ruby-dnn 1.2.3 → 1.3.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/examples/dcgan/dcgan.rb +1 -1
- data/examples/iris_example.rb +17 -41
- data/examples/iris_example_unused_model.rb +57 -0
- data/examples/vae.rb +1 -1
- data/lib/dnn/core/callbacks.rb +18 -8
- data/lib/dnn/core/iterator.rb +20 -4
- data/lib/dnn/core/layers/rnn_layers.rb +20 -24
- data/lib/dnn/core/models.rb +474 -149
- data/lib/dnn/core/savers.rb +4 -12
- data/lib/dnn/core/utils.rb +14 -0
- data/lib/dnn/datasets/iris.rb +5 -1
- data/lib/dnn/version.rb +1 -1
- data/lib/dnn.rb +32 -26
- metadata +3 -2
data/lib/dnn/core/models.rb
CHANGED
@@ -130,6 +130,7 @@ module DNN
|
|
130
130
|
@loss_weights = nil
|
131
131
|
@callbacks = []
|
132
132
|
@last_log = {}
|
133
|
+
@early_stop_requested = false
|
133
134
|
end
|
134
135
|
|
135
136
|
def call(input_tensors)
|
@@ -182,21 +183,24 @@ module DNN
|
|
182
183
|
# @param [Array | NilClass] test If you to test the model for every 1 epoch,
|
183
184
|
# specify [x_test, y_test]. Don't test to the model, specify nil.
|
184
185
|
# @param [Boolean] verbose Set true to display the log. If false is set, the log is not displayed.
|
185
|
-
# @param [Boolean]
|
186
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
187
|
+
# @param [IO] io Specifies the IO object to use for logging.
|
186
188
|
def train(x, y, epochs,
|
187
189
|
batch_size: 1,
|
188
190
|
initial_epoch: 1,
|
189
191
|
test: nil,
|
190
192
|
verbose: true,
|
191
|
-
|
192
|
-
|
193
|
-
|
194
|
-
|
195
|
-
|
196
|
-
|
197
|
-
|
198
|
-
|
199
|
-
|
193
|
+
need_accuracy: true,
|
194
|
+
io: $stdout)
|
195
|
+
trainer = ModelTrainer.new(self)
|
196
|
+
trainer.start_train(x, y, epochs,
|
197
|
+
batch_size: batch_size,
|
198
|
+
initial_epoch: initial_epoch,
|
199
|
+
test: test,
|
200
|
+
verbose: verbose,
|
201
|
+
need_accuracy: need_accuracy,
|
202
|
+
io: io)
|
203
|
+
trainer.update while trainer.training?
|
200
204
|
end
|
201
205
|
|
202
206
|
alias fit train
|
@@ -210,70 +214,24 @@ module DNN
|
|
210
214
|
# @param [Array | NilClass] test If you to test the model for every 1 epoch,
|
211
215
|
# specify [x_test, y_test]. Don't test to the model, specify nil.
|
212
216
|
# @param [Boolean] verbose Set true to display the log. If false is set, the log is not displayed.
|
213
|
-
# @param [Boolean]
|
217
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
218
|
+
# @param [IO] io Specifies the IO object to use for logging.
|
214
219
|
def train_by_iterator(train_iterator, epochs,
|
215
220
|
batch_size: 1,
|
216
221
|
initial_epoch: 1,
|
217
222
|
test: nil,
|
218
223
|
verbose: true,
|
219
|
-
|
220
|
-
|
221
|
-
|
222
|
-
|
223
|
-
|
224
|
-
|
225
|
-
|
226
|
-
|
227
|
-
|
228
|
-
|
229
|
-
|
230
|
-
puts "【 epoch #{epoch}/#{epochs} 】" if verbose
