ruby-dnn 1.1.0 → 1.1.1
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/README.md +1 -2
- data/examples/iris_example.rb +1 -1
- data/lib/dnn/core/layers/basic_layers.rb +2 -2
- data/lib/dnn/core/layers/math_layers.rb +60 -5
- data/lib/dnn/core/layers/merge_layers.rb +3 -3
- data/lib/dnn/core/monkey_patch.rb +8 -8
- data/lib/dnn/core/param.rb +4 -0
- data/lib/dnn/core/tensor.rb +9 -3
- data/lib/dnn/core/utils.rb +8 -0
- data/lib/dnn/keras-model-convertor.rb +24 -11
- data/lib/dnn/version.rb +1 -1
- data/ruby-dnn.gemspec +1 -0
- metadata +16 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 97822807b84847cb2ad475bef5dd65329ae0c699847c577eb8b30a2be0425ec0
|
4
|
+
data.tar.gz: 6871849ea256e466f4d10e354c5e7698247be8328c17e540e5d4b35adf46ee27
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: aa8fb779d8cec6e4acd1ce63a952f626eceae801ee7e16045a890412d8b9189e95d3798c9d840ab07de4afe517ebeac9230391e193b24cedb316927bda4726c9
|
7
|
+
data.tar.gz: 16aa82f8e009eca027e693adb3fb543046376f11539b881a65ef29dd484b8225b34c17ee3171d72a6a9b2a3712b8463630deac778f1a851830df6ed53b7feca8
|
data/README.md
CHANGED
@@ -4,7 +4,7 @@
|
|
4
4
|
|
5
5
|
ruby-dnn is a ruby deep learning library. This library supports full connected neural network and convolution neural network
|
6
6
|
and recurrent neural network.
|
7
|
-
Currently, you can get 99% accuracy with MNIST and
|
7
|
+
Currently, you can get 99% accuracy with MNIST and 82% with CIFAR 10.
|
8
8
|
|
9
9
|
## Installation
|
10
10
|
|
@@ -43,7 +43,6 @@ model.setup(Adam.new, SoftmaxCrossEntropy.new)
|
|
43
43
|
|
44
44
|
model.train(x_train, y_train, 10, batch_size: 128, test: [x_test, y_test])
|
45
45
|
|
46
|
-
|
47
46
|
accuracy, loss = model.evaluate(x_test, y_test)
|
48
47
|
puts "accuracy: #{accuracy}"
|
49
48
|
puts "loss: #{loss}"
|
data/examples/iris_example.rb
CHANGED
@@ -8,7 +8,7 @@ module DNN
|
|
8
8
|
y = forward_node(x)
|
9
9
|
link = Link.new(prev, self)
|
10
10
|
prev.next = link if prev.is_a?(Link)
|
11
|
-
Tensor.
|
11
|
+
Tensor.convert(y, link)
|
12
12
|
end
|
13
13
|
|
14
14
|
def forward_node(x)
|
@@ -46,7 +46,7 @@ module DNN
|
|
46
46
|
# @param [Tensor | Param] input Input tensor or param.
|
47
47
|
# @return [Tensor] Output tensor.
|
48
48
|
def call(input)
|
49
|
-
input = Tensor.
|
49
|
+
input = Tensor.convert(input) if !input.is_a?(Tensor) && !input.is_a?(Param)
|
50
50
|
build(input.data.shape[1..-1]) unless built?
