ruby-dnn 0.5.0 → 0.5.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/API-Reference.ja.md +16 -1
- data/Rakefile +3 -3
- data/lib/dnn/core/activations.rb +19 -0
- data/lib/dnn/core/model.rb +6 -40
- data/lib/dnn/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: '09358674bd9463c57f3329fe29fc3597e76c7f691bde08097069ca3c82b4c6e9'
|
4
|
+
data.tar.gz: cd26c50e67a70f339d26df1a131a88c46dc77658d32994d92e908472ccea9140
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: bd189bd96810220d873a3e2ce14c0124147d2e3dd9291914984ecaa5d14b7b7e50f222372958c22739af83590d26defc38071e6c4a90570b987f46c77ad62e07
|
7
|
+
data.tar.gz: 5571c28f7ee17c4464b5a901f0e20aa0526894fa51364f8e0f0c6fc398ce9c0b6a3ba03385877afa924e59a7e82c0a511ce1f528f955162c93756196cc40c858
|
data/API-Reference.ja.md
CHANGED
@@ -2,7 +2,7 @@
|
|
2
2
|
ruby-dnnのAPIリファレンスです。このリファレンスでは、APIを利用するうえで必要となるクラスとメソッドしか記載していません。
|
3
3
|
そのため、プログラムの詳細が必要な場合は、ソースコードを参照してください。
|
4
4
|
|
5
|
-
最終更新バージョン:0.5.
|
5
|
+
最終更新バージョン:0.5.1
|
6
6
|
|
7
7
|
# module DNN
|
8
8
|
ruby-dnnの名前空間をなすモジュールです。
|
@@ -153,6 +153,17 @@ Float
|
|
153
153
|
|
154
154
|
## def predict(x)
|
155
155
|
モデルを使用して、結果の推論を行います。
|
156
|
+
入力データは、バッチデータである必要があります。
|
157
|
+
### arguments
|
158
|
+
* SFloat x
|
159
|
+
推論用入力データ。
|
160
|
+
### return
|
161
|
+
SFloat
|
162
|
+
推論結果を返します。
|
163
|
+
|
164
|
+
## def predict1(x)
|
165
|
+
モデルを使用して、結果の推論を行います。
|
166
|
+
predictとは異なり、一つの入力データに対して、一つの出力データを返します。
|
156
167
|
### arguments
|
157
168
|
* SFloat x
|
158
169
|
推論用入力データ。
|
@@ -489,6 +500,10 @@ Float alpha
|
|
489
500
|
恒等関数と二乗誤差関数を合わせた出力層のレイヤーです。
|
490
501
|
|
491
502
|
|
503
|
+
# class IdentityMAE < OutputLayer
|
504
|
+
恒等関数と平均絶対誤差関数を合わせた出力層のレイヤーです。
|
505
|
+
|
506
|
+
|
492
507
|
# class SoftmaxWithLoss < OutputLayer
|
493
508
|
ソフトマックス関数とクロスエントロピー誤差関数を合わせた出力層のレイヤーです。
|
494
509
|
|
data/Rakefile
CHANGED
@@ -4,15 +4,15 @@ require "rake/testtask"
|
|
4
4
|
Rake::TestTask.new(:test) do |t|
|
5
5
|
t.libs << "test"
|
6
6
|
t.libs << "lib"
|
7
|
-
t.test_files = FileList["test
|
7
|
+
t.test_files = FileList["test/*_test.rb"]
|
8
8
|
end
|
9
9
|
|
10
10
|
task :build_dataset_loader do
|
11
|
-
sh "cd lib/dnn/ext/
|
11
|
+
sh "cd lib/dnn/ext/cifar10_loader; ruby extconf.rb; make"
|
12
12
|
end
|
13
13
|
|
14
14
|
task :build_image_io do
|
15
|
-
sh "cd lib/dnn/ext/
|
15
|
+
sh "cd lib/dnn/ext/rb_stb_image; ruby extconf.rb; make"
|
16
16
|
end
|
17
17
|
|
18
18
|
task :default => [:test, :build_dataset_loader, :build_image_io]
|
data/lib/dnn/core/activations.rb
CHANGED
@@ -89,6 +89,25 @@ module DNN
|
|
89
89
|
0.5 * ((@out - y)**2).sum / batch_size + ridge
|
90
90
|
end
|
91
91
|
end
|
92
|
+
|
93
|
+
|
94
|
+
class IdentityMAE < OutputLayer
|
95
|
+
def forward(x)
|
96
|
+
@out = x
|
97
|
+
end
|
98
|
+
|
99
|
+
def backward(y)
|
100
|
+
dout = @out - y
|
101
|
+
dout[dout >= 0] = 1
|
102
|
+
dout[dout < 0] = -1
|
103
|
+
dout
|
104
|
+
end
|
105
|
+
|
106
|
+
def loss(y)
|
107
|
+
batch_size = y.shape[0]
|
108
|
+
(@out - y).abs.sum / batch_size + ridge
|
109
|
+
end
|
110
|
+
end
|
92
111
|
|
93
112
|
|
94
113
|
class SoftmaxWithLoss < OutputLayer
|
data/lib/dnn/core/model.rb
CHANGED
@@ -90,45 +90,6 @@ module DNN
|
|
90
90
|
def training?