|
231
|
-
|
232
|
-
train_iterator.foreach(batch_size) do |x_batch, y_batch, index|
|
233
|
-
@last_log[:step] = index
|
234
|
-
train_step_met = train_step(x_batch, y_batch)
|
235
|
-
num_trained_datas = (index + 1) * batch_size
|
236
|
-
num_trained_datas = num_trained_datas > num_train_datas ? num_train_datas : num_trained_datas
|
237
|
-
log = "\r"
|
238
|
-
40.times do |i|
|
239
|
-
if i < num_trained_datas * 40 / num_train_datas
|
240
|
-
log << "="
|
241
|
-
elsif i == num_trained_datas * 40 / num_train_datas
|
242
|
-
log << ">"
|
243
|
-
else
|
244
|
-
log << "_"
|
245
|
-
end
|
246
|
-
end
|
247
|
-
|
248
|
-
log << " #{num_trained_datas}/#{num_train_datas} "
|
249
|
-
log << metrics_to_str(train_step_met)
|
250
|
-
print log if verbose
|
251
|
-
end
|
252
|
-
|
253
|
-
if test
|
254
|
-
acc, loss = if test.is_a?(Array)
|
255
|
-
evaluate(test[0], test[1], batch_size: batch_size, accuracy: accuracy)
|
256
|
-
else
|
257
|
-
evaluate_by_iterator(test, batch_size: batch_size, accuracy: accuracy)
|
258
|
-
end
|
259
|
-
if verbose
|
260
|
-
metrics = if accuracy
|
261
|
-
{ accuracy: acc, test_loss: loss }
|
262
|
-
else
|
263
|
-
{ test_loss: loss }
|
264
|
-
end
|
265
|
-
print " " + metrics_to_str(metrics)
|
266
|
-
end
|
267
|
-
end
|
268
|
-
puts "" if verbose
|
269
|
-
call_callbacks(:after_epoch)
|
270
|
-
end
|
271
|
-
nil
|
272
|
-
end
|
273
|
-
|
274
|
-
if stopped
|
275
|
-
puts "\n#{stopped}" if verbose
|
276
|
-
end
|
224
|
+
need_accuracy: true,
|
225
|
+
io: $stdout)
|
226
|
+
trainer = ModelTrainer.new(self)
|
227
|
+
trainer.start_train_by_iterator(train_iterator, epochs,
|
228
|
+
batch_size: batch_size,
|
229
|
+
initial_epoch: initial_epoch,
|
230
|
+
test: test,
|
231
|
+
verbose: verbose,
|
232
|
+
need_accuracy: need_accuracy,
|
233
|
+
io: io)
|
234
|
+
trainer.update while trainer.training?
|
277
235
|
end
|
278
236
|
|
279
237
|
alias fit_by_iterator train_by_iterator
|
@@ -281,128 +239,154 @@ module DNN
|
|
281
239
|
# Implement the training process to be performed in one step.
|
282
240
|
# @param [Numo::SFloat] x Input training data.
|
283
241
|
# @param [Numo::SFloat] y Output training data.
|
242
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
284
243
|
# @return [Hash] Hash of contents to be output to log.
|
285
|
-
|
286
|
-
|
287
|
-
|
244
|
+
def train_step(x, y, need_accuracy: false)
|
245
|
+
output_data, loss_data = train_on_batch_internal(x, y)
|
246
|
+
if loss_data.is_a?(Array)
|
247
|
+
loss_value = []
|
248
|
+
acc = [] if need_accuracy
|
249
|
+
loss_data.each_index do |i|
|
250
|
+
loss_value << Utils.to_f(loss_data)
|
251
|
+
acc << accuracy(output_data[i], y[i]).to_f / y[i].shape[0] if need_accuracy
|
252
|
+
end
|
253
|
+
else
|
254
|
+
loss_value = Utils.to_f(loss_data)
