ruby-eigen 0.0.10 → 0.0.11.pre1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/COPYING.LGPLv3 +165 -0
- data/LICENSE +10 -18
- data/README.md +16 -0
- data/ext/eigen/eigen3/COPYING.LGPL +502 -0
- data/ext/eigen/eigen3/Eigen/OrderingMethods +66 -0
- data/ext/eigen/eigen3/Eigen/SparseCholesky +47 -0
- data/ext/eigen/eigen3/Eigen/src/IterativeLinearSolvers/IncompleteLUT.h +478 -0
- data/ext/eigen/eigen3/Eigen/src/OrderingMethods/Ordering.h +154 -0
- data/ext/eigen/eigen_wrap.cxx +21814 -10373
- data/lib/eigen.rb +35 -0
- metadata +11 -5
@@ -0,0 +1,478 @@
|
|
1
|
+
// This file is part of Eigen, a lightweight C++ template library
|
2
|
+
// for linear algebra.
|
3
|
+
//
|
4
|
+
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
5
|
+
//
|
6
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
7
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
8
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
9
|
+
|
10
|
+
#ifndef EIGEN_INCOMPLETE_LUT_H
|
11
|
+
#define EIGEN_INCOMPLETE_LUT_H
|
12
|
+
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
namespace internal {
|
17
|
+
|
18
|
+
/** \internal
|
19
|
+
* Compute a quick-sort split of a vector
|
20
|
+
* On output, the vector row is permuted such that its elements satisfy
|
21
|
+
* abs(row(i)) >= abs(row(ncut)) if i<ncut
|
22
|
+
* abs(row(i)) <= abs(row(ncut)) if i>ncut
|
23
|
+
* \param row The vector of values
|
24
|
+
* \param ind The array of index for the elements in @p row
|
25
|
+
* \param ncut The number of largest elements to keep
|
26
|
+
**/
|
27
|
+
template <typename VectorV, typename VectorI, typename Index>
|
28
|
+
Index QuickSplit(VectorV &row, VectorI &ind, Index ncut)
|
29
|
+
{
|
30
|
+
typedef typename VectorV::RealScalar RealScalar;
|
31
|
+
using std::swap;
|
32
|
+
using std::abs;
|
33
|
+
Index mid;
|
34
|
+
Index n = row.size(); /* length of the vector */
|
35
|
+
Index first, last ;
|
36
|
+
|
37
|
+
ncut--; /* to fit the zero-based indices */
|
38
|
+
first = 0;
|
39
|
+
last = n-1;
|
40
|
+
if (ncut < first || ncut > last ) return 0;
|
41
|
+
|
42
|
+
do {
|
43
|
+
mid = first;
|
44
|
+
RealScalar abskey = abs(row(mid));
|
45
|
+
for (Index j = first + 1; j <= last; j++) {
|
46
|
+
if ( abs(row(j)) > abskey) {
|
47
|
+
++mid;
|
48
|
+
swap(row(mid), row(j));
|
49
|
+
swap(ind(mid), ind(j));
|
50
|
+
}
|
51
|
+
}
|
52
|
+
/* Interchange for the pivot element */
|
53
|
+
swap(row(mid), row(first));
|
54
|
+
swap(ind(mid), ind(first));
|
55
|
+
|
56
|
+
if (mid > ncut) last = mid - 1;
|
57
|
+
else if (mid < ncut ) first = mid + 1;
|
58
|
+
} while (mid != ncut );
|
59
|
+
|
60
|
+
return 0; /* mid is equal to ncut */
|
61
|
+
}
|
62
|
+
|
63
|
+
}// end namespace internal
|
64
|
+
|
65
|
+
/** \ingroup IterativeLinearSolvers_Module
|
66
|
+
* \class IncompleteLUT
|
67
|
+
* \brief Incomplete LU factorization with dual-threshold strategy
|
68
|
+
*
|
69
|
+
* During the numerical factorization, two dropping rules are used :
|
70
|
+
* 1) any element whose magnitude is less than some tolerance is dropped.
|
71
|
+
* This tolerance is obtained by multiplying the input tolerance @p droptol
|
72
|
+
* by the average magnitude of all the original elements in the current row.
