ruby-dnn 0.13.1 → 0.13.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/dnn/core/activations.rb +8 -8
- data/lib/dnn/core/cnn_layers.rb +31 -30
- data/lib/dnn/core/embedding.rb +6 -6
- data/lib/dnn/core/initializers.rb +25 -12
- data/lib/dnn/core/layers.rb +36 -22
- data/lib/dnn/core/losses.rb +21 -8
- data/lib/dnn/core/merge_layers.rb +4 -4
- data/lib/dnn/core/normalizations.rb +4 -4
- data/lib/dnn/core/optimizers.rb +44 -31
- data/lib/dnn/core/regularizers.rb +25 -12
- data/lib/dnn/core/rnn_layers.rb +27 -27
- data/lib/dnn/core/savers.rb +3 -3
- data/lib/dnn/core/utils.rb +1 -4
- data/lib/dnn/version.rb +1 -1
- metadata +2 -2
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: d6410781490b2e9ce5ca1370bcca4905d4476bce2d49db64dda5f6b4a933f89f
|
4
|
+
data.tar.gz: e7ab72ce5b64a85c116ecbf81798aa6abd6f3356ca1a5e8512b2f0e6090b01c7
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: a08c6f35faccf3b18e61f04535fbf67ac6c961f57a52a75c82be573269cb1d0dd5e8d2d9d215a3c311919c84ceb82c94c0c78db04de2b872fa98078e475596e7
|
7
|
+
data.tar.gz: 221da0acff79523f23e881d5a53d511348162840bd79d27221d2ec65e0c1c508efc2090b79646711856c20cd4e407aa8a8d08a51650587083a2af1284cc92abf
|
data/lib/dnn/core/activations.rb
CHANGED
@@ -74,10 +74,6 @@ module DNN
|
|
74
74
|
class LeakyReLU < Layers::Layer
|
75
75
|
attr_reader :alpha
|
76
76
|
|
77
|
-
def self.from_hash(hash)
|
78
|
-
self.new(hash[:alpha])
|
79
|
-
end
|
80
|
-
|
81
77
|
# @param [Float] alpha The slope when the output value is negative.
|
82
78
|
def initialize(alpha = 0.3)
|
83
79
|
super()
|
@@ -100,16 +96,16 @@ module DNN
|
|
100
96
|
def to_hash
|
101
97
|
super(alpha: @alpha)
|
102
98
|
end
|
99
|
+
|
100
|
+
def load_hash(hash)
|
101
|
+
initialize(hash[:alpha])
|
102
|
+
end
|
103
103
|
end
|
104
104
|
|
105
105
|
|
106
106
|
class ELU < Layers::Layer
|
107
107
|
attr_reader :alpha
|
108
108
|
|
109
|
-
def self.from_hash(hash)
|
110
|
-
self.new(hash[:alpha])
|
111
|
-
end
|
112
|
-
|
113
109
|
# @param [Float] alpha The slope when the output value is negative.
|
114
110
|
def initialize(alpha = 1.0)
|
115
111
|
super()
|
@@ -139,6 +135,10 @@ module DNN
|
|
139
135
|
def to_hash
|
140
136
|
super(alpha: @alpha)
|
141
137
|
end
|
138
|
+
|
139
|
+
def load_hash(hash)
|
140
|
+
initialize(hash[:alpha])
|
141
|
+
end
|
142
142
|
end
|
143
143
|
|
144
144
|
end
|
data/lib/dnn/core/cnn_layers.rb
CHANGED
@@ -92,17 +92,6 @@ module DNN
|
|
92
92
|
attr_reader :strides
|
93
93
|
attr_reader :padding
|
94
94
|
|
95
|
-
def self.from_hash(hash)
|
96
|
-
self.new(hash[:num_filters], hash[:filter_size],
|
97
|
-
weight_initializer: Utils.hash_to_obj(hash[:weight_initializer]),
|
98
|
-
bias_initializer: Utils.hash_to_obj(hash[:bias_initializer]),
|
99
|
-
weight_regularizer: Utils.hash_to_obj(hash[:weight_regularizer]),
|
100
|
-
bias_regularizer: Utils.hash_to_obj(hash[:bias_regularizer]),
|
101
|
-
use_bias: hash[:use_bias],
|
102
|
-
strides: hash[:strides],
|
103
|
-
padding: hash[:padding])
|
104
|
-
end
|
105
|
-
|
106
95
|
# @param [Integer] num_filters Number of filters.
|
107
96
|
# @param [Array | Integer] filter_size Filter size. Filter size is of the form [height, width].
|
108
97
|
# @param [Array | Integer] strides Stride length. Stride length is of the form [height, width].
|
@@ -184,6 +173,17 @@ module DNN
|
|
184
173
|
strides: @strides,
|
185
174
|
padding: @padding)
|
186
175
|
end
|
176
|
+
|
177
|
+
def load_hash(hash)
|
178
|
+
initialize(hash[:num_filters], hash[:filter_size],
|
179
|
+
weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]),
|
180
|
+
bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]),
|
181
|
+
weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]),
|
182
|
+
bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]),
|
183
|
+
use_bias: hash[:use_bias],
|
184
|
+
strides: hash[:strides],
|
185
|
+
padding: hash[:padding])
|
186
|
+
end
|
187
187
|
end
|
188
188
|
|
189
189
|
|
@@ -195,17 +195,6 @@ module DNN
|
|
195
195
|
attr_reader :strides
|
196
196
|
attr_reader :padding
|
197
197
|
|
198
|
-
def self.from_hash(hash)
|
199
|
-
self.new(hash[:num_filters], hash[:filter_size],
|
200
|
-
weight_initializer: Utils.hash_to_obj(hash[:weight_initializer]),
|
201
|
-
bias_initializer: Utils.hash_to_obj(hash[:bias_initializer]),
|
202
|
-
weight_regularizer: Utils.hash_to_obj(hash[:weight_regularizer]),
|
203
|
-
bias_regularizer: Utils.hash_to_obj(hash[:bias_regularizer]),
|
204
|
-
use_bias: hash[:use_bias],
|
205
|
-
strides: hash[:strides],
|
206
|
-
padding: hash[:padding])
