ruby-dnn 0.8.5 → 0.8.6
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/API-Reference.ja.md +11 -1
- data/LIB-API-Reference.ja.md +4 -4
- data/lib/dnn/core/cnn_layers.rb +2 -2
- data/lib/dnn/core/initializers.rb +19 -0
- data/lib/dnn/core/rnn_layers.rb +37 -31
- data/lib/dnn/lib/{image_io.rb → image.rb} +6 -6
- data/lib/dnn/version.rb +1 -1
- metadata +3 -3
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 63b7cd17090ec6fd4e1f23e6b40f3c41e8a31ad0fa887945bda962a6df305c1b
|
4
|
+
data.tar.gz: b7e173f392c73e8151bde633d61913e8ce1645aaf9acc3a48788a950890d6ca4
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: c35a8a90216f42fcd8f88b4d4ee6f98fa517c5c2c8aaa6e61eeb8c260b176966c979e0e25311c6c4d0237e89f5e9c0f39eb056f1fad37f5fbaeeff7d0a4e1739
|
7
|
+
data.tar.gz: d2905e0b21c2dd2911cd985e490425be1909fed26e66e63b357aff7d657c2c86099653b1cdff8910171a7f1302029b2aa1f5f63f850b2a3f3d398e2325982475
|
data/API-Reference.ja.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2
2
|
ruby-dnnのAPIリファレンスです。このリファレンスでは、APIを利用するうえで必要となるクラスとメソッドしか記載していません。
|
3
3
|
そのため、プログラムの詳細が必要な場合は、ソースコードを参照してください。
|
4
4
|
|
5
|
-
最終更新バージョン:0.8.
|
5
|
+
最終更新バージョン:0.8.6
|
6
6
|
|
7
7
|
# module DNN
|
8
8
|
ruby-dnnの名前空間をなすモジュールです。
|
@@ -706,6 +706,16 @@ Float alpha
|
|
706
706
|
パラメータを0で初期化します。
|
707
707
|
|
708
708
|
|
709
|
+
# class Const < Initializer
|
710
|
+
パラメータを指定の定数で初期化します。
|
711
|
+
|
712
|
+
## 【Instance methods】
|
713
|
+
## def initialize(const)
|
714
|
+
### arguments
|
715
|
+
* Float const
|
716
|
+
初期化する定数
|
717
|
+
|
718
|
+
|
709
719
|
# class RandomNormal < Initializer
|
710
720
|
パラメータを正規分布による乱数で初期化します。
|
711
721
|
|
data/LIB-API-Reference.ja.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1
1
|
# LIB-APIリファレンス
|
2
2
|
ruby-dnnの付属ライブラリのリファレンスです。
|
3
|
-
最終更新バージョン:0.
|
3
|
+
最終更新バージョン:0.8.6
|
4
4
|
|
5
5
|
|
6
6
|
# dnn/lib/mnist
|
@@ -71,11 +71,11 @@ Array
|
|
71
71
|
Numo::UInt8の[10000]の形式
|
72
72
|
|
73
73
|
|
74
|
-
# dnn/lib/
|
75
|
-
画像の
|
74
|
+
# dnn/lib/image
|
75
|
+
画像のread/writeを行うライブラリです。内部でstb_image.hとstb_image_write.hを使用しています。
|
76
76
|
|
77
77
|
|
78
|
-
# module
|
78
|
+
# module Image
|
79
79
|
|
80
80
|
## def self.read(file_name)
|
81
81
|
画像をNumo::UInt8形式で読み込みます。
|
data/lib/dnn/core/cnn_layers.rb
CHANGED
@@ -271,12 +271,12 @@ module DNN
|
|
271
271
|
|
272
272
|
def backward(dout)
|
273
273
|
unpool_h, unpool_w = @unpool_size
|
274
|
-
dout = dout.reshape(dout.shape[0], @x_shape[
|
274
|
+
dout = dout.reshape(dout.shape[0], @x_shape[1], unpool_h, @x_shape[2], unpool_w, @num_channel)
|
275
275
|
dout[true, true, 0, true, 0, true].clone
|
276
276
|
end
|
277
277
|
|
278
278
|
def shape
|
279
|
-
[
|
279
|
+
[*@out_size, @num_channel]
|
280
280
|
end
|
281
281
|
|
282
282
|
def to_hash
|
@@ -20,6 +20,25 @@ module DNN
|
|
20
20
|
param.data = param.data.fill(0)
|
21
21
|
end
|
22
22
|
end
|
23
|
+
|
24
|
+
|
25
|
+
class Const < Initializer
|
26
|
+
def self.load_hash(hash)
|
27
|
+
self.new(hash[:const])
|
28
|
+
end
|
29
|
+
|
30
|
+
def initialize(const)
|
31
|
+
@const = const
|
32
|
+
end
|
33
|
+
|
34
|
+
def init_param(layer, param)
|
35
|
+
param.data = param.data.fill(@const)
|
36
|
+
end
|
37
|
+
|
38
|
+
def to_hash
|
39
|
+
super({const: @const})
|
40
|
+
end
|
41
|
+
end
|
23
42
|
|
24
43
|
|
25
44
|
