ruby-dnn 0.6.0 → 0.6.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: '08a74d28175b0e881a1cb7b93d9d973ac601e60498f1422890214d6888f7671a'
4
- data.tar.gz: ebde049f70c4e43b90daae6c3eea3bafbf2bd04d9a8556726da46e6cb75ed313
3
+ metadata.gz: 23a157376f86b88dcedc8a7628d5f225f57ff4a6a0bd1cb9b4e54218dafd4c00
4
+ data.tar.gz: e088ca902c911d90ab41e51660cca8e94a96c2a8f1af409c70948ac4e4a47de1
5
5
  SHA512:
6
- metadata.gz: 46a59448402d63fc8e594259d8bb084e029595acd58a73c7f9558bfe949029f12a406cf9b996b41822a093a3c130e9b7a1249b3b9db61a4ae11611df5ff91264
7
- data.tar.gz: 31fd9ff92eb43999f30162650677ac470bec417845ca2cc613cf282b4840e4b5f3d698724d05392ac631c19b2a705ff0034c303684a88998996be8214231779f
6
+ metadata.gz: 231d208bb49b580307633948cfd79b40ffac5f6003c3065a74400d48620bc56e189492a1efc1151e3c026e4742e02a4d42de04bcd7586d754e6c872b76f9a75a
7
+ data.tar.gz: 5a999b80f80747f8da24ad5f41c13c27df2cdb2402a595a7c366fc49fb8c2ec586d2ce055c7f0183e726df28e99f5fbad0b580afc112e7176cbac09f77151246
data/API-Reference.ja.md CHANGED
@@ -2,15 +2,23 @@
2
2
  ruby-dnnのAPIリファレンスです。このリファレンスでは、APIを利用するうえで必要となるクラスとメソッドしか記載していません。
3
3
  そのため、プログラムの詳細が必要な場合は、ソースコードを参照してください。
4
4
 
5
- 最終更新バージョン:0.5.12
5
+ 最終更新バージョン:0.6.1
6
6
 
7
7
  # module DNN
8
8
  ruby-dnnの名前空間をなすモジュールです。
9
9
 
10
10
  ## 【Constants】
11
+
11
12
  ## VERSION
12
13
  ruby-dnnのバージョン。
13
14
 
15
+ ## 【Properties】
16
+
17
+ ## attr_accessor :layer
18
+ モデルに追加されたレイヤーの配列を取得します。
19
+
20
+ ## attr_reader :optimize
21
+ モデルのオプティマイザーを取得します。
14
22
 
15
23
  # class Model
16
24
  ニューラルネットワークのモデルを作成するクラスです。
@@ -121,22 +129,20 @@ epoch_proc
121
129
  ### return
122
130
  なし。
123
131
 
124
- ## def train_on_batch(x, y, batch_size, &batch_proc)
132
+ ## def train_on_batch(x, y, &batch_proc)
125
133
  入力されたバッチデータをもとに、一度だけ学習を行います。
126
134
  ### arguments
127
135
  * Numo::SFloat x
128
136
  トレーニング用入力バッチデータ。
129
137
  * Numo::SFloat y
130
138
  トレーニング用出力バッチデータ。
131
- * Integer batch_size
132
- 学習に使用するミニバッチの数。
133
139
  ### block
134
140
  一度のバッチ学習が行われる前に呼び出されます。
135
141
  ### return
136
142
  Integer
137
143
  損失関数の値を返します。
138
144
 
139
- ## def accurate(x, y, batch_size = nil, &batch_proc)
145
+ ## def accurate(x, y, batch_size = 1, &batch_proc)
140
146
  学習結果をもとに認識率を返します。
141
147
  ### arguments
142
148
  * Numo::SFloat x
@@ -144,7 +150,7 @@ Integer
144
150
  * Numo::SFloat y
145
151
  テスト用出力データ。
146
152
  * batch_size
147
- ミニバッチの数。学習を行っていないモデルのテストを行いたい場合等に使用します。
153
+ ミニバッチの数。
148
154
  ### block
149
155
  一度のバッチ学習が行われる前に呼び出されます。
150
156
  ### return
@@ -400,6 +406,11 @@ Arrayで指定する場合、[Integer height, Integer width]の形式で指定
400
406
 
401
407
  ## 【Properties】
402
408
 
409
+ ## attr_accessor :h
410
+ Numo::SFloat
411
+ 中間層の現在のステートを取得します。
412
+ nilを設定することで、中間層のステートをリセットすることができます。
413
+
403
414
  ## attr_reader :num_nodes
404
415
  Integer
405
416
  レイヤーのノード数を取得します。
@@ -465,6 +476,13 @@ nilを指定すると、Zerosイニシャライザーが使用されます。
465
476
  # class LSTM < RNN
466
477
  LSTMレイヤーを扱うクラスです。
467
478
 
479
+ ## 【Properties】
480
+
481
+ ## attr_accessor :cell
482
+ Numo::SFloat
483
+ 中間層の現在のセルステートを取得します。
484
+ nilを設定することで、中間層のセルステートをリセットすることができます。
485
+
468
486
 
469
487
  # class Flatten
470
488
  N次元のデータを平坦化します。
@@ -5,7 +5,6 @@ module DNN
5
5
  class Model
6
6
  attr_accessor :layers
7
7
  attr_reader :optimizer
8
- attr_reader :batch_size
9
8
 
10
9
  def self.load(file_name)
11
10
  Marshal.load(File.binread(file_name))
data/lib/dnn/version.rb CHANGED
@@ -1,3 +1,3 @@
1
1
  module DNN
2
- VERSION = "0.6.0"
2
+ VERSION = "0.6.1"
3
3
  end
metadata CHANGED
@@ -1,7 +1,7 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: ruby-dnn
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.6.0
4
+ version: 0.6.1
5
5
  platform: ruby
6
6
  authors:
7
7
  - unagiootoro