ruby-dnn 0.5.10 → 0.5.11
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/API-Reference.ja.md +5 -2
- data/lib/dnn/core/activations.rb +2 -3
- data/lib/dnn/core/rnn_layers.rb +27 -11
- data/lib/dnn/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 7042e521d632ba478fe494c644e5fa9c525f0dbc98ff168a39cafc0d7990db78
|
4
|
+
data.tar.gz: 624f38a50832523e0bbb42d7b392d7e77b0c926d6cd28258ba158ce50a4be56b
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 6aa33554d27f1f1b126e4dc65a191d84f3e5f96648a0b14368fa456aa703214c60f568d37416b2d09478e6ea9f03dc819c61e18663f5c523dcdb3e47a20a9ae9
|
7
|
+
data.tar.gz: 12efc285e47702e6134518a13c582354329344b0e6a754f73e760794d1952b1d381848c534a4e0e571c26afc38ee98cb4e381b22040f26849bce4292aaf88997
|
data/API-Reference.ja.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2
2
|
ruby-dnnのAPIリファレンスです。このリファレンスでは、APIを利用するうえで必要となるクラスとメソッドしか記載していません。
|
3
3
|
そのため、プログラムの詳細が必要な場合は、ソースコードを参照してください。
|
4
4
|
|
5
|
-
最終更新バージョン:0.5.
|
5
|
+
最終更新バージョン:0.5.11
|
6
6
|
|
7
7
|
# module DNN
|
8
8
|
ruby-dnnの名前空間をなすモジュールです。
|
@@ -414,13 +414,16 @@ Float
|
|
414
414
|
|
415
415
|
## 【Instance methods】
|
416
416
|
|
417
|
-
## def initialize(num_nodes, stateful: false, weight_initializer: nil, bias_initializer: nil, weight_decay: 0)
|
417
|
+
## def initialize(num_nodes, stateful: false, return_sequences: true, weight_initializer: nil, bias_initializer: nil, weight_decay: 0)
|
418
418
|
コンストラクタ。
|
419
419
|
### arguments
|
420
420
|
* Integer num_nodes
|
421
421
|
レイヤーのノード数を設定します。
|
422
422
|
* bool stateful
|
423
423
|
trueを設定すると、一つ前に計算した中間層の値を使用して学習を行うことができます。
|
424
|
+
* bool return_sequences
|
425
|
+
trueを設定すると、時系列ネットワークの中間層全てを出力します。
|
426
|
+
falseを設定すると、時系列ネットワークの中間層の最後のみを出力します。
|
424
427
|
* Layer activation
|
425
428
|
リカレントニューラルネットワークにおいて、使用する活性化関数を設定します。
|
426
429
|
nilを指定すると、Tanhが使用されます。
|
data/lib/dnn/core/activations.rb
CHANGED
data/lib/dnn/core/rnn_layers.rb
CHANGED
@@ -38,6 +38,7 @@ module DNN
|
|
38
38
|
def self.load_hash(hash)
|
39
39
|
self.new(hash[:num_nodes],
|
40
40
|
stateful: hash[:stateful],
|
41
|
+
return_sequences: hash[:return_sequences],
|
41
42
|
activation: Util.load_hash(hash[:activation]),
|
42
43
|
weight_initializer: Util.load_hash(hash[:weight_initializer]),
|
43
44
|
bias_initializer: Util.load_hash(hash[:bias_initializer]),
|
@@ -46,6 +47,7 @@ module DNN
|
|
46
47
|
|
47
48
|
def initialize(num_nodes,
|
48
49
|
stateful: false,
|
50
|
+
return_sequences: true,
|
49
51
|
activation: nil,
|
50
52
|
weight_initializer: nil,
|
51
53
|
bias_initializer: nil,
|
@@ -53,6 +55,7 @@ module DNN
|
|
53
55
|
super()
|
54
56
|
@num_nodes = num_nodes
|
55
57
|
@stateful = stateful
|
58
|
+
@return_sequences = return_sequences
|
56
59
|
@activation = (activation || Tanh.new)
|
57
60
|
@weight_initializer = (weight_initializer || RandomNormal.new)
|
58
61
|
@bias_initializer = (bias_initializer || Zeros.new)
