ruby-fann 1.0.1 → 1.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/History.txt CHANGED
@@ -1,3 +1,8 @@
1
+ == 1.0.2 2009-12-02
2
+
3
+ * 1 minor enhancement:
4
+ * Added missing file to manifest
5
+
1
6
  == 1.0.1 2009-12-02
2
7
 
3
8
  * 1 minor enhancement:
data/Manifest.txt CHANGED
@@ -18,6 +18,7 @@ ext/ruby_fann/fann_internal.h
18
18
  ext/ruby_fann/fann_train.h
19
19
  ext/ruby_fann/fann_cascade.h
20
20
  ext/ruby_fann/fann_io.h
21
+ ext/ruby_fann/fann.h
21
22
  ext/ruby_fann/fann.c
22
23
  ext/ruby_fann/doublefann.c
23
24
  ext/ruby_fann/fann_io.c
@@ -0,0 +1,603 @@
1
+ /*
2
+ Fast Artificial Neural Network Library (fann)
3
+ Copyright (C) 2003 Steffen Nissen (lukesky@diku.dk)
4
+
5
+ This library is free software; you can redistribute it and/or
6
+ modify it under the terms of the GNU Lesser General Public
7
+ License as published by the Free Software Foundation; either
8
+ version 2.1 of the License, or (at your option) any later version.
9
+
10
+ This library is distributed in the hope that it will be useful,
11
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
12
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13
+ Lesser General Public License for more details.
14
+
15
+ You should have received a copy of the GNU Lesser General Public
16
+ License along with this library; if not, write to the Free Software
17
+ Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18
+ */
19
+
20
+ /* This file defines the user interface to the fann library.
21
+ It is included from fixedfann.h, floatfann.h and doublefann.h and should
22
+ NOT be included directly. If included directly it will react as if
23
+ floatfann.h was included.
24
+ */
25
+
26
+ /* Section: FANN Creation/Execution
27
+
28
+ The FANN library is designed to be very easy to use.
29
+ A feedforward ann can be created by a simple <fann_create_standard> function, while
30
+ other ANNs can be created just as easily. The ANNs can be trained by <fann_train_on_file>
31
+ and executed by <fann_run>.
32
+
33
+ All of this can be done without much knowledge of the internals of ANNs, although the ANNs created will
34
+ still be powerfull and effective. If you have more knowledge about ANNs, and desire more control, almost
35
+ every part of the ANNs can be parametized to create specialized and highly optimal ANNs.
36
+ */
37
+ /* Group: Creation, Destruction & Execution */
38
+
39
+ #ifndef FANN_INCLUDE
40
+ /* just to allow for inclusion of fann.h in normal stuations where only floats are needed */
41
+ #ifdef FIXEDFANN
42
+ #include "fixedfann.h"
43
+ #else
44
+ #include "floatfann.h"
45
+ #endif /* FIXEDFANN */
46
+
47
+ #else
48
+
49
+ /* COMPAT_TIME REPLACEMENT */
50
+ #ifndef _WIN32
51
+ #include <sys/time.h>
52
+ #else /* _WIN32 */
53
+ #if !defined(_MSC_EXTENSIONS) && !defined(_INC_WINDOWS)
54
+ extern unsigned long __stdcall GetTickCount(void);
55
+
56
+ #else /* _MSC_EXTENSIONS */
57
+ #define WIN32_LEAN_AND_MEAN
58
+ #include <windows.h>
59
+ #endif /* _MSC_EXTENSIONS */
60
+ #endif /* _WIN32 */
61
+
62
+ #ifndef __fann_h__
63
+ #define __fann_h__
64
+
65
+ #ifdef __cplusplus
66
+ extern "C"
67
+ {
68
+
69
+ #ifndef __cplusplus
70
+ } /* to fool automatic indention engines */
71
+ #endif
72
+ #endif /* __cplusplus */
73
+
74
+ #ifndef NULL
75
+ #define NULL 0
76
+ #endif /* NULL */
77
+
78
+ /* ----- Macros used to define DLL external entrypoints ----- */
79
+ /*
80
+ DLL Export, import and calling convention for Windows.
81
+ Only defined for Microsoft VC++ FANN_EXTERNAL indicates
82
+ that a function will be exported/imported from a dll
83
+ FANN_API ensures that the DLL calling convention
84
+ will be used for a function regardless of the calling convention
85
+ used when compiling.