|
91
91
|
@training
|
92
92
|
end
|
93
|
-
|
94
|
-
def train(x, y, epochs,
|
95
|
-
batch_size: 1,
|
96
|
-
test: nil,
|
97
|
-
verbose: true,
|
98
|
-
batch_proc: nil,
|
99
|
-
&epoch_proc)
|
100
|
-
@batch_size = batch_size
|
101
|
-
num_train_data = x.shape[0]
|
102
|
-
(1..epochs).each do |epoch|
|
103
|
-
puts "【 epoch #{epoch}/#{epochs} 】" if verbose
|
104
|
-
(num_train_data.to_f / @batch_size).ceil.times do |index|
|
105
|
-
x_batch, y_batch = Util.get_minibatch(x, y, @batch_size)
|
106
|
-
loss = train_on_batch(x_batch, y_batch, @batch_size, &batch_proc)
|
107
|
-
if loss.nan?
|
108
|
-
puts "\nloss is nan" if verbose
|
109
|
-
return
|
110
|
-
end
|
111
|
-
num_trained_data = (index + 1) * batch_size
|
112
|
-
num_trained_data = num_trained_data > num_train_data ? num_train_data : num_trained_data
|
113
|
-
log = "\r"
|
114
|
-
20.times do |i|
|
115
|
-
if i < num_trained_data * 20 / num_train_data
|
116
|
-
log << "■"
|
117
|
-
else
|
118
|
-
log << "・"
|
119
|
-
end
|
120
|
-
end
|
121
|
-
log << " #{num_trained_data}/#{num_train_data} loss: #{loss}"
|
122
|
-
print log if verbose
|
123
|
-
end
|
124
|
-
if verbose && test
|
125
|
-
acc = accurate(test[0], test[1], batch_size,&batch_proc)
|
126
|
-
print " accurate: #{acc}"
|
127
|
-
end
|
128
|
-
puts "" if verbose
|
129
|
-
epoch_proc.call(epoch) if epoch_proc
|
130
|
-
end
|
131
|
-
end
|
132
93
|
|
133
94
|
def train(x, y, epochs,
|
134
95
|
batch_size: 1,
|
@@ -175,9 +136,10 @@ module DNN
|
|
175
136
|
@batch_size = batch_size
|
176
137
|
x, y = batch_proc.call(x, y) if batch_proc
|
177
138
|
forward(x, true)
|
139
|
+
loss = @layers[-1].loss(y)
|
178
140
|
backward(y)
|
179
141
|
@layers.each { |layer| layer.update if layer.respond_to?(:update) }
|
180
|
-
|
142
|
+
loss
|
181
143
|
end
|
182
144
|
|
183
145
|
def accurate(x, y, batch_size = nil, &batch_proc)
|
@@ -210,6 +172,10 @@ module DNN
|
|
210
172
|
def predict(x)
|
211
173
|
forward(x, false)
|
212
174
|
end
|
175
|
+
|
176
|
+
def predict1(x)
|
177
|
+
predict(SFloat.cast([x]))[0, false]
|
178
|
+
end
|
213
179
|
|
214
180
|
def forward(x, training)
|
215
181
|
@training = training
|
data/lib/dnn/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-dnn
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.5.
|
4
|
+
version: 0.5.1
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- unagiootoro
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-07-
|
11
|
+
date: 2018-07-31 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|