|
207
|
-
end
|
208
|
-
|
209
198
|
# @param [Integer] num_filters Number of filters.
|
210
199
|
# @param [Array | Integer] filter_size Filter size. Filter size is of the form [height, width].
|
211
200
|
# @param [Array | Integer] strides Stride length. Stride length is of the form [height, width].
|
@@ -289,6 +278,17 @@ module DNN
|
|
289
278
|
strides: @strides,
|
290
279
|
padding: @padding)
|
291
280
|
end
|
281
|
+
|
282
|
+
def load_hash(hash)
|
283
|
+
initialize(hash[:num_filters], hash[:filter_size],
|
284
|
+
weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]),
|
285
|
+
bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]),
|
286
|
+
weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]),
|
287
|
+
bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]),
|
288
|
+
use_bias: hash[:use_bias],
|
289
|
+
strides: hash[:strides],
|
290
|
+
padding: hash[:padding])
|
291
|
+
end
|
292
292
|
end
|
293
293
|
|
294
294
|
|
@@ -300,10 +300,6 @@ module DNN
|
|
300
300
|
attr_reader :strides
|
301
301
|
attr_reader :padding
|
302
302
|
|
303
|
-
def self.from_hash(hash)
|
304
|
-
self.new(hash[:pool_size], strides: hash[:strides], padding: hash[:padding])
|
305
|
-
end
|
306
|
-
|
307
303
|
# @param [Array | Integer] pool_size Pooling size. Pooling size is of the form [height, width].
|
308
304
|
# @param [Array | Integer | NilClass] strides Stride length. Stride length is of the form [height, width].
|
309
305
|
# If you set nil, treat pool_size as strides.
|
@@ -345,6 +341,11 @@ module DNN
|
|
345
341
|
strides: @strides,
|
346
342
|
padding: @padding)
|
347
343
|
end
|
344
|
+
|
345
|
+
def load_hash(hash)
|
346
|
+
initialize(hash[:pool_size], strides: hash[:strides], padding: hash[:padding])
|
347
|
+
end
|
348
|
+
|
348
349
|
end
|
349
350
|
|
350
351
|
|
@@ -396,10 +397,6 @@ module DNN
|
|
396
397
|
|
397
398
|
attr_reader :unpool_size
|
398
399
|
|
399
|
-
def self.from_hash(hash)
|
400
|
-
self.new(hash[:unpool_size])
|
401
|
-
end
|
402
|
-
|
403
400
|
# @param [Array | Integer] unpool_size Unpooling size. unpooling size is of the form [height, width].
|
404
401
|
def initialize(unpool_size)
|
405
402
|
super()
|
@@ -445,6 +442,10 @@ module DNN
|
|
445
442
|
def to_hash
|
446
443
|
super(unpool_size: @unpool_size)
|
447
444
|
end
|
445
|
+
|
446
|
+
def load_hash(hash)
|
447
|
+
initialize(hash[:unpool_size])
|
448
|
+
end
|
448
449
|
end
|
449
450
|
|
450
451
|
end
|
data/lib/dnn/core/embedding.rb
CHANGED
@@ -7,12 +7,6 @@ module DNN
|
|
7
7
|
attr_reader :weight_initializer
|
8
8
|
attr_reader :weight_regularizer
|
9
9
|
|
10
|
-
def self.from_hash(hash)
|
11
|
-
self.new(hash[:input_shape], hash[:input_length],
|
12
|
-
weight_initializer: DNN::Utils.hash_to_obj(hash[:weight_initializer]),
|
13
|
-
weight_regularizer: DNN::Utils.hash_to_obj(hash[:weight_regularizer]))
|
14
|
-
end
|
15
|
-
|
16
10
|
# @param [Integer | Array] input_dim_or_shape Set input data dimension or shape.
|
17
11
|
# @param [Integer] input_length Set the time series length of input data.
|
18
12
|
# @param [DNN::Initializers::Initializer] weight_initializer Weight initializer.
|
@@ -67,6 +61,12 @@ module DNN
|
|
67
61
|
weight_initializer: @weight_initializer.to_hash, weight_regularizer: @weight_regularizer&.to_hash)
|
68
62
|
end
|
69
63
|
|
64
|
+
def load_hash(hash)
|
65
|
+
initialize(hash[:input_shape], hash[:input_length],
|
66
|
+
weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]),
|
67
|
+
weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]))
|
68
|
+
end
|
69
|
+
|
70
70
|
def get_params
|
71
71
|
{ weight: @weight }
|
72
72
|
end
|
@@ -2,6 +2,15 @@ module DNN
|
|
2
2
|
module Initializers
|
3
3
|
|
4
4
|
class Initializer
|
5
|
+
def self.from_hash(hash)
|
6
|
+
return nil unless hash
|
7
|
+
initializer_class = DNN.const_get(hash[:class])
|
8
|
+
initializer = initializer_class.allocate
|
9
|
+
raise DNN_Error.new("#{initializer.class} is not an instance of #{self} class.") unless initializer.is_a?(self)
|
10
|
+
initializer.load_hash(hash)