class RandomNormal < Initializer
|
data/lib/dnn/core/rnn_layers.rb
CHANGED
@@ -121,25 +121,27 @@ module DNN
|
|
121
121
|
|
122
122
|
|
123
123
|
class SimpleRNN_Dense
|
124
|
-
def initialize(
|
125
|
-
@
|
126
|
-
@
|
124
|
+
def initialize(weight, weight2, bias, activation)
|
125
|
+
@weight = weight
|
126
|
+
@weight2 = weight2
|
127
|
+
@bias = bias
|
128
|
+
@activation = activation.clone
|
127
129
|
end
|
128
130
|
|
129
131
|
def forward(x, h)
|
130
132
|
@x = x
|
131
133
|
@h = h
|
132
|
-
h2 = x.dot(@
|
134
|
+
h2 = x.dot(@weight.data) + h.dot(@weight2.data) + @bias.data
|
133
135
|
@activation.forward(h2)
|
134
136
|
end
|
135
137
|
|
136
138
|
def backward(dh2)
|
137
139
|
dh2 = @activation.backward(dh2)
|
138
|
-
@
|
139
|
-
@
|
140
|
-
@
|
141
|
-
dx = dh2.dot(@
|
142
|
-
dh = dh2.dot(@
|
140
|
+
@weight.grad += @x.transpose.dot(dh2)
|
141
|
+
@weight2.grad += @h.transpose.dot(dh2)
|
142
|
+
@bias.grad += dh2.sum(0)
|
143
|
+
dx = dh2.dot(@weight.data.transpose)
|
144
|
+
dh = dh2.dot(@weight2.data.transpose)
|
143
145
|
[dx, dh]
|
144
146
|
end
|
145
147
|
end
|
@@ -194,15 +196,17 @@ module DNN
|
|
194
196
|
@weight_initializer.init_param(self, @weight2)
|
195
197
|
@bias_initializer.init_param(self, @bias)
|
196
198
|
@time_length.times do |t|
|
197
|
-
@layers << SimpleRNN_Dense.new(
|
199
|
+
@layers << SimpleRNN_Dense.new(@weight, @weight2, @bias)
|
198
200
|
end
|
199
201
|
end
|
200
202
|
end
|
201
203
|
|
202
204
|
|
203
205
|
class LSTM_Dense
|
204
|
-
def initialize(
|
205
|
-
@
|
206
|
+
def initialize(weight, weight2, bias)
|
207
|
+
@weight = weight
|
208
|
+
@weight2 = weight2
|
209
|
+
@bias = bias
|
206
210
|
@tanh = Tanh.new
|
207
211
|
@g_tanh = Tanh.new
|
208
212
|
@forget_sigmoid = Sigmoid.new
|
@@ -215,7 +219,7 @@ module DNN
|
|
215
219
|
@h = h
|
216
220
|
@c = c
|
217
221
|
num_nodes = h.shape[1]
|
218
|
-
a = x.dot(@
|
222
|
+
a = x.dot(@weight.data) + h.dot(@weight2.data) + @bias.data
|
219
223
|
|
220
224
|
@forget = @forget_sigmoid.forward(a[true, 0...num_nodes])
|
221
225
|
@g = @g_tanh.forward(a[true, num_nodes...(num_nodes * 2)])
|
@@ -239,11 +243,11 @@ module DNN
|
|
239
243
|
|
240
244
|
da = Xumo::SFloat.hstack([dforget, dg, din, dout])
|
241
245
|
|
242
|
-
@
|
243
|
-
@
|
244
|
-
@
|
245
|
-
dx = da.dot(@
|
246
|
-
dh = da.dot(@
|
246
|
+
@weight.grad += @x.transpose.dot(da)
|
247
|
+
@weight2.grad += @h.transpose.dot(da)
|
248
|
+
@bias.grad += da.sum(0)
|
249
|
+
dx = da.dot(@weight.data.transpose)
|
250
|
+
dh = da.dot(@weight2.data.transpose)
|
247
251
|
dc = dc2_tmp * @forget
|
248
252
|
[dx, dh, dc]
|
249
253
|
end
|
@@ -331,15 +335,17 @@ module DNN
|
|
331
335
|
@weight_initializer.init_param(self, @weight2)
|
332
336
|
@bias_initializer.init_param(self, @bias)
|
333
337
|
@time_length.times do |t|
|
334
|
-
@layers << LSTM_Dense.new(
|
338
|
+
@layers << LSTM_Dense.new(@weight, @weight2, @bias)
|
335
339
|
end
|
336
340
|
end
|
337
341
|
end
|
338
342
|
|
339
343
|
|
340
344
|
class GRU_Dense
|
341
|
-
def initialize(
|
342
|
-
@
|
345
|
+
def initialize(weight, weight2, bias)
|
346
|
+
@weight = weight
|
347
|
+
@weight2 = weight2
|
348
|
+
@bias = bias
|
343
349
|
@update_sigmoid = Sigmoid.new
|
344
350
|
@reset_sigmoid = Sigmoid.new
|
345
351
|
@tanh = Tanh.new
|
@@ -349,16 +355,16 @@ module DNN