|
255
|
+
acc = accuracy(output_data, y).to_f / y.shape[0] if need_accuracy
|
256
|
+
end
|
257
|
+
if need_accuracy
|
258
|
+
{ loss: loss_value, accuracy: acc }
|
259
|
+
else
|
260
|
+
{ loss: loss_value }
|
261
|
+
end
|
288
262
|
end
|
289
263
|
|
290
264
|
# Training once.
|
291
265
|
# Setup the model before use this method.
|
292
266
|
# @param [Numo::SFloat] x Input training data.
|
293
267
|
# @param [Numo::SFloat] y Output training data.
|
294
|
-
# @return [Float |
|
268
|
+
# @return [Float | Array] Return loss value in the form of Float or Array.
|
295
269
|
def train_on_batch(x, y)
|
296
270
|
raise DNNError, "The model is not optimizer setup complete." unless @optimizer
|
297
271
|
raise DNNError, "The model is not loss_func setup complete." unless @loss_func
|
298
|
-
|
299
|
-
|
272
|
+
Utils.check_input_data_type("x", x, Xumo::SFloat)
|
273
|
+
Utils.check_input_data_type("y", y, Xumo::SFloat)
|
274
|
+
*, loss_data = train_on_batch_internal(x, y)
|
275
|
+
if loss_data.is_a?(Array)
|
276
|
+
loss_data.map { |v| Utils.to_f(v) }
|
277
|
+
else
|
278
|
+
Utils.to_f(loss_data)
|
279
|
+
end
|
280
|
+
end
|
281
|
+
|
282
|
+
private def train_on_batch_internal(x, y)
|
300
283
|
DNN.learning_phase = true
|
301
284
|
output_tensors = call(Tensor.convert(x))
|
302
285
|
if output_tensors.is_a?(Array)
|
286
|
+
output_data = []
|
303
287
|
loss_data = []
|
304
288
|
output_tensors.each.with_index do |out, i|
|
289
|
+
output_data << out.data
|
305
290
|
loss_opt = {}
|
306
291
|
loss_opt[:layers] = layers if i == 0
|
307
292
|
loss_opt[:loss_weight] = @loss_weights[i] if @loss_weights
|
308
293
|
loss = @loss_func[i].loss(out, Tensor.convert(y[i]), **loss_opt)
|
309
|
-
loss_data <<
|
294
|
+
loss_data << loss.data
|
310
295
|
loss.link.backward(Xumo::SFloat.ones(y[i][0...1, false].shape[0], 1))
|
311
296
|
end
|
312
297
|
else
|
313
298
|
out = output_tensors
|
299
|
+
output_data = out.data
|
314
300
|
loss = @loss_func.loss(out, Tensor.convert(y), layers: layers)
|
315
|
-
loss_data =
|
301
|
+
loss_data = loss.data
|
316
302
|
loss.link.backward(Xumo::SFloat.ones(y[0...1, false].shape[0], 1))
|
317
303
|
end
|
318
304
|
@optimizer.update(get_all_trainable_params)
|
319
|
-
|
320
|
-
call_callbacks(:after_train_on_batch)
|
321
|
-
loss_data
|
305
|
+
[output_data, loss_data]
|
322
306
|
end
|
323
307
|
|
324
308
|
# Evaluate model and get accuracy and loss of test data.
|
325
309
|
# @param [Numo::SFloat] x Input test data.
|
326
310
|
# @param [Numo::SFloat] y Output test data.
|
327
311
|
# @param [Integer] batch_size Batch size used for one test.
|
312
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
328
313
|
# @return [Array] Returns the test data accuracy and mean loss in the form [accuracy, mean_loss].
|
329
314
|
# If accuracy is not needed returns in the form [nil, mean_loss].
|
330
|
-
def evaluate(x, y, batch_size: 100,
|
331
|
-
|
332
|
-
|
315
|
+
def evaluate(x, y, batch_size: 100, need_accuracy: true)
|
316
|
+
Utils.check_input_data_type("x", x, Xumo::SFloat)
|
317
|
+
Utils.check_input_data_type("y", y, Xumo::SFloat)
|
318
|
+
evaluator = ModelEvaluator.new(self)
|
319
|
+
evaluator.start_evaluate(x, y, batch_size: batch_size, need_accuracy: need_accuracy)
|
320
|
+
evaluator.update while evaluator.evaluating?
|
321
|
+
[@last_log[:test_accuracy], @last_log[:test_loss]]
|
333
322
|
end
|
334
323
|
|
335
324
|
# Evaluate model by iterator.
|
336
325
|
# @param [DNN::Iterator] test_iterator Iterator used for testing.
|
337
326
|
# @param [Integer] batch_size Batch size used for one test.
|
327
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
338
328
|
# @return [Array] Returns the test data accuracy and mean loss in the form [accuracy, mean_loss].
|
339
329
|
# If accuracy is not needed returns in the form [nil, mean_loss].
|
340
|
-
def evaluate_by_iterator(test_iterator, batch_size: 100,
|
341
|
-
|
342
|
-
batch_size
|
343
|
-
|
344
|
-
|
345
|
-
|
346
|
-
|
347
|
-
|
348
|
-
|
349
|
-
|
350
|
-
|
351
|
-
|
352
|
-
|
353
|
-
|
354
|
-
|
355
|
-
|
356
|
-
|
357
|
-
|
358
|
-
|
359
|
-
total_correct += correct if accuracy
|
360
|
-
sum_loss += loss_value
|
361
|
-
end
|
362
|
-
end
|
363
|
-
acc = nil
|
364
|
-
if @loss_func.is_a?(Array)
|
365
|
-
mean_loss = Array.new(@loss_func.length, 0)
|
366
|
-
acc = Array.new(@loss_func.length, 0) if accuracy
|
367
|
-
@loss_func.each_index do |i|
|
368
|
-
mean_loss[i] += sum_loss[i] / max_steps
|
369
|
-
acc[i] += total_correct[i].to_f / num_test_datas if accuracy
|
330
|
+
def evaluate_by_iterator(test_iterator, batch_size: 100, need_accuracy: true)
|
331
|
+
evaluator = ModelEvaluator.new(self)
|
332
|
+
evaluator.start_evaluate_by_iterator(test_iterator, batch_size: batch_size, need_accuracy: need_accuracy)
|
333
|
+
evaluator.update while evaluator.evaluating?