86
+
87
+ For a function to be exported from a DLL its prototype and
88
+ declaration must be like this:
89
+ FANN_EXTERNAL void FANN_API function(char *argument)
90
+
91
+ The following ifdef block is a way of creating macros which
92
+ make exporting from a DLL simple. All files within a DLL are
93
+ compiled with the FANN_DLL_EXPORTS symbol defined on the
94
+ command line. This symbol should not be defined on any project
95
+ that uses this DLL. This way any other project whose source
96
+ files include this file see FANN_EXTERNAL functions as being imported
97
+ from a DLL, whereas a DLL sees symbols defined with this
98
+ macro as being exported which makes calls more efficient.
99
+ The __stdcall calling convention is used for functions in a
100
+ windows DLL.
101
+
102
+ The callback functions for fann_set_callback must be declared as FANN_API
103
+ so the DLL and the application program both use the same
104
+ calling convention.
105
+ */
106
+
107
+ /*
108
+ The following sets the default for MSVC++ 2003 or later to use
109
+ the fann dll's. To use a lib or fixedfann.c, floatfann.c or doublefann.c
110
+ with those compilers FANN_NO_DLL has to be defined before
111
+ including the fann headers.
112
+ The default for previous MSVC compilers such as VC++ 6 is not
113
+ to use dll's. To use dll's FANN_USE_DLL has to be defined before
114
+ including the fann headers.
115
+ */
116
+ #if (_MSC_VER > 1300)
117
+ #ifndef FANN_NO_DLL
118
+ #define FANN_USE_DLL
119
+ #endif /* FANN_USE_LIB */
120
+ #endif /* _MSC_VER */
121
+ #if defined(_MSC_VER) && (defined(FANN_USE_DLL) || defined(FANN_DLL_EXPORTS))
122
+ #ifdef FANN_DLL_EXPORTS
123
+ #define FANN_EXTERNAL __declspec(dllexport)
124
+ #else /* */
125
+ #define FANN_EXTERNAL __declspec(dllimport)
126
+ #endif /* FANN_DLL_EXPORTS*/
127
+ #define FANN_API __stdcall
128
+ #else /* */
129
+ #define FANN_EXTERNAL
130
+ #define FANN_API
131
+ #endif /* _MSC_VER */
132
+ /* ----- End of macros used to define DLL external entrypoints ----- */
133
+
134
+ #include "fann_error.h"
135
+ #include "fann_activation.h"
136
+ #include "fann_data.h"
137
+ #include "fann_internal.h"
138
+ #include "fann_train.h"
139
+ #include "fann_cascade.h"
140
+ #include "fann_io.h"
141
+
142
+ /* Function: fann_create_standard
143
+
144
+ Creates a standard fully connected backpropagation neural network.
145
+
146
+ There will be a bias neuron in each layer (except the output layer),
147
+ and this bias neuron will be connected to all neurons in the next layer.
148
+ When running the network, the bias nodes always emits 1.
149
+
150
+ To destroy a <struct fann> use the <fann_destroy> function.
151
+
152
+ Parameters:
153
+ num_layers - The total number of layers including the input and the output layer.
154
+ ... - Integer values determining the number of neurons in each layer starting with the
155
+ input layer and ending with the output layer.
156
+
157
+ Returns:
158
+ A pointer to the newly created <struct fann>.
159
+
160
+ Example:
161
+ > // Creating an ANN with 2 input neurons, 1 output neuron,
162
+ > // and two hidden neurons with 8 and 9 neurons
163
+ > struct fann *ann = fann_create_standard(4, 2, 8, 9, 1);
164
+
165
+ See also:
166
+ <fann_create_standard_array>, <fann_create_sparse>, <fann_create_shortcut>
167
+
168
+ This function appears in FANN >= 2.0.0.
169
+ */
170
+ FANN_EXTERNAL struct fann *FANN_API fann_create_standard(unsigned int num_layers, ...);
171
+
172
+ /* Function: fann_create_standard_array
173
+ Just like <fann_create_standard>, but with an array of layer sizes
174
+ instead of individual parameters.
175
+
176
+ Example:
177
+ > // Creating an ANN with 2 input neurons, 1 output neuron,
178
+ > // and two hidden neurons with 8 and 9 neurons
179
+ > unsigned int layers[4] = {2, 8, 9, 1};
180
+ > struct fann *ann = fann_create_standard_array(4, layers);
181
+
182
+ See also:
183
+ <fann_create_standard>, <fann_create_sparse>, <fann_create_shortcut>
184
+
185
+ This function appears in FANN >= 2.0.0.