|
|
349
355
|
@x = x
|
350
356
|
@h = h
|
351
357
|
num_nodes = h.shape[1]
|
352
|
-
@weight_a = @
|
353
|
-
@weight2_a = @
|
354
|
-
bias_a = @
|
358
|
+
@weight_a = @weight.data[true, 0...(num_nodes * 2)]
|
359
|
+
@weight2_a = @weight2.data[true, 0...(num_nodes * 2)]
|
360
|
+
bias_a = @bias.data[0...(num_nodes * 2)]
|
355
361
|
a = x.dot(@weight_a) + h.dot(@weight2_a) + bias_a
|
356
362
|
@update = @update_sigmoid.forward(a[true, 0...num_nodes])
|
357
363
|
@reset = @reset_sigmoid.forward(a[true, num_nodes..-1])
|
358
364
|
|
359
|
-
@weight_h = @
|
360
|
-
@weight2_h = @
|
361
|
-
bias_h = @
|
365
|
+
@weight_h = @weight.data[true, (num_nodes * 2)..-1]
|
366
|
+
@weight2_h = @weight2.data[true, (num_nodes * 2)..-1]
|
367
|
+
bias_h = @bias.data[(num_nodes * 2)..-1]
|
362
368
|
@tanh_h = @tanh.forward(x.dot(@weight_h) + (h * @reset).dot(@weight2_h) + bias_h)
|
363
369
|
h2 = (1 - @update) * h + @update * @tanh_h
|
364
370
|
h2
|
@@ -383,9 +389,9 @@ module DNN
|
|
383
389
|
dh += da.dot(@weight2_a.transpose)
|
384
390
|
dbias_a = da.sum(0)
|
385
391
|
|
386
|
-
@
|
387
|
-
@
|
388
|
-
@
|
392
|
+
@weight.grad += Xumo::SFloat.hstack([dweight_a, dweight_h])
|
393
|
+
@weight2.grad += Xumo::SFloat.hstack([dweight2_a, dweight2_h])
|
394
|
+
@bias.grad += Xumo::SFloat.hstack([dbias_a, dbias_h])
|
389
395
|
[dx, dh]
|
390
396
|
end
|
391
397
|
end
|
@@ -425,7 +431,7 @@ module DNN
|
|
425
431
|
@weight_initializer.init_param(self, @weight2)
|
426
432
|
@bias_initializer.init_param(self, @bias)
|
427
433
|
@time_length.times do |t|
|
428
|
-
@layers << GRU_Dense.new(
|
434
|
+
@layers << GRU_Dense.new(@weight, @weight2, @bias)
|
429
435
|
end
|
430
436
|
end
|
431
437
|
end
|
@@ -2,9 +2,9 @@ require "numo/narray"
|
|
2
2
|
require_relative "../ext/rb_stb_image/rb_stb_image"
|
3
3
|
|
4
4
|
module DNN
|
5
|
-
module
|
5
|
+
module Image
|
6
6
|
def self.read(file_name)
|
7
|
-
raise
|
7
|
+
raise Image::ReadError.new("#{file_name} is not found.") unless File.exist?(file_name)
|
8
8
|
bin, w, h, n = Stb.stbi_load(file_name, 3)
|
9
9
|
img = Numo::UInt8.from_binary(bin)
|
10
10
|
img.reshape(h, w, 3)
|
@@ -29,13 +29,13 @@ module DNN
|
|
29
29
|
Stb.stbi_write_jpg(file_name, w, h, ch, bin, quality)
|
30
30
|
end
|
31
31
|
rescue => ex
|
32
|
-
raise
|
32
|
+
raise Image::WriteError.new(ex.message)
|
33
33
|
end
|
34
34
|
end
|
35
35
|
|
36
|
-
class
|
36
|
+
class Image::Error < StandardError; end
|
37
37
|
|
38
|
-
class
|
38
|
+
class Image::ReadError < Image::Error; end
|
39
39
|
|
40
|
-
class
|
40
|
+
class Image::WriteError < Image::Error; end
|
41
41
|
end
|
data/lib/dnn/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-dnn
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.8.
|
4
|
+
version: 0.8.6
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- unagiootoro
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-02-
|
11
|
+
date: 2019-02-27 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -123,7 +123,7 @@ files:
|
|
123
123
|
- lib/dnn/ext/rb_stb_image/stb_image.h
|
124
124
|
- lib/dnn/ext/rb_stb_image/stb_image_write.h
|
125
125
|
- lib/dnn/lib/cifar10.rb
|
126
|
-
- lib/dnn/lib/
|
126
|
+
- lib/dnn/lib/image.rb
|
127
127
|
- lib/dnn/lib/mnist.rb
|
128
128
|
- lib/dnn/version.rb
|
129
129
|
- ruby-dnn.gemspec
|