|
@@ -63,7 +66,7 @@ module DNN
|
|
63
66
|
|
64
67
|
def forward(xs)
|
65
68
|
@xs_shape = xs.shape
|
66
|
-
hs = Xumo::SFloat.zeros(xs.shape[0],
|
69
|
+
hs = Xumo::SFloat.zeros(xs.shape[0], @time_length, @num_nodes)
|
67
70
|
h = (@stateful && @h) ? @h : Xumo::SFloat.zeros(xs.shape[0], @num_nodes)
|
68
71
|
xs.shape[1].times do |t|
|
69
72
|
x = xs[true, t, false]
|
@@ -71,13 +74,18 @@ module DNN
|
|
71
74
|
hs[true, t, false] = h
|
72
75
|
end
|
73
76
|
@h = h
|
74
|
-
hs
|
77
|
+
@return_sequences ? hs : h
|
75
78
|
end
|
76
79
|
|
77
80
|
def backward(dh2s)
|
78
81
|
@grads[:weight] = Xumo::SFloat.zeros(*@params[:weight].shape)
|
79
82
|
@grads[:weight2] = Xumo::SFloat.zeros(*@params[:weight2].shape)
|
80
83
|
@grads[:bias] = Xumo::SFloat.zeros(*@params[:bias].shape)
|
84
|
+
unless @return_sequences
|
85
|
+
dh = dh2s
|
86
|
+
dh2s = Xumo::SFloat.zeros(dh.shape[0], @time_length, dh.shape[1])
|
87
|
+
dh2s[true, -1, false] = dh
|
88
|
+
end
|
81
89
|
dxs = Xumo::SFloat.zeros(@xs_shape)
|
82
90
|
dh = 0
|
83
91
|
(0...dh2s.shape[1]).to_a.reverse.each do |t|
|
@@ -89,7 +97,7 @@ module DNN
|
|
89
97
|
end
|
90
98
|
|
91
99
|
def shape
|
92
|
-
[@time_length, @num_nodes]
|
100
|
+
@return_sequences ? [@time_length, @num_nodes] : [@num_nodes]
|
93
101
|
end
|
94
102
|
|
95
103
|
def ridge
|
@@ -103,6 +111,7 @@ module DNN
|
|
103
111
|
def to_hash
|
104
112
|
super({num_nodes: @num_nodes,
|
105
113
|
stateful: @stateful,
|
114
|
+
return_sequences: @return_sequences,
|
106
115
|
activation: @activation.to_hash,
|
107
116
|
weight_initializer: @weight_initializer.to_hash,
|
108
117
|
bias_initializer: @bias_initializer.to_hash,
|
@@ -112,7 +121,7 @@ module DNN
|
|
112
121
|
private
|
113
122
|
|
114
123
|
def init_params
|
115
|
-
@time_length = prev_layer.shape[0]
|
124
|
+
@time_length = prev_layer.shape[0]
|
116
125
|
num_prev_nodes = prev_layer.shape[1]
|
117
126
|
@params[:weight] = Xumo::SFloat.new(num_prev_nodes, @num_nodes)
|
118
127
|
@params[:weight2] = Xumo::SFloat.new(@num_nodes, @num_nodes)
|
@@ -128,8 +137,6 @@ module DNN
|
|
128
137
|
|
129
138
|
|
130
139
|
class LSTM_Dense
|
131
|
-
include Xumo
|
132
|
-
|
133
140
|
def initialize(params, grads)
|
134
141
|
@params = params
|
135
142
|
@grads = grads
|
@@ -148,8 +155,8 @@ module DNN
|
|
148
155
|
a = x.dot(@params[:weight]) + h.dot(@params[:weight2]) + @params[:bias]
|
149
156
|
|
150
157
|
@forget = @forget_sigmoid.forward(a[true, 0...num_nodes])
|
151
|
-
@g = @g_tanh.forward(a[
|
152
|
-
@in = @in_sigmoid.forward(a[true, num_nodes...(num_nodes *
|
158
|
+
@g = @g_tanh.forward(a[true, num_nodes...(num_nodes * 2)])
|
159
|
+
@in = @in_sigmoid.forward(a[true, (num_nodes * 2)...(num_nodes * 3)])
|
153
160
|
@out = @out_sigmoid.forward(a[true, (num_nodes * 3)..-1])
|
154
161
|
|
155
162
|
@cell2 = @forget * cell + @g * @in
|
@@ -192,6 +199,7 @@ module DNN