186
+ */
187
+ FANN_EXTERNAL struct fann *FANN_API fann_create_standard_array(unsigned int num_layers,
188
+ const unsigned int *layers);
189
+
190
+ /* Function: fann_create_sparse
191
+
192
+ Creates a standard backpropagation neural network, which is not fully connected.
193
+
194
+ Parameters:
195
+ connection_rate - The connection rate controls how many connections there will be in the
196
+ network. If the connection rate is set to 1, the network will be fully
197
+ connected, but if it is set to 0.5 only half of the connections will be set.
198
+ A connection rate of 1 will yield the same result as <fann_create_standard>
199
+ num_layers - The total number of layers including the input and the output layer.
200
+ ... - Integer values determining the number of neurons in each layer starting with the
201
+ input layer and ending with the output layer.
202
+
203
+ Returns:
204
+ A pointer to the newly created <struct fann>.
205
+
206
+ See also:
207
+ <fann_create_sparse_array>, <fann_create_standard>, <fann_create_shortcut>
208
+
209
+ This function appears in FANN >= 2.0.0.
210
+ */
211
+ FANN_EXTERNAL struct fann *FANN_API fann_create_sparse(float connection_rate,
212
+ unsigned int num_layers, ...);
213
+
214
+
215
+ /* Function: fann_create_sparse_array
216
+ Just like <fann_create_sparse>, but with an array of layer sizes
217
+ instead of individual parameters.
218
+
219
+ See <fann_create_standard_array> for a description of the parameters.
220
+
221
+ See also:
222
+ <fann_create_sparse>, <fann_create_standard>, <fann_create_shortcut>
223
+
224
+ This function appears in FANN >= 2.0.0.
225
+ */
226
+ FANN_EXTERNAL struct fann *FANN_API fann_create_sparse_array(float connection_rate,
227
+ unsigned int num_layers,
228
+ const unsigned int *layers);
229
+
230
+ /* Function: fann_create_shortcut
231
+
232
+ Creates a standard backpropagation neural network, which is not fully connected and which
233
+ also has shortcut connections.
234
+
235
+ Shortcut connections are connections that skip layers. A fully connected network with shortcut
236
+ connections, is a network where all neurons are connected to all neurons in later layers.
237
+ Including direct connections from the input layer to the output layer.
238
+
239
+ See <fann_create_standard> for a description of the parameters.
240
+
241
+ See also:
242
+ <fann_create_shortcut_array>, <fann_create_standard>, <fann_create_sparse>,
243
+
244
+ This function appears in FANN >= 2.0.0.
245
+ */
246
+ FANN_EXTERNAL struct fann *FANN_API fann_create_shortcut(unsigned int num_layers, ...);
247
+
248
+ /* Function: fann_create_shortcut_array
249
+ Just like <fann_create_shortcut>, but with an array of layer sizes
250
+ instead of individual parameters.
251
+
252
+ See <fann_create_standard_array> for a description of the parameters.
253
+
254
+ See also:
255
+ <fann_create_shortcut>, <fann_create_standard>, <fann_create_sparse>
256
+
257
+ This function appears in FANN >= 2.0.0.
258
+ */
259
+ FANN_EXTERNAL struct fann *FANN_API fann_create_shortcut_array(unsigned int num_layers,
260
+ const unsigned int *layers);
261
+ /* Function: fann_destroy
262
+ Destroys the entire network and properly freeing all the associated memmory.
263
+
264
+ This function appears in FANN >= 1.0.0.
265
+ */
266
+ FANN_EXTERNAL void FANN_API fann_destroy(struct fann *ann);
267
+
268
+
269
+ /* Function: fann_run
270
+ Will run input through the neural network, returning an array of outputs, the number of which being
271
+ equal to the number of neurons in the output layer.
272
+
273
+ See also:
274
+ <fann_test>
275
+
276
+ This function appears in FANN >= 1.0.0.
277
+ */
278
+ FANN_EXTERNAL fann_type * FANN_API fann_run(struct fann *ann, fann_type * input);
279
+
280
+ /* Function: fann_randomize_weights
281
+ Give each connection a random weight between *min_weight* and *max_weight*
282
+
283
+ From the beginning the weights are random between -0.1 and 0.1.
284
+
285
+ See also:
286
+ <fann_init_weights>
287
+
288
+ This function appears in FANN >= 1.0.0.
289
+ */
290
+ FANN_EXTERNAL void FANN_API fann_randomize_weights(struct fann *ann, fann_type min_weight,
291
+ fann_type max_weight);
292
+
293
+ /* Function: fann_init_weights
294
+ Initialize the weights using Widrow + Nguyen's algorithm.
