ruby-decimal 0.2.2 → 1.0.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +28 -0
- data/Gemfile +3 -0
- data/History.txt +4 -0
- data/{README.txt → README.rdoc} +9 -0
- data/Rakefile +16 -30
- data/expand.rb +177 -0
- data/lib/decimal.rb +7 -3
- data/lib/decimal/shortcut.rb +1 -6
- data/lib/decimal/version.rb +2 -8
- data/test/helper.rb +2 -2
- data/test/test_basic.rb +1 -1
- data/test/test_coercion.rb +1 -1
- data/test/test_comparisons.rb +1 -1
- data/test/test_dectest.rb +1 -1
- data/test/test_define_conversions.rb +2 -9
- data/test/test_epsilon.rb +1 -1
- data/test/test_exact.rb +1 -2
- data/test/test_flags.rb +8 -9
- data/test/test_flt_wrapping.rb +12 -0
- data/test/test_multithreading.rb +1 -3
- data/test/test_odd_even.rb +1 -1
- data/test/test_round.rb +1 -2
- data/test/test_shortcut.rb +11 -0
- data/test/test_to_int.rb +1 -1
- data/test/test_to_rf.rb +1 -1
- data/test/test_ulp.rb +1 -1
- metadata +80 -73
- data/lib/decimal/decimal.rb +0 -4171
- data/lib/decimal/support.rb +0 -337
- data/setup.rb +0 -1585
- data/tasks/ann.rake +0 -80
- data/tasks/bones.rake +0 -20
- data/tasks/gem.rake +0 -192
- data/tasks/git.rake +0 -40
- data/tasks/manifest.rake +0 -48
- data/tasks/notes.rake +0 -27
- data/tasks/post_load.rake +0 -39
- data/tasks/rdoc.rake +0 -50
- data/tasks/rubyforge.rake +0 -55
- data/tasks/setup.rb +0 -279
- data/tasks/spec.rake +0 -54
- data/tasks/svn.rake +0 -47
- data/tasks/test.rake +0 -40
data/test/test_multithreading.rb
CHANGED
data/test/test_odd_even.rb
CHANGED
data/test/test_round.rb
CHANGED
data/test/test_to_int.rb
CHANGED
data/test/test_to_rf.rb
CHANGED
data/test/test_ulp.rb
CHANGED
metadata
CHANGED
@@ -1,62 +1,76 @@
|
|
1
|
-
--- !ruby/object:Gem::Specification
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
2
|
name: ruby-decimal
|
3
|
-
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 1.0.0
|
5
5
|
platform: ruby
|
6
|
-
authors:
|
6
|
+
authors:
|
7
7
|
- Javier Goizueta
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
|
12
|
-
|
13
|
-
|
14
|
-
|
15
|
-
|
16
|
-
|
11
|
+
date: 2014-10-12 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: flt
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - "~>"
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 1.3.2
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - "~>"
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 1.3.2
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: bundler
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - "~>"
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '1.6'
|
17
34
|
type: :development
|
18
|
-
|
19
|
-
version_requirements: !ruby/object:Gem::Requirement
|
20
|
-
requirements:
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - "~>"
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '1.6'
|
41
|
+
- !ruby/object:Gem::Dependency
|
42
|
+
name: rake
|
43
|
+
requirement: !ruby/object:Gem::Requirement
|
44
|
+
requirements:
|
21
45
|
- - ">="
|
22
|
-
- !ruby/object:Gem::Version
|
23
|
-
version:
|
24
|
-
|
25
|
-
|
26
|
-
|
46
|
+
- !ruby/object:Gem::Version
|
47
|
+
version: '0'
|
48
|
+
type: :development
|
49
|
+
prerelease: false
|
50
|
+
version_requirements: !ruby/object:Gem::Requirement
|
51
|
+
requirements:
|
52
|
+
- - ">="
|
53
|
+
- !ruby/object:Gem::Version
|
54
|
+
version: '0'
|
55
|
+
description: Decimal type similar to Python's, following General Decimal Arithmetic
|
56
|
+
Specification and IEEE 754-2008
|
57
|
+
email:
|
58
|
+
- jgoizueta@gmail.com
|
27
59
|
executables: []
|
28
|
-
|
29
60
|
extensions: []
|
30
|
-
|
31
|
-
|
32
|
-
-
|
33
|
-
-
|
34
|
-
- README.txt
|
35
|
-
files:
|
61
|
+
extra_rdoc_files: []
|
62
|
+
files:
|
63
|
+
- ".gitignore"
|
64
|
+
- Gemfile
|
36
65
|
- History.txt
|
37
66
|
- License.txt
|
38
67
|
- Manifest.txt
|
39
|
-
- README.
|
68
|
+
- README.rdoc
|
40
69
|
- Rakefile
|
70
|
+
- expand.rb
|
41
71
|
- lib/decimal.rb
|
42
|
-
- lib/decimal/decimal.rb
|
43
72
|
- lib/decimal/shortcut.rb
|
44
|
-
- lib/decimal/support.rb
|
45
73
|
- lib/decimal/version.rb
|
46
|
-
- setup.rb
|
47
|
-
- tasks/ann.rake
|
48
|
-
- tasks/bones.rake
|
49
|
-
- tasks/gem.rake
|
50
|
-
- tasks/git.rake
|
51
|
-
- tasks/manifest.rake
|
52
|
-
- tasks/notes.rake
|
53
|
-
- tasks/post_load.rake
|
54
|
-
- tasks/rdoc.rake
|
55
|
-
- tasks/rubyforge.rake
|
56
|
-
- tasks/setup.rb
|
57
|
-
- tasks/spec.rake
|
58
|
-
- tasks/svn.rake
|
59
|
-
- tasks/test.rake
|
60
74
|
- test/all_tests.rb
|
61
75
|
- test/helper.rb
|
62
76
|
- test/test_basic.rb
|
@@ -67,50 +81,41 @@ files:
|
|
67
81
|
- test/test_epsilon.rb
|
68
82
|
- test/test_exact.rb
|
69
83
|
- test/test_flags.rb
|
84
|
+
- test/test_flt_wrapping.rb
|
70
85
|
- test/test_multithreading.rb
|
71
86
|
- test/test_odd_even.rb
|
72
87
|
- test/test_round.rb
|
88
|
+
- test/test_shortcut.rb
|
73
89
|
- test/test_to_int.rb
|
74
90
|
- test/test_to_rf.rb
|
75
91
|
- test/test_ulp.rb
|
76
|
-
|
77
|
-
|
78
|
-
|
79
|
-
|
92
|
+
homepage: https://github.com/jgoizueta/ruby-decimal
|
93
|
+
licenses:
|
94
|
+
- MIT
|
95
|
+
metadata: {}
|
80
96
|
post_install_message:
|
81
|
-
rdoc_options:
|
82
|
-
|
83
|
-
- README.txt
|
84
|
-
- --title
|
85
|
-
- Ruby Decimal Documentation
|
86
|
-
- --opname
|
87
|
-
- index.html
|
88
|
-
- --line-numbers
|
89
|
-
- --inline-source
|
90
|
-
- --main
|
91
|
-
- README.txt
|
92
|
-
require_paths:
|
97
|
+
rdoc_options: []
|
98
|
+
require_paths:
|
93
99
|
- lib
|
94
|
-
required_ruby_version: !ruby/object:Gem::Requirement
|
95
|
-
requirements:
|
100
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
101
|
+
requirements:
|
96
102
|
- - ">="
|
97
|
-
- !ruby/object:Gem::Version
|
98
|
-
version:
|
99
|
-
|
100
|
-
|
101
|
-
requirements:
|
103
|
+
- !ruby/object:Gem::Version
|
104
|
+
version: '0'
|
105
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
106
|
+
requirements:
|
102
107
|
- - ">="
|
103
|
-
- !ruby/object:Gem::Version
|
104
|
-
version:
|
105
|
-
version:
|
108
|
+
- !ruby/object:Gem::Version
|
109
|
+
version: '0'
|
106
110
|
requirements: []
|
107
|
-
|
108
|
-
|
109
|
-
rubygems_version: 1.3.3
|
111
|
+
rubyforge_project:
|
112
|
+
rubygems_version: 2.2.2
|
110
113
|
signing_key:
|
111
|
-
specification_version:
|
114
|
+
specification_version: 4
|
112
115
|
summary: Ruby Decimal Type
|
113
|
-
test_files:
|
116
|
+
test_files:
|
117
|
+
- test/all_tests.rb
|
118
|
+
- test/helper.rb
|
114
119
|
- test/test_basic.rb
|
115
120
|
- test/test_coercion.rb
|
116
121
|
- test/test_comparisons.rb
|
@@ -119,9 +124,11 @@ test_files:
|
|
119
124
|
- test/test_epsilon.rb
|
120
125
|
- test/test_exact.rb
|
121
126
|
- test/test_flags.rb
|
127
|
+
- test/test_flt_wrapping.rb
|
122
128
|
- test/test_multithreading.rb
|
123
129
|
- test/test_odd_even.rb
|
124
130
|
- test/test_round.rb
|
131
|
+
- test/test_shortcut.rb
|
125
132
|
- test/test_to_int.rb
|
126
133
|
- test/test_to_rf.rb
|
127
134
|
- test/test_ulp.rb
|
data/lib/decimal/decimal.rb
DELETED
@@ -1,4171 +0,0 @@
|
|
1
|
-
require 'bigdecimal'
|
2
|
-
require 'forwardable'
|
3
|
-
require 'rational'
|
4
|
-
require 'monitor'
|
5
|
-
require 'ostruct'
|
6
|
-
|
7
|
-
# Decimal arbitrary precision floating point number.
|
8
|
-
# This implementation of Decimal is based on the Decimal module of Python,
|
9
|
-
# written by Eric Price, Facundo Batista, Raymond Hettinger, Aahz and Tim Peters.
|
10
|
-
class Decimal
|
11
|
-
|
12
|
-
extend DecimalSupport # allows use of unqualified FlagValues(), Flags()
|
13
|
-
|
14
|
-
ROUND_HALF_EVEN = :half_even
|
15
|
-
ROUND_HALF_DOWN = :half_down
|
16
|
-
ROUND_HALF_UP = :half_up
|
17
|
-
ROUND_FLOOR = :floor
|
18
|
-
ROUND_CEILING = :ceiling
|
19
|
-
ROUND_DOWN = :down
|
20
|
-
ROUND_UP = :up
|
21
|
-
ROUND_05UP = :up05
|
22
|
-
|
23
|
-
# Numerical conversion base support
|
24
|
-
# base (default) coercible types associated to procedures for numerical conversion
|
25
|
-
@base_coercible_types = {
|
26
|
-
Integer=>lambda{|x, context| x>=0 ? [+1,x,0] : [-1,-x,0]},
|
27
|
-
Rational=>lambda{|x, context|
|
28
|
-
x, y = Decimal.new(x.numerator), Decimal.new(x.denominator)
|
29
|
-
x.divide(y, context)
|
30
|
-
}
|
31
|
-
}
|
32
|
-
@base_conversions = {
|
33
|
-
Integer=>:to_i, Rational=>:to_r, Float=>:to_f
|
34
|
-
}
|
35
|
-
class <<self
|
36
|
-
attr_reader :base_coercible_types
|
37
|
-
attr_reader :base_conversions
|
38
|
-
end
|
39
|
-
|
40
|
-
#--
|
41
|
-
# Some functions use the next methods instead of 10, 10**x, etc.
|
42
|
-
# This has been done for two reasons:
|
43
|
-
# * Much of the code of Decimal is generic enough to work for non-decimal floating-point numbers.
|
44
|
-
# In the future a binary (or arbitrary radix) class could be derived from Decimal.
|
45
|
-
# * The radix power operations could be optimized (specinally for binary)
|
46
|
-
# But note that some code (e.g. powers & logarithms, auxiliar funtions) use algorithms
|
47
|
-
# that assume radix=10.
|
48
|
-
#++
|
49
|
-
|
50
|
-
# Numerical base of Decimal.
|
51
|
-
def self.radix
|
52
|
-
10
|
53
|
-
end
|
54
|
-
|
55
|
-
# Integral power of the base: radix**n for integer n; returns an integer.
|
56
|
-
def self.int_radix_power(n)