|
51
51
|
forward(input)
|
52
52
|
end
|
@@ -1,5 +1,50 @@
|
|
1
1
|
module DNN
|
2
2
|
module Layers
|
3
|
+
module MathUtils
|
4
|
+
def self.align_ndim(shape1, shape2)
|
5
|
+
if shape1.length < shape2.length
|
6
|
+
shape2.length.times do |axis|
|
7
|
+
unless shape1[axis] == shape2[axis]
|
8
|
+
shape1.insert(axis, 1)
|
9
|
+
end
|
10
|
+
end
|
11
|
+
elsif shape1.length > shape2.length
|
12
|
+
shape1.length.times do |axis|
|
13
|
+
unless shape1[axis] == shape2[axis]
|
14
|
+
shape2.insert(axis, 1)
|
15
|
+
end
|
16
|
+
end
|
17
|
+
end
|
18
|
+
[shape1, shape2]
|
19
|
+
end
|
20
|
+
|
21
|
+
def self.broadcast_to(x, target_shape)
|
22
|
+
return x if x.shape == target_shape
|
23
|
+
x_shape, target_shape = align_ndim(x.shape, target_shape)
|
24
|
+
x = x.reshape(*x_shape)
|
25
|
+
x_shape.length.times do |axis|
|
26
|
+
unless x.shape[axis] == target_shape[axis]
|
27
|
+
tmp = x
|
28
|
+
(target_shape[axis] - 1).times do
|
29
|
+
x = x.concatenate(tmp, axis: axis)
|
30
|
+
end
|
31
|
+
end
|
32
|
+
end
|
33
|
+
x
|
34
|
+
end
|
35
|
+
|
36
|
+
def self.sum_to(x, target_shape)
|
37
|
+
return x if x.shape == target_shape
|
38
|
+
x_shape, target_shape = align_ndim(x.shape, target_shape)
|
39
|
+
x = x.reshape(*x_shape)
|
40
|
+
x_shape.length.times do |axis|
|
41
|
+
unless x.shape[axis] == target_shape[axis]
|
42
|
+
x = x.sum(axis: axis, keepdims: true)
|
43
|
+
end
|
44
|
+
end
|
45
|
+
x
|
46
|
+
end
|
47
|
+
end
|
3
48
|
|
4
49
|
class Neg < Layer
|
5
50
|
include LayerNode
|
@@ -17,11 +62,15 @@ module DNN
|
|
17
62
|
include MergeLayerNode
|
18
63
|
|
19
64
|
def forward_node(x1, x2)
|
65
|
+
@x1_shape = x1.shape
|
66
|
+
@x2_shape = x2.shape
|
20
67
|
x1 + x2
|
21
68
|
end
|
22
69
|
|
23
70
|
def backward_node(dy)
|
24
|
-
|
71
|
+
dx1 = MathUtils.sum_to(dy, @x1_shape)
|
72
|
+
dx2 = MathUtils.sum_to(dy, @x2_shape)
|
73
|
+
[dx1, dx2]
|
25
74
|
end
|
26
75
|
end
|
27
76
|
|
@@ -29,11 +78,15 @@ module DNN
|
|
29
78
|
include MergeLayerNode
|
30
79
|
|
31
80
|
def forward_node(x1, x2)
|
81
|
+
@x1_shape = x1.shape
|
82
|
+
@x2_shape = x2.shape
|
32
83
|
x1 - x2
|
33
84
|
end
|
34
85
|
|
35
86
|
def backward_node(dy)
|
36
|
-
|
87
|
+
dx1 = MathUtils.sum_to(dy, @x1_shape)
|
88
|
+
dx2 = MathUtils.sum_to(-dy, @x2_shape)
|
89
|
+
[dx1, dx2]
|
37
90
|
end
|
38
91
|
end
|
39
92
|
|
@@ -46,7 +99,9 @@ module DNN
|
|
46
99
|
end
|
47
100
|
|
48
101
|
def backward_node(dy)
|
49
|
-
|
102
|
+
dx1 = MathUtils.sum_to(dy * @x2, @x1.shape)
|
103
|
+
dx2 = MathUtils.sum_to(dy * @x1, @x2.shape)
|
104
|
+
[dx1, dx2]
|
50
105
|
end
|
51
106
|
end
|
52
107
|
|
@@ -59,8 +114,8 @@ module DNN
|
|
59
114
|
end
|
60
115
|
|
61
116
|
def backward_node(dy)
|
62
|
-
dx1 = dy / @x2
|
63
|
-
dx2 = dy * -(@x1 / @x2**2)
|
117
|
+
dx1 = MathUtils.sum_to(dy / @x2, @x1.shape)
|
118
|
+
dx2 = MathUtils.sum_to(dy * -(@x1 / @x2**2), @x2.shape)
|
64
119
|
[dx1, dx2]
|
65
120
|
end
|
66
121
|
end
|
@@ -9,7 +9,7 @@ module DNN
|
|
9
9
|
prev2 = (input2.is_a?(Tensor) ? input2.link : input2)
|
10
10
|
y = forward_node(x1, x2)
|
11
11
|
link = TwoInputLink.new(prev1, prev2, self)
|
12
|
-
Tensor.