|
11
|
+
initializer
|
12
|
+
end
|
13
|
+
|
5
14
|
# @param [Boolean | Integer] seed Seed of random number used for initialize parameter.
|
6
15
|
# Set true to determine seed as random.
|
7
16
|
def initialize(seed: false)
|
@@ -20,6 +29,10 @@ module DNN
|
|
20
29
|
hash.merge!(merge_hash) if merge_hash
|
21
30
|
hash
|
22
31
|
end
|
32
|
+
|
33
|
+
def load_hash(hash)
|
34
|
+
initialize
|
35
|
+
end
|
23
36
|
end
|
24
37
|
|
25
38
|
|
@@ -33,10 +46,6 @@ module DNN
|
|
33
46
|
class Const < Initializer
|
34
47
|
attr_reader :const
|
35
48
|
|
36
|
-
def self.from_hash(hash)
|
37
|
-
self.new(hash[:const])
|
38
|
-
end
|
39
|
-
|
40
49
|
# @param [Float] const Constant value of initialization.
|
41
50
|
def initialize(const)
|
42
51
|
super()
|
@@ -50,6 +59,10 @@ module DNN
|
|
50
59
|
def to_hash
|
51
60
|
super(const: @const)
|
52
61
|
end
|
62
|
+
|
63
|
+
def load_hash(hash)
|
64
|
+
initialize(hash[:const])
|
65
|
+
end
|
53
66
|
end
|
54
67
|
|
55
68
|
|
@@ -57,10 +70,6 @@ module DNN
|
|
57
70
|
attr_reader :mean
|
58
71
|
attr_reader :std
|
59
72
|
|
60
|
-
def self.from_hash(hash)
|
61
|
-
self.new(hash[:mean], hash[:std], seed: hash[:seed])
|
62
|
-
end
|
63
|
-
|
64
73
|
# @param [Float] mean Average of initialization value.
|
65
74
|
# @param [Float] std Variance of initialization value.
|
66
75
|
def initialize(mean = 0, std = 0.05, seed: true)
|
@@ -77,6 +86,10 @@ module DNN
|
|
77
86
|
def to_hash
|
78
87
|
super(mean: @mean, std: @std)
|
79
88
|
end
|
89
|
+
|
90
|
+
def load_hash(hash)
|
91
|
+
initialize(hash[:mean], hash[:std], seed: hash[:seed])
|
92
|
+
end
|
80
93
|
end
|
81
94
|
|
82
95
|
|
@@ -84,10 +97,6 @@ module DNN
|
|
84
97
|
attr_reader :min
|
85
98
|
attr_reader :max
|
86
99
|
|
87
|
-
def self.from_hash(hash)
|
88
|
-
self.new(hash[:min], hash[:max], seed: hash[:seed])
|
89
|
-
end
|
90
|
-
|
91
100
|
# @param [Float] min Min of initialization value.
|
92
101
|
# @param [Float] max Max of initialization value.
|
93
102
|
def initialize(min = -0.05, max = 0.05, seed: true)
|
@@ -104,6 +113,10 @@ module DNN
|
|
104
113
|
def to_hash
|
105
114
|
super(min: @min, max: @max)
|
106
115
|
end
|
116
|
+
|
117
|
+
def load_hash(hash)
|
118
|
+
initialize(hash[:min], hash[:max], seed: hash[:seed])
|
119
|
+
end
|
107
120
|
end
|
108
121
|
|
109
122
|
|
data/lib/dnn/core/layers.rb
CHANGED
@@ -10,8 +10,18 @@ module DNN
|
|
10
10
|
self.new(*args).(x)
|
11
11
|
end
|
12
12
|
|
13
|
+
def self.from_hash(hash)
|
14
|
+
return nil unless hash
|
15
|
+
layer_class = DNN.const_get(hash[:class])
|
16
|
+
layer = layer_class.allocate
|
17
|
+
raise DNN_Error.new("#{layer.class} is not an instance of #{self} class.") unless layer.is_a?(self)
|
18
|
+
layer.load_hash(hash)
|
19
|
+
layer
|
20
|
+
end
|
21
|
+
|
13
22
|
def initialize
|
14
23
|
@built = false
|
24
|
+
@name = nil
|
15
25
|
end
|
16
26
|
|
17
27
|
# Forward propagation and create a link.
|
@@ -57,10 +67,14 @@ module DNN
|
|
57
67
|
|
58
68
|
# Layer to a hash.
|
59
69
|
def to_hash(merge_hash = nil)
|
60
|
-
hash = { class: self.class.name }
|
70
|
+
hash = { class: self.class.name, name: @name }
|
61
71
|
hash.merge!(merge_hash) if merge_hash
|
62
72
|
hash
|
63
73
|
end
|
74
|
+
|
75
|
+
def load_hash(hash)
|
76
|
+
initialize
|
77
|
+
end
|
64
78
|
end
|
65
79
|
|
66
80
|
|
@@ -87,10 +101,6 @@ module DNN
|
|
87
101
|
self.new(shape[1..-1]).(input)
|
88
102
|
end
|
89
103
|
|
90
|
-
def self.from_hash(hash)
|
91
|
-
self.new(hash[:input_shape])
|
92
|
-
end
|
93
|
-
|
94
104
|
# @param [Array] input_dim_or_shape Setting the shape or dimension of the input data.
|
95
105
|
def initialize(input_dim_or_shape)
|
96
106
|
super()
|
@@ -127,6 +137,10 @@ module DNN
|
|
127
137
|
def to_hash
|
128
138
|
super(input_shape: @input_shape)
|
129
139
|
end
|
140
|
+
|
141
|
+
def load_hash(hash)
|
142
|
+
initialize(hash[:input_shape])
|
143
|
+
end
|
130
144
|
end
|
131
145
|
|
132
146
|
|
@@ -196,15 +210,6 @@ module DNN
|
|
196
210
|
class Dense < Connection
|
197
211
|
attr_reader :num_nodes
|
198
212
|
|
199
|
-
def self.from_hash(hash)
|
200
|
-
self.new(hash[:num_nodes],
|
201
|
-
weight_initializer: Utils.hash_to_obj(hash[:weight_initializer]),
|
202
|
-
bias_initializer: Utils.hash_to_obj(hash[:bias_initializer]),
|
203
|
-
weight_regularizer: Utils.hash_to_obj(hash[:weight_regularizer]),
|
204
|
-
bias_regularizer: Utils.hash_to_obj(hash[:bias_regularizer]),
|
205
|
-
use_bias: hash[:use_bias])