|
57
|
-
10**n
|
58
|
-
end
|
59
|
-
|
60
|
-
# Multiply by an integral power of the base: x*(radix**n) for x,n integer;
|
61
|
-
# returns an integer.
|
62
|
-
def self.int_mult_radix_power(x,n)
|
63
|
-
x * (10**n)
|
64
|
-
end
|
65
|
-
|
66
|
-
# Divide by an integral power of the base: x/(radix**n) for x,n integer;
|
67
|
-
# returns an integer.
|
68
|
-
def self.int_div_radix_power(x,n)
|
69
|
-
x / (10**n)
|
70
|
-
end
|
71
|
-
|
72
|
-
|
73
|
-
# Base class for errors.
|
74
|
-
class Error < StandardError
|
75
|
-
end
|
76
|
-
|
77
|
-
# Base class for exceptions.
|
78
|
-
#
|
79
|
-
# All exception conditions derive from this class.
|
80
|
-
# The exception classes also define the values returned when trapping is disable for
|
81
|
-
# a particular exception.
|
82
|
-
class Exception < StandardError
|
83
|
-
attr :context
|
84
|
-
def initialize(context=nil)
|
85
|
-
@context = context
|
86
|
-
end
|
87
|
-
|
88
|
-
# Defines the value returned when trapping is inactive
|
89
|
-
# for the condition. The arguments are those passed to
|
90
|
-
# Context#exception after the message.
|
91
|
-
def self.handle(context, *args)
|
92
|
-
end
|
93
|
-
end
|
94
|
-
|
95
|
-
# Invalid operation exception.
|
96
|
-
#
|
97
|
-
# The result of the operation is a quiet positive NaN,
|
98
|
-
# except when the cause is a signaling NaN, in which case the result is
|
99
|
-
# also a quiet NaN, but with the original sign, and an optional
|
100
|
-
# diagnostic information.
|
101
|
-
class InvalidOperation < Exception
|
102
|
-
def self.handle(context=nil, *args)
|
103
|
-
if args.size>0
|
104
|
-
sign, coeff, exp = args.first.split
|
105
|
-
Decimal.new([sign, coeff, :nan])._fix_nan(context)
|
106
|
-
else
|
107
|
-
Decimal.nan
|
108
|
-
end
|
109
|
-
end
|
110
|
-
def initialize(context=nil, *args)
|
111
|
-
@value = args.first if args.size>0
|
112
|
-
super context
|
113
|
-
end
|
114
|
-
end
|
115
|
-
|
116
|
-
# Division by zero exception.
|
117
|
-
#
|
118
|
-
# The result of the operation is +/-Infinity, where the sign is the product
|
119
|
-
# of the signs of the operands for divide, or 1 for an odd power of -0.
|
120
|
-
class DivisionByZero < Exception
|
121
|
-
def self.handle(context,sign,*args)
|
122
|
-
Decimal.infinity(sign)
|
123
|
-
end
|
124
|
-
def initialize(context=nil, sign=nil, *args)
|
125
|
-
@sign = sign
|
126
|
-
super context
|
127
|
-
end
|
128
|
-
end
|
129
|
-
|
130
|
-
# Cannot perform the division adequately exception.
|
131
|
-
#
|
132
|
-
# This occurs and signals invalid-operation if the integer result of a
|
133
|
-
# divide-integer or remainder operation had too many digits (would be
|
134
|
-
# longer than precision).
|
135
|
-
# The result is NaN.
|
136
|
-
class DivisionImpossible < Exception
|
137
|
-
def self.handle(context,*args)
|
138
|
-
Decimal.nan
|
139
|
-
end
|
140
|
-
end
|
141
|
-
|
142
|
-
# Undefined result of division exception.
|
143
|
-
#
|
144
|
-
# This occurs and signals invalid-operation if division by zero was
|
145
|
-
# attempted (during a divide-integer, divide, or remainder operation), and
|
146
|
-
# the dividend is also zero.
|
147
|
-
# The result is NaN.
|
148
|
-
class DivisionUndefined < Exception
|
149
|
-
def self.handle(context,*args)
|
150
|
-
Decimal.nan
|
151
|
-
end
|
152
|
-
end
|
153
|
-
|
154
|
-
# Inexact Exception.
|
155
|
-
#
|
156
|
-
# This occurs and signals inexact whenever the result of an operation is
|
157
|
-
# not exact (that is, it needed to be rounded and any discarded digits
|
158
|
-
# were non-zero), or if an overflow or underflow condition occurs. The
|
159
|
-
# result in all cases is unchanged unless the context has exact precision,
|
160
|
-
# in which case the result is Nan
|
161
|
-
class Inexact < Exception
|
162
|
-
def self.handle(context, *args)
|
163
|
-
Decimal.nan if context.exact?
|
164
|
-
end
|
165
|
-
end
|
166
|
-
|
167
|
-
# Overflow Exception.
|
168
|
-
#
|
169
|
-
# This occurs and signals overflow if the adjusted exponent of a result
|
170
|
-
# (from a conversion or from an operation that is not an attempt to divide
|
171
|
-
# by zero), after rounding, would be greater than the largest value that
|
172
|
-
# can be handled by the implementation (the value Emax).
|
173
|
-
#
|
174
|
-
# The result depends on the rounding mode:
|
175
|
-
#
|
176
|
-
# For round-half-up and round-half-even (and for round-half-down and
|
177
|
-
# round-up, if implemented), the result of the operation is +/-Infinity,
|
178
|
-
# where the sign is that of the intermediate result. For round-down, the
|
179
|
-
# result is the largest finite number that can be represented in the
|
180
|
-
# current precision, with the sign of the intermediate result. For
|
181
|
-
# round-ceiling, the result is the same as for round-down if the sign of
|
182
|
-
# the intermediate result is 1, or is +Infinity otherwise. For round-floor,
|
183
|
-
# the result is the same as for round-down if the sign of the intermediate
|
184
|
-
# result is 0, or is -Infinity otherwise. In all cases, Inexact and Rounded
|
185
|
-
# will also be raised.
|
186
|
-
class Overflow < Exception
|
187
|
-
def self.handle(context, sign, *args)
|
188
|
-
if [:half_up, :half_even, :half_down, :up].include?(context.rounding)
|
189
|
-
Decimal.infinity(sign)
|
190
|
-
elsif sign==+1
|
191
|
-
if context.rounding == :ceiling
|
192
|
-
Decimal.infinity(sign)
|
193
|
-
else
|
194
|
-
Decimal.new([sign, Decimal.int_radix_power(context.precision) - 1, context.emax - context.precision + 1])
|
195
|
-
end
|
196
|
-
elsif sign==-1
|
197
|
-
if context.rounding == :floor
|
198
|
-
Decimal.infinity(sign)
|
199
|
-
else
|
200
|
-
Decimal.new([sign, Decimal.int_radix_power(context.precision) - 1, context.emax - context.precision + 1])
|
201
|
-
end
|
202
|
-
end
|
203
|
-
end
|
204
|
-
def initialize(context=nil, sign=nil, *args)
|
205
|
-
@sign = sign
|
206
|
-
super context
|
207
|
-
end
|
208
|
-
end
|
209
|
-
|
210
|
-
# Numerical Underflow with result rounded to 0 exception.
|
211
|
-
#
|
212
|
-
# This occurs and signals underflow if a result is inexact and the
|
213
|
-
# adjusted exponent of the result would be smaller (more negative) than
|
214
|
-
# the smallest value that can be handled by the implementation (the value
|
215
|
-
# emin). That is, the result is both inexact and subnormal.
|
216
|
-
#
|
217
|
-
# The result after an underflow will be a subnormal number rounded, if
|
218
|
-
# necessary, so that its exponent is not less than Etiny. This may result
|
219
|
-
# in 0 with the sign of the intermediate result and an exponent of etiny.
|
220
|
-
#
|
221
|
-
# In all cases, Inexact, Rounded, and Subnormal will also be raised.
|
222
|
-
class Underflow < Exception
|
223
|
-
end
|
224
|
-
|
225
|
-
# Clamped exception: exponent of a 0 changed to fit bounds.
|
226
|
-
#
|
227
|
-
# This occurs and signals clamped if the exponent of a result has been
|
228
|
-
# altered in order to fit the constraints of a specific concrete
|
229
|
-
# representation. This may occur when the exponent of a zero result would
|
230
|
-
# be outside the bounds of a representation, or when a large normal
|
231
|
-
# number would have an encoded exponent that cannot be represented. In
|
232
|
-
# this latter case, the exponent is reduced to fit and the corresponding
|
233
|
-
# number of zero digits are appended to the coefficient ("fold-down").
|
234
|
-
class Clamped < Exception
|
235
|
-
end
|
236
|
-
|
237
|
-
# Invalid context exception.
|
238
|
-
#
|
239
|
-
# This occurs and signals invalid-operation if an invalid context was
|
240
|
-
# detected during an operation. This can occur if contexts are not checked
|
241
|
-
# on creation and either the precision exceeds the capability of the
|
242
|
-
# underlying concrete representation or an unknown or unsupported rounding
|
243
|
-
# was specified. These aspects of the context need only be checked when
|
244
|
-
# the values are required to be used. The result is NaN.
|
245
|
-
class InvalidContext < Exception
|
246
|
-
def self.handle(context,*args)
|
247
|
-
Decimal.nan
|
248
|
-
end
|
249
|
-
end
|
250
|
-
|
251
|
-
# Number got rounded exception (not necessarily changed during rounding).
|
252
|
-
#
|
253
|
-
# This occurs and signals rounded whenever the result of an operation is
|
254
|
-
# rounded (that is, some zero or non-zero digits were discarded from the
|
255
|
-
# coefficient), or if an overflow or underflow condition occurs. The
|
256
|
-
# result in all cases is unchanged.
|
257
|
-
class Rounded < Exception
|
258
|
-
end
|
259
|
-
|
260
|
-
# Exponent < emin before rounding exception.
|
261
|
-
#
|
262
|
-
# This occurs and signals subnormal whenever the result of a conversion or
|
263
|
-
# operation is subnormal (that is, its adjusted exponent is less than
|
264
|
-
# Emin, before any rounding). The result in all cases is unchanged.
|
265
|
-
class Subnormal < Exception
|
266
|
-
end
|
267
|
-
|
268
|
-
# Conversion syntax error exception (Trying to convert badly formed string.)
|
269
|
-
#
|
270
|
-
# This occurs and signals invalid-operation if an string is being
|
271
|
-
# converted to a number and it does not conform to the numeric string
|
272
|
-
# syntax. The result is NaN.
|
273
|
-
class ConversionSyntax < InvalidOperation
|
274
|
-
def self.handle(context, *args)
|
275
|
-
Decimal.nan
|
276
|
-
end
|
277
|
-
end
|
278
|
-
|
279
|
-
EXCEPTIONS = FlagValues(Clamped, InvalidOperation, DivisionByZero, Inexact, Overflow, Underflow,
|
280
|
-
Rounded, Subnormal, DivisionImpossible, ConversionSyntax)
|
281
|
-
|
282
|
-
def self.Flags(*values)
|
283
|
-
DecimalSupport::Flags(EXCEPTIONS,*values)
|
284
|
-
end
|
285
|
-
|
286
|
-
# The context defines the arithmetic context: rounding mode, precision,...
|
287
|
-
# Decimal.context is the current (thread-local) context.
|
288
|
-
class Context
|
289
|
-
|
290
|
-
# If an options hash is passed, the options are
|
291
|
-
# applied to the default context; if a Context is passed as the first
|
292
|
-
# argument, it is used as the base instead of the default context.
|
293
|
-
#
|
294
|
-
# The valid options are:
|
295
|
-
# * :rounding : one of :half_even, :half_down, :half_up, :floor,
|
296
|
-
# :ceiling, :down, :up, :up05
|
297
|
-
# * :precision : number of digits (or 0 for exact precision)
|
298
|
-
# * :exact : if true precision is ignored and Inexact conditions are trapped,
|
299
|
-
# if :quiet it set exact precision but no trapping;
|
300
|
-
# * :traps : a Flags object with the exceptions to be trapped
|
301
|
-
# * :flags : a Flags object with the raised flags
|
302
|
-
# * :ignored_flags : a Flags object with the exceptions to be ignored
|
303
|
-
# * :emin, :emax : minimum and maximum adjusted exponents
|
304
|
-
# * :elimit : the exponent limits can also be defined by a single value;
|
305
|
-
# if positive it is taken as emax and emin=1-emax; otherwiae it is
|
306
|
-
# taken as emin and emax=1-emin. Such limits comply with IEEE 754-2008
|
307
|
-
# * :capitals : (true or false) to use capitals in text representations
|
308
|
-
# * :clamp : (true or false) enables clamping
|
309
|
-
#
|
310
|
-
# See also the context constructor method Decimal.Context().
|
311
|
-
def initialize(*options)
|
312
|
-
|
313
|
-
if options.first.instance_of?(Context)
|
314
|
-
base = options.shift
|
315
|
-
copy_from base
|
316
|
-
else
|
317
|
-
@rounding = @emin = @emax = nil
|
318
|
-
@capitals = false
|
319
|
-
@clamp = false
|
320
|
-
@ignored_flags = Decimal::Flags()
|
321
|
-
@traps = Decimal::Flags()
|
322
|
-
@flags = Decimal::Flags()
|
323
|
-
@coercible_type_handlers = Decimal.base_coercible_types.dup
|
324
|
-
@conversions = Decimal.base_conversions.dup
|
325
|
-
end
|
326
|
-
assign options.first
|
327
|
-
|
328
|
-
end
|
329
|
-
|
330
|
-
attr_accessor :rounding, :emin, :emax, :flags, :traps, :ignored_flags, :capitals, :clamp
|
331
|
-
|
332
|
-
# TODO: consider the convenience of adding accessors of this kind:
|
333
|
-
# def rounding(new_rounding=nil)
|
334
|
-
# old_rounding = @rounding
|
335
|
-
# @rounding = new_rounding unless new_rounding.nil?
|
336
|
-
# old_rounding
|
337
|
-
# end
|
338
|
-
|
339
|
-
# Ignore all flags if they are raised
|
340
|
-
def ignore_all_flags
|
341
|
-
#@ignored_flags << EXCEPTIONS
|
342
|
-
@ignored_flags.set!