295
+
296
+ This function behaves similarly to fann_randomize_weights. It will use the algorithm developed
297
+ by Derrick Nguyen and Bernard Widrow to set the weights in such a way
298
+ as to speed up training. This technique is not always successful, and in some cases can be less
299
+ efficient than a purely random initialization.
300
+
301
+ The algorithm requires access to the range of the input data (ie, largest and smallest input),
302
+ and therefore accepts a second argument, data, which is the training data that will be used to
303
+ train the network.
304
+
305
+ See also:
306
+ <fann_randomize_weights>, <fann_read_train_from_file>
307
+
308
+ This function appears in FANN >= 1.1.0.
309
+ */
310
+ FANN_EXTERNAL void FANN_API fann_init_weights(struct fann *ann, struct fann_train_data *train_data);
311
+
312
+ /* Function: fann_print_connections
313
+ Will print the connections of the ann in a compact matrix, for easy viewing of the internals
314
+ of the ann.
315
+
316
+ The output from fann_print_connections on a small (2 2 1) network trained on the xor problem
317
+ >Layer / Neuron 012345
318
+ >L 1 / N 3 BBa...
319
+ >L 1 / N 4 BBA...
320
+ >L 1 / N 5 ......
321
+ >L 2 / N 6 ...BBA
322
+ >L 2 / N 7 ......
323
+
324
+ This network have five real neurons and two bias neurons. This gives a total of seven neurons
325
+ named from 0 to 6. The connections between these neurons can be seen in the matrix. "." is a
326
+ place where there is no connection, while a character tells how strong the connection is on a
327
+ scale from a-z. The two real neurons in the hidden layer (neuron 3 and 4 in layer 1) has
328
+ connection from the three neurons in the previous layer as is visible in the first two lines.
329
+ The output neuron (6) has connections form the three neurons in the hidden layer 3 - 5 as is
330
+ visible in the fourth line.
331
+
332
+ To simplify the matrix output neurons is not visible as neurons that connections can come from,
333
+ and input and bias neurons are not visible as neurons that connections can go to.
334
+
335
+ This function appears in FANN >= 1.2.0.
336
+ */
337
+ FANN_EXTERNAL void FANN_API fann_print_connections(struct fann *ann);
338
+
339
+ /* Group: Parameters */
340
+ /* Function: fann_print_parameters
341
+
342
+ Prints all of the parameters and options of the ANN
343
+
344
+ This function appears in FANN >= 1.2.0.
345
+ */
346
+ FANN_EXTERNAL void FANN_API fann_print_parameters(struct fann *ann);
347
+
348
+
349
+ /* Function: fann_get_num_input
350
+
351
+ Get the number of input neurons.
352
+
353
+ This function appears in FANN >= 1.0.0.
354
+ */
355
+ FANN_EXTERNAL unsigned int FANN_API fann_get_num_input(struct fann *ann);
356
+
357
+
358
+ /* Function: fann_get_num_output
359
+
360
+ Get the number of output neurons.
361
+
362
+ This function appears in FANN >= 1.0.0.
363
+ */
364
+ FANN_EXTERNAL unsigned int FANN_API fann_get_num_output(struct fann *ann);
365
+
366
+
367
+ /* Function: fann_get_total_neurons
368
+
369
+ Get the total number of neurons in the entire network. This number does also include the
370
+ bias neurons, so a 2-4-2 network has 2+4+2 +2(bias) = 10 neurons.
371
+
372
+ This function appears in FANN >= 1.0.0.
373
+ */
374
+ FANN_EXTERNAL unsigned int FANN_API fann_get_total_neurons(struct fann *ann);
375
+
376
+
377
+ /* Function: fann_get_total_connections
378
+
379
+ Get the total number of connections in the entire network.
380
+
381
+ This function appears in FANN >= 1.0.0.
382
+ */
383
+ FANN_EXTERNAL unsigned int FANN_API fann_get_total_connections(struct fann *ann);
384
+
385
+ /* Function: fann_get_network_type
386
+
387
+ Get the type of neural network it was created as.
388
+
389
+ Parameters:
390
+ ann - A previously created neural network structure of
391
+ type <struct fann> pointer.