|
334
|
+
[@last_log[:test_accuracy], @last_log[:test_loss]]
|
335
|
+
end
|
336
|
+
|
337
|
+
# Testing process to be performed in one step.
|
338
|
+
# @param [Numo::SFloat] x Input training data.
|
339
|
+
# @param [Numo::SFloat] y Output training data.
|
340
|
+
# @return [Hash] Hash of contents to be output to log.
|
341
|
+
def test_step(x, y, need_accuracy: false)
|
342
|
+
output_data, loss_data = test_on_batch_internal(x, y)
|
343
|
+
if loss_data.is_a?(Array)
|
344
|
+
loss_value = []
|
345
|
+
accuracy = []
|
346
|
+
loss_data.each_index do |i|
|
347
|
+
loss_value << Utils.to_f(loss_data)
|
348
|
+
accuracy << accuracy(output_data[i], y[i]).to_f / y[i].shape[0]
|
370
349
|
end
|
371
350
|
else
|
372
|
-
|
373
|
-
acc = total_correct.to_f / num_test_datas if accuracy
|
351
|
+
loss_value = Utils.to_f(loss_data)
|
374
352
|
end
|
375
|
-
|
376
|
-
@last_log[:test_accuracy] = acc
|
377
|
-
[acc, mean_loss]
|
353
|
+
{ test_loss: loss_value, test_accuracy: accuracy(output_data, y) }
|
378
354
|
end
|
379
355
|
|
380
|
-
#
|
356
|
+
# Test once.
|
381
357
|
# @param [Numo::SFloat | Array] x Input test data.
|
382
358
|
# @param [Numo::SFloat | Array] y Output test data.
|
383
|
-
# @return [Array]
|
384
|
-
|
385
|
-
|
386
|
-
|
359
|
+
# @return [Float | Array] Return loss value in the form of Float or Array.
|
360
|
+
def test_on_batch(x, y)
|
361
|
+
raise DNNError, "The model is not loss_func setup complete." unless @loss_func
|
362
|
+
Utils.check_input_data_type("x", x, Xumo::SFloat)
|
363
|
+
Utils.check_input_data_type("y", y, Xumo::SFloat)
|
364
|
+
*, loss_data = test_on_batch_internal(x, y)
|
365
|
+
if loss_data.is_a?(Array)
|
366
|
+
loss_data.map { |v| Utils.to_f(v) }
|
367
|
+
else
|
368
|
+
Utils.to_f(loss_data)
|
369
|
+
end
|
370
|
+
end
|
371
|
+
|
372
|
+
private def test_on_batch_internal(x, y)
|
387
373
|
DNN.learning_phase = false
|
388
374
|
output_tensors = call(Tensor.convert(x))
|
389
|
-
correct = nil
|
390
375
|
if output_tensors.is_a?(Array)
|
391
|
-
|
376
|
+
output_data = []
|
392
377
|
loss_data = []
|
393
378
|
output_tensors.each.with_index do |out, i|
|
394
|
-
|
379
|
+
output_data << out.data
|
395
380
|
loss = @loss_func[i].(out, Tensor.convert(y[i]))
|
396
|
-
loss_data <<
|
381
|
+
loss_data << loss.data
|
397
382
|
end
|
398
383
|
else
|
399
384
|
out = output_tensors
|
400
|
-
|
385
|
+
output_data = out.data
|
401
386
|
loss = @loss_func.(out, Tensor.convert(y))
|
402
|
-
loss_data =
|
387
|
+
loss_data = loss.data
|
403
388
|
end
|
404
|
-
|
405
|
-
[correct, loss_data]
|
389
|
+
[output_data, loss_data]
|
406
390
|
end
|
407
391
|
|
408
392
|
# Implement the process to accuracy this model.
|
@@ -429,7 +413,7 @@ module DNN
|
|
429
413
|
# @param [Numo::SFloat] x Input data.
|
430
414
|
# @param [Boolean] use_loss_activation Use loss activation when loss has an activation.
|
431
415
|
def predict(x, use_loss_activation: true)
|
432
|
-
|
416
|
+
Utils.check_input_data_type("x", x, Xumo::SFloat)
|
433
417
|
DNN.learning_phase = false
|
434
418
|
output_tensors = call(Tensor.convert(x))
|
435
419
|
if output_tensors.is_a?(Array)