|
343
|
-
end
|
344
|
-
|
345
|
-
# Ignore a specified set of flags if they are raised
|
346
|
-
def ignore_flags(*flags)
|
347
|
-
#@ignored_flags << flags
|
348
|
-
@ignored_flags.set(*flags)
|
349
|
-
end
|
350
|
-
|
351
|
-
# Stop ignoring a set of flags, if they are raised
|
352
|
-
def regard_flags(*flags)
|
353
|
-
@ignored_flags.clear(*flags)
|
354
|
-
end
|
355
|
-
|
356
|
-
# 'tiny' exponent (emin - precision + 1)
|
357
|
-
# is the minimum valid value for the (integral) exponent
|
358
|
-
def etiny
|
359
|
-
emin - precision + 1
|
360
|
-
end
|
361
|
-
|
362
|
-
# top exponent (emax - precision + 1)
|
363
|
-
# is the maximum valid value for the (integral) exponent
|
364
|
-
def etop
|
365
|
-
emax - precision + 1
|
366
|
-
end
|
367
|
-
|
368
|
-
# Set the exponent limits, according to IEEE 754-2008
|
369
|
-
# if e > 0 it is taken as emax and emin=1-emax
|
370
|
-
# if e < 0 it is taken as emin and emax=1-emin
|
371
|
-
def elimit=(e)
|
372
|
-
@emin, @emax = [elimit, 1-elimit].sort
|
373
|
-
end
|
374
|
-
|
375
|
-
# synonym for precision()
|
376
|
-
def digits
|
377
|
-
self.precision
|
378
|
-
end
|
379
|
-
|
380
|
-
# synonym for precision=()
|
381
|
-
def digits=(n)
|
382
|
-
self.precision=n
|
383
|
-
end
|
384
|
-
|
385
|
-
# synonym for precision()
|
386
|
-
def prec
|
387
|
-
self.precision
|
388
|
-
end
|
389
|
-
|
390
|
-
# synonym for precision=()
|
391
|
-
def prec=(n)
|
392
|
-
self.precision = n
|
393
|
-
end
|
394
|
-
|
395
|
-
# is clamping enabled?
|
396
|
-
def clamp?
|
397
|
-
@clamp
|
398
|
-
end
|
399
|
-
|
400
|
-
# Set the number of digits of precision.
|
401
|
-
# If 0 is set the precision turns to be exact.
|
402
|
-
def precision=(n)
|
403
|
-
@precision = n
|
404
|
-
@exact = false unless n==0
|
405
|
-
update_precision
|
406
|
-
n
|
407
|
-
end
|
408
|
-
|
409
|
-
# Number of digits of precision
|
410
|
-
def precision
|
411
|
-
@precision
|
412
|
-
end
|
413
|
-
|
414
|
-
# Enables or disables the exact precision
|
415
|
-
def exact=(v)
|
416
|
-
@exact = v
|
417
|
-
update_precision
|
418
|
-
v
|
419
|
-
end
|
420
|
-
|
421
|
-
# Returns true if the precision is exact
|
422
|
-
def exact
|
423
|
-
@exact
|
424
|
-
end
|
425
|
-
|
426
|
-
# Returns true if the precision is exact
|
427
|
-
def exact?
|
428
|
-
@exact
|
429
|
-
end
|
430
|
-
|
431
|
-
# Alters the contexts by assigning options from a Hash. See Decimal#new() for the valid options.
|
432
|
-
def assign(options)
|
433
|
-
if options
|
434
|
-
@rounding = options[:rounding] unless options[:rounding].nil?
|
435
|
-
@precision = options[:precision] unless options[:precision].nil?
|
436
|
-
@traps = Decimal::Flags(options[:traps]) unless options[:traps].nil?
|
437
|
-
@flags = Decimal::Flags(options[:flags]) unless options[:flags].nil?
|
438
|
-
@ignored_flags = Decimal::Flags(options[:ignored_flags]) unless options[:ignored_flags].nil?
|
439
|
-
if elimit=options[:elimit]
|
440
|
-
@emin, @emax = [elimit, 1-elimit].sort
|
441
|
-
end
|
442
|
-
@emin = options[:emin] unless options[:emin].nil?
|
443
|
-
@emax = options[:emax] unless options[:emax].nil?
|
444
|
-
@capitals = options[:capitals ] unless options[:capitals ].nil?
|
445
|
-
@clamp = options[:clamp ] unless options[:clamp ].nil?
|
446
|
-
@exact = options[:exact ] unless options[:exact ].nil?
|
447
|
-
update_precision
|
448
|
-
end
|
449
|
-
end
|
450
|
-
|
451
|
-
attr_reader :coercible_type_handlers, :conversions
|
452
|
-
protected :coercible_type_handlers, :conversions
|
453
|
-
|
454
|
-
# Copy the state from other Context object.
|
455
|
-
def copy_from(other)
|
456
|
-
@rounding = other.rounding
|
457
|
-
@precision = other.precision
|
458
|
-
@traps = other.traps.dup
|
459
|
-
@flags = other.flags.dup
|
460
|
-
@ignored_flags = other.ignored_flags.dup
|
461
|
-
@emin = other.emin
|
462
|
-
@emax = other.emax
|
463
|
-
@capitals = other.capitals
|
464
|
-
@clamp = other.clamp
|
465
|
-
@exact = other.exact
|
466
|
-
@coercible_type_handlers = other.coercible_type_handlers.dup
|
467
|
-
@conversions = other.conversions.dup
|
468
|
-
end
|
469
|
-
|
470
|
-
def dup
|
471
|
-
Context.new(self)
|
472
|
-
end
|
473
|
-
|
474
|
-
CONDITION_MAP = {
|
475
|
-
#ConversionSyntax=>InvalidOperation,
|
476
|
-
#DivisionImpossible=>InvalidOperation,
|
477
|
-
DivisionUndefined=>InvalidOperation,
|
478
|
-
InvalidContext=>InvalidOperation
|
479
|
-
}
|
480
|
-
|
481
|
-
# Raises a flag (unless it is being ignores) and raises and
|
482
|
-
# exceptioin if the trap for it is enabled.
|
483
|
-
def exception(cond, msg='', *params)
|
484
|
-
err = (CONDITION_MAP[cond] || cond)
|
485
|
-
return err.handle(self, *params) if @ignored_flags[err]
|
486
|
-
@flags << err # @flags[err] = true
|
487
|
-
return cond.handle(self, *params) if !@traps[err]
|
488
|
-
raise err.new(*params), msg
|
489
|
-
end
|
490
|
-
|
491
|
-
# Addition of two decimal numbers
|
492
|
-
def add(x,y)
|
493
|
-
_convert(x).add(y,self)
|
494
|
-
end
|
495
|
-
|
496
|
-
# Subtraction of two decimal numbers
|
497
|
-
def subtract(x,y)
|
498
|
-
_convert(x).subtract(y,self)
|
499
|
-
end
|
500
|
-
|
501
|
-
# Multiplication of two decimal numbers
|
502
|
-
def multiply(x,y)
|
503
|
-
_convert(x).multiply(y,self)
|
504
|
-
end
|
505
|
-
|
506
|
-
# Division of two decimal numbers
|
507
|
-
def divide(x,y)
|
508
|
-
_convert(x).divide(y,self)
|
509
|
-
end
|
510
|
-
|
511
|
-
# Absolute value of a decimal number
|
512
|
-
def abs(x)
|
513
|
-
_convert(x).abs(self)
|
514
|
-
end
|
515
|
-
|
516
|
-
# Unary prefix plus operator
|
517
|
-
def plus(x)
|
518
|
-
_convert(x).plus(self)
|
519
|
-
end
|
520
|
-
|
521
|
-
# Unary prefix minus operator
|
522
|
-
def minus(x)
|
523
|
-
_convert(x)._neg(self)
|
524
|
-
end
|
525
|
-
|
526
|
-
# Converts a number to a string
|
527
|
-
def to_string(x, eng=false)
|
528
|
-
_convert(x)._fix(self).to_s(eng, self)
|
529
|
-
end
|
530
|
-
|
531
|
-
# Converts a number to a string, using scientific notation
|
532
|
-
def to_sci_string(x)
|
533
|
-
to_string x, false
|
534
|
-
end
|
535
|
-
|
536
|
-
# Converts a number to a string, using engineering notation
|
537
|
-
def to_eng_string(x)
|
538
|
-
to_string x, true
|
539
|
-
end
|
540
|
-
|
541
|
-
# Reduces an operand to its simplest form
|
542
|
-
# by removing trailing 0s and incrementing the exponent.
|
543
|
-
# (formerly called normalize in GDAS)
|
544
|
-
def reduce(x)
|
545
|
-
_convert(x).reduce(self)
|
546
|
-
end
|
547
|
-
|
548
|
-
# normalizes so that the coefficient has precision digits
|
549
|
-
# (this is not the old GDA normalize function)
|
550
|
-
def normalize(x)
|
551
|
-
_convert(x).normalize(self)
|
552
|
-
end
|
553
|
-
|
554
|
-
# Adjusted exponent of x returned as a Decimal value.
|
555
|
-
def logb(x)
|
556
|
-
_convert(x).logb(self)
|
557
|
-
end
|
558
|
-
|
559
|
-
# Adds the second value to the exponent of the first: x*(radix**y)
|
560
|
-
#
|
561
|
-
# y must be an integer
|
562
|
-
def scaleb(x, y)
|
563
|
-
_convert(x).scaleb(y,self)
|
564
|
-
end
|
565
|
-
|
566
|
-
# Power. See Decimal#power()
|
567
|
-
def power(x,y,modulo=nil)
|
568
|
-
_convert(x).power(y,modulo,self)
|
569
|
-
end
|
570
|
-
|
571
|
-
# Returns the base 10 logarithm
|
572
|
-
def log10(x)
|
573
|
-
_convert(x).log10(self)
|
574
|
-
end
|
575
|
-
|
576
|
-
# Exponential function: e**x
|
577
|
-
def exp(x)
|
578
|
-
_convert(x).exp(self)
|
579
|
-
end
|
580
|
-
|
581
|
-
# Returns the natural (base e) logarithm
|
582
|
-
def ln(x)
|
583
|
-
_convert(x).ln(self)
|
584
|
-
end
|
585
|
-
|
586
|
-
# Exponent in relation to the significand as an integer
|
587
|
-
# normalized to precision digits. (minimum exponent)
|
588
|
-
def normalized_integral_exponent(x)
|
589
|
-
x = _convert(x)
|
590
|
-
x.exponent - (precision - x.number_of_digits)
|
591
|
-
end
|
592
|
-
|
593
|
-
# Significand normalized to precision digits
|
594
|
-
# x == normalized_integral_significand(x) * radix**(normalized_integral_exponent)
|
595
|
-
def normalized_integral_significand(x)
|
596
|
-
x = _convert(x)
|
597
|
-
x.coefficient*(Decimal.int_radix_power(precision - x.number_of_digits))
|
598
|
-
end
|
599
|
-
|
600
|
-
# Returns both the (signed) normalized integral significand and the corresponding exponent
|
601
|
-
def to_normalized_int_scale(x)
|
602
|
-
x = _convert(x)
|
603
|
-
[x.sign*normalized_integral_significand(x), normalized_integral_exponent(x)]