392
+
393
+ Returns:
394
+ The neural network type from enum <fann_network_type_enum>
395
+
396
+ See Also:
397
+ <fann_network_type_enum>
398
+
399
+ This function appears in FANN >= 2.1.0
400
+ */
401
+ FANN_EXTERNAL enum fann_nettype_enum FANN_API fann_get_network_type(struct fann *ann);
402
+
403
+ /* Function: fann_get_connection_rate
404
+
405
+ Get the connection rate used when the network was created
406
+
407
+ Parameters:
408
+ ann - A previously created neural network structure of
409
+ type <struct fann> pointer.
410
+
411
+ Returns:
412
+ The connection rate
413
+
414
+ This function appears in FANN >= 2.1.0
415
+ */
416
+ FANN_EXTERNAL float FANN_API fann_get_connection_rate(struct fann *ann);
417
+
418
+ /* Function: fann_get_num_layers
419
+
420
+ Get the number of layers in the network
421
+
422
+ Parameters:
423
+ ann - A previously created neural network structure of
424
+ type <struct fann> pointer.
425
+
426
+ Returns:
427
+ The number of layers in the neural network
428
+
429
+ Example:
430
+ > // Obtain the number of layers in a neural network
431
+ > struct fann *ann = fann_create_standard(4, 2, 8, 9, 1);
432
+ > unsigned int num_layers = fann_get_num_layers(ann);
433
+
434
+ This function appears in FANN >= 2.1.0
435
+ */
436
+ FANN_EXTERNAL unsigned int FANN_API fann_get_num_layers(struct fann *ann);
437
+
438
+ /*Function: fann_get_layer_array
439
+
440
+ Get the number of neurons in each layer in the network.
441
+
442
+ Bias is not included so the layers match the fann_create functions.
443
+
444
+ Parameters:
445
+ ann - A previously created neural network structure of
446
+ type <struct fann> pointer.
447
+
448
+ The layers array must be preallocated to at least
449
+ sizeof(unsigned int) * fann_num_layers() long.
450
+
451
+ This function appears in FANN >= 2.1.0
452
+ */
453
+ FANN_EXTERNAL void FANN_API fann_get_layer_array(struct fann *ann, unsigned int *layers);
454
+
455
+ /* Function: fann_get_bias_array
456
+
457
+ Get the number of bias in each layer in the network.
458
+
459
+ Parameters:
460
+ ann - A previously created neural network structure of
461
+ type <struct fann> pointer.
462
+
463
+ The bias array must be preallocated to at least
464
+ sizeof(unsigned int) * fann_num_layers() long.
465
+
466
+ This function appears in FANN >= 2.1.0
467
+ */
468
+ FANN_EXTERNAL void FANN_API fann_get_bias_array(struct fann *ann, unsigned int *bias);
469
+
470
+ /* Function: fann_get_connection_array
471
+
472
+ Get the connections in the network.
473
+
474
+ Parameters:
475
+ ann - A previously created neural network structure of
476
+ type <struct fann> pointer.
477
+
478
+ The connections array must be preallocated to at least
479
+ sizeof(struct fann_connection) * fann_get_total_connections() long.
480
+
481
+ This function appears in FANN >= 2.1.0
482
+ */
483
+ FANN_EXTERNAL void FANN_API fann_get_connection_array(struct fann *ann,
484
+ struct fann_connection *connections);
485
+
486
+ /* Function: fann_set_weight_array
487
+
488
+ Set connections in the network.
489
+
490
+ Parameters:
491
+ ann - A previously created neural network structure of
492
+ type <struct fann> pointer.
493
+
494
+ Only the weights can be changed, connections and weights are ignored
495
+ if they do not already exist in the network.
496
+
497
+ The array must have sizeof(struct fann_connection) * num_connections size.
498
+
499
+ This function appears in FANN >= 2.1.0
500
+ */
501
+ FANN_EXTERNAL void FANN_API fann_set_weight_array(struct fann *ann,
502
+ struct fann_connection *connections, unsigned int num_connections);
503
+
504
+ /* Function: fann_set_weight
505
+
506
+ Set a connection in the network.
507
+
508
+ Parameters:
509
+ ann - A previously created neural network structure of
510
+ type <struct fann> pointer.
511
+
512
+ Only the weights can be changed. The connection/weight is
513
+ ignored if it does not already exist in the network.
514
+
515
+ This function appears in FANN >= 2.1.0
516
+ */
517
+ FANN_EXTERNAL void FANN_API fann_set_weight(struct fann *ann,
518
+ unsigned int from_neuron, unsigned int to_neuron, fann_type weight);
519
+
520
+ /* Function: fann_set_user_data
521
+
522
+ Store a pointer to user defined data. The pointer can be
523
+ retrieved with <fann_get_user_data> for example in a
524
+ callback. It is the user's responsibility to allocate and
525
+ deallocate any data that the pointer might point to.