|
73
|
+
* 2) After the elimination of the row, only the @p fill largest elements in
|
74
|
+
* the L part and the @p fill largest elements in the U part are kept
|
75
|
+
* (in addition to the diagonal element ). Note that @p fill is computed from
|
76
|
+
* the input parameter @p fillfactor which is used the ratio to control the fill_in
|
77
|
+
* relatively to the initial number of nonzero elements.
|
78
|
+
*
|
79
|
+
* The two extreme cases are when @p droptol=0 (to keep all the @p fill*2 largest elements)
|
80
|
+
* and when @p fill=n/2 with @p droptol being different to zero.
|
81
|
+
*
|
82
|
+
* References : Yousef Saad, ILUT: A dual threshold incomplete LU factorization,
|
83
|
+
* Numerical Linear Algebra with Applications, 1(4), pp 387-402, 1994.
|
84
|
+
*
|
85
|
+
* NOTE : The following implementation is derived from the ILUT implementation
|
86
|
+
* in the SPARSKIT package, Copyright (C) 2005, the Regents of the University of Minnesota
|
87
|
+
* released under the terms of the GNU LGPL:
|
88
|
+
* http://www-users.cs.umn.edu/~saad/software/SPARSKIT/README
|
89
|
+
* However, Yousef Saad gave us permission to relicense his ILUT code to MPL2.
|
90
|
+
* See the Eigen mailing list archive, thread: ILUT, date: July 8, 2012:
|
91
|
+
* http://listengine.tuxfamily.org/lists.tuxfamily.org/eigen/2012/07/msg00064.html
|
92
|
+
* alternatively, on GMANE:
|
93
|
+
* http://comments.gmane.org/gmane.comp.lib.eigen/3302
|
94
|
+
*/
|
95
|
+
template <typename _Scalar>
|
96
|
+
class IncompleteLUT : internal::noncopyable
|
97
|
+
{
|
98
|
+
typedef _Scalar Scalar;
|
99
|
+
typedef typename NumTraits<Scalar>::Real RealScalar;
|
100
|
+
typedef Matrix<Scalar,Dynamic,1> Vector;
|
101
|
+
typedef SparseMatrix<Scalar,RowMajor> FactorType;
|
102
|
+
typedef SparseMatrix<Scalar,ColMajor> PermutType;
|
103
|
+
typedef typename FactorType::Index Index;
|
104
|
+
|
105
|
+
public:
|
106
|
+
typedef Matrix<Scalar,Dynamic,Dynamic> MatrixType;
|
107
|
+
|
108
|
+
IncompleteLUT()
|
109
|
+
: m_droptol(NumTraits<Scalar>::dummy_precision()), m_fillfactor(10),
|
110
|
+
m_analysisIsOk(false), m_factorizationIsOk(false), m_isInitialized(false)
|
111
|
+
{}
|
112
|
+
|
113
|
+
template<typename MatrixType>
|
114
|
+
IncompleteLUT(const MatrixType& mat, const RealScalar& droptol=NumTraits<Scalar>::dummy_precision(), int fillfactor = 10)
|
115
|
+
: m_droptol(droptol),m_fillfactor(fillfactor),
|
116
|
+
m_analysisIsOk(false),m_factorizationIsOk(false),m_isInitialized(false)
|
117
|
+
{
|
118
|
+
eigen_assert(fillfactor != 0);
|
119
|
+
compute(mat);
|
120
|
+
}
|
121
|
+
|
122
|
+
Index rows() const { return m_lu.rows(); }
|
123
|
+
|
124
|
+
Index cols() const { return m_lu.cols(); }
|
125
|
+
|
126
|
+
/** \brief Reports whether previous computation was successful.
|
127
|
+
*
|
128
|
+
* \returns \c Success if computation was succesful,
|
129
|
+
* \c NumericalIssue if the matrix.appears to be negative.