|
604
|
-
end
|
605
|
-
|
606
|
-
# Is a normal number?
|
607
|
-
def normal?(x)
|
608
|
-
_convert(x).normal?(self)
|
609
|
-
end
|
610
|
-
|
611
|
-
# Is a subnormal number?
|
612
|
-
def subnormal?(x)
|
613
|
-
_convert(x).subnormal?(self)
|
614
|
-
end
|
615
|
-
|
616
|
-
# Classifies a number as one of
|
617
|
-
# 'sNaN', 'NaN', '-Infinity', '-Normal', '-Subnormal', '-Zero',
|
618
|
-
# '+Zero', '+Subnormal', '+Normal', '+Infinity'
|
619
|
-
def number_class(x)
|
620
|
-
_convert(x).number_class(self)
|
621
|
-
end
|
622
|
-
|
623
|
-
# Square root of a decimal number
|
624
|
-
def sqrt(x)
|
625
|
-
_convert(x).sqrt(self)
|
626
|
-
end
|
627
|
-
|
628
|
-
# Ruby-style integer division: (x/y).floor
|
629
|
-
def div(x,y)
|
630
|
-
_convert(x).div(y,self)
|
631
|
-
end
|
632
|
-
|
633
|
-
# Ruby-style modulo: x - y*div(x,y)
|
634
|
-
def modulo(x,y)
|
635
|
-
_convert(x).modulo(y,self)
|
636
|
-
end
|
637
|
-
|
638
|
-
# Ruby-style integer division and modulo: (x/y).floor, x - y*(x/y).floor
|
639
|
-
def divmod(x,y)
|
640
|
-
_convert(x).divmod(y,self)
|
641
|
-
end
|
642
|
-
|
643
|
-
# General Decimal Arithmetic Specification integer division: (x/y).truncate
|
644
|
-
def divide_int(x,y)
|
645
|
-
_convert(x).divide_int(y,self)
|
646
|
-
end
|
647
|
-
|
648
|
-
# General Decimal Arithmetic Specification remainder: x - y*divide_int(x,y)
|
649
|
-
def remainder(x,y)
|
650
|
-
_convert(x).remainder(y,self)
|
651
|
-
end
|
652
|
-
|
653
|
-
# General Decimal Arithmetic Specification remainder-near
|
654
|
-
# x - y*round_half_even(x/y)
|
655
|
-
def remainder_near(x,y)
|
656
|
-
_convert(x).remainder_near(y,self)
|
657
|
-
end
|
658
|
-
|
659
|
-
# General Decimal Arithmetic Specification integer division and remainder:
|
660
|
-
# (x/y).truncate, x - y*(x/y).truncate
|
661
|
-
def divrem(x,y)
|
662
|
-
_convert(x).divrem(y,self)
|
663
|
-
end
|
664
|
-
|
665
|
-
# Fused multiply-add.
|
666
|
-
#
|
667
|
-
# Computes (x*y+z) with no rounding of the intermediate product x*y.
|
668
|
-
def fma(x,y,z)
|
669
|
-
_convert(x).fma(y,z,self)
|
670
|
-
end
|
671
|
-
|
672
|
-
# Compares like <=> but returns a Decimal value.
|
673
|
-
# * -1 if x < y
|
674
|
-
# * 0 if x == b
|
675
|
-
# * +1 if x > y
|
676
|
-
# * NaN if x or y is NaN
|
677
|
-
def compare(x,y)
|
678
|
-
_convert(x).compare(y, self)
|
679
|
-
end
|
680
|
-
|
681
|
-
# Returns a copy of x with the sign set to +
|
682
|
-
def copy_abs(x)
|
683
|
-
_convert(x).copy_abs
|
684
|
-
end
|
685
|
-
|
686
|
-
# Returns a copy of x with the sign inverted
|
687
|
-
def copy_negate(x)
|
688
|
-
_convert(x).copy_negate
|
689
|
-
end
|
690
|
-
|
691
|
-
# Returns a copy of x with the sign of y
|
692
|
-
def copy_sign(x,y)
|
693
|
-
_convert(x).copy_sign(y)
|
694
|
-
end
|
695
|
-
|
696
|
-
# Rescale x so that the exponent is exp, either by padding with zeros
|
697
|
-
# or by truncating digits.
|
698
|
-
def rescale(x, exp, watch_exp=true)
|
699
|
-
_convert(x).rescale(exp, self, watch_exp)
|
700
|
-
end
|
701
|
-
|
702
|
-
# Quantize x so its exponent is the same as that of y.
|
703
|
-
def quantize(x, y, watch_exp=true)
|
704
|
-
_convert(x).quantize(y, self, watch_exp)
|
705
|
-
end
|
706
|
-
|
707
|
-
# Return true if x and y have the same exponent.
|
708
|
-
#
|
709
|
-
# If either operand is a special value, the following rules are used:
|
710
|
-
# * return true if both operands are infinities
|
711
|
-
# * return true if both operands are NaNs
|
712
|
-
# * otherwise, return false.
|
713
|
-
def same_quantum?(x,y)
|
714
|
-
_convert(x).same_quantum?(y)
|
715
|
-
end
|
716
|
-
|
717
|
-
# Rounds to a nearby integer.
|
718
|
-
#
|
719
|
-
# See also: Decimal#to_integral_value(), which does exactly the same as
|
720
|
-
# this method except that it doesn't raise Inexact or Rounded.
|
721
|
-
def to_integral_exact(x)
|
722
|
-
_convert(x).to_integral_exact(self)
|
723
|
-
end
|
724
|
-
|
725
|
-
# Rounds to a nearby integerwithout raising inexact, rounded.
|
726
|
-
#
|
727
|
-
# See also: Decimal#to_integral_exact(), which does exactly the same as
|
728
|
-
# this method except that it may raise Inexact or Rounded.
|
729
|
-
def to_integral_value(x)
|
730
|
-
_convert(x).to_integral_value(self)
|
731
|
-
end
|
732
|
-
|
733
|
-
# Returns the largest representable number smaller than x.
|
734
|
-
def next_minus(x)
|
735
|
-
_convert(x).next_minus(self)
|
736
|
-
end
|
737
|
-
|
738
|
-
# Returns the smallest representable number larger than x.
|
739
|
-
def next_plus(x)
|
740
|
-
_convert(x).next_plus(self)
|
741
|
-
end
|
742
|
-
|
743
|
-
# Returns the number closest to x, in the direction towards y.
|
744
|
-
#
|
745
|
-
# The result is the closest representable number to x
|
746
|
-
# (excluding x) that is in the direction towards y,
|
747
|
-
# unless both have the same value. If the two operands are
|
748
|
-
# numerically equal, then the result is a copy of x with the
|
749
|
-
# sign set to be the same as the sign of y.
|
750
|
-
def next_toward(x, y)
|
751
|
-
_convert(x).next_toward(y, self)
|
752
|
-
end
|
753
|
-
|
754
|
-
# ulp (unit in the last place) according to the definition proposed by J.M. Muller in
|
755
|
-
# "On the definition of ulp(x)" INRIA No. 5504
|
756
|
-
def ulp(x=nil)
|
757
|
-
x ||= 1
|
758
|
-
_convert(x).ulp(self)
|
759
|
-
end
|
760
|
-
|
761
|
-
# Some singular Decimal values that depend on the context
|
762
|
-
|
763
|
-
# Maximum finite number
|
764
|
-
def maximum_finite(sign=+1)
|
765
|
-
return exception(InvalidOperation, "Exact context maximum finite value") if exact?
|
766
|
-
# equals +Decimal(+1, 1, emax)
|
767
|
-
# equals Decimal.infinity.next_minus(self)
|
768
|
-
Decimal(sign, Decimal.int_radix_power(precision)-1, etop)
|
769
|
-
end
|
770
|
-
|
771
|
-
# Minimum positive normal number
|
772
|
-
def minimum_normal(sign=+1)
|
773
|
-
return exception(InvalidOperation, "Exact context maximum normal value") if exact?
|
774
|
-
Decimal(sign, 1, emin)
|
775
|
-
end
|
776
|
-
|
777
|
-
# Maximum subnormal number
|
778
|
-
def maximum_subnormal(sign=+1)
|
779
|
-
return exception(InvalidOperation, "Exact context maximum subnormal value") if exact?
|
780
|
-
# equals mininum_normal.next_minus(self)
|
781
|
-
Decimal(sign, Decimal.int_radix_power(precision-1)-1, etiny)
|
782
|
-
end
|
783
|
-
|
784
|
-
# Minimum nonzero positive number (minimum positive subnormal)
|
785
|
-
def minimum_nonzero(sign=+1)
|
786
|
-
return exception(InvalidOperation, "Exact context minimum nonzero value") if exact?
|
787
|
-
Decimal(sign, 1, etiny)
|
788
|
-
end
|
789
|
-
|
790
|
-
# This is the difference between 1 and the smallest Decimal
|
791
|
-
# value greater than 1: (Decimal(1).next_plus - Decimal(1))
|
792
|
-
def epsilon(sign=+1)
|
793
|
-
return exception(InvalidOperation, "Exact context epsilon") if exact?
|
794
|
-
Decimal(sign, 1, 1-precision)
|
795
|
-
end
|
796
|
-
|
797
|
-
# The strict epsilon is the smallest value that produces something different from 1
|
798
|
-
# wehen added to 1. It may be smaller than the general epsilon, because
|
799
|
-
# of the particular rounding rules used.
|
800
|
-
def strict_epsilon(sign=+1)
|
801
|
-
return exception(InvalidOperation, "Exact context strict epsilon") if exact?
|
802
|
-
# assume radix is even (Decimal.radix%2 == 0)
|
803
|
-
case rounding
|
804
|
-
when :down, :floor
|
805
|
-
# largest epsilon: 0.0...10 (precision digits shown to the right of the decimal point)
|
806
|
-
exp = 1-precision
|
807
|
-
coeff = 1
|
808
|
-
when :half_even, :half_down #, :up # :up # :down, :half_down, :up05, :floor
|
809
|
-
# next largest: 0.0...050...1 (+precision-1 additional digits here)
|
810
|
-
exp = 1-2*precision
|
811
|
-
coeff = 1 + Decimal.int_radix_power(precision)/2
|
812
|
-
when :half_up
|
813
|
-
# next largest: 0.0...05 (precision digits shown to the right of the decimal point)
|
814
|
-
exp = 1-2*precision
|
815
|
-
coeff = Decimal.int_radix_power(precision)/2
|
816
|
-
when :up, :ceiling, :up05
|
817
|
-
# smallest epsilon
|
818
|
-
return minimum_nonzero(sign)
|
819
|
-
end
|
820
|
-
return Decimal(sign, coeff, exp)
|
821
|
-
end
|
822
|
-
|
823
|
-
# This is the maximum relative error corresponding to 1/2 ulp:
|
824
|
-
# (radix/2)*radix**(-precision) == epsilon/2
|
825
|
-
# This is called "machine epsilon" in Goldberg's "What Every Computer Scientist..."
|
826
|
-
def half_epsilon(sign=+1)
|
827
|
-
Decimal(sign, Decimal.radix/2, -precision)
|
828
|
-
end
|
829
|
-
|
830
|
-
def to_s
|
831
|
-
inspect
|
832
|
-
end
|
833
|
-
|
834
|
-
def inspect
|
835
|
-
"<#{self.class}:\n" +
|
836
|
-
instance_variables.map { |v| " #{v}: #{eval(v).inspect}"}.join("\n") +
|
837
|
-
">\n"
|
838
|
-
end
|
839
|
-
|
840
|
-
# Maximum integral significand value for numbers using this context's precision.
|
841
|
-
def maximum_significand
|
842
|
-
if exact?
|
843
|
-
exception(InvalidOperation, 'Exact maximum significand')
|
844
|
-
nil
|
845
|
-
else
|
846
|
-
Decimal.int_radix_power(precision)-1
|
847
|
-
end
|
848
|
-
end
|
849
|
-
|
850
|
-
# Maximum number of diagnostic digits in NaNs for numbers using this context's precision.
|
851
|
-
def maximum_nan_diagnostic_digits
|
852
|
-
if exact?
|
853
|
-
nil # ?