526
+
527
+ Parameters:
528
+ ann - A previously created neural network structure of
529
+ type <struct fann> pointer.
530
+ user_data - A void pointer to user defined data.
531
+
532
+ This function appears in FANN >= 2.1.0
533
+ */
534
+ FANN_EXTERNAL void FANN_API fann_set_user_data(struct fann *ann, void *user_data);
535
+
536
+ /* Function: fann_get_user_data
537
+
538
+ Get a pointer to user defined data that was previously set
539
+ with <fann_set_user_data>. It is the user's responsibility to
540
+ allocate and deallocate any data that the pointer might point to.
541
+
542
+ Parameters:
543
+ ann - A previously created neural network structure of
544
+ type <struct fann> pointer.
545
+
546
+ Returns:
547
+ A void pointer to user defined data.
548
+
549
+ This function appears in FANN >= 2.1.0
550
+ */
551
+ FANN_EXTERNAL void * FANN_API fann_get_user_data(struct fann *ann);
552
+
553
+ #ifdef FIXEDFANN
554
+
555
+ /* Function: fann_get_decimal_point
556
+
557
+ Returns the position of the decimal point in the ann.
558
+
559
+ This function is only available when the ANN is in fixed point mode.
560
+
561
+ The decimal point is described in greater detail in the tutorial <Fixed Point Usage>.
562
+
563
+ See also:
564
+ <Fixed Point Usage>, <fann_get_multiplier>, <fann_save_to_fixed>, <fann_save_train_to_fixed>
565
+
566
+ This function appears in FANN >= 1.0.0.
567
+ */
568
+ FANN_EXTERNAL unsigned int FANN_API fann_get_decimal_point(struct fann *ann);
569
+
570
+
571
+ /* Function: fann_get_multiplier
572
+
573
+ returns the multiplier that fix point data is multiplied with.
574
+
575
+ This function is only available when the ANN is in fixed point mode.
576
+
577
+ The multiplier is the used to convert between floating point and fixed point notation.
578
+ A floating point number is multiplied with the multiplier in order to get the fixed point
579
+ number and visa versa.
580
+
581
+ The multiplier is described in greater detail in the tutorial <Fixed Point Usage>.
582
+
583
+ See also:
584
+ <Fixed Point Usage>, <fann_get_decimal_point>, <fann_save_to_fixed>, <fann_save_train_to_fixed>
585
+
586
+ This function appears in FANN >= 1.0.0.
587
+ */
588
+ FANN_EXTERNAL unsigned int FANN_API fann_get_multiplier(struct fann *ann);
589
+
590
+ #endif /* FIXEDFANN */
591
+
592
+ #ifdef __cplusplus
593
+ #ifndef __cplusplus
594
+ /* to fool automatic indention engines */
595
+ {
596
+
597
+ #endif
598
+ }
599
+ #endif /* __cplusplus */
600
+
601
+ #endif /* __fann_h__ */
602
+
603
+ #endif /* NOT FANN_INCLUDE */
@@ -2,7 +2,7 @@ module RubyFann #:nodoc:
2
2
  module VERSION #:nodoc:
3
3
  MAJOR = 1
4
4
  MINOR = 0
5
- TINY = 1
5
+ TINY = 2
6
6
 
7
7
  STRING = [MAJOR, MINOR, TINY].join('.')