|
206
|
-
end
|
207
|
-
|
208
213
|
# @param [Integer] num_nodes Number of nodes.
|
209
214
|
def initialize(num_nodes,
|
210
215
|
weight_initializer: Initializers::RandomNormal.new,
|
@@ -250,6 +255,15 @@ module DNN
|
|
250
255
|
def to_hash
|
251
256
|
super(num_nodes: @num_nodes)
|
252
257
|
end
|
258
|
+
|
259
|
+
def load_hash(hash)
|
260
|
+
initialize(hash[:num_nodes],
|
261
|
+
weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]),
|
262
|
+
bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]),
|
263
|
+
weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]),
|
264
|
+
bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]),
|
265
|
+
use_bias: hash[:use_bias])
|
266
|
+
end
|
253
267
|
end
|
254
268
|
|
255
269
|
|
@@ -269,10 +283,6 @@ module DNN
|
|
269
283
|
|
270
284
|
|
271
285
|
class Reshape < Layer
|
272
|
-
def self.from_hash(hash)
|
273
|
-
self.new(hash[:output_shape])
|
274
|
-
end
|
275
|
-
|
276
286
|
def initialize(output_shape)
|
277
287
|
super()
|
278
288
|
@output_shape = output_shape
|
@@ -293,6 +303,10 @@ module DNN
|
|
293
303
|
def to_hash
|
294
304
|
super(output_shape: @output_shape)
|
295
305
|
end
|
306
|
+
|
307
|
+
def load_hash(hash)
|
308
|
+
initialize(hash[:output_shape])
|
309
|
+
end
|
296
310
|
end
|
297
311
|
|
298
312
|
|
@@ -300,10 +314,6 @@ module DNN
|
|
300
314
|
attr_accessor :dropout_ratio
|
301
315
|
attr_reader :use_scale
|
302
316
|
|
303
|
-
def self.from_hash(hash)
|
304
|
-
self.new(hash[:dropout_ratio], seed: hash[:seed], use_scale: hash[:use_scale])
|
305
|
-
end
|
306
|
-
|
307
317
|
# @param [Float] dropout_ratio Nodes dropout ratio.
|
308
318
|
# @param [Integer] seed Seed of random number used for masking.
|
309
319
|
# @param [Boolean] use_scale Set to true to scale the output according to the dropout ratio.
|
@@ -335,6 +345,10 @@ module DNN
|
|
335
345
|
def to_hash
|
336
346
|
super(dropout_ratio: @dropout_ratio, seed: @seed, use_scale: @use_scale)
|
337
347
|
end
|
348
|
+
|
349
|
+
def load_hash(hash)
|
350
|
+
initialize(hash[:dropout_ratio], seed: hash[:seed], use_scale: hash[:use_scale])
|
351
|
+
end
|
338
352
|
end
|
339
353
|
|
340
354
|
end
|
data/lib/dnn/core/losses.rb
CHANGED
@@ -2,6 +2,15 @@ module DNN
|
|
2
2
|
module Losses
|
3
3
|
|
4
4
|
class Loss
|
5
|
+
def self.from_hash(hash)
|
6
|
+
return nil unless hash
|
7
|
+
loss_class = DNN.const_get(hash[:class])
|
8
|
+
loss = loss_class.allocate
|
9
|
+
raise DNN_Error.new("#{loss.class} is not an instance of #{self} class.") unless loss.is_a?(self)
|
10
|
+
loss.load_hash(hash)
|
11
|
+
loss
|
12
|
+
end
|
13
|
+
|
5
14
|
def loss(y, t, layers = nil)
|
6
15
|
unless y.shape == t.shape
|
7
16
|
raise DNN_ShapeError.new("The shape of y does not match the t shape. y shape is #{y.shape}, but t shape is #{t.shape}.")
|
@@ -40,6 +49,10 @@ module DNN
|
|
40
49
|
hash.merge!(merge_hash) if merge_hash
|
41
50
|
hash
|
42
51
|
end
|
52
|
+
|
53
|
+
def load_hash(hash)
|
54
|
+
initialize
|
55
|
+
end
|
43
56
|
end
|
44
57
|
|
45
58
|
class MeanSquaredError < Loss
|
@@ -115,10 +128,6 @@ module DNN
|
|
115
128
|
class SoftmaxCrossEntropy < Loss
|
116
129
|
attr_accessor :eps
|
117
130
|
|
118
|
-
def self.from_hash(hash)
|
119
|
-
self.new(eps: hash[:eps])
|
120
|
-
end
|
121
|
-
|
122
131
|
def self.softmax(y)
|
123
132
|
Xumo::NMath.exp(y) / Xumo::NMath.exp(y).sum(1, keepdims: true)
|
124
133
|
end
|
@@ -141,16 +150,16 @@ module DNN
|
|
141
150
|
def to_hash
|
142
151
|
super(eps: @eps)
|
143
152
|
end
|
153
|
+
|
154
|
+
def load_hash(hash)
|
155
|
+
initialize(eps: hash[:eps])
|
156
|
+
end
|
144
157
|
end
|
145
158
|
|
146
159
|
|
147
160
|
class SigmoidCrossEntropy < Loss
|
148
161
|
attr_accessor :eps
|
149
162
|
|
150
|
-
def self.from_hash(hash)
|
151
|
-
self.new(eps: hash[:eps])