|
130
|
+
*/
|
131
|
+
ComputationInfo info() const
|
132
|
+
{
|
133
|
+
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
|
134
|
+
return m_info;
|
135
|
+
}
|
136
|
+
|
137
|
+
template<typename MatrixType>
|
138
|
+
void analyzePattern(const MatrixType& amat);
|
139
|
+
|
140
|
+
template<typename MatrixType>
|
141
|
+
void factorize(const MatrixType& amat);
|
142
|
+
|
143
|
+
/**
|
144
|
+
* Compute an incomplete LU factorization with dual threshold on the matrix mat
|
145
|
+
* No pivoting is done in this version
|
146
|
+
*
|
147
|
+
**/
|
148
|
+
template<typename MatrixType>
|
149
|
+
IncompleteLUT<Scalar>& compute(const MatrixType& amat)
|
150
|
+
{
|
151
|
+
analyzePattern(amat);
|
152
|
+
factorize(amat);
|
153
|
+
return *this;
|
154
|
+
}
|
155
|
+
|
156
|
+
void setDroptol(const RealScalar& droptol);
|
157
|
+
void setFillfactor(int fillfactor);
|
158
|
+
|
159
|
+
template<typename Rhs, typename Dest>
|
160
|
+
void _solve(const Rhs& b, Dest& x) const
|
161
|
+
{
|
162
|
+
x = m_Pinv * b;
|
163
|
+
x = m_lu.template triangularView<UnitLower>().solve(x);
|
164
|
+
x = m_lu.template triangularView<Upper>().solve(x);
|
165
|
+
x = m_P * x;
|
166
|
+
}
|
167
|
+
|
168
|
+
template<typename Rhs> inline const internal::solve_retval<IncompleteLUT, Rhs>
|
169
|
+
solve(const MatrixBase<Rhs>& b) const
|
170
|
+
{
|
171
|
+
eigen_assert(m_isInitialized && "IncompleteLUT is not initialized.");
|
172
|
+
eigen_assert(cols()==b.rows()
|
173
|
+
&& "IncompleteLUT::solve(): invalid number of rows of the right hand side matrix b");
|
174
|
+
return internal::solve_retval<IncompleteLUT, Rhs>(*this, b.derived());
|
175
|
+
}
|
176
|
+
|
177
|
+
protected:
|
178
|
+
|
179
|
+
/** keeps off-diagonal entries; drops diagonal entries */
|
180
|
+
struct keep_diag {
|
181
|
+
inline bool operator() (const Index& row, const Index& col, const Scalar&) const
|
182
|
+
{
|
183
|
+
return row!=col;
|
184
|
+
}
|
185
|
+
};
|
186
|
+
|
187
|
+
protected:
|
188
|
+
|
189
|
+
FactorType m_lu;
|
190
|
+
RealScalar m_droptol;
|
191
|
+
int m_fillfactor;
|
192
|
+
bool m_analysisIsOk;
|
193
|
+
bool m_factorizationIsOk;
|
194
|
+
bool m_isInitialized;
|
195
|
+
ComputationInfo m_info;
|
196
|
+
PermutationMatrix<Dynamic,Dynamic,Index> m_P; // Fill-reducing permutation
|
197
|
+
PermutationMatrix<Dynamic,Dynamic,Index> m_Pinv; // Inverse permutation
|
198
|
+
};
|
199
|
+
|
200
|
+
/**
|
201
|
+
* Set control parameter droptol
|
202
|
+
* \param droptol Drop any element whose magnitude is less than this tolerance
|
203
|
+
**/
|
204
|
+
template<typename Scalar>
|
205
|
+
void IncompleteLUT<Scalar>::setDroptol(const RealScalar& droptol)
|
206
|
+
{
|
207
|
+
this->m_droptol = droptol;
|
208
|
+
}
|
209
|
+
|
210
|
+
/**
|
211
|
+
* Set control parameter fillfactor
|
212
|
+
* \param fillfactor This is used to compute the number @p fill_in of largest elements to keep on each row.
|
213
|
+
**/
|
214
|
+
template<typename Scalar>
|
215
|
+
void IncompleteLUT<Scalar>::setFillfactor(int fillfactor)
|
216
|
+
{
|
217
|
+
this->m_fillfactor = fillfactor;
|
218
|
+
}
|
219
|
+
|
220
|
+
template <typename Scalar>
|
221
|
+
template<typename _MatrixType>
|
222
|
+
void IncompleteLUT<Scalar>::analyzePattern(const _MatrixType& amat)
|
223
|
+
{
|
224
|
+
// Compute the Fill-reducing permutation
|
225
|
+
// Since ILUT does not perform any numerical pivoting,
|
226
|
+
// it is highly preferable to keep the diagonal through symmetric permutations.