|
@@ -454,7 +438,7 @@ module DNN
|
|
454
438
|
# Predict one data.
|
455
439
|
# @param [Numo::SFloat] x Input data. However, x is single data.
|
456
440
|
def predict1(x, use_loss_activation: true)
|
457
|
-
|
441
|
+
Utils.check_input_data_type("x", x, Xumo::SFloat)
|
458
442
|
input = if x.is_a?(Array)
|
459
443
|
x.map { |v| v.reshape(1, *v.shape) }
|
460
444
|
else
|
@@ -618,7 +602,18 @@ module DNN
|
|
618
602
|
self
|
619
603
|
end
|
620
604
|
|
621
|
-
|
605
|
+
# Request training early stop.
|
606
|
+
def request_early_stop
|
607
|
+
@early_stop_requested = true
|
608
|
+
end
|
609
|
+
|
610
|
+
def check_early_stop_requested
|
611
|
+
if @early_stop_requested
|
612
|
+
@early_stop_requested = false
|
613
|
+
return true
|
614
|
+
end
|
615
|
+
false
|
616
|
+
end
|
622
617
|
|
623
618
|
def get_all_trainable_params
|
624
619
|
layers.select { |layer| layer.is_a?(Layers::TrainableLayer) && layer.trainable }
|
@@ -631,6 +626,245 @@ module DNN
|
|
631
626
|
callback.send(event) if callback.respond_to?(event)
|
632
627
|
end
|
633
628
|
end
|
629
|
+
end
|
630
|
+
|
631
|
+
class ModelTrainer
|
632
|
+
def initialize(model)
|
633
|
+
@model = model
|
634
|
+
@state = :none
|
635
|
+
@initial_epoch = 1
|
636
|
+
@step = 1
|
637
|
+
@max_steps = 1
|
638
|
+
@train_iterator = nil
|
639
|
+
@max_epochs = 1
|
640
|
+
@batch_size = 1
|
641
|
+
@epoch = 1
|
642
|
+
@test = nil
|
643
|
+
@verbose = false
|
644
|
+
@need_accuracy = false
|
645
|
+
@io = nil
|
646
|
+
@num_train_datas = 0
|
647
|
+
end
|
648
|
+
|
649
|
+
# Start training.
|
650
|
+
# Setup the model before use this method.
|
651
|
+
# @param [Numo::SFloat] x Input training data.
|
652
|
+
# @param [Numo::SFloat] y Output training data.
|
653
|
+
# @param [Integer] epochs Number of training.
|
654
|
+
# @param [Integer] batch_size Batch size used for one training.
|
655
|
+
# @param [Integer] initial_epoch Initial epoch.
|
656
|
+
# @param [Array | NilClass] test If you to test the model for every 1 epoch,
|
657
|
+
# specify [x_test, y_test]. Don't test to the model, specify nil.
|
658
|
+
# @param [Boolean] verbose Set true to display the log. If false is set, the log is not displayed.
|
659
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
660
|
+
# @param [IO] io Specifies the IO object to use for logging.
|
661
|
+
def start_train(x, y, epochs,
|
662
|
+
batch_size: 1,
|
663
|
+
initial_epoch: 1,
|
664
|
+
test: nil,
|
665
|
+
verbose: true,
|
666
|
+
need_accuracy: true,
|
667
|
+
io: $stdout)
|
668
|
+
Utils.check_input_data_type("x", x, Xumo::SFloat)
|
669
|
+
Utils.check_input_data_type("y", y, Xumo::SFloat)
|
670
|
+
train_iterator = Iterator.new(x, y)
|
671
|
+
start_train_by_iterator(train_iterator, epochs,
|
672
|
+
batch_size: batch_size,
|
673
|
+
initial_epoch: initial_epoch,
|
674
|
+
test: test,
|
675
|
+
verbose: verbose,
|
676
|
+
need_accuracy: need_accuracy,
|
677
|
+
io: io)
|
678
|
+
end
|
679
|
+
|
680
|
+
# Start training by iterator.
|
681
|
+
# Setup the model before use this method.
|
682
|
+
# @param [DNN::Iterator] train_iterator Iterator used for training.
|
683
|
+
# @param [Integer] epochs Number of training.
|
684
|
+
# @param [Integer] batch_size Batch size used for one training.
|
685
|
+
# @param [Integer] initial_epoch Initial epoch.
|
686
|
+
# @param [Array | NilClass] test If you to test the model for every 1 epoch,
|
687
|
+
# specify [x_test, y_test]. Don't test to the model, specify nil.
|
688
|
+
# @param [Boolean] verbose Set true to display the log. If false is set, the log is not displayed.
|
689
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
690
|
+
# @param [IO] io Specifies the IO object to use for logging.
|
691
|
+
def start_train_by_iterator(train_iterator, epochs,
|
692
|
+
batch_size: 1,
|
693
|
+
initial_epoch: 1,
|
694
|
+
test: nil,
|
695
|
+
verbose: true,
|
696
|
+
need_accuracy: true,
|
697
|
+
io: $stdout)
|
698
|
+
raise DNNError, "The model is not optimizer setup complete." unless @model.optimizer
|
699
|
+
raise DNNError, "The model is not loss_func setup complete." unless @model.loss_func
|
700
|
+
@model.check_early_stop_requested # Clear early stop request.