|
152
|
-
end
|
153
|
-
|
154
163
|
# @param [Float] eps Value to avoid nan.
|
155
164
|
def initialize(eps: 1e-7)
|
156
165
|
@eps = eps
|
@@ -168,6 +177,10 @@ module DNN
|
|
168
177
|
def to_hash
|
169
178
|
super(eps: @eps)
|
170
179
|
end
|
180
|
+
|
181
|
+
def load_hash(hash)
|
182
|
+
initialize(eps: hash[:eps])
|
183
|
+
end
|
171
184
|
end
|
172
185
|
|
173
186
|
end
|
@@ -43,10 +43,6 @@ module DNN
|
|
43
43
|
class Concatenate < MergeLayer
|
44
44
|
attr_reader :axis
|
45
45
|
|
46
|
-
def self.from_hash(hash)
|
47
|
-
self.new(axis: hash[:axis])
|
48
|
-
end
|
49
|
-
|
50
46
|
def initialize(axis: 1)
|
51
47
|
super()
|
52
48
|
@axis = axis
|
@@ -65,6 +61,10 @@ module DNN
|
|
65
61
|
def to_hash
|
66
62
|
super(axis: @axis)
|
67
63
|
end
|
64
|
+
|
65
|
+
def load_hash(hash)
|
66
|
+
initialize(axis: hash[:axis])
|
67
|
+
end
|
68
68
|
end
|
69
69
|
|
70
70
|
end
|
@@ -10,10 +10,6 @@ module DNN
|
|
10
10
|
attr_accessor :momentum
|
11
11
|
attr_accessor :eps
|
12
12
|
|
13
|
-
def self.from_hash(hash)
|
14
|
-
self.new(axis: hash[:axis], momentum: hash[:momentum])
|
15
|
-
end
|
16
|
-
|
17
13
|
# @param [Integer] axis The axis to normalization.
|
18
14
|
# @param [Float] momentum Exponential moving average of mean and variance.
|
19
15
|
# @param [Float] eps Value to avoid division by zero.
|
@@ -68,6 +64,10 @@ module DNN
|
|
68
64
|
super(axis: @axis, momentum: @momentum, eps: @eps)
|
69
65
|
end
|
70
66
|
|
67
|
+
def load_hash(hash)
|
68
|
+
initialize(axis: hash[:axis], momentum: hash[:momentum])
|
69
|
+
end
|
70
|
+
|
71
71
|
def get_params
|
72
72
|
{ gamma: @gamma, beta: @beta, running_mean: @running_mean, running_var: @running_var }
|
73
73
|
end
|
data/lib/dnn/core/optimizers.rb
CHANGED
@@ -6,8 +6,17 @@ module DNN
|
|
6
6
|
attr_reader :status
|
7
7
|
attr_accessor :clip_norm
|
8
8
|
|
9
|
+
def self.from_hash(hash)
|
10
|
+
return nil unless hash
|
11
|
+
optimizer_class = DNN.const_get(hash[:class])
|
12
|
+
optimizer = optimizer_class.allocate
|
13
|
+
raise DNN_Error.new("#{optimizer.class} is not an instance of #{self} class.") unless optimizer.is_a?(self)
|
14
|
+
optimizer.load_hash(hash)
|
15
|
+
optimizer
|
16
|
+
end
|
17
|
+
|
9
18
|
def self.load(dumped)
|
10
|
-
opt =
|
19
|
+
opt = from_hash(dumped[:hash])
|
11
20
|
dumped[:status].each do |key, state|
|
12
21
|
state = state.clone
|
13
22
|
opt.status[key] = state
|
@@ -56,6 +65,10 @@ module DNN
|
|
56
65
|
param.grad *= rate
|
57
66
|
end
|
58
67
|
end
|
68
|
+
|
69
|
+
def load_hash(hash)
|
70
|
+
initialize(clip_norm: hash[:clip_norm])
|
71
|
+
end
|
59
72
|
end
|
60
73
|
|
61
74
|
|
@@ -63,10 +76,6 @@ module DNN
|
|
63
76
|
attr_accessor :lr
|
64
77
|
attr_accessor :momentum
|
65
78
|
|
66
|
-
def self.from_hash(hash)
|
67
|
-
self.new(hash[:lr], momentum: hash[:momentum], clip_norm: hash[:clip_norm])
|
68
|
-
end
|
69
|
-
|
70
79
|
# @param [Float] lr Learning rate.
|
71
80
|
# @param [Float] momentum Momentum coefficient.
|
72
81
|
def initialize(lr = 0.01, momentum: 0, clip_norm: nil)
|
@@ -92,6 +101,10 @@ module DNN
|
|
92
101
|
param.data -= amount
|
93
102
|
end
|
94
103
|
end
|
104
|
+
|
105
|
+
def load_hash(hash)
|
106
|
+
initialize(hash[:lr], momentum: hash[:momentum], clip_norm: hash[:clip_norm])
|
107
|
+
end
|
95
108
|
end
|
96
109
|
|
97
110
|
|
@@ -115,10 +128,6 @@ module DNN
|
|
115
128
|
attr_accessor :lr
|
116
129
|
attr_accessor :eps
|
117
130
|
|
118
|
-
def self.from_hash(hash)
|
119
|
-
self.new(hash[:lr], eps: hash[:eps], clip_norm: hash[:clip_norm])
|
120
|
-
end
|
121
|
-
|
122
131
|
# @param [Float] lr Learning rate.
|
123
132
|
# @param [Float] eps Value to avoid division by zero.
|
124
133
|
def initialize(lr = 0.01, eps: 1e-7, clip_norm: nil)
|
@@ -140,6 +149,10 @@ module DNN
|
|
140
149
|
def to_hash
|
141
150
|
super(lr: @lr, eps: @eps)
|
142
151
|
end
|
152
|
+
|
153
|
+
def load_hash(hash)
|
154
|
+
initialize(hash[:lr], eps: hash[:eps], clip_norm: hash[:clip_norm])
|
155
|
+
end
|
143
156
|
end
|
144
157
|
|
145
158
|
|
@@ -148,10 +161,6 @@ module DNN
|
|
148
161
|
attr_accessor :alpha
|
149
162
|
attr_accessor :eps
|
150
163
|
|
151
|
-
def self.from_hash(hash)
|
152
|
-
self.new(hash[:lr], alpha: hash[:alpha], eps: hash[:eps], clip_norm: hash[:clip_norm])
