test_activation_steepness_layer
219
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
220
- fann.set_activation_steepness_layer(0.7000, 3)
221
- assert_equal(0.7000, fann.get_activation_steepness(3, 1))
222
- end
223
-
224
- def test_activation_steepness_output
225
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
226
- fann.set_activation_steepness_output(0.888)
227
- assert_equal(0.888, fann.get_activation_steepness(6, 1))
228
- end
229
-
230
- def test_training_function
231
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
232
- fann.set_train_error_function(:tanh)
233
- assert_equal(:tanh, fann.get_train_error_function())
234
-
235
- fann2 = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
236
- fann2.set_train_error_function(:linear)
237
- assert_equal(:linear, fann2.get_train_error_function())
238
- assert_raises(RuntimeError) { fann2.set_train_error_function(:fake) }
239
- end
240
-
241
- def test_training_stop
242
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
243
- fann.set_train_stop_function(:mse)
244
- assert_equal(:mse, fann.get_train_stop_function())
245
-
246
- fann2 = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
247
- fann2.set_train_stop_function(:bit)
248
- assert_equal(:bit, fann2.get_train_stop_function())
249
-
250
- assert_raises(RuntimeError) { fann2.set_train_stop_function(:fake) }
251
- end
252
-
253
- def test_save
254
- fann = RubyFann::Standard.new(:num_inputs=>5, :hidden_neurons=>[2, 8, 4, 3, 4], :num_outputs=>1)
255
- fann.save('foo.net')
256
- assert(File.exist?('foo.net'))
257
- File.delete('foo.net')
258
- end
259
-
260
- def test_training_algorithm
261
- verify_fann_attribute(:training_algorithm, :rprop)
262
- end
263
-
264
- def test_bit_fail_limit
265
- verify_fann_attribute(:bit_fail_limit, 0.743)
266
- end
267
-
268
- def test_quickprop_decay
269
- verify_fann_attribute(:quickprop_decay, 0.211)
270
- end
271
-
272
- def test_quickprop_mu
273
- verify_fann_attribute(:quickprop_mu, 0.912)
274
- end
275
-
276
- def test_rprop_increase_factor
277
- verify_fann_attribute(:rprop_increase_factor, 0.743)
278
- end
279
-
280
- def test_rprop_decrease_factor
281
- verify_fann_attribute(:rprop_decrease_factor, 0.190)
282
- end
283
-
284
- def test_rprop_delta_min
285
- verify_fann_attribute(:rprop_delta_min, 0.277)
286
- end
287
-
288
- def test_rprop_delta_max
289
- verify_fann_attribute(:rprop_delta_max, 0.157)
290
- end
291
-
292
- def test_rprop_delta_zero
293
- verify_fann_attribute(:rprop_delta_zero, 0.571)
294
- end
295
-
296
- def test_learning_momentum
297
- verify_fann_attribute(:learning_momentum, 0.231)
298
- end
299
-
300
- def test_learning_rate
301
- verify_fann_attribute(:learning_rate, 0.012)
302
- end
303
-
304
- def test_cascade_train
305
- train = RubyFann::TrainData.new(:inputs=>[[0.3, 0.4, 0.5], [0.1, 0.2, 0.3]], :desired_outputs=>[[0.7], [0.8]])
306
- fann = RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>1) # RubyFann::Shortcut.new(7, 5, [2, 8, 4, 3, 4], 1)
307
- fann.cascadetrain_on_data(train, 1000, 10, 0.1)
308
- end
309
-
310
- def test_get_neurons
311
- train = RubyFann::TrainData.new(:inputs=>[[0.3, 0.4, 0.5], [0.1, 0.2, 0.3]], :desired_outputs=>[[0.7, 0.3], [0.8, 0.4]])
312
- fann = RubyFann::Shortcut.new(:num_inputs=>5, :num_outputs=>2) # RubyFann::Shortcut.new(7, 5, [2, 8, 4, 3, 4], 1)
313
- fann.cascadetrain_on_data(train, 30, 10, 0.0000000000001)
314
- neurons = fann.get_neurons()
315
- assert_equal(38, neurons.length)
316
- neurons.each_with_index {|n, i| puts "NEURON[#{i}]: #{n.inspect}" }
317
- end
318
-
319
- def test_cascade_output_change_fraction
320
- verify_fann_attribute(:cascade_output_change_fraction, 0.222, true)
321
- end
322
-
323
- def test_cascade_output_stagnation_epochs
324
- verify_fann_attribute(:cascade_output_stagnation_epochs, 4, true)
325
- end
326
-
327