|
227
|
+
#ifndef EIGEN_MPL2_ONLY
|
228
|
+
// To this end, let's symmetrize the pattern and perform AMD on it.
|
229
|
+
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
|
230
|
+
SparseMatrix<Scalar,ColMajor, Index> mat2 = amat.transpose();
|
231
|
+
// FIXME for a matrix with nearly symmetric pattern, mat2+mat1 is the appropriate choice.
|
232
|
+
// on the other hand for a really non-symmetric pattern, mat2*mat1 should be prefered...
|
233
|
+
SparseMatrix<Scalar,ColMajor, Index> AtA = mat2 + mat1;
|
234
|
+
AMDOrdering<Index> ordering;
|
235
|
+
ordering(AtA,m_P);
|
236
|
+
m_Pinv = m_P.inverse(); // cache the inverse permutation
|
237
|
+
#else
|
238
|
+
// If AMD is not available, (MPL2-only), then let's use the slower COLAMD routine.
|
239
|
+
SparseMatrix<Scalar,ColMajor, Index> mat1 = amat;
|
240
|
+
COLAMDOrdering<Index> ordering;
|
241
|
+
ordering(mat1,m_Pinv);
|
242
|
+
m_P = m_Pinv.inverse();
|
243
|
+
#endif
|
244
|
+
|
245
|
+
m_analysisIsOk = true;
|
246
|
+
m_factorizationIsOk = false;
|
247
|
+
m_isInitialized = false;
|
248
|
+
}
|
249
|
+
|
250
|
+
template <typename Scalar>
|
251
|
+
template<typename _MatrixType>
|
252
|
+
void IncompleteLUT<Scalar>::factorize(const _MatrixType& amat)
|
253
|
+
{
|
254
|
+
using std::sqrt;
|
255
|
+
using std::swap;
|
256
|
+
using std::abs;
|
257
|
+
|
258
|
+
eigen_assert((amat.rows() == amat.cols()) && "The factorization should be done on a square matrix");
|
259
|
+
Index n = amat.cols(); // Size of the matrix
|
260
|
+
m_lu.resize(n,n);
|
261
|
+
// Declare Working vectors and variables
|
262
|
+
Vector u(n) ; // real values of the row -- maximum size is n --
|
263
|
+
VectorXi ju(n); // column position of the values in u -- maximum size is n
|
264
|
+
VectorXi jr(n); // Indicate the position of the nonzero elements in the vector u -- A zero location is indicated by -1
|
265
|
+
|
266
|
+
// Apply the fill-reducing permutation
|
267
|
+
eigen_assert(m_analysisIsOk && "You must first call analyzePattern()");
|
268
|
+
SparseMatrix<Scalar,RowMajor, Index> mat;
|
269
|
+
mat = amat.twistedBy(m_Pinv);
|
270
|
+
|
271
|
+
// Initialization
|
272
|
+
jr.fill(-1);
|
273
|
+
ju.fill(0);
|
274
|
+
u.fill(0);
|
275
|
+
|
276
|
+
// number of largest elements to keep in each row:
|
277
|
+
Index fill_in = static_cast<Index> (amat.nonZeros()*m_fillfactor)/n+1;
|
278
|
+
if (fill_in > n) fill_in = n;
|
279
|
+
|
280
|
+
// number of largest nonzero elements to keep in the L and the U part of the current row:
|
281
|
+
Index nnzL = fill_in/2;
|
282
|
+
Index nnzU = nnzL;
|
283
|
+
m_lu.reserve(n * (nnzL + nnzU + 1));
|
284
|
+
|
285
|
+
// global loop over the rows of the sparse matrix
|
286
|
+
for (Index ii = 0; ii < n; ii++)
|
287
|
+
{
|
288
|
+
// 1 - copy the lower and the upper part of the row i of mat in the working vector u
|
289
|
+
|
290
|
+
Index sizeu = 1; // number of nonzero elements in the upper part of the current row
|
291
|
+
Index sizel = 0; // number of nonzero elements in the lower part of the current row