|
854
|
-
else
|
855
|
-
precision - (clamp ? 1 : 0)
|
856
|
-
end
|
857
|
-
end
|
858
|
-
|
859
|
-
# Internal use: array of numeric types that be coerced to Decimal.
|
860
|
-
def coercible_types
|
861
|
-
@coercible_type_handlers.keys
|
862
|
-
end
|
863
|
-
|
864
|
-
# Internal use: array of numeric types that be coerced to Decimal, including Decimal
|
865
|
-
def coercible_types_or_decimal
|
866
|
-
[Decimal] + coercible_types
|
867
|
-
end
|
868
|
-
|
869
|
-
# Internally used to convert numeric types to Decimal (or to an array [sign,coefficient,exponent])
|
870
|
-
def _coerce(x)
|
871
|
-
c = x.class
|
872
|
-
while c!=Object && (h=@coercible_type_handlers[c]).nil?
|
873
|
-
c = c.superclass
|
874
|
-
end
|
875
|
-
if h
|
876
|
-
h.call(x, self)
|
877
|
-
else
|
878
|
-
nil
|
879
|
-
end
|
880
|
-
end
|
881
|
-
|
882
|
-
# Define a numerical conversion from type to Decimal.
|
883
|
-
# The block that defines the conversion has two parameters: the value to be converted and the context and
|
884
|
-
# must return either a Decimal or [sign,coefficient,exponent]
|
885
|
-
def define_conversion_from(type, &blk)
|
886
|
-
@coercible_type_handlers[type] = blk
|
887
|
-
end
|
888
|
-
|
889
|
-
# Define a numerical conversion from Decimal to type as an instance method of Decimal
|
890
|
-
def define_conversion_to(type, &blk)
|
891
|
-
@conversions[type] = blk
|
892
|
-
end
|
893
|
-
|
894
|
-
# Convert a Decimal x to other numerical type
|
895
|
-
def convert_to(type, x)
|
896
|
-
converter = @conversions[type]
|
897
|
-
if converter.nil?
|
898
|
-
raise TypeError, "Undefined conversion from Decimal to #{type}."
|
899
|
-
elsif converter.is_a?(Symbol)
|
900
|
-
x.send converter
|
901
|
-
else
|
902
|
-
converter.call(x)
|
903
|
-
end
|
904
|
-
end
|
905
|
-
|
906
|
-
private
|
907
|
-
|
908
|
-
def _convert(x)
|
909
|
-
AuxiliarFunctions._convert(x)
|
910
|
-
end
|
911
|
-
|
912
|
-
def update_precision
|
913
|
-
if @emax && !@emin
|
914
|
-
@emin = 1 - @emax
|
915
|
-
elsif @emin && !@emax
|
916
|
-
@emax = 1 - @emin
|
917
|
-
end
|
918
|
-
if @exact || @precision==0
|
919
|
-
quiet = (@exact == :quiet)
|
920
|
-
@exact = true
|
921
|
-
@precision = 0
|
922
|
-
@traps << Inexact unless quiet
|
923
|
-
@ignored_flags[Inexact] = false
|
924
|
-
else
|
925
|
-
@traps[Inexact] = false
|
926
|
-
end
|
927
|
-
end
|
928
|
-
|
929
|
-
end
|
930
|
-
|
931
|
-
# the DefaultContext is the base for new contexts; it can be changed.
|
932
|
-
DefaultContext = Decimal::Context.new(
|
933
|
-
:exact=>false, :precision=>28, :rounding=>:half_even,
|
934
|
-
:emin=> -999999999, :emax=>+999999999,
|
935
|
-
:flags=>[],
|
936
|
-
:traps=>[DivisionByZero, Overflow, InvalidOperation],
|
937
|
-
:ignored_flags=>[],
|
938
|
-
:capitals=>true,
|
939
|
-
:clamp=>true)
|
940
|
-
|
941
|
-
BasicContext = Decimal::Context.new(DefaultContext,
|
942
|
-
:precision=>9, :rounding=>:half_up,
|
943
|
-
:traps=>[DivisionByZero, Overflow, InvalidOperation, Clamped, Underflow],
|
944
|
-
:flags=>[])
|
945
|
-
|
946
|
-
ExtendedContext = Decimal::Context.new(DefaultContext,
|
947
|
-
:precision=>9, :rounding=>:half_even,
|
948
|
-
:traps=>[], :flags=>[], :clamp=>false)
|
949
|
-
|
950
|
-
# Context constructor; if an options hash is passed, the options are
|
951
|
-
# applied to the default context; if a Context is passed as the first
|
952
|
-
# argument, it is used as the base instead of the default context.
|
953
|
-
#
|
954
|
-
# See Context#new() for the valid options
|
955
|
-
def Decimal.Context(*args)
|
956
|
-
case args.size
|
957
|
-
when 0
|
958
|
-
base = DefaultContext
|
959
|
-
when 1
|
960
|
-
arg = args.first
|
961
|
-
if arg.instance_of?(Context)
|
962
|
-
base = arg
|
963
|
-
options = nil
|
964
|
-
elsif arg.instance_of?(Hash)
|
965
|
-
base = DefaultContext
|
966
|
-
options = arg
|
967
|
-
else
|
968
|
-
raise TypeError,"invalid argument for Decimal.Context"
|
969
|
-
end
|
970
|
-
when 2
|
971
|
-
base = args.first
|
972
|
-
options = args.last
|
973
|
-
else
|
974
|
-
raise ArgumentError,"wrong number of arguments (#{args.size} for 0, 1 or 2)"
|
975
|
-
end
|
976
|
-
|
977
|
-
if options.nil? || options.empty?
|
978
|
-
base
|
979
|
-
else
|
980
|
-
Context.new(base, options)
|
981
|
-
end
|
982
|
-
|
983
|
-
end
|
984
|
-
|
985
|
-
# Define a context by passing either of:
|
986
|
-
# * A Context object
|
987
|
-
# * A hash of options (or nothing) to alter a copy of the current context.
|
988
|
-
# * A Context object and a hash of options to alter a copy of it
|
989
|
-
def Decimal.define_context(*options)
|
990
|
-
context = options.shift if options.first.instance_of?(Context)
|
991
|
-
if context && options.empty?
|
992
|
-
context
|
993
|
-
else
|
994
|
-
context ||= Decimal.context
|
995
|
-
Context(context, *options)
|
996
|
-
end
|
997
|
-
end
|
998
|
-
|
999
|
-
# The current context (thread-local).
|
1000
|
-
# If arguments are passed they are interpreted as in Decimal.define_context() to change
|
1001
|
-
# the current context.
|
1002
|
-
# If a block is given, this method is a synonym for Decimal.local_context().
|
1003
|
-
def Decimal.context(*args, &blk)
|
1004
|
-
if blk
|
1005
|
-
# setup a local context
|
1006
|
-
local_context(*args, &blk)
|
1007
|
-
elsif args.empty?
|
1008
|
-
# return the current context
|
1009
|
-
self._context = DefaultContext.dup if _context.nil?
|
1010
|
-
_context
|
1011
|
-
else
|
1012
|
-
# change the current context
|
1013
|
-
# TODO: consider doing _context = ... here
|
1014
|
-
# so we would have Decimal.context = c that assigns a duplicate of c
|
1015
|
-
# and Decimal.context c to set alias c
|
1016
|
-
Decimal.context = define_context(*args)
|
1017
|
-
end
|
1018
|
-
end
|
1019
|
-
|
1020
|
-
# Change the current context (thread-local).
|
1021
|
-
def Decimal.context=(c)
|
1022
|
-
self._context = c.dup
|
1023
|
-
end
|
1024
|
-
|
1025
|
-
# Defines a scope with a local context. A context can be passed which will be
|
1026
|
-
# set a the current context for the scope; also a hash can be passed with
|
1027
|
-
# options to apply to the local scope.
|
1028
|
-
# Changes done to the current context are reversed when the scope is exited.
|
1029
|
-
def Decimal.local_context(*args)
|
1030
|
-
keep = Decimal.context # use this so _context is initialized if necessary
|
1031
|
-
Decimal.context = define_context(*args) # this dups the assigned context
|
1032
|
-
result = yield _context
|
1033
|
-
# TODO: consider the convenience of copying the flags from Decimal.context to keep
|
1034
|
-
# This way a local context does not affect the settings of the previous context,
|
1035
|
-
# but flags are transferred.
|
1036
|
-
# (this could be done always or be controlled by some option)
|
1037
|
-
# keep.flags = Decimal.context.flags
|
1038
|
-
# Another alternative to consider: logically or the flags:
|
1039
|
-
# keep.flags ||= Decimal.context.flags # (this requires implementing || in Flags)
|
1040
|
-
self._context = keep
|
1041
|
-
result
|
1042
|
-
end
|
1043
|
-
|
1044
|
-
class <<self
|
1045
|
-
# This is the thread-local context storage low level interface
|
1046
|
-
protected
|
1047
|
-
def _context #:nodoc:
|
1048
|
-
Thread.current['Decimal.context']
|
1049
|
-
end
|
1050
|
-
def _context=(c) #:nodoc:
|
1051
|
-
Thread.current['Decimal.context'] = c
|
1052
|
-
end
|
1053
|
-
end
|
1054
|
-
|
1055
|
-
# A decimal number with value zero and the specified sign
|
1056
|
-
def Decimal.zero(sign=+1)
|
1057
|
-
Decimal.new([sign, 0, 0])
|
1058
|
-
end
|
1059
|
-
|
1060
|
-
# A decimal infinite number with the specified sign
|
1061
|
-
def Decimal.infinity(sign=+1)
|
1062
|
-
Decimal.new([sign, 0, :inf])
|
1063
|
-
end
|
1064
|
-
|
1065
|
-
# A decimal NaN (not a number)
|
1066
|
-
def Decimal.nan()
|
1067
|
-
Decimal.new([+1, nil, :nan])
|
1068
|
-
end
|
1069
|
-
|
1070
|
-
#--
|
1071
|
-
# =Notes on the representation of Decimal numbers.
|
1072
|
-
#
|
1073
|
-
# @sign is +1 for plus and -1 for minus
|
1074
|
-
# @coeff is the integral significand stored as an integer (so leading zeros cannot be kept)
|
1075
|
-
# @exp is the exponent to be applied to @coeff as an integer or one of :inf, :nan, :snan for special values
|
1076
|
-
#
|
1077
|
-
# The Python Decimal representation has these slots:
|
1078
|
-
# _sign is 1 for minus, 0 for plus
|
1079
|
-
# _int is the integral significand as a string of digits (leading zeroes are not kept)
|
1080
|
-
# _exp is the exponent as an integer or 'F' for infinity, 'n' for NaN , 'N' for sNaN
|
1081
|
-
# _is_especial is true for special values (infinity, NaN, sNaN)
|
1082
|
-
# An additional class _WorkRep is used in Python for non-special decimal values with:
|
1083
|
-
# sign
|
1084
|
-
# int (significand as an integer)
|
1085
|
-
# exp
|
1086
|
-
#
|
1087
|
-
# =Exponent values
|
1088
|
-
#
|
1089
|
-
# In GDAS (General Decimal Arithmetic Specification) numbers are represented by an unnormalized integral
|
1090
|
-
# significand and an exponent (also called 'scale'.)
|
1091
|
-
#
|
1092
|
-
# The reduce operation (originally called 'normalize') removes trailing 0s and increments the exponent if necessary;
|
1093
|
-
# the representation is rescaled to use the maximum exponent possible (while maintaining an integral significand.)
|
1094
|
-
#
|
1095
|
-
# A classical floating-point normalize opration would remove leading 0s and decrement the exponent instead,
|
1096
|
-
# rescaling to the minimum exponent theat maintains the significand value under some conventional limit (1 or the radix).