|
701
|
+
@train_iterator = train_iterator
|
702
|
+
@max_epochs = epochs
|
703
|
+
@batch_size = batch_size
|
704
|
+
@epoch = initial_epoch
|
705
|
+
@test = test
|
706
|
+
@verbose = verbose
|
707
|
+
@need_accuracy = need_accuracy
|
708
|
+
@io = io
|
709
|
+
@state = :start_epoch
|
710
|
+
@max_steps = train_iterator.max_steps(batch_size)
|
711
|
+
@num_train_datas = train_iterator.num_usable_datas(batch_size)
|
712
|
+
@line_first_pos = 0
|
713
|
+
@model.call_callbacks(:before_train)
|
714
|
+
end
|
715
|
+
|
716
|
+
# Check if it is currently evaluating.
|
717
|
+
# @return [Boolean] Returns true if currently training.
|
718
|
+
def training?
|
719
|
+
@state != :none
|
720
|
+
end
|
721
|
+
|
722
|
+
# Update trainer.
|
723
|
+
def update
|
724
|
+
case @state
|
725
|
+
when :start_epoch
|
726
|
+
start_epoch
|
727
|
+
when :start_step
|
728
|
+
start_step
|
729
|
+
when :train_step
|
730
|
+
train_step
|
731
|
+
when :end_step
|
732
|
+
end_step
|
733
|
+
when :end_epoch
|
734
|
+
end_epoch
|
735
|
+
when :start_evaluate
|
736
|
+
start_evaluate
|
737
|
+
when :evaluating
|
738
|
+
evaluating
|
739
|
+
when :end_evaluate
|
740
|
+
end_evaluate
|
741
|
+
when :end_training
|
742
|
+
end_training
|
743
|
+
end
|
744
|
+
end
|
745
|
+
|
746
|
+
private
|
747
|
+
|
748
|
+
def start_epoch
|
749
|
+
@model.last_log[:epoch] = @epoch
|
750
|
+
@model.call_callbacks(:before_epoch)
|
751
|
+
@io.puts "【 epoch #{@epoch}/#{@max_epochs} 】" if @verbose
|
752
|
+
@step = 1
|
753
|
+
@state = :start_step
|
754
|
+
end
|
755
|
+
|
756
|
+
def start_step
|
757
|
+
@model.last_log[:step] = @step
|
758
|
+
@state = :train_step
|
759
|
+
end
|
760
|
+
|
761
|
+
def train_step
|
762
|
+
(x_batch, y_batch) = @train_iterator.next_batch(@batch_size)
|
763
|
+
@model.call_callbacks(:before_train_on_batch)
|
764
|
+
train_step_met = @model.train_step(x_batch, y_batch, need_accuracy: @need_accuracy)
|
765
|
+
@model.last_log.merge!(train_step_met)
|
766
|
+
@model.call_callbacks(:after_train_on_batch)
|
767
|
+
num_trained_datas = @step * @batch_size
|
768
|
+
num_trained_datas = num_trained_datas > @num_train_datas ? @num_train_datas : num_trained_datas
|
769
|
+
if @io == $stdout
|
770
|
+
log = "\r"
|
771
|
+
else
|
772
|
+
@line_first_pos = @io.pos
|
773
|
+
log = ""
|
774
|
+
end
|
775
|
+
40.times do |i|
|
776
|
+
if i < num_trained_datas * 40 / @num_train_datas
|
777
|
+
log << "="
|
778
|
+
elsif i == num_trained_datas * 40 / @num_train_datas
|
779
|
+
log << ">"
|
780
|
+
else
|
781
|
+
log << "_"
|
782
|
+
end
|
783
|
+
end
|
784
|
+
log << " #{num_trained_datas}/#{@num_train_datas} "
|
785
|
+
log << metrics_to_str(train_step_met)
|
786
|
+
@io.print log if @verbose
|
787
|
+
if @model.check_early_stop_requested
|
788
|
+
@io.puts("\nEarly stopped.") if @verbose
|
789
|
+
@state = :end_training
|
790
|
+
else
|
791
|
+
@state = :end_step
|
792
|
+
end
|
793
|
+
end
|
794
|
+
|
795
|
+
def end_step
|
796
|
+
@step += 1
|
797
|
+
if @step <= @max_steps
|
798
|
+
unless @io == $stdout
|
799
|
+
@io.pos = @line_first_pos
|
800
|
+
end
|
801
|
+
@state = :start_step
|
802
|
+