8
8
  end
data/neurotica1.png CHANGED
Binary file
data/neurotica2.vrml CHANGED
@@ -4,9 +4,9 @@ Group { children [
4
4
  scale 0.028 0.028 0.028
5
5
  children [
6
6
  Background { skyColor 1.000 1.000 1.000 }
7
- # node 2160579600
7
+ # node 2148098720
8
8
  Transform {
9
- translation 6.000 46.000 66.000
9
+ translation 6.000 46.000 83.000
10
10
  scale 2.000 2.000 2.000
11
11
  children [
12
12
  Transform {
@@ -24,9 +24,9 @@ Transform {
24
24
  }
25
25
  ]
26
26
  }
27
- # node 2160577360
27
+ # node 2148093340
28
28
  Transform {
29
- translation 50.000 6.000 80.000
29
+ translation 50.000 6.000 93.000
30
30
  scale 2.000 2.000 2.000
31
31
  children [
32
32
  Transform {
@@ -44,7 +44,7 @@ Transform {
44
44
  }
45
45
  ]
46
46
  }
47
- # edge 2160579600 -> 2160577360
47
+ # edge 2148098720 -> 2148093340
48
48
  Group { children [
49
49
  Transform {
50
50
  children [
@@ -79,9 +79,9 @@ Transform {
79
79
  translation 24.000 17.000 0.000
80
80
  }
81
81
  ] }
82
- # node 2160577760
82
+ # node 2148098020
83
83
  Transform {
84
- translation 28.000 46.000 74.000
84
+ translation 28.000 46.000 31.000
85
85
  scale 2.000 2.000 2.000
86
86
  children [
87
87
  Transform {
@@ -99,7 +99,7 @@ Transform {
99
99
  }
100
100
  ]
101
101
  }
102
- # edge 2160577760 -> 2160577360
102
+ # edge 2148098020 -> 2148093340
103
103
  Group { children [
104
104
  Transform {
105
105
  children [
@@ -134,9 +134,9 @@ Transform {
134
134
  translation 35.000 17.000 0.000
135
135
  }
136
136
  ] }
137
- # node 2160577660
137
+ # node 2148097880
138
138
  Transform {
139
- translation 50.000 46.000 92.000
139
+ translation 50.000 46.000 20.000
140
140
  scale 2.000 2.000 2.000
141
141
  children [
142
142
  Transform {
@@ -154,7 +154,7 @@ Transform {
154
154
  }
155
155
  ]
156
156
  }
157
- # edge 2160577660 -> 2160577360
157
+ # edge 2148097880 -> 2148093340
158
158
  Group { children [
159
159
  Transform {
160
160
  children [
@@ -189,9 +189,9 @@ Transform {
189
189
  translation 46.000 17.000 0.000
190
190
  }
191
191
  ] }
192
- # node 2160577560
192
+ # node 2148096860
193
193
  Transform {
194
- translation 72.000 46.000 73.000
194
+ translation 72.000 46.000 38.000
195
195
  scale 2.000 2.000 2.000
196
196
  children [
197
197
  Transform {
@@ -209,7 +209,7 @@ Transform {
209
209
  }
210
210
  ]
211
211
  }
212
- # edge 2160577560 -> 2160577360
212
+ # edge 2148096860 -> 2148093340
213
213
  Group { children [
214
214
  Transform {
215
215
  children [
@@ -244,9 +244,9 @@ Transform {
244
244
  translation 57.000 17.000 0.000
245
245
  }
246
246
  ] }
247
- # node 2160577460
247
+ # node 2148095220
248
248
  Transform {
249
- translation 94.000 46.000 29.000
249
+ translation 94.000 46.000 41.000
250
250
  scale 2.000 2.000 2.000
251
251
  children [
252
252
  Transform {
@@ -264,7 +264,7 @@ Transform {
264
264
  }
265
265
  ]
266
266
  }
267
- # edge 2160577460 -> 2160577360
267
+ # edge 2148095220 -> 2148093340
268
268
  Group { children [
269
269
  Transform {
270
270
  children [
@@ -300,5 +300,5 @@ Transform {
300
300
  }
301
301
  ] }
302
302
  ] }
303
- Viewpoint {position 1.852 0.963 7.035}
303
+ Viewpoint {position 1.852 0.963 6.702}
304
304
  ] }
data/website/index.html CHANGED
@@ -33,7 +33,7 @@
33
33
  <h1>ruby-fann</h1>
34
34
  <div id="version" class="clickable" onclick='document.location = "http://rubyforge.org/projects/ruby-fann"; return false'>
35
35
  <p>Get Version</p>
36
- <a href="http://rubyforge.org/projects/ruby-fann" class="numbers">1.0.0</a>
36
+ <a href="http://rubyforge.org/projects/ruby-fann" class="numbers">1.0.2</a>
37
37
  </div>
38
38
  <p><em>Bindings to use <a href="http://leenissen.dk/fann/"><span class="caps">FANN</span></a> (Fast Artificial Neural Network) from within ruby/rails environment.</em></p>