|
1097
|
-
#
|
1098
|
-
# The logb and adjusted operations return the exponent that applies to the most significand digit (logb as a Decimal
|
1099
|
-
# and adjusted as an integer.) This is the normalized scientific exponent.
|
1100
|
-
#
|
1101
|
-
# The most common normalized exponent is the normalized integral exponent for a fixed number of precision digits.
|
1102
|
-
#
|
1103
|
-
# The normalized fractional exponent is what BigDecima#exponent returns.
|
1104
|
-
#
|
1105
|
-
# ==Relations between exponent values
|
1106
|
-
#
|
1107
|
-
# The number of (kept) significand digits is s = a - e + 1
|
1108
|
-
# where a is the adjusted exponent and e is the internal exponent (the unnormalized integral exponent.)
|
1109
|
-
#
|
1110
|
-
# The number of significant digits (excluding leading and trailing zeroes) is sr = a - re + 1
|
1111
|
-
# where re is the internal exponent of the reduced value.
|
1112
|
-
#
|
1113
|
-
# The normalized integral exponent is e - (p - s) = a - p + 1
|
1114
|
-
# where p is the fixed precision.
|
1115
|
-
#
|
1116
|
-
# The normalized fractional exponent is e + s = a + 1
|
1117
|
-
#
|
1118
|
-
# ==Example: 0.01204
|
1119
|
-
#
|
1120
|
-
# * The integral significand is 120400 and the internal exponent that applies to it is e = -7
|
1121
|
-
# * The number of significand digits is s = 6
|
1122
|
-
# * The reduced representation is 1204 with internal exponent re = -5
|
1123
|
-
# * The number of significant digits sr = 4
|
1124
|
-
# * The adjusted exponent is a = -2 (the adjusted representation is 1.204 with exponent -2)
|
1125
|
-
# * Given a precision p = 8, the normalized integral representation is 12040000 with exponent -9
|
1126
|
-
# * The normalized fractional representation is 0.1204 with exponent -1
|
1127
|
-
#
|
1128
|
-
# ==Exponent limits
|
1129
|
-
#
|
1130
|
-
# The (integral) exponent e must be within this limits: etiny <= e <= etop
|
1131
|
-
# The adjusted exponent a must: emin <= a <= emax
|
1132
|
-
# emin, emax are the limite of the exponent shown in scientific notation and are use to defined
|
1133
|
-
# the exponent limits in the contexts.
|
1134
|
-
# etiny = emin-precision+1 and etop=emax-precision+1 are the limits of the internal exponent.
|
1135
|
-
# Note that for significands with less than precision digits we can use exponents greater than etop
|
1136
|
-
# without causing overflow: +Decimal(+1,1,emax) == Decimal(+1,K,etop) where K=10**(precision-1)
|
1137
|
-
#
|
1138
|
-
# =Interoperatibility with other numeric types
|
1139
|
-
#
|
1140
|
-
# For some numeric types implicit conversion to Decimal is defined through these methods:
|
1141
|
-
# * Decimal#coerce() is used when a Decimal is the right hand of an operator
|
1142
|
-
# and the left hand is another numeric type
|
1143
|
-
# * Decimal#_bin_op() used internally to define binary operators and use the Ruby coerce protocol:
|
1144
|
-
# if the right-hand operand is of known type it is converted with Decimal; otherwise use coerce
|
1145
|
-
# * _convert() converts known types to Decimal with Decimal() or raises an exception.
|
1146
|
-
# * Decimal() casts known types and text representations of numbers to Decimal using the constructor.
|
1147
|
-
# * Decimal#initialize performs the actual type conversion
|
1148
|
-
#
|
1149
|
-
# The known or 'coercible' types are initially Integer and Rational, but this can be extended to
|
1150
|
-
# other types using define_conversion_from() in a Context object.
|
1151
|
-
#++
|
1152
|
-
|
1153
|
-
# A decimal value can be defined by:
|
1154
|
-
# * A String containing a text representation of the number
|
1155
|
-
# * An Integer
|
1156
|
-
# * A Rational
|
1157
|
-
# * Another Decimal value.
|
1158
|
-
# * A sign, coefficient and exponent (either as separate arguments, as an array or as a Hash with symbolic keys).
|
1159
|
-
# This is the internal representation of Decimal, as returned by Decimal#split.
|
1160
|
-
# The sign is +1 for plus and -1 for minus; the coefficient and exponent are
|
1161
|
-
# integers, except for special values which are defined by :inf, :nan or :snan for the exponent.
|
1162
|
-
# An optional Context can be passed as the last argument to override the current context; also a hash can be passed
|
1163
|
-
# to override specific context parameters.
|
1164
|
-
# The Decimal() admits the same parameters and can be used as a shortcut for Decimal creation.
|
1165
|
-
def initialize(*args)
|
1166
|
-
context = nil
|
1167
|
-
if args.size>0 && args.last.instance_of?(Context)
|
1168
|
-
context ||= args.pop
|
1169
|
-
elsif args.size>1 && args.last.instance_of?(Hash)
|
1170
|
-
context ||= args.pop
|
1171
|
-
elsif args.size==1 && args.last.instance_of?(Hash)
|
1172
|
-
arg = args.last
|
1173
|
-
args = [arg[:sign], args[:coefficient], args[:exponent]]
|
1174
|
-
arg.delete :sign
|
1175
|
-
arg.delete :coefficient
|
1176
|
-
arg.delete :exponent
|
1177
|
-
context ||= arg
|
1178
|
-
end
|
1179
|
-
args = args.first if args.size==1 && args.first.is_a?(Array)
|
1180
|
-
|
1181
|
-
context = Decimal.define_context(context)
|
1182
|
-
|
1183
|
-
case args.size
|
1184
|
-
when 3
|
1185
|
-
# internal representation
|
1186
|
-
@sign, @coeff, @exp = args
|
1187
|
-
# TO DO: validate
|
1188
|
-
|
1189
|
-
when 2
|
1190
|
-
# signed integer and scale
|
1191
|
-
@coeff, @exp = args
|
1192
|
-
if @coeff < 0
|
1193
|
-
@sign = -1
|
1194
|
-
@coeff = -@coeff
|
1195
|
-
else
|
1196
|
-
@sign = +1
|
1197
|
-
end
|
1198
|
-
|
1199
|
-
when 1
|
1200
|
-
arg = args.first
|
1201
|
-
case arg
|
1202
|
-
|
1203
|
-
when Decimal
|
1204
|
-
@sign, @coeff, @exp = arg.split
|
1205
|
-
|
1206
|
-
when *context.coercible_types
|
1207
|
-
v = context._coerce(arg)
|
1208
|
-
@sign, @coeff, @exp = v.is_a?(Decimal) ? v.split : v
|
1209
|
-
|
1210
|
-
when String
|
1211
|
-
if arg.strip != arg
|
1212
|
-
@sign,@coeff,@exp = context.exception(ConversionSyntax, "no trailing or leading whitespace is permitted").split
|
1213
|
-
return
|
1214
|
-
end
|
1215
|
-
m = _parser(arg)
|
1216
|
-
if m.nil?
|
1217
|
-
@sign,@coeff,@exp = context.exception(ConversionSyntax, "Invalid literal for Decimal: #{arg.inspect}").split
|
1218
|
-
return
|
1219
|
-
end
|
1220
|
-
@sign = (m.sign == '-') ? -1 : +1
|
1221
|
-
if m.int || m.onlyfrac
|
1222
|
-
if m.int
|
1223
|
-
intpart = m.int
|
1224
|
-
fracpart = m.frac
|
1225
|
-
else
|
1226
|
-
intpart = ''
|
1227
|
-
fracpart = m.onlyfrac
|
1228
|
-
end
|
1229
|
-
@exp = m.exp.to_i
|
1230
|
-
if fracpart
|
1231
|
-
@coeff = (intpart+fracpart).to_i
|
1232
|
-
@exp -= fracpart.size
|
1233
|
-
else
|
1234
|
-
@coeff = intpart.to_i
|
1235
|
-
end
|
1236
|
-
else
|
1237
|
-
if m.diag
|
1238
|
-
# NaN
|
1239
|
-
@coeff = (m.diag.nil? || m.diag.empty?) ? nil : m.diag.to_i
|
1240
|
-
@coeff = nil if @coeff==0
|
1241
|
-
if @coeff
|
1242
|
-
max_diag_len = context.maximum_nan_diagnostic_digits
|
1243
|
-
if max_diag_len && @coeff >= Decimal.int_radix_power(max_diag_len)
|
1244
|
-
@sign,@coeff,@exp = context.exception(ConversionSyntax, "diagnostic info too long in NaN").split
|
1245
|
-
return
|
1246
|
-
end
|
1247
|
-
end
|
1248
|
-
@exp = m.signal ? :snan : :nan
|
1249
|
-
else
|
1250
|
-
# Infinity
|
1251
|
-
@coeff = 0
|
1252
|
-
@exp = :inf
|
1253
|
-
end
|
1254
|
-
end
|
1255
|
-
else
|
1256
|
-
raise TypeError, "invalid argument #{arg.inspect}"
|
1257
|
-
end
|
1258
|
-
else
|
1259
|
-
raise ArgumentError, "wrong number of arguments (#{args.size} for 1, 2 or 3)"
|
1260
|
-
end
|
1261
|
-
end
|
1262
|
-
|
1263
|
-
# Returns the internal representation of the number, composed of:
|
1264
|
-
# * a sign which is +1 for plus and -1 for minus
|
1265
|
-
# * a coefficient (significand) which is a nonnegative integer
|
1266
|
-
# * an exponent (an integer) or :inf, :nan or :snan for special values
|
1267
|
-
# The value of non-special numbers is sign*coefficient*10^exponent
|
1268
|
-
def split
|
1269
|
-
[@sign, @coeff, @exp]
|
1270
|
-
end
|
1271
|
-
|
1272
|
-
# Returns whether the number is a special value (NaN or Infinity).
|
1273
|
-
def special?
|
1274
|
-
@exp.instance_of?(Symbol)
|
1275
|
-
end
|
1276
|
-
|
1277
|
-
# Returns whether the number is not actualy one (NaN, not a number).
|
1278
|
-
def nan?
|
1279
|
-
@exp==:nan || @exp==:snan
|
1280
|
-
end
|
1281
|
-
|
1282
|
-
# Returns whether the number is a quite NaN (non-signaling)
|
1283
|
-
def qnan?
|
1284
|
-
@exp == :nan
|
1285
|
-
end
|
1286
|
-
|
1287
|
-
# Returns whether the number is a signaling NaN
|
1288
|
-
def snan?
|
1289
|
-
@exp == :snan
|
1290
|
-
end
|
1291
|
-
|
1292
|
-
# Returns whether the number is infinite
|
1293
|
-
def infinite?
|
1294
|
-
@exp == :inf
|
1295
|
-
end
|
1296
|
-
|
1297
|
-
# Returns whether the number is finite
|
1298
|
-
def finite?
|
1299
|
-
!special?
|
1300
|
-
end
|
1301
|
-
|
1302
|
-
# Returns whether the number is zero
|
1303
|
-
def zero?
|
1304
|
-
@coeff==0 && !special?
|
1305
|
-
end
|
1306
|
-
|
1307
|
-
# Returns whether the number not zero
|
1308
|
-
def nonzero?
|
1309
|
-
special? || @coeff>0
|
1310
|
-
end
|
1311
|
-
|
1312
|
-
# Returns whether the number is subnormal
|
1313
|
-
def subnormal?(context=nil)
|
1314
|
-
return false if special? || zero?
|
1315
|
-
context = Decimal.define_context(context)
|
1316
|
-
self.adjusted_exponent < context.emin
|
1317
|
-
end
|
1318
|
-
|
1319
|
-
# Returns whether the number is normal
|
1320
|
-
def normal?(context=nil)
|
1321
|
-
return false if special? || zero?
|
1322
|
-
context = Decimal.define_context(context)
|
1323
|
-
(context.emin <= self.adjusted_exponent) && (self.adjusted_exponent <= context.emax)
|
1324
|
-
end
|
1325
|
-
|
1326
|
-
# Classifies a number as one of
|
1327
|
-
# 'sNaN', 'NaN', '-Infinity', '-Normal', '-Subnormal', '-Zero',
|
1328
|
-
# '+Zero', '+Subnormal', '+Normal', '+Infinity'
|
1329
|
-
def number_class(context=nil)
|
1330
|
-
return "sNaN" if snan?
|
1331
|
-
return "NaN" if nan?
|
1332
|
-
if infinite?
|
1333
|
-
return '+Infinity' if @sign==+1
|
1334
|
-
return '-Infinity' # if @sign==-1
|
1335
|
-
end
|
1336
|
-
if zero?