else
|
803
|
+
@state = :end_epoch
|
804
|
+
end
|
805
|
+
end
|
806
|
+
|
807
|
+
def end_epoch
|
808
|
+
@epoch += 1
|
809
|
+
if @test
|
810
|
+
@state = :start_evaluate
|
811
|
+
else
|
812
|
+
@io.puts "" if @verbose
|
813
|
+
@model.call_callbacks(:after_epoch)
|
814
|
+
if @epoch <= @max_epochs
|
815
|
+
@train_iterator.reset
|
816
|
+
@state = :start_epoch
|
817
|
+
else
|
818
|
+
@state = :none
|
819
|
+
end
|
820
|
+
end
|
821
|
+
end
|
822
|
+
|
823
|
+
def start_evaluate
|
824
|
+
@evaluator = ModelEvaluator.new(@model)
|
825
|
+
if @test.is_a?(Array)
|
826
|
+
@evaluator.start_evaluate(@test[0], @test[1], batch_size: @batch_size, need_accuracy: @need_accuracy)
|
827
|
+
else
|
828
|
+
@evaluator.start_evaluate_by_iterator(@test, batch_size: @batch_size, need_accuracy: @need_accuracy)
|
829
|
+
end
|
830
|
+
@state = :evaluating
|
831
|
+
end
|
832
|
+
|
833
|
+
def evaluating
|
834
|
+
@evaluator.update
|
835
|
+
unless @evaluator.evaluating?
|
836
|
+
@state = :end_evaluate
|
837
|
+
end
|
838
|
+
end
|
839
|
+
|
840
|
+
def end_evaluate
|
841
|
+
if @verbose
|
842
|
+
metrics = if @need_accuracy
|
843
|
+
{ test_accuracy: @model.last_log[:test_accuracy], test_loss: @model.last_log[:test_loss] }
|
844
|
+
else
|
845
|
+
{ test_loss: @model.last_log[:test_loss] }
|
846
|
+
end
|
847
|
+
@io.print " " + metrics_to_str(metrics)
|
848
|
+
end
|
849
|
+
@io.puts "" if @verbose
|
850
|
+
@model.call_callbacks(:after_epoch)
|
851
|
+
if @epoch <= @max_epochs
|
852
|
+
@train_iterator.reset
|
853
|
+
if @model.check_early_stop_requested
|
854
|
+
@io.puts("Early stopped.") if @verbose
|
855
|
+
@state = :end_training
|
856
|
+
else
|
857
|
+
@state = :start_epoch
|
858
|
+
end
|
859
|
+
else
|
860
|
+
@state = :end_training
|
861
|
+
end
|
862
|
+
end
|
863
|
+
|
864
|
+
def end_training
|
865
|
+
@model.call_callbacks(:after_train)
|
866
|
+
@state = :none
|
867
|
+
end
|
634
868
|
|
635
869
|
def metrics_to_str(mertics)
|
636
870
|
mertics.map { |key, values|
|
@@ -643,28 +877,119 @@ module DNN
|
|
643
877
|
"#{key}: #{str_values}"
|
644
878
|
}.join(", ")
|
645
879
|
end
|
880
|
+
end
|
881
|
+
|
882
|
+
class ModelEvaluator
|
883
|
+
def initialize(model)
|
884
|
+
@model = model
|
885
|
+
@state = :none
|
886
|
+
end
|
646
887
|
|
647
|
-
|
648
|
-
|
649
|
-
|
888
|
+
# Start evaluate model and get accuracy and loss of test data.
|
889
|
+
# @param [Numo::SFloat] x Input test data.
|
890
|
+
# @param [Numo::SFloat] y Output test data.
|
891
|
+
# @param [Integer] batch_size Batch size used for one test.
|
892
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
893
|
+
# @return [Array] Returns the test data accuracy and mean loss in the form [accuracy, mean_loss].
|
894
|
+
# If accuracy is not needed returns in the form [nil, mean_loss].
|
895
|
+
def start_evaluate(x, y, batch_size: 100, need_accuracy: true)
|
896
|
+
Utils.check_input_data_type("x", x, Xumo::SFloat)
|
897
|
+
Utils.check_input_data_type("y", y, Xumo::SFloat)
|
898
|
+
start_evaluate_by_iterator(Iterator.new(x, y, random: false), batch_size: batch_size, need_accuracy: need_accuracy)