|
12
|
+
Tensor.convert(y, link)
|
13
13
|
end
|
14
14
|
|
15
15
|
def backward(dy)
|
@@ -31,8 +31,8 @@ module DNN
|
|
31
31
|
end
|
32
32
|
|
33
33
|
def call(input1, input2)
|
34
|
-
input1 = Tensor.
|
35
|
-
input2 = Tensor.
|
34
|
+
input1 = Tensor.convert(input1) if !input1.is_a?(Tensor) && !input1.is_a?(Param)
|
35
|
+
input2 = Tensor.convert(input2) if !input2.is_a?(Tensor) && !input2.is_a?(Param)
|
36
36
|
if input1.data.is_a?(Numo::NArray)
|
37
37
|
build(input1.data.shape[1..-1]) unless built?
|
38
38
|
else
|
@@ -2,7 +2,7 @@ class Integer
|
|
2
2
|
alias dnn__add +
|
3
3
|
def +(other)
|
4
4
|
if other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
5
|
-
DNN::Layers::Add.(self, other)
|
5
|
+
DNN::Layers::Add.(DNN::Tensor.convert(self), other)
|
6
6
|
else
|
7
7
|
dnn__add(other)
|
8
8
|
end
|
@@ -11,7 +11,7 @@ class Integer
|
|
11
11
|
alias dnn__sub -
|
12
12
|
def -(other)
|
13
13
|
if other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
14
|
-
DNN::Layers::Sub.(self, other)
|
14
|
+
DNN::Layers::Sub.(DNN::Tensor.convert(self), other)
|
15
15
|
else
|
16
16
|
dnn__sub(other)
|
17
17
|
end
|
@@ -20,7 +20,7 @@ class Integer
|
|
20
20
|
alias dnn__mul *
|
21
21
|
def *(other)
|
22
22
|
if other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
23
|
-
DNN::Layers::Mul.(self, other)
|
23
|
+
DNN::Layers::Mul.(DNN::Tensor.convert(self), other)
|
24
24
|
else
|
25
25
|
dnn__mul(other)
|
26
26
|
end
|
@@ -29,7 +29,7 @@ class Integer
|
|
29
29
|
alias dnn__div /
|
30
30
|
def /(other)
|
31
31
|
if other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
32
|
-
DNN::Layers::Div.(self, other)
|
32
|
+
DNN::Layers::Div.(DNN::Tensor.convert(self), other)
|
33
33
|
else
|
34
34
|
dnn__div(other)
|
35
35
|
end
|
@@ -40,7 +40,7 @@ class Float
|
|
40
40
|
alias dnn__add +
|
41
41
|
def +(other)
|
42
42
|
if other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
43
|
-
DNN::Layers::Add.(self, other)
|
43
|
+
DNN::Layers::Add.(DNN::Tensor.convert(self), other)
|
44
44
|
else
|
45
45
|
dnn__add(other)
|
46
46
|
end
|
@@ -49,7 +49,7 @@ class Float
|
|
49
49
|
alias dnn__sub -
|
50
50
|
def -(other)
|
51
51
|
if other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
52
|
-
DNN::Layers::Sub.(self, other)
|
52
|
+
DNN::Layers::Sub.(DNN::Tensor.convert(self), other)
|
53
53
|
else
|
54
54
|
dnn__sub(other)
|
55
55
|
end
|
@@ -58,7 +58,7 @@ class Float
|
|
58
58
|
alias dnn__mul *
|
59
59
|
def *(other)
|
60
60
|
if other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
61
|
-
DNN::Layers::Mul.(self, other)
|
61
|
+
DNN::Layers::Mul.(DNN::Tensor.convert(self), other)
|
62
62
|
else
|
63
63
|
dnn__mul(other)
|
64
64
|
end
|
@@ -67,7 +67,7 @@ class Float
|
|
67
67
|
alias dnn__div /
|
68
68
|
def /(other)
|
69
69
|