|
292
|
+
ju(ii) = ii;
|
293
|
+
u(ii) = 0;
|
294
|
+
jr(ii) = ii;
|
295
|
+
RealScalar rownorm = 0;
|
296
|
+
|
297
|
+
typename FactorType::InnerIterator j_it(mat, ii); // Iterate through the current row ii
|
298
|
+
for (; j_it; ++j_it)
|
299
|
+
{
|
300
|
+
Index k = j_it.index();
|
301
|
+
if (k < ii)
|
302
|
+
{
|
303
|
+
// copy the lower part
|
304
|
+
ju(sizel) = k;
|
305
|
+
u(sizel) = j_it.value();
|
306
|
+
jr(k) = sizel;
|
307
|
+
++sizel;
|
308
|
+
}
|
309
|
+
else if (k == ii)
|
310
|
+
{
|
311
|
+
u(ii) = j_it.value();
|
312
|
+
}
|
313
|
+
else
|
314
|
+
{
|
315
|
+
// copy the upper part
|
316
|
+
Index jpos = ii + sizeu;
|
317
|
+
ju(jpos) = k;
|
318
|
+
u(jpos) = j_it.value();
|
319
|
+
jr(k) = jpos;
|
320
|
+
++sizeu;
|
321
|
+
}
|
322
|
+
rownorm += numext::abs2(j_it.value());
|
323
|
+
}
|
324
|
+
|
325
|
+
// 2 - detect possible zero row
|
326
|
+
if(rownorm==0)
|
327
|
+
{
|
328
|
+
m_info = NumericalIssue;
|
329
|
+
return;
|
330
|
+
}
|
331
|
+
// Take the 2-norm of the current row as a relative tolerance
|
332
|
+
rownorm = sqrt(rownorm);
|
333
|
+
|
334
|
+
// 3 - eliminate the previous nonzero rows
|
335
|
+
Index jj = 0;
|
336
|
+
Index len = 0;
|
337
|
+
while (jj < sizel)
|
338
|
+
{
|
339
|
+
// In order to eliminate in the correct order,
|
340
|
+
// we must select first the smallest column index among ju(jj:sizel)
|
341
|
+
Index k;
|
342
|
+
Index minrow = ju.segment(jj,sizel-jj).minCoeff(&k); // k is relative to the segment
|
343
|
+
k += jj;
|
344
|
+
if (minrow != ju(jj))
|
345
|
+
{
|
346
|
+
// swap the two locations
|
347
|
+
Index j = ju(jj);
|
348
|
+
swap(ju(jj), ju(k));
|
349
|
+
jr(minrow) = jj; jr(j) = k;
|
350
|
+
swap(u(jj), u(k));
|
351
|
+
}
|
352
|
+
// Reset this location
|
353
|
+
jr(minrow) = -1;
|
354
|
+
|
355
|
+
// Start elimination
|
356
|
+
typename FactorType::InnerIterator ki_it(m_lu, minrow);
|
357
|
+
while (ki_it && ki_it.index() < minrow) ++ki_it;
|
358
|
+
eigen_internal_assert(ki_it && ki_it.col()==minrow);
|
359
|
+
Scalar fact = u(jj) / ki_it.value();
|
360
|
+
|
361
|
+
// drop too small elements
|
362
|
+
if(abs(fact) <= m_droptol)
|
363
|
+
{
|
364
|
+
jj++;
|
365
|
+
continue;
|
366
|
+
}
|
367
|
+
|
368
|
+
// linear combination of the current row ii and the row minrow
|
369
|
+
++ki_it;
|
370
|
+
for (; ki_it; ++ki_it)
|
371
|
+
{
|
372
|
+
Scalar prod = fact * ki_it.value();
|
373
|
+
Index j = ki_it.index();
|
374
|
+
Index jpos = jr(j);
|
375
|
+
if (jpos == -1) // fill-in element
|
376
|
+
{
|
377
|
+
Index newpos;
|
378
|
+
if (j >= ii) // dealing with the upper part
|
379
|
+
{
|
380
|
+
newpos = ii + sizeu;
|
381
|
+
sizeu++;
|
382
|
+
eigen_internal_assert(sizeu<=n);
|
383
|
+
}
|
384
|
+
else // dealing with the lower part
|
385
|
+
{
|
386
|
+
newpos = sizel;
|
387
|
+
sizel++;
|
388
|
+
eigen_internal_assert(sizel<=ii);
|
389
|
+
}
|
390
|
+
ju(newpos) = j;
|
391
|
+
u(newpos) = -prod;
|
392
|
+
jr(j) = newpos;
|
393
|
+
}
|
394
|
+
else
|
395
|
+
u(jpos) -= prod;
|
396
|