|
1337
|
-
return '+Zero' if @sign==+1
|
1338
|
-
return '-Zero' # if @sign==-1
|
1339
|
-
end
|
1340
|
-
context = Decimal.define_context(context)
|
1341
|
-
if subnormal?(context)
|
1342
|
-
return '+Subnormal' if @sign==+1
|
1343
|
-
return '-Subnormal' # if @sign==-1
|
1344
|
-
end
|
1345
|
-
return '+Normal' if @sign==+1
|
1346
|
-
return '-Normal' if @sign==-1
|
1347
|
-
end
|
1348
|
-
|
1349
|
-
# Used internally to convert numbers to be used in an operation to a suitable numeric type
|
1350
|
-
def coerce(other)
|
1351
|
-
case other
|
1352
|
-
when *Decimal.context.coercible_types_or_decimal
|
1353
|
-
[Decimal(other),self]
|
1354
|
-
when Float
|
1355
|
-
[other, self.to_f]
|
1356
|
-
else
|
1357
|
-
super
|
1358
|
-
end
|
1359
|
-
end
|
1360
|
-
|
1361
|
-
# Used internally to define binary operators
|
1362
|
-
def _bin_op(op, meth, other, context=nil)
|
1363
|
-
context = Decimal.define_context(context)
|
1364
|
-
case other
|
1365
|
-
when *context.coercible_types_or_decimal
|
1366
|
-
self.send meth, Decimal(other, context), context
|
1367
|
-
else
|
1368
|
-
x, y = other.coerce(self)
|
1369
|
-
x.send op, y
|
1370
|
-
end
|
1371
|
-
end
|
1372
|
-
private :_bin_op
|
1373
|
-
|
1374
|
-
# Unary minus operator
|
1375
|
-
def -@(context=nil)
|
1376
|
-
#(context || Decimal.context).minus(self)
|
1377
|
-
_neg(context)
|
1378
|
-
end
|
1379
|
-
|
1380
|
-
# Unary plus operator
|
1381
|
-
def +@(context=nil)
|
1382
|
-
#(context || Decimal.context).plus(self)
|
1383
|
-
_pos(context)
|
1384
|
-
end
|
1385
|
-
|
1386
|
-
# Addition of two decimal numbers
|
1387
|
-
def +(other, context=nil)
|
1388
|
-
_bin_op :+, :add, other, context
|
1389
|
-
end
|
1390
|
-
|
1391
|
-
# Subtraction of two decimal numbers
|
1392
|
-
def -(other, context=nil)
|
1393
|
-
_bin_op :-, :subtract, other, context
|
1394
|
-
end
|
1395
|
-
|
1396
|
-
# Multiplication of two decimal numbers
|
1397
|
-
def *(other, context=nil)
|
1398
|
-
_bin_op :*, :multiply, other, context
|
1399
|
-
end
|
1400
|
-
|
1401
|
-
# Division of two decimal numbers
|
1402
|
-
def /(other, context=nil)
|
1403
|
-
_bin_op :/, :divide, other, context
|
1404
|
-
end
|
1405
|
-
|
1406
|
-
# Modulo of two decimal numbers
|
1407
|
-
def %(other, context=nil)
|
1408
|
-
_bin_op :%, :modulo, other, context
|
1409
|
-
end
|
1410
|
-
|
1411
|
-
# Power
|
1412
|
-
def **(other, context=nil)
|
1413
|
-
_bin_op :**, :power, other, context
|
1414
|
-
end
|
1415
|
-
|
1416
|
-
# Addition
|
1417
|
-
def add(other, context=nil)
|
1418
|
-
|
1419
|
-
context = Decimal.define_context(context)
|
1420
|
-
other = _convert(other)
|
1421
|
-
|
1422
|
-
if self.special? || other.special?
|
1423
|
-
ans = _check_nans(context,other)
|
1424
|
-
return ans if ans
|
1425
|
-
|
1426
|
-
if self.infinite?
|
1427
|
-
if self.sign != other.sign && other.infinite?
|
1428
|
-
return context.exception(InvalidOperation, '-INF + INF')
|
1429
|
-
end
|
1430
|
-
return Decimal(self)
|
1431
|
-
end
|
1432
|
-
|
1433
|
-
return Decimal(other) if other.infinite?
|
1434
|
-
end
|
1435
|
-
|
1436
|
-
exp = [self.exponent, other.exponent].min
|
1437
|
-
negativezero = (context.rounding == ROUND_FLOOR && self.sign != other.sign)
|
1438
|
-
|
1439
|
-
if self.zero? && other.zero?
|
1440
|
-
sign = [self.sign, other.sign].max
|
1441
|
-
sign = -1 if negativezero
|
1442
|
-
ans = Decimal.new([sign, 0, exp])._fix(context)
|
1443
|
-
return ans
|
1444
|
-
end
|
1445
|
-
|
1446
|
-
if self.zero?
|
1447
|
-
exp = [exp, other.exponent - context.precision - 1].max unless context.exact?
|
1448
|
-
return other._rescale(exp, context.rounding)._fix(context)
|
1449
|
-
end
|
1450
|
-
|
1451
|
-
if other.zero?
|
1452
|
-
exp = [exp, self.exponent - context.precision - 1].max unless context.exact?
|
1453
|
-
return self._rescale(exp, context.rounding)._fix(context)
|
1454
|
-
end
|
1455
|
-
|
1456
|
-
op1, op2 = _normalize(self, other, context.precision)
|
1457
|
-
|
1458
|
-
result_sign = result_coeff = result_exp = nil
|
1459
|
-
if op1.sign != op2.sign
|
1460
|
-
return ans = Decimal.new([negativezero ? -1 : +1, 0, exp])._fix(context) if op1.coefficient == op2.coefficient
|
1461
|
-
op1,op2 = op2,op1 if op1.coefficient < op2.coefficient
|
1462
|
-
result_sign = op1.sign
|
1463
|
-
op1,op2 = op1.copy_negate, op2.copy_negate if result_sign < 0
|
1464
|
-
elsif op1.sign < 0
|
1465
|
-
result_sign = -1
|
1466
|
-
op1,op2 = op1.copy_negate, op2.copy_negate
|
1467
|
-
else
|
1468
|
-
result_sign = +1
|
1469
|
-
end
|
1470
|
-
|
1471
|
-
if op2.sign == +1
|
1472
|
-
result_coeff = op1.coefficient + op2.coefficient
|
1473
|
-
else
|
1474
|
-
result_coeff = op1.coefficient - op2.coefficient
|
1475
|
-
end
|
1476
|
-
|
1477
|
-
result_exp = op1.exponent
|
1478
|
-
|
1479
|
-
return Decimal([result_sign, result_coeff, result_exp])._fix(context)
|
1480
|
-
|
1481
|
-
end
|
1482
|
-
|
1483
|
-
|
1484
|
-
# Subtraction
|
1485
|
-
def subtract(other, context=nil)
|
1486
|
-
|
1487
|
-
context = Decimal.define_context(context)
|
1488
|
-
other = _convert(other)
|
1489
|
-
|
1490
|
-
if self.special? || other.special?
|
1491
|
-
ans = _check_nans(context,other)
|
1492
|
-
return ans if ans
|
1493
|
-
end
|
1494
|
-
return add(other.copy_negate, context)
|
1495
|
-
end
|
1496
|
-
|
1497
|
-
# Multiplication
|
1498
|
-
def multiply(other, context=nil)
|
1499
|
-
context = Decimal.define_context(context)
|
1500
|
-
other = _convert(other)
|
1501
|
-
resultsign = self.sign * other.sign
|
1502
|
-
if self.special? || other.special?
|
1503
|
-
ans = _check_nans(context,other)
|
1504
|
-
return ans if ans
|
1505
|
-
|
1506
|
-
if self.infinite?
|
1507
|
-
return context.exception(InvalidOperation,"(+-)INF * 0") if other.zero?
|
1508
|
-
return Decimal.infinity(resultsign)
|
1509
|
-
end
|
1510
|
-
if other.infinite?
|
1511
|
-
return context.exception(InvalidOperation,"0 * (+-)INF") if self.zero?
|
1512
|
-
return Decimal.infinity(resultsign)
|
1513
|
-
end
|
1514
|
-
end
|
1515
|
-
|
1516
|
-
resultexp = self.exponent + other.exponent
|
1517
|
-
|
1518
|
-
return Decimal([resultsign, 0, resultexp])._fix(context) if self.zero? || other.zero?
|
1519
|
-
#return Decimal([resultsign, other.coefficient, resultexp])._fix(context) if self.coefficient==1
|
1520
|
-
#return Decimal([resultsign, self.coefficient, resultexp])._fix(context) if other.coefficient==1
|
1521
|
-
|
1522
|
-
return Decimal([resultsign, other.coefficient*self.coefficient, resultexp])._fix(context)
|
1523
|
-
|
1524
|
-
end
|
1525
|
-
|
1526
|
-
# Division
|
1527
|
-
def divide(other, context=nil)
|
1528
|
-
context = Decimal.define_context(context)
|
1529
|
-
other = _convert(other)
|
1530
|
-
resultsign = self.sign * other.sign
|
1531
|
-
if self.special? || other.special?
|
1532
|
-
ans = _check_nans(context,other)
|
1533
|
-
return ans if ans
|
1534
|
-
if self.infinite?
|
1535
|
-
return context.exception(InvalidOperation,"(+-)INF/(+-)INF") if other.infinite?
|
1536
|
-
return Decimal.infinity(resultsign)
|
1537
|
-
end
|
1538
|
-
if other.infinite?
|
1539
|
-
context.exception(Clamped,"Division by infinity")
|
1540
|
-
return Decimal.new([resultsign, 0, context.etiny])
|
1541
|
-
end
|
1542
|
-
end
|
1543
|
-
|
1544
|
-
if other.zero?
|
1545
|
-
return context.exception(DivisionUndefined, '0 / 0') if self.zero?
|
1546
|
-
return context.exception(DivisionByZero, 'x / 0', resultsign)
|
1547
|
-
end
|
1548
|
-
|
1549
|
-
if self.zero?
|
1550
|
-
exp = self.exponent - other.exponent
|
1551
|
-
coeff = 0
|
1552
|
-
else
|
1553
|
-
prec = context.exact? ? self.number_of_digits + 4*other.number_of_digits : context.precision # this assumes radix==10
|
1554
|
-
shift = other.number_of_digits - self.number_of_digits + prec + 1
|
1555
|
-
exp = self.exponent - other.exponent - shift
|
1556
|
-
if shift >= 0
|
1557
|
-
coeff, remainder = (self.coefficient*Decimal.int_radix_power(shift)).divmod(other.coefficient)
|
1558
|
-
else
|
1559
|
-
coeff, remainder = self.coefficient.divmod(other.coefficient*Decimal.int_radix_power(-shift))
|
1560
|
-
end
|
1561
|
-
if remainder != 0
|
1562
|
-
return context.exception(Inexact) if context.exact?
|
1563
|
-
coeff += 1 if (coeff%(Decimal.radix/2)) == 0
|
1564
|
-
else
|
1565
|
-
ideal_exp = self.exponent - other.exponent
|
1566
|
-
while (exp < ideal_exp) && ((coeff % Decimal.radix)==0)
|
1567
|
-
coeff /= Decimal.radix
|
1568
|
-
exp += 1
|
1569
|
-
end
|
1570
|
-
end
|
1571
|
-
|
1572
|
-
end
|
1573
|
-
return Decimal([resultsign, coeff, exp])._fix(context)
|
1574
|
-
|
1575
|
-
end
|
1576
|
-
|
1577
|
-
# Absolute value
|
1578
|
-
def abs(context=nil)
|
1579
|
-
if special?
|
1580
|
-
ans = _check_nans(context)
|
1581
|
-
return ans if ans
|
1582
|
-
end
|
1583
|
-
sign<0 ? _neg(context) : _pos(context)
|
1584
|
-
end
|
1585
|
-
|
1586
|
-
# Unary prefix plus operator
|
1587
|
-
def plus(context=nil)
|
1588
|
-
_pos(context)
|
1589
|
-
end
|
1590
|
-
|
1591
|
-
# Unary prefix minus operator
|
1592
|
-
def minus(context=nil)
|
1593
|
-
_neg(context)
|
1594
|
-
end
|
1595
|
-
|
1596
|
-
# Largest representable number smaller than itself
|
1597
|
-
def next_minus(context=nil)
|
1598
|
-
context = Decimal.define_context(context)
|
1599
|
-
if special?
|
1600
|
-
ans = _check_nans(context)
|
1601
|
-
return ans if ans
|
1602
|
-
if infinite?
|
1603
|
-
return Decimal.new(self) if @sign == -1
|
1604
|
-
# @sign == +1
|
1605
|
-
if context.exact?
|
1606
|
-
return context.exception(InvalidOperation, 'Exact +INF next minus')
|
1607
|
-
else
|
1608
|
-
return Decimal.new(+1, context.maximum_significand, context.etop)
|
1609
|
-
end
|
1610
|
-
end
|
1611
|
-
end
|
1612
|
-
|
1613
|
-
return context.exception(InvalidOperation, 'Exact next minus') if context.exact?
|
1614
|
-
|
1615
|
-
result = nil
|
1616
|
-
Decimal.local_context(context) do |local|
|
1617
|
-
local.rounding = :floor
|
1618
|
-
local.ignore_all_flags
|
1619
|
-
result = self._fix(local)
|
1620
|
-
if result == self
|
1621
|
-
result = self - Decimal(+1, 1, local.etiny-1)
|
1622
|
-
end
|
1623
|
-
end
|
1624
|
-
result
|
1625
|
-
end
|
1626
|
-
|
1627
|
-
# Smallest representable number larger than itself
|
1628
|
-
def next_plus(context=nil)
|
1629
|
-
context = Decimal.define_context(context)
|
1630
|
-
|
1631
|
-
if special?