if other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
70
|
-
DNN::Layers::Div.(self, other)
|
70
|
+
DNN::Layers::Div.(DNN::Tensor.convert(self), other)
|
71
71
|
else
|
72
72
|
dnn__div(other)
|
73
73
|
end
|
data/lib/dnn/core/param.rb
CHANGED
@@ -38,18 +38,22 @@ module DNN
|
|
38
38
|
end
|
39
39
|
|
40
40
|
def +(other)
|
41
|
+
other = Tensor.convert(other) unless other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
41
42
|
Layers::Add.(self, other)
|
42
43
|
end
|
43
44
|
|
44
45
|
def -(other)
|
46
|
+
other = Tensor.convert(other) unless other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
45
47
|
Layers::Sub.(self, other)
|
46
48
|
end
|
47
49
|
|
48
50
|
def *(other)
|
51
|
+
other = Tensor.convert(other) unless other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
49
52
|
Layers::Mul.(self, other)
|
50
53
|
end
|
51
54
|
|
52
55
|
def /(other)
|
56
|
+
other = Tensor.convert(other) unless other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
53
57
|
Layers::Div.(self, other)
|
54
58
|
end
|
55
59
|
|
data/lib/dnn/core/tensor.rb
CHANGED
@@ -3,11 +3,13 @@ module DNN
|
|
3
3
|
attr_reader :data
|
4
4
|
attr_accessor :link
|
5
5
|
|
6
|
-
def self.convert(inputs)
|
6
|
+
def self.convert(inputs, link = nil)
|
7
7
|
if inputs.is_a?(Array)
|
8
|
-
inputs.map { |input| Tensor.new(input) }
|
8
|
+
inputs.map { |input| Tensor.new(input, link) }
|
9
|
+
elsif inputs.is_a?(Integer) || inputs.is_a?(Float)
|
10
|
+
Tensor.new(Xumo::SFloat[inputs], link)
|
9
11
|
else
|
10
|
-
Tensor.new(inputs)
|
12
|
+
Tensor.new(inputs, link)
|
11
13
|
end
|
12
14
|
end
|
13
15
|
|
@@ -33,18 +35,22 @@ module DNN
|
|
33
35
|
end
|
34
36
|
|
35
37
|
def +(other)
|
38
|
+
other = Tensor.convert(other) unless other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
36
39
|
Layers::Add.(self, other)
|
37
40
|
end
|
38
41
|
|
39
42
|
def -(other)
|
43
|
+
other = Tensor.convert(other) unless other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
40
44
|
Layers::Sub.(self, other)
|
41
45
|
end
|
42
46
|
|
43
47
|
def *(other)
|
48
|
+
other = Tensor.convert(other) unless other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
44
49
|
Layers::Mul.(self, other)
|
45
50
|
end
|
46
51
|
|
47
52
|
def /(other)
|
53
|
+
other = Tensor.convert(other) unless other.is_a?(DNN::Tensor) || other.is_a?(DNN::Param)
|
48
54
|
Layers::Div.(self, other)
|
49
55
|
end
|
50
56
|
|
data/lib/dnn/core/utils.rb
CHANGED
@@ -21,6 +21,14 @@ module DNN
|
|
21
21
|
dnn_class.from_hash(hash)
|
22
22
|
end
|
23
23
|
|
24
|
+
# Broadcast to target shape.
|
25
|
+
# @param [Numo::SFloat] x Data to broadcast.
|
26
|
+
# @param [Array] Shape to broadcast.
|
27
|
+
# @return [Numo::SFloat] Broadcasted data.
|
28
|
+
def self.broadcast_to(x, target_shape)
|
29
|
+
Layers::MathUtils.broadcast_to(x, target_shape)