|
153
|
-
end
|
154
|
-
|
155
164
|
# @param [Float] lr Learning rate.
|
156
165
|
# @param [Float] alpha Moving average index of past slopes.
|
157
166
|
# @param [Float] eps Value to avoid division by zero.
|
@@ -175,6 +184,10 @@ module DNN
|
|
175
184
|
param.data -= (@lr / Xumo::NMath.sqrt(@g[param.name] + @eps)) * param.grad
|
176
185
|
end
|
177
186
|
end
|
187
|
+
|
188
|
+
def load_hash(hash)
|
189
|
+
initialize(hash[:lr], alpha: hash[:alpha], eps: hash[:eps], clip_norm: hash[:clip_norm])
|
190
|
+
end
|
178
191
|
end
|
179
192
|
|
180
193
|
|
@@ -182,10 +195,6 @@ module DNN
|
|
182
195
|
attr_accessor :rho
|
183
196
|
attr_accessor :eps
|
184
197
|
|
185
|
-
def self.from_hash(hash)
|
186
|
-
self.new(rho: hash[:rho], eps: hash[:eps], clip_norm: hash[:clip_norm])
|
187
|
-
end
|
188
|
-
|
189
198
|
# @param [Float] rho Moving average index of past slopes.
|
190
199
|
# @param [Float] eps Value to avoid division by zero.
|
191
200
|
def initialize(rho: 0.95, eps: 1e-6, clip_norm: nil)
|
@@ -211,6 +220,10 @@ module DNN
|
|
211
220
|
param.data -= v
|
212
221
|
end
|
213
222
|
end
|
223
|
+
|
224
|
+
def load_hash(hash)
|
225
|
+
initialize(rho: hash[:rho], eps: hash[:eps], clip_norm: hash[:clip_norm])
|
226
|
+
end
|
214
227
|
end
|
215
228
|
|
216
229
|
|
@@ -219,10 +232,6 @@ module DNN
|
|
219
232
|
attr_accessor :alpha
|
220
233
|
attr_accessor :eps
|
221
234
|
|
222
|
-
def self.from_hash(hash)
|
223
|
-
self.new(hash[:lr], alpha: hash[:alpha], eps: hash[:eps], clip_norm: hash[:clip_norm])
|
224
|
-
end
|
225
|
-
|
226
235
|
# @param [Float] lr Learning rate.
|
227
236
|
# @param [Float] alpha Moving average index of past slopes.
|
228
237
|
# @param [Float] eps Value to avoid division by zero.
|
@@ -249,6 +258,10 @@ module DNN
|
|
249
258
|
param.data -= (@lr / Xumo::NMath.sqrt(@v[param.name] - @m[param.name] ** 2 + @eps)) * param.grad
|
250
259
|
end
|
251
260
|
end
|
261
|
+
|
262
|
+
def load_hash(hash)
|
263
|
+
initialize(hash[:lr], alpha: hash[:alpha], eps: hash[:eps], clip_norm: hash[:clip_norm])
|
264
|
+
end
|
252
265
|
end
|
253
266
|
|
254
267
|
|
@@ -259,11 +272,6 @@ module DNN
|
|
259
272
|
attr_accessor :eps
|
260
273
|
attr_reader :amsgrad
|
261
274
|
|
262
|
-
def self.from_hash(hash)
|
263
|
-
self.new(alpha: hash[:alpha], beta1: hash[:beta1], beta2: hash[:beta2],
|
264
|
-
eps: hash[:eps], amsgrad: hash[:amsgrad], clip_norm: hash[:clip_norm])
|
265
|
-
end
|
266
|
-
|
267
275
|
# @param [Float] alpha Value used to calculate learning rate.
|
268
276
|
# @param [Float] beta1 Moving average index of beta1.
|
269
277
|
# @param [Float] beta2 Moving average index of beta2.
|
@@ -307,6 +315,11 @@ module DNN
|
|
307
315
|
end
|
308
316
|
end
|
309
317
|
end
|
318
|
+
|
319
|
+
def load_hash(hash)
|
320
|
+
initialize(alpha: hash[:alpha], beta1: hash[:beta1], beta2: hash[:beta2],
|
321
|
+
eps: hash[:eps], amsgrad: hash[:amsgrad], clip_norm: hash[:clip_norm])
|
322
|
+
end
|
310
323
|
end
|
311
324
|
|
312
325
|
|
@@ -314,11 +327,6 @@ module DNN
|
|
314
327
|
attr_accessor :final_lr
|
315
328
|
attr_accessor :gamma
|
316
329
|
|
317
|
-
def self.from_hash(hash)
|
318
|
-
self.new(alpha: hash[:alpha], beta1: hash[:beta1], beta2: hash[:beta2],
|
319
|
-
final_lr: hash[:final_lr], gamma: hash[:gamma], eps: hash[:eps], amsgrad: hash[:amsgrad], clip_norm: hash[:clip_norm])