+
}
|
397
|
+
// store the pivot element
|
398
|
+
u(len) = fact;
|
399
|
+
ju(len) = minrow;
|
400
|
+
++len;
|
401
|
+
|
402
|
+
jj++;
|
403
|
+
} // end of the elimination on the row ii
|
404
|
+
|
405
|
+
// reset the upper part of the pointer jr to zero
|
406
|
+
for(Index k = 0; k <sizeu; k++) jr(ju(ii+k)) = -1;
|
407
|
+
|
408
|
+
// 4 - partially sort and insert the elements in the m_lu matrix
|
409
|
+
|
410
|
+
// sort the L-part of the row
|
411
|
+
sizel = len;
|
412
|
+
len = (std::min)(sizel, nnzL);
|
413
|
+
typename Vector::SegmentReturnType ul(u.segment(0, sizel));
|
414
|
+
typename VectorXi::SegmentReturnType jul(ju.segment(0, sizel));
|
415
|
+
internal::QuickSplit(ul, jul, len);
|
416
|
+
|
417
|
+
// store the largest m_fill elements of the L part
|
418
|
+
m_lu.startVec(ii);
|
419
|
+
for(Index k = 0; k < len; k++)
|
420
|
+
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
421
|
+
|
422
|
+
// store the diagonal element
|
423
|
+
// apply a shifting rule to avoid zero pivots (we are doing an incomplete factorization)
|
424
|
+
if (u(ii) == Scalar(0))
|
425
|
+
u(ii) = sqrt(m_droptol) * rownorm;
|
426
|
+
m_lu.insertBackByOuterInnerUnordered(ii, ii) = u(ii);
|
427
|
+
|
428
|
+
// sort the U-part of the row
|
429
|
+
// apply the dropping rule first
|
430
|
+
len = 0;
|
431
|
+
for(Index k = 1; k < sizeu; k++)
|
432
|
+
{
|
433
|
+
if(abs(u(ii+k)) > m_droptol * rownorm )
|
434
|
+
{
|
435
|
+
++len;
|
436
|
+
u(ii + len) = u(ii + k);
|
437
|
+
ju(ii + len) = ju(ii + k);
|
438
|
+
}
|
439
|
+
}
|
440
|
+
sizeu = len + 1; // +1 to take into account the diagonal element
|
441
|
+
len = (std::min)(sizeu, nnzU);
|
442
|
+
typename Vector::SegmentReturnType uu(u.segment(ii+1, sizeu-1));
|
443
|
+
typename VectorXi::SegmentReturnType juu(ju.segment(ii+1, sizeu-1));
|
444
|
+
internal::QuickSplit(uu, juu, len);
|
445
|
+
|
446
|
+
// store the largest elements of the U part
|
447
|
+
for(Index k = ii + 1; k < ii + len; k++)
|
448
|
+
m_lu.insertBackByOuterInnerUnordered(ii,ju(k)) = u(k);
|
449
|
+
}
|
450
|
+
|
451
|
+
m_lu.finalize();
|
452
|
+
m_lu.makeCompressed();
|
453
|
+
|
454
|
+
m_factorizationIsOk = true;
|
455
|
+
m_isInitialized = m_factorizationIsOk;
|
456
|
+
m_info = Success;
|
457
|
+
}
|
458
|
+
|
459
|
+
namespace internal {
|
460
|
+
|
461
|
+
template<typename _MatrixType, typename Rhs>
|
462
|
+
struct solve_retval<IncompleteLUT<_MatrixType>, Rhs>
|
463
|
+
: solve_retval_base<IncompleteLUT<_MatrixType>, Rhs>
|
464
|
+
{
|
465
|
+
typedef IncompleteLUT<_MatrixType> Dec;
|
466
|
+
EIGEN_MAKE_SOLVE_HELPERS(Dec,Rhs)
|
467
|
+
|
468
|
+
template<typename Dest> void evalTo(Dest& dst) const
|
469
|
+
{
|
470
|
+
dec()._solve(rhs(),dst);
|
471
|
+
}
|
472
|
+
};
|
473
|
+
|
474
|
+
} // end namespace internal
|
475
|
+
|
476
|
+
} // end namespace Eigen
|
477
|
+
|
478
|
+
#endif // EIGEN_INCOMPLETE_LUT_H
|
@@ -0,0 +1,154 @@
|
|
1
|
+
|
2
|
+
// This file is part of Eigen, a lightweight C++ template library
|
3
|
+
// for linear algebra.