39
39
  <h2>Documentation</h2>
data/xor_cascade.net CHANGED
@@ -30,5 +30,5 @@ cascade_activation_steepnesses_count=4
30
30
  cascade_activation_steepnesses=2.50000000000000000000e-01 5.00000000000000000000e-01 7.50000000000000000000e-01 1.00000000000000000000e+00
31
31
  layer_sizes=3 1 1 1
32
32
  scale_included=0
33
- neurons (num_inputs, activation_function, activation_steepness)=(0, 0, 0.00000000000000000000e+00) (0, 0, 0.00000000000000000000e+00) (0, 0, 0.00000000000000000000e+00) (3, 15, 2.50000000000000000000e-01) (4, 3, 5.00000000000000000000e-01) (5, 5, 5.00000000000000000000e-01)
34
- connections (connected_to_neuron, weight)=(0, 6.03121553472700799858e+00) (1, 5.92105744890394891655e+00) (2, 8.14956251680783866354e-02) (0, 6.94100315065092517142e-03) (1, 3.52612781717012192806e-03) (2, -8.15146231147867013078e+01) (3, -4.67572273234011584475e-03) (0, 2.85375829917018764004e-01) (1, 2.88068426443957192884e-01) (2, 4.27497417431277615396e-02) (3, 3.96005150696007106603e+01) (4, 2.44562686549522956270e-01)
33
+ neurons (num_inputs, activation_function, activation_steepness)=(0, 0, 0.00000000000000000000e+00) (0, 0, 0.00000000000000000000e+00) (0, 0, 0.00000000000000000000e+00) (3, 8, 5.00000000000000000000e-01) (4, 3, 7.50000000000000000000e-01) (5, 5, 5.00000000000000000000e-01)
34
+ connections (connected_to_neuron, weight)=(0, 1.93441716139228003790e+00) (1, 1.70890924020654355608e+00) (2, 1.23564954660518554197e-02) (0, -8.14182709333025056431e-02) (1, -7.15250401659676127153e-02) (2, -2.38748796481204799136e+01) (3, -4.16798582203117828904e-01) (0, 4.46139384612332989821e-01) (1, 3.91859924128322711923e-01) (2, -9.99655042040694441496e-01) (3, 4.06572980026871846349e+01) (4, -5.10086273232595699412e-01)
data/xor_float.net CHANGED
@@ -31,4 +31,4 @@ cascade_activation_steepnesses=2.50000000000000000000e-01 5.00000000000000000000
31
31
  layer_sizes=3 4 2
32
32
  scale_included=0
33
33
  neurons (num_inputs, activation_function, activation_steepness)=(0, 0, 0.00000000000000000000e+00) (0, 0, 0.00000000000000000000e+00) (0, 0, 0.00000000000000000000e+00) (3, 5, 1.00000000000000000000e+00) (3, 5, 1.00000000000000000000e+00) (3, 5, 1.00000000000000000000e+00) (0, 5, 1.00000000000000000000e+00) (4, 5, 1.00000000000000000000e+00) (0, 5, 1.00000000000000000000e+00)
34
- connections (connected_to_neuron, weight)=(0, 3.80850670860991669109e-01) (1, 5.31853923495240299424e-01) (2, 1.94246314046218548910e+00) (0, -2.41994141449592392590e+00) (1, 2.40561692453033115768e+00) (2, -1.38967102463236291676e+00) (0, 2.02945595642753762178e+00) (1, -2.11680476314898902146e+00) (2, -1.63136454713236567216e+00) (3, 1.38258366722087866485e+00) (4, 4.93982711345169622774e+00) (5, 4.87308662094168720813e+00) (6, 3.15280014713231304668e+00)
34
+ connections (connected_to_neuron, weight)=(0, 2.23371764591571020375e+00) (1, 1.58521562208138422356e+00) (2, 1.43955559831288093520e+00) (0, 1.63051204219772549742e+00) (1, -1.49354703398461952091e+00) (2, 2.37087930182826900349e+00) (0, 1.61957436211062755227e+00) (1, 2.28195297973940336433e+00) (2, -1.40962767164018121235e+00) (3, 4.58246629418312600990e+00) (4, -2.31578449129627728098e+00) (5, -4.54905458104575011191e+00) (6, -1.79180653141054779809e+00)
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: ruby-fann
3
3
  version: !ruby/object:Gem::Version
4
- version: 1.0.1
4
+ version: 1.0.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - Steven Miers
@@ -55,6 +55,7 @@ files:
55
55
  - ext/ruby_fann/fann_train.h
56
56
  - ext/ruby_fann/fann_cascade.h
57
57
  - ext/ruby_fann/fann_io.h
58
+ - ext/ruby_fann/fann.h
58
59
  - ext/ruby_fann/fann.c
59
60
  - ext/ruby_fann/doublefann.c
60
61
  - ext/ruby_fann/fann_io.c