|
320
|
-
end
|
321
|
-
|
322
330
|
# @param [Float] final_lr Final learning rate.
|
323
331
|
# @param [Float] gamma Lower and upper range value.
|
324
332
|
def initialize(alpha: 0.001, beta1: 0.9, beta2: 0.999, final_lr: 0.1, gamma: 0.001, eps: 1e-7, amsgrad: false, clip_norm: nil)
|
@@ -360,6 +368,11 @@ module DNN
|
|
360
368
|
lr[lr > upper_bound] = upper_bound
|
361
369
|
lr
|
362
370
|
end
|
371
|
+
|
372
|
+
def load_hash(hash)
|
373
|
+
initialize(alpha: hash[:alpha], beta1: hash[:beta1], beta2: hash[:beta2],
|
374
|
+
final_lr: hash[:final_lr], gamma: hash[:gamma], eps: hash[:eps], amsgrad: hash[:amsgrad], clip_norm: hash[:clip_norm])
|
375
|
+
end
|
363
376
|
end
|
364
377
|
|
365
378
|
end
|
@@ -4,6 +4,15 @@ module DNN
|
|
4
4
|
class Regularizer
|
5
5
|
attr_accessor :param
|
6
6
|
|
7
|
+
def self.from_hash(hash)
|
8
|
+
return nil unless hash
|
9
|
+
regularizer_class = DNN.const_get(hash[:class])
|
10
|
+
regularizer = regularizer_class.allocate
|
11
|
+
raise DNN_Error.new("#{regularizer.class} is not an instance of #{self} class.") unless regularizer.is_a?(self)
|
12
|
+
regularizer.load_hash(hash)
|
13
|
+
regularizer
|
14
|
+
end
|
15
|
+
|
7
16
|
def forward(x)
|
8
17
|
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'forward'")
|
9
18
|
end
|
@@ -17,15 +26,15 @@ module DNN
|
|
17
26
|
hash.merge!(merge_hash)
|
18
27
|
hash
|
19
28
|
end
|
29
|
+
|
30
|
+
def load_hash(hash)
|
31
|
+
raise NotImplementedError.new("Class '#{self.class.name}' has implement method 'load_hash'")
|
32
|
+
end
|
20
33
|
end
|
21
34
|
|
22
35
|
class L1 < Regularizer
|
23
36
|
attr_accessor :l1_lambda
|
24
37
|
|
25
|
-
def self.from_hash(hash)
|
26
|
-
self.new(hash[:l1_lambda])
|
27
|
-
end
|
28
|
-
|
29
38
|
# @param [Float] l1_lambda L1 regularizer coefficient.
|
30
39
|
def initialize(l1_lambda = 0.01)
|
31
40
|
@l1_lambda = l1_lambda
|
@@ -44,16 +53,16 @@ module DNN
|
|
44
53
|
def to_hash
|
45
54
|
super(l1_lambda: @l1_lambda)
|
46
55
|
end
|
56
|
+
|
57
|
+
def load_hash(hash)
|
58
|
+
initialize(hash[:l1_lambda])
|
59
|
+
end
|
47
60
|
end
|
48
61
|
|
49
62
|
|
50
63
|
class L2 < Regularizer
|
51
64
|
attr_accessor :l2_lambda
|
52
65
|
|
53
|
-
def self.from_hash(hash)
|
54
|
-
self.new(hash[:l2_lambda])
|
55
|
-
end
|
56
|
-
|
57
66
|
# @param [Float] l2_lambda L2 regularizer coefficient.
|
58
67
|
def initialize(l2_lambda = 0.01)
|
59
68
|
@l2_lambda = l2_lambda
|
@@ -70,16 +79,16 @@ module DNN
|
|
70
79
|
def to_hash
|
71
80
|
super(l2_lambda: @l2_lambda)
|
72
81
|
end
|
82
|
+
|
83
|
+
def load_hash(hash)
|
84
|
+
initialize(hash[:l2_lambda])
|
85
|
+
end
|
73
86
|
end
|
74
87
|
|
75
88
|
class L1L2 < Regularizer
|
76
89
|
attr_accessor :l1_lambda
|
77
90
|
attr_accessor :l2_lambda
|
78
91
|
|
79
|
-
def self.from_hash(hash)
|
80
|
-
self.new(hash[:l1_lambda], hash[:l2_lambda])
|
81
|
-
end
|
82
|
-
|
83
92
|
# @param [Float] l1_lambda L1 regularizer coefficient.
|
84
93
|
# @param [Float] l2_lambda L2 regularizer coefficient.
|
85
94
|
def initialize(l1_lambda = 0.01, l2_lambda = 0.01)
|
@@ -103,6 +112,10 @@ module DNN
|
|
103
112
|
def to_hash
|
104
113
|
super(l1_lambda: l1_lambda, l2_lambda: l2_lambda)
|
105
114
|
end
|
115
|
+
|
116
|
+
def load_hash(hash)
|
117
|
+
initialize(hash[:l1_lambda], hash[:l2_lambda])
|
118
|
+
end
|
106
119
|
end
|
107
120
|
|
108
121
|
end
|
data/lib/dnn/core/rnn_layers.rb
CHANGED
@@ -11,19 +11,6 @@ module DNN
|
|
11
11
|
attr_reader :recurrent_weight_initializer
|
12
12
|
attr_reader :recurrent_weight_regularizer
|
13
13
|
|
14
|
-
def self.from_hash(hash)
|
15
|
-
self.new(hash[:num_nodes],
|
16
|
-
stateful: hash[:stateful],
|
17
|
-
return_sequences: hash[:return_sequences],
|
18
|
-
weight_initializer: Utils.hash_to_obj(hash[:weight_initializer]),
|
19
|
-
recurrent_weight_initializer: Utils.hash_to_obj(hash[:recurrent_weight_initializer]),
|
20
|
-
bias_initializer: Utils.hash_to_obj(hash[:bias_initializer]),
|
21
|
-
weight_regularizer: Utils.hash_to_obj(hash[:weight_regularizer]),
|
22
|
-
recurrent_weight_regularizer: Utils.hash_to_obj(hash[:recurrent_weight_regularizer]),
|
23
|
-
bias_regularizer: Utils.hash_to_obj(hash[:bias_regularizer]),
|
24
|
-
use_bias: hash[:use_bias])