|
30
|
+
end
|
31
|
+
|
24
32
|
# Return the result of the sigmoid function.
|
25
33
|
def self.sigmoid(x)
|
26
34
|
Losses::SigmoidCrossEntropy.sigmoid(x)
|
@@ -15,6 +15,16 @@ pyfrom :"keras.models", import: :Sequential
|
|
15
15
|
pyfrom :"keras.layers", import: [:Dense, :Dropout, :Conv2D, :Activation, :MaxPooling2D, :Flatten]
|
16
16
|
pyfrom :"keras.layers.normalization", import: :BatchNormalization
|
17
17
|
|
18
|
+
module DNN
|
19
|
+
module Layers
|
20
|
+
class Softmax < Layer
|
21
|
+
def forward(x)
|
22
|
+
Exp.(x) / Sum.(Exp.(x), axis: 1)
|
23
|
+
end
|
24
|
+
end
|
25
|
+
end
|
26
|
+
end
|
27
|
+
|
18
28
|
class DNNKerasModelConvertError < DNN::DNNError; end
|
19
29
|
|
20
30
|
class KerasModelConvertor
|
@@ -34,18 +44,21 @@ class KerasModelConvertor
|
|
34
44
|
unless @k_model.__class__.__name__ == "Sequential"
|
35
45
|
raise DNNKerasModelConvertError.new("#{@k_model.__class__.__name__} models do not support convert.")
|
36
46
|
end
|
37
|
-
|
38
|
-
@k_model.layers.each do |k_layer|
|
39
|
-
dnn_layer = layer_convert(k_layer)
|
40
|
-
dnn_model << dnn_layer if dnn_layer
|
41
|
-
end
|
47
|
+
layers = convert_layers(@k_model.layers)
|
42
48
|
input_shape = @k_model.layers[0].input_shape.to_a[1..-1]
|
43
49
|
input_layer = DNN::Layers::InputLayer.new(input_shape)
|
44
50
|
input_layer.build(input_shape)
|
45
|
-
|
51
|
+
layers.unshift(input_layer)
|
52
|
+
dnn_model = DNN::Models::Sequential.new(layers)
|
46
53
|
dnn_model
|
47
54
|
end
|
48
55
|
|
56
|
+
def convert_layers(k_layers)
|
57
|
+
k_layers.map do |k_layer|
|
58
|
+
layer_convert(k_layer)
|
59
|
+
end
|
60
|
+
end
|
61
|
+
|
49
62
|
private
|
50
63
|
|
51
64
|
def layer_convert(k_layer)
|
@@ -80,15 +93,15 @@ class KerasModelConvertor
|
|
80
93
|
|
81
94
|
def convert_Activation(k_activation)
|
82
95
|
activation_name = k_activation.get_config[:activation].to_s
|
83
|
-
case k_activation.get_config[:activation].to_s
|
96
|
+
activation = case k_activation.get_config[:activation].to_s
|
84
97
|
when "sigmoid"
|
85
|
-
|
98
|
+
DNN::Layers::Sigmoid.new
|
86
99
|
when "tanh"
|
87
|
-
|
100
|
+
DNN::Layers::Tanh.new
|
88
101
|
when "relu"
|
89
|
-
|
102
|
+
DNN::Layers::ReLU.new
|
90
103
|
when "softmax"
|
91
|
-
|
104
|
+
DNN::Layers::Softmax.new
|
92
105
|
else
|
93
106
|
raise DNNKerasModelConvertError.new("#{activation_name} activation do not support convert.")
|
94
107
|
end
|
data/lib/dnn/version.rb
CHANGED
data/ruby-dnn.gemspec
CHANGED
@@ -17,6 +17,7 @@ Gem::Specification.new do |spec|
|
|
17
17
|
|
18
18
|
spec.add_dependency "numo-narray"
|
19
19
|
spec.add_dependency "archive-tar-minitar"
|
20
|
+
spec.add_dependency "yard"
|
20
21
|
|
21
22
|
# Prevent pushing this gem to RubyGems.org. To allow pushes either set the 'allowed_push_host'
|
22
23
|
# to allow pushing to a single host or delete this section to allow pushing to any host.7
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-dnn
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.1.
|
4
|
+
version: 1.1.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- unagiootoro
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2020-02-
|
11
|
+
date: 2020-02-09 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -38,6 +38,20 @@ dependencies:
|
|
38
38
|
- - ">="
|
39
39
|
- !ruby/object:Gem::Version
|
40
40
|
version: '0'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: yard
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
45
|
+
- - ">="
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '0'
|
48
|
+
type: :runtime
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - ">="
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '0'
|
41
55
|
- !ruby/object:Gem::Dependency
|
42
56
|
name: bundler
|
43
57
|
requirement: !ruby/object:Gem::Requirement
|