|
4
|
+
//
|
5
|
+
// Copyright (C) 2012 Désiré Nuentsa-Wakam <desire.nuentsa_wakam@inria.fr>
|
6
|
+
//
|
7
|
+
// This Source Code Form is subject to the terms of the Mozilla
|
8
|
+
// Public License v. 2.0. If a copy of the MPL was not distributed
|
9
|
+
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
10
|
+
|
11
|
+
#ifndef EIGEN_ORDERING_H
|
12
|
+
#define EIGEN_ORDERING_H
|
13
|
+
|
14
|
+
namespace Eigen {
|
15
|
+
|
16
|
+
#include "Eigen_Colamd.h"
|
17
|
+
|
18
|
+
namespace internal {
|
19
|
+
|
20
|
+
/** \internal
|
21
|
+
* \ingroup OrderingMethods_Module
|
22
|
+
* \returns the symmetric pattern A^T+A from the input matrix A.
|
23
|
+
* FIXME: The values should not be considered here
|
24
|
+
*/
|
25
|
+
template<typename MatrixType>
|
26
|
+
void ordering_helper_at_plus_a(const MatrixType& mat, MatrixType& symmat)
|
27
|
+
{
|
28
|
+
MatrixType C;
|
29
|
+
C = mat.transpose(); // NOTE: Could be costly
|
30
|
+
for (int i = 0; i < C.rows(); i++)
|
31
|
+
{
|
32
|
+
for (typename MatrixType::InnerIterator it(C, i); it; ++it)
|
33
|
+
it.valueRef() = 0.0;
|
34
|
+
}
|
35
|
+
symmat = C + mat;
|
36
|
+
}
|
37
|
+
|
38
|
+
}
|
39
|
+
|
40
|
+
#ifndef EIGEN_MPL2_ONLY
|
41
|
+
|
42
|
+
/** \ingroup OrderingMethods_Module
|
43
|
+
* \class AMDOrdering
|
44
|
+
*
|
45
|
+
* Functor computing the \em approximate \em minimum \em degree ordering
|
46
|
+
* If the matrix is not structurally symmetric, an ordering of A^T+A is computed
|
47
|
+
* \tparam Index The type of indices of the matrix
|
48
|
+
* \sa COLAMDOrdering
|
49
|
+
*/
|
50
|
+
template <typename Index>
|
51
|
+
class AMDOrdering
|
52
|
+
{
|
53
|
+
public:
|
54
|
+
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
55
|
+
|
56
|
+
/** Compute the permutation vector from a sparse matrix
|
57
|
+
* This routine is much faster if the input matrix is column-major
|
58
|
+
*/
|
59
|
+
template <typename MatrixType>
|
60
|
+
void operator()(const MatrixType& mat, PermutationType& perm)
|
61
|
+
{
|
62
|
+
// Compute the symmetric pattern
|
63
|
+
SparseMatrix<typename MatrixType::Scalar, ColMajor, Index> symm;
|
64
|
+
internal::ordering_helper_at_plus_a(mat,symm);
|
65
|
+
|
66
|
+
// Call the AMD routine
|
67
|
+
//m_mat.prune(keep_diag());
|
68
|
+
internal::minimum_degree_ordering(symm, perm);
|
69
|
+
}
|
70
|
+
|
71
|
+
/** Compute the permutation with a selfadjoint matrix */
|
72
|
+
template <typename SrcType, unsigned int SrcUpLo>
|
73
|
+
void operator()(const SparseSelfAdjointView<SrcType, SrcUpLo>& mat, PermutationType& perm)
|
74
|
+
{
|
75
|
+
SparseMatrix<typename SrcType::Scalar, ColMajor, Index> C; C = mat;
|
76
|
+
|
77
|
+
// Call the AMD routine
|
78
|
+
// m_mat.prune(keep_diag()); //Remove the diagonal elements
|
79
|
+
internal::minimum_degree_ordering(C, perm);
|
80
|
+
}
|
81
|
+
};
|
82
|
+
|
83
|
+