|
899
|
+
end
|
900
|
+
|
901
|
+
# Start Evaluate model by iterator.
|
902
|
+
# @param [DNN::Iterator] test_iterator Iterator used for testing.
|
903
|
+
# @param [Integer] batch_size Batch size used for one test.
|
904
|
+
# @param [Boolean] need_accuracy Set true to compute the accuracy.
|
905
|
+
# @return [Array] Returns the test data accuracy and mean loss in the form [accuracy, mean_loss].
|
906
|
+
# If accuracy is not needed returns in the form [nil, mean_loss].
|
907
|
+
def start_evaluate_by_iterator(test_iterator, batch_size: 100, need_accuracy: true)
|
908
|
+
@test_iterator = test_iterator
|
909
|
+
@num_test_datas = test_iterator.num_datas
|
910
|
+
@batch_size = batch_size >= @num_test_datas ? @num_test_datas : batch_size
|
911
|
+
@need_accuracy = need_accuracy
|
912
|
+
if @loss_func.is_a?(Array)
|
913
|
+
@total_correct = Array.new(@loss_func.length, 0)
|
914
|
+
@sum_loss = Array.new(@loss_func.length, 0)
|
915
|
+
else
|
916
|
+
@total_correct = 0
|
917
|
+
@sum_loss = 0
|
650
918
|
end
|
651
|
-
|
652
|
-
|
653
|
-
|
654
|
-
|
655
|
-
|
919
|
+
@step = 1
|
920
|
+
@max_steps = (@num_test_datas.to_f / @batch_size).ceil
|
921
|
+
@state = :start_step
|
922
|
+
end
|
923
|
+
|
924
|
+
# Check if it is currently evaluating.
|
925
|
+
# @return [Boolean] Returns true if currently evaluating.
|
926
|
+
def evaluating?
|
927
|
+
@state != :none
|
928
|
+
end
|
929
|
+
|
930
|
+
# Update evaluator.
|
931
|
+
def update
|
932
|
+
case @state
|
933
|
+
when :start_step
|
934
|
+
start_step
|
935
|
+
when :test_step
|
936
|
+
test_step
|
937
|
+
when :end_step
|
938
|
+
end_step
|
939
|
+
when :end_evaluate
|
940
|
+
end_evaluate
|
941
|
+
end
|
942
|
+
end
|
943
|
+
|
944
|
+
private
|
945
|
+
|
946
|
+
def start_step
|
947
|
+
@model.last_log[:step] = @step
|
948
|
+
@state = :test_step
|
949
|
+
end
|
950
|
+
|
951
|
+
def test_step
|
952
|
+
(x_batch, y_batch) = @test_iterator.next_batch(@batch_size)
|
953
|
+
@model.call_callbacks(:before_test_on_batch)
|
954
|
+
test_met = @model.test_step(x_batch, y_batch, need_accuracy: @need_accuracy)
|
955
|
+
@model.call_callbacks(:after_test_on_batch)
|
956
|
+
if @loss_func.is_a?(Array)
|
957
|
+
@loss_func.each_index do |i|
|
958
|
+
@total_correct[i] += test_met[:test_accuracy][i] if @need_accuracy
|
959
|
+
@sum_loss[i] += test_met[:test_loss][i]
|
656
960
|
end
|
961
|
+
else
|
962
|
+
@total_correct += test_met[:test_accuracy] if @need_accuracy
|
963
|
+
@sum_loss += test_met[:test_loss]
|
657
964
|
end
|
658
|
-
|
659
|
-
|
965
|
+
@state = :end_step
|
966
|
+
end
|
967
|
+
|
968
|
+
def end_step
|
969
|
+
@step += 1
|
970
|
+
if @step <= @max_steps
|
971
|
+
@state = :start_step
|
972
|
+
else
|
973
|
+
@state = :end_evaluate
|
660
974
|
end
|
661
|
-
|
662
|
-
|
663
|
-
|
664
|
-
|
665
|
-
|
975
|
+
end
|
976
|
+
|
977
|
+
def end_evaluate
|
978
|
+
acc = nil
|
979
|
+
if @loss_func.is_a?(Array)
|
980
|
+
mean_loss = Array.new(@loss_func.length, 0)
|
981
|
+
acc = Array.new(@loss_func.length, 0) if @need_accuracy
|
982
|
+
@loss_func.each_index do |i|
|
983
|
+
mean_loss[i] += @sum_loss[i] / @max_steps
|
984
|
+
acc[i] += @total_correct[i].to_f / @num_test_datas if @need_accuracy
|
666
985
|
end
|
986
|
+
else
|
987
|
+
mean_loss = @sum_loss / @max_steps
|
988
|
+
acc = @total_correct.to_f / @num_test_datas if @need_accuracy
|
667
989
|
end
|
990
|
+
@model.last_log[:test_loss] = mean_loss
|
991
|
+
@model.last_log[:test_accuracy] = acc
|
992
|
+
@state = :none
|
668
993
|
end
|
669
994
|
end
|
670
995
|
|