- def test_cascade_candidate_change_fraction
328
- verify_fann_attribute(:cascade_candidate_change_fraction, 0.987, true)
329
- end
330
-
331
- def test_cascade_candidate_stagnation_epochs
332
- verify_fann_attribute(:cascade_candidate_stagnation_epochs, 5, true)
333
- end
334
-
335
- def test_cascade_weight_multiplier
336
- verify_fann_attribute(:cascade_weight_multiplier, 0.754, true)
337
- end
338
-
339
- def test_cascade_candidate_limit
340
- verify_fann_attribute(:cascade_candidate_limit, 0.222, true)
341
- end
342
-
343
- def test_cascade_cascade_max_out_epochs
344
- verify_fann_attribute(:cascade_max_out_epochs, 77, true)
345
- end
346
-
347
- def test_cascade_max_cand_epochs
348
- verify_fann_attribute(:cascade_max_cand_epochs, 66, true)
349
- end
350
-
351
- def test_cascade_num_candidate_groups
352
- verify_fann_attribute(:cascade_num_candidate_groups, 6, true)
353
- end
354
-
355
- def test_cascade_num_candidates
356
- fann = RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1) # RubyFann::Standard.new(7, 5, [2, 8, 4, 3, 4], 1)
357
- x = fann.get_cascade_activation_functions_count
358
- y = fann.get_cascade_activation_steepnesses_count
359
- z = fann.get_cascade_num_candidate_groups
360
- assert_equal((x * y * z), fann.get_cascade_num_candidates)
361
- end
362
-
363
- def test_cascade_activation_functions
364
- fann = RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1) # RubyFann::Standard.new(7, 5, [2, 8, 4, 3, 4], 1)
365
- fann.set_cascade_activation_functions([:threshold, :sigmoid])
366
- assert_equal(2, fann.get_cascade_activation_functions_count)
367
- assert_equal([:threshold, :sigmoid], fann.get_cascade_activation_functions)
368
- end
369
-
370
- def test_cascade_activation_steepness
371
- fann = RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1) # RubyFann::Standard.new(7, 5, [2, 8, 4, 3, 4], 1)
372
- fann.set_cascade_activation_steepnesses([0.1, 0.3, 0.7, 0.5])
373
- assert_equal(4, fann.get_cascade_activation_steepnesses_count)
374
- assert_equal([0.1, 0.3, 0.7, 0.5], fann.get_cascade_activation_steepnesses)
375
- end
376
-
377
- def test_train_exception
378
- # Mismatched inputs & outputs
379
- assert_raises(RuntimeError) {
380
- RubyFann::TrainData.new(
381
- {
382
- :inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]],
383
- :desired_outputs=>[[3.14]]
384
- }
385
- )
386
- }
387
-
388
- # Wrong arg type:
389
- assert_raises(TypeError) { RubyFann::TrainData.new('not_a_hash') }
390
-
391
- # Bad key in hash:
392
- assert_raises(RuntimeError) { RubyFann::TrainData.new({:not_a_real_value=>1}) }
393
-
394
- # Bad value in hash:
395
- assert_raises(RuntimeError) { RubyFann::TrainData.new({:inputs=>1, :desired_outputs=>2}) }
396
-
397
- # Inconsistent inputs
398
- assert_raises(RuntimeError) {
399
- RubyFann::TrainData.new(
400
- {
401
- :inputs=>[[0.2, 0.3, 0.4], [0.8]],
402
- :desired_outputs=>[[3.14], [4.33]]
403
- }
404
- )
405
- }
406
-
407
- # Inconsistent outputs
408
- assert_raises(RuntimeError) {
409
- RubyFann::TrainData.new(
410
- {
411
- :inputs=>[[0.2, 0.3, 0.4], [0.5, 0.8, 0.7]],
412
- :desired_outputs=>[[3.14], [0.4, 0.5]]
413
- }
414
- )
415
- }
416
-
417
- # No errors:
418
- assert_nothing_raised(){
419
- RubyFann::TrainData.new(
420
- {
421
- :inputs=>[[0.2, 0.3, 0.4], [0.8, 0.9, 0.7]],
422
- :desired_outputs=>[[3.14], [6.33]]
423
- }
424
- )
425
- }
426
-
427
- end
428
-
429
- private
430
- # Set & get fann attribute & verify:
431
- def verify_fann_attribute(attr, val, shortcut=false)
432
- fann = nil
433
- if shortcut
434
- fann = RubyFann::Shortcut.new(:num_inputs=>1, :num_outputs=>1)
435
- else
436
- fann = RubyFann::Standard.new(:num_inputs=>1, :hidden_neurons=>[3, 4, 3, 4], :num_outputs=>1)
437
- end
438
- fann.send("set_#{attr}", val)
439
- retrieved_val = fann.send("get_#{attr}")
440
- assert_equal(val, retrieved_val)
441
- end
442
-
443
- end
444
-