|
25
|
-
end
|
26
|
-
|
27
14
|
# @param [Integer] num_nodes Number of nodes.
|
28
15
|
# @param [Boolean] stateful Maintain state between batches.
|
29
16
|
# @param [Boolean] return_sequences Set the false, only the last of each cell of RNN is left.
|
@@ -105,6 +92,19 @@ module DNN
|
|
105
92
|
super(hash)
|
106
93
|
end
|
107
94
|
|
95
|
+
def load_hash(hash)
|
96
|
+
initialize(hash[:num_nodes],
|
97
|
+
stateful: hash[:stateful],
|
98
|
+
return_sequences: hash[:return_sequences],
|
99
|
+
weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]),
|
100
|
+
recurrent_weight_initializer: Initializers::Initializer.from_hash(hash[:recurrent_weight_initializer]),
|
101
|
+
bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]),
|
102
|
+
weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]),
|
103
|
+
recurrent_weight_regularizer: Regularizers::Regularizer.from_hash(hash[:recurrent_weight_regularizer]),
|
104
|
+
bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]),
|
105
|
+
use_bias: hash[:use_bias])
|
106
|
+
end
|
107
|
+
|
108
108
|
def get_params
|
109
109
|
{ weight: @weight, recurrent_weight: @recurrent_weight, bias: @bias, hidden: @hidden }
|
110
110
|
end
|
@@ -166,20 +166,6 @@ module DNN
|
|
166
166
|
class SimpleRNN < RNN
|
167
167
|
attr_reader :activation
|
168
168
|
|
169
|
-
def self.from_hash(hash)
|
170
|
-
self.new(hash[:num_nodes],
|
171
|
-
stateful: hash[:stateful],
|
172
|
-
return_sequences: hash[:return_sequences],
|
173
|
-
activation: Utils.hash_to_obj(hash[:activation]),
|
174
|
-
weight_initializer: Utils.hash_to_obj(hash[:weight_initializer]),
|
175
|
-
recurrent_weight_initializer: Utils.hash_to_obj(hash[:recurrent_weight_initializer]),
|
176
|
-
bias_initializer: Utils.hash_to_obj(hash[:bias_initializer]),
|
177
|
-
weight_regularizer: Utils.hash_to_obj(hash[:weight_regularizer]),
|
178
|
-
recurrent_weight_regularizer: Utils.hash_to_obj(hash[:recurrent_weight_regularizer]),
|
179
|
-
bias_regularizer: Utils.hash_to_obj(hash[:bias_regularizer]),
|
180
|
-
use_bias: hash[:use_bias])
|
181
|
-
end
|
182
|
-
|
183
169
|
# @param [DNN::Layers::Layer] activation Activation function to use in a recurrent network.
|
184
170
|
def initialize(num_nodes,
|
185
171
|
stateful: false,
|
@@ -220,6 +206,20 @@ module DNN
|
|
220
206
|
def to_hash
|
221
207
|
super(activation: @activation.to_hash)
|
222
208
|
end
|
209
|
+
|
210
|
+
def load_hash(hash)
|
211
|
+
initialize(hash[:num_nodes],
|
212
|
+
stateful: hash[:stateful],
|
213
|
+
return_sequences: hash[:return_sequences],
|
214
|
+
activation: Layers::Layer.from_hash(hash[:activation]),
|
215
|
+
weight_initializer: Initializers::Initializer.from_hash(hash[:weight_initializer]),
|
216
|
+
recurrent_weight_initializer: Initializers::Initializer.from_hash(hash[:recurrent_weight_initializer]),
|
217
|
+
bias_initializer: Initializers::Initializer.from_hash(hash[:bias_initializer]),
|
218
|
+
weight_regularizer: Regularizers::Regularizer.from_hash(hash[:weight_regularizer]),
|
219
|
+
recurrent_weight_regularizer: Regularizers::Regularizer.from_hash(hash[:recurrent_weight_regularizer]),
|
220
|
+
bias_regularizer: Regularizers::Regularizer.from_hash(hash[:bias_regularizer]),
|
221
|
+
use_bias: hash[:use_bias])
|
222
|
+
end
|
223
223
|
end
|
224
224
|
|
225
225
|
|
data/lib/dnn/core/savers.rb
CHANGED
@@ -35,7 +35,7 @@ module DNN
|
|
35
35
|
private def load_bin(bin)
|
36
36
|
data = Marshal.load(Zlib::Inflate.inflate(bin))
|
37
37
|
opt = Optimizers::Optimizer.load(data[:optimizer])
|
38
|
-
loss_func =
|
38
|
+
loss_func = Losses::Loss.from_hash(data[:loss_func])
|
39
39
|
@model.setup(opt, loss_func)
|
40
40
|
@model.predict1(Xumo::SFloat.zeros(*data[:input_shape]))
|
41
41
|
set_all_params_data(data[:params])
|
@@ -47,8 +47,8 @@ module DNN
|
|
47
47
|
|
48
48
|
def load_bin(bin)
|
49
49
|
data = JSON.parse(bin, symbolize_names: true)
|
50
|
-
opt =
|
51
|
-
loss_func =
|
50
|
+
opt = Optimizers::Optimizer.from_hash(data[:optimizer])
|
51
|
+
loss_func = Losses::Loss.from_hash(data[:loss_func])
|
52
52
|
@model.setup(opt, loss_func)
|
53
53
|
@model.predict1(Xumo::SFloat.zeros(*data[:input_shape]))
|
54
54
|
base64_to_params_data(data[:params])
|
data/lib/dnn/core/utils.rb
CHANGED
@@ -18,10 +18,7 @@ module DNN
|
|
18
18
|
def self.hash_to_obj(hash)
|
19
19
|
return nil if hash == nil
|
20
20
|
dnn_class = DNN.const_get(hash[:class])
|
21
|
-
|
22
|
-
return dnn_class.from_hash(hash)
|
23
|
-
end
|
24
|
-
dnn_class.new
|
21
|
+
dnn_class.from_hash(hash)
|
25
22
|
end
|
26
23
|
|
27
24
|
# Return the result of the sigmoid function.
|
data/lib/dnn/version.rb
CHANGED
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-dnn
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.13.
|
4
|
+
version: 0.13.2
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- unagiootoro
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2019-09-
|
11
|
+
date: 2019-09-28 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|