#endif // EIGEN_MPL2_ONLY
|
84
|
+
|
85
|
+
/** \ingroup OrderingMethods_Module
|
86
|
+
* \class NaturalOrdering
|
87
|
+
*
|
88
|
+
* Functor computing the natural ordering (identity)
|
89
|
+
*
|
90
|
+
* \note Returns an empty permutation matrix
|
91
|
+
* \tparam Index The type of indices of the matrix
|
92
|
+
*/
|
93
|
+
template <typename Index>
|
94
|
+
class NaturalOrdering
|
95
|
+
{
|
96
|
+
public:
|
97
|
+
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
98
|
+
|
99
|
+
/** Compute the permutation vector from a column-major sparse matrix */
|
100
|
+
template <typename MatrixType>
|
101
|
+
void operator()(const MatrixType& /*mat*/, PermutationType& perm)
|
102
|
+
{
|
103
|
+
perm.resize(0);
|
104
|
+
}
|
105
|
+
|
106
|
+
};
|
107
|
+
|
108
|
+
/** \ingroup OrderingMethods_Module
|
109
|
+
* \class COLAMDOrdering
|
110
|
+
*
|
111
|
+
* Functor computing the \em column \em approximate \em minimum \em degree ordering
|
112
|
+
* The matrix should be in column-major and \b compressed format (see SparseMatrix::makeCompressed()).
|
113
|
+
*/
|
114
|
+
template<typename Index>
|
115
|
+
class COLAMDOrdering
|
116
|
+
{
|
117
|
+
public:
|
118
|
+
typedef PermutationMatrix<Dynamic, Dynamic, Index> PermutationType;
|
119
|
+
typedef Matrix<Index, Dynamic, 1> IndexVector;
|
120
|
+
|
121
|
+
/** Compute the permutation vector \a perm form the sparse matrix \a mat
|
122
|
+
* \warning The input sparse matrix \a mat must be in compressed mode (see SparseMatrix::makeCompressed()).
|
123
|
+
*/
|
124
|
+
template <typename MatrixType>
|
125
|
+
void operator() (const MatrixType& mat, PermutationType& perm)
|
126
|
+
{
|
127
|
+
eigen_assert(mat.isCompressed() && "COLAMDOrdering requires a sparse matrix in compressed mode. Call .makeCompressed() before passing it to COLAMDOrdering");
|
128
|
+
|
129
|
+
Index m = mat.rows();
|
130
|
+
Index n = mat.cols();
|
131
|
+
Index nnz = mat.nonZeros();
|
132
|
+
// Get the recommended value of Alen to be used by colamd
|
133
|
+
Index Alen = internal::colamd_recommended(nnz, m, n);
|
134
|
+
// Set the default parameters
|
135
|
+
double knobs [COLAMD_KNOBS];
|
136
|
+
Index stats [COLAMD_STATS];
|
137
|
+
internal::colamd_set_defaults(knobs);
|
138
|
+
|
139
|
+
IndexVector p(n+1), A(Alen);
|
140
|
+
for(Index i=0; i <= n; i++) p(i) = mat.outerIndexPtr()[i];
|
141
|
+
for(Index i=0; i < nnz; i++) A(i) = mat.innerIndexPtr()[i];
|
142
|
+
// Call Colamd routine to compute the ordering
|
143
|
+
Index info = internal::colamd(m, n, Alen, A.data(), p.data(), knobs, stats);
|
144
|
+
EIGEN_UNUSED_VARIABLE(info);
|
145
|
+
eigen_assert( info && "COLAMD failed " );
|
146
|
+
|
147
|
+
perm.resize(n);
|
148
|
+
for (Index i = 0; i < n; i++) perm.indices()(p(i)) = i;
|
149
|
+
}
|
150
|
+
};
|
151
|
+
|
152
|
+
} // end namespace Eigen
|
153
|
+
|
154
|
+
#endif
|