|
|
192
199
|
def self.load_hash(hash)
|
193
200
|
self.new(hash[:num_nodes],
|
194
201
|
stateful: hash[:stateful],
|
202
|
+
return_sequences: hash[:return_sequences],
|
195
203
|
weight_initializer: Util.load_hash(hash[:weight_initializer]),
|
196
204
|
bias_initializer: Util.load_hash(hash[:bias_initializer]),
|
197
205
|
weight_decay: hash[:weight_decay])
|
@@ -199,12 +207,14 @@ module DNN
|
|
199
207
|
|
200
208
|
def initialize(num_nodes,
|
201
209
|
stateful: false,
|
210
|
+
return_sequences: true,
|
202
211
|
weight_initializer: nil,
|
203
212
|
bias_initializer: nil,
|
204
213
|
weight_decay: 0)
|
205
214
|
super()
|
206
215
|
@num_nodes = num_nodes
|
207
216
|
@stateful = stateful
|
217
|
+
@return_sequences = return_sequences
|
208
218
|
@weight_initializer = (weight_initializer || RandomNormal.new)
|
209
219
|
@bias_initializer = (bias_initializer || Zeros.new)
|
210
220
|
@weight_decay = weight_decay
|
@@ -215,7 +225,7 @@ module DNN
|
|
215
225
|
|
216
226
|
def forward(xs)
|
217
227
|
@xs_shape = xs.shape
|
218
|
-
hs = Xumo::SFloat.zeros(xs.shape[0],
|
228
|
+
hs = Xumo::SFloat.zeros(xs.shape[0], @time_length, @num_nodes)
|
219
229
|
h = nil
|
220
230
|
cell = nil
|
221
231
|
if @stateful
|
@@ -231,13 +241,18 @@ module DNN
|
|
231
241
|
end
|
232
242
|
@h = h
|
233
243
|
@cell = cell
|
234
|
-
hs
|
244
|
+
@return_sequences ? hs : h
|
235
245
|
end
|
236
246
|
|
237
247
|
def backward(dh2s)
|
238
248
|
@grads[:weight] = Xumo::SFloat.zeros(*@params[:weight].shape)
|
239
249
|
@grads[:weight2] = Xumo::SFloat.zeros(*@params[:weight2].shape)
|
240
250
|
@grads[:bias] = Xumo::SFloat.zeros(*@params[:bias].shape)
|
251
|
+
unless @return_sequences
|
252
|
+
dh = dh2s
|
253
|
+
dh2s = Xumo::SFloat.zeros(dh.shape[0], @time_length, dh.shape[1])
|
254
|
+
dh2s[true, -1, false] = dh
|
255
|
+
end
|
241
256
|
dxs = Xumo::SFloat.zeros(@xs_shape)
|
242
257
|
dh = 0
|
243
258
|
dcell = 0
|
@@ -250,7 +265,7 @@ module DNN
|
|
250
265
|
end
|
251
266
|
|
252
267
|
def shape
|
253
|
-
[@time_length, @num_nodes]
|
268
|
+
@return_sequences ? [@time_length, @num_nodes] : [@num_nodes]
|
254
269
|
end
|
255
270
|
|
256
271
|
def ridge
|
@@ -264,6 +279,7 @@ module DNN
|
|
264
279
|
def to_hash
|
265
280
|
super({num_nodes: @num_nodes,
|
266
281
|
stateful: @stateful,
|
282
|
+
return_sequences: @return_sequences,
|
267
283
|
weight_initializer: @weight_initializer.to_hash,
|
268
284
|
bias_initializer: @bias_initializer.to_hash,
|
269
285
|
weight_decay: @weight_decay})
|
data/lib/dnn/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-dnn
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.5.
|
4
|
+
version: 0.5.11
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- unagiootoro
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-08-
|
11
|
+
date: 2018-08-14 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|