|
1632
|
-
ans = _check_nans(context)
|
1633
|
-
return ans if ans
|
1634
|
-
if infinite?
|
1635
|
-
return Decimal.new(self) if @sign == +1
|
1636
|
-
# @sign == -1
|
1637
|
-
if context.exact?
|
1638
|
-
return context.exception(InvalidOperation, 'Exact -INF next plus')
|
1639
|
-
else
|
1640
|
-
return Decimal.new(-1, context.maximum_significand, context.etop)
|
1641
|
-
end
|
1642
|
-
end
|
1643
|
-
end
|
1644
|
-
|
1645
|
-
return context.exception(InvalidOperation, 'Exact next plus') if context.exact?
|
1646
|
-
|
1647
|
-
result = nil
|
1648
|
-
Decimal.local_context(context) do |local|
|
1649
|
-
local.rounding = :ceiling
|
1650
|
-
local.ignore_all_flags
|
1651
|
-
result = self._fix(local)
|
1652
|
-
if result == self
|
1653
|
-
result = self + Decimal(+1, 1, local.etiny-1)
|
1654
|
-
end
|
1655
|
-
end
|
1656
|
-
result
|
1657
|
-
|
1658
|
-
end
|
1659
|
-
|
1660
|
-
# Returns the number closest to self, in the direction towards other.
|
1661
|
-
def next_toward(other, context=nil)
|
1662
|
-
context = Decimal.define_context(context)
|
1663
|
-
other = _convert(other)
|
1664
|
-
ans = _check_nans(context,other)
|
1665
|
-
return ans if ans
|
1666
|
-
|
1667
|
-
return context.exception(InvalidOperation, 'Exact next_toward') if context.exact?
|
1668
|
-
|
1669
|
-
comparison = self <=> other
|
1670
|
-
return self.copy_sign(other) if comparison == 0
|
1671
|
-
|
1672
|
-
if comparison == -1
|
1673
|
-
result = self.next_plus(context)
|
1674
|
-
else # comparison == 1
|
1675
|
-
result = self.next_minus(context)
|
1676
|
-
end
|
1677
|
-
|
1678
|
-
# decide which flags to raise using value of ans
|
1679
|
-
if result.infinite?
|
1680
|
-
context.exception Overflow, 'Infinite result from next_toward', result.sign
|
1681
|
-
context.exception Rounded
|
1682
|
-
context.exception Inexact
|
1683
|
-
elsif result.adjusted_exponent < context.emin
|
1684
|
-
context.exception Underflow
|
1685
|
-
context.exception Subnormal
|
1686
|
-
context.exception Rounded
|
1687
|
-
context.exception Inexact
|
1688
|
-
# if precision == 1 then we don't raise Clamped for a
|
1689
|
-
# result 0E-etiny.
|
1690
|
-
context.exception Clamped if result.zero?
|
1691
|
-
end
|
1692
|
-
|
1693
|
-
result
|
1694
|
-
end
|
1695
|
-
|
1696
|
-
# Square root
|
1697
|
-
def sqrt(context=nil)
|
1698
|
-
context = Decimal.define_context(context)
|
1699
|
-
if special?
|
1700
|
-
ans = _check_nans(context)
|
1701
|
-
return ans if ans
|
1702
|
-
return Decimal.new(self) if infinite? && @sign==+1
|
1703
|
-
end
|
1704
|
-
return Decimal.new([@sign, 0, @exp/2])._fix(context) if zero?
|
1705
|
-
return context.exception(InvalidOperation, 'sqrt(-x), x>0') if @sign<0
|
1706
|
-
prec = context.precision + 1
|
1707
|
-
e = (@exp >> 1)
|
1708
|
-
if (@exp & 1)!=0
|
1709
|
-
c = @coeff*Decimal.radix
|
1710
|
-
l = (number_of_digits >> 1) + 1
|
1711
|
-
else
|
1712
|
-
c = @coeff
|
1713
|
-
l = (number_of_digits+1) >> 1
|
1714
|
-
end
|
1715
|
-
shift = prec - l
|
1716
|
-
if shift >= 0
|
1717
|
-
c = Decimal.int_mult_radix_power(c, (shift<<1))
|
1718
|
-
exact = true
|
1719
|
-
else
|
1720
|
-
c, remainder = c.divmod(Decimal.int_radix_power((-shift)<<1))
|
1721
|
-
exact = (remainder==0)
|
1722
|
-
end
|
1723
|
-
e -= shift
|
1724
|
-
|
1725
|
-
n = Decimal.int_radix_power(prec)
|
1726
|
-
while true
|
1727
|
-
q = c / n
|
1728
|
-
break if n <= q
|
1729
|
-
n = ((n + q) >> 1)
|
1730
|
-
end
|
1731
|
-
exact = exact && (n*n == c)
|
1732
|
-
|
1733
|
-
if exact
|
1734
|
-
if shift >= 0
|
1735
|
-
n = Decimal.int_div_radix_power(n, shift)
|
1736
|
-
else
|
1737
|
-
n = Decimal.int_mult_radix_power(n, -shift)
|
1738
|
-
end
|
1739
|
-
e += shift
|
1740
|
-
else
|
1741
|
-
return context.exception(Inexact) if context.exact?
|
1742
|
-
n += 1 if (n%5)==0
|
1743
|
-
end
|
1744
|
-
ans = Decimal.new([+1,n,e])
|
1745
|
-
Decimal.local_context(:rounding=>:half_even) do
|
1746
|
-
ans = ans._fix(context)
|
1747
|
-
end
|
1748
|
-
return ans
|
1749
|
-
end
|
1750
|
-
|
1751
|
-
# General Decimal Arithmetic Specification integer division and remainder:
|
1752
|
-
# (x/y).truncate, x - y*(x/y).truncate
|
1753
|
-
def divrem(other, context=nil)
|
1754
|
-
context = Decimal.define_context(context)
|
1755
|
-
other = _convert(other)
|
1756
|
-
|
1757
|
-
ans = _check_nans(context,other)
|
1758
|
-
return [ans,ans] if ans
|
1759
|
-
|
1760
|
-
sign = self.sign * other.sign
|
1761
|
-
|
1762
|
-
if self.infinite?
|
1763
|
-
if other.infinite?
|
1764
|
-
ans = context.exception(InvalidOperation, 'divmod(INF,INF)')
|
1765
|
-
return [ans,ans]
|
1766
|
-
else
|
1767
|
-
return [Decimal.infinity(sign), context.exception(InvalidOperation, 'INF % x')]
|
1768
|
-
end
|
1769
|
-
end
|
1770
|
-
|
1771
|
-
if other.zero?
|
1772
|
-
if self.zero?
|
1773
|
-
ans = context.exception(DivisionUndefined, 'divmod(0,0)')
|
1774
|
-
return [ans,ans]
|
1775
|
-
else
|
1776
|
-
return [context.exception(DivisionByZero, 'x // 0', sign),
|
1777
|
-
context.exception(InvalidOperation, 'x % 0')]
|
1778
|
-
end
|
1779
|
-
end
|
1780
|
-
|
1781
|
-
quotient, remainder = self._divide_truncate(other, context)
|
1782
|
-
return [quotient, remainder._fix(context)]
|
1783
|
-
end
|
1784
|
-
|
1785
|
-
# Ruby-style integer division and modulo: (x/y).floor, x - y*(x/y).floor
|
1786
|
-
def divmod(other, context=nil)
|
1787
|
-
context = Decimal.define_context(context)
|
1788
|
-
other = _convert(other)
|
1789
|
-
|
1790
|
-
ans = _check_nans(context,other)
|
1791
|
-
return [ans,ans] if ans
|
1792
|
-
|
1793
|
-
sign = self.sign * other.sign
|
1794
|
-
|
1795
|
-
if self.infinite?
|
1796
|
-
if other.infinite?
|
1797
|
-
ans = context.exception(InvalidOperation, 'divmod(INF,INF)')
|
1798
|
-
return [ans,ans]
|
1799
|
-
else
|
1800
|
-
return [Decimal.infinity(sign), context.exception(InvalidOperation, 'INF % x')]
|
1801
|
-
end
|
1802
|
-
end
|
1803
|
-
|
1804
|
-
if other.zero?
|
1805
|
-
if self.zero?
|
1806
|
-
ans = context.exception(DivisionUndefined, 'divmod(0,0)')
|
1807
|
-
return [ans,ans]
|
1808
|
-
else
|
1809
|
-
return [context.exception(DivisionByZero, 'x // 0', sign),
|
1810
|
-
context.exception(InvalidOperation, 'x % 0')]
|
1811
|
-
end
|
1812
|
-
end
|
1813
|
-
|
1814
|
-
quotient, remainder = self._divide_floor(other, context)
|
1815
|
-
return [quotient, remainder._fix(context)]
|
1816
|
-
end
|
1817
|
-
|
1818
|
-
|
1819
|
-
# General Decimal Arithmetic Specification integer division: (x/y).truncate
|
1820
|
-
def divide_int(other, context=nil)
|
1821
|
-
context = Decimal.define_context(context)
|
1822
|
-
other = _convert(other)
|
1823
|
-
|
1824
|
-
ans = _check_nans(context,other)
|
1825
|
-
return ans if ans
|
1826
|
-
|
1827
|
-
sign = self.sign * other.sign
|
1828
|
-
|
1829
|
-
if self.infinite?
|
1830
|
-
return context.exception(InvalidOperation, 'INF // INF') if other.infinite?
|
1831
|
-
return Decimal.infinity(sign)
|
1832
|
-
end
|
1833
|
-
|
1834
|
-
if other.zero?
|
1835
|
-
if self.zero?
|
1836
|
-
return context.exception(DivisionUndefined, '0 // 0')
|
1837
|
-
else
|
1838
|
-
return context.exception(DivisionByZero, 'x // 0', sign)
|
1839
|
-
end
|
1840
|
-
end
|
1841
|
-
return self._divide_truncate(other, context).first
|
1842
|
-
end
|
1843
|
-
|
1844
|
-
# Ruby-style integer division: (x/y).floor
|
1845
|
-
def div(other, context=nil)
|
1846
|
-
context = Decimal.define_context(context)
|
1847
|
-
other = _convert(other)
|
1848
|
-
|
1849
|
-
ans = _check_nans(context,other)
|
1850
|
-
return [ans,ans] if ans
|
1851
|
-
|
1852
|
-
sign = self.sign * other.sign
|
1853
|
-
|
1854
|
-
if self.infinite?
|
1855
|
-
return context.exception(InvalidOperation, 'INF // INF') if other.infinite?
|
1856
|
-
return Decimal.infinity(sign)
|
1857
|
-
end
|
1858
|
-
|
1859
|
-
if other.zero?
|
1860
|
-
if self.zero?
|
1861
|
-
return context.exception(DivisionUndefined, '0 // 0')
|
1862
|
-
else
|
1863
|
-
return context.exception(DivisionByZero, 'x // 0', sign)
|
1864
|
-
end
|
1865
|
-
end
|
1866
|
-
return self._divide_floor(other, context).first
|
1867
|
-
end
|
1868
|
-
|
1869
|
-
|
1870
|
-
# Ruby-style modulo: x - y*div(x,y)
|
1871
|
-
def modulo(other, context=nil)
|
1872
|
-
context = Decimal.define_context(context)
|
1873
|
-
other = _convert(other)
|
1874
|
-
|
1875
|
-
ans = _check_nans(context,other)
|
1876
|
-
return ans if ans
|
1877
|
-
|
1878
|
-
#sign = self.sign * other.sign
|
1879
|
-
|
1880
|
-
if self.infinite?
|
1881
|
-
return context.exception(InvalidOperation, 'INF % x')
|
1882
|
-
elsif other.zero?
|
1883
|
-
if self.zero?
|
1884
|
-
return context.exception(DivisionUndefined, '0 % 0')
|
1885
|
-
else
|
1886
|
-
return context.exception(InvalidOperation, 'x % 0')
|
1887
|
-
end
|
1888
|
-
end
|
1889
|
-
|
1890
|
-
return self._divide_floor(other, context).last._fix(context)
|
1891
|
-
end
|
1892
|
-
|
1893
|
-
# General Decimal Arithmetic Specification remainder: x - y*divide_int(x,y)
|
1894
|
-
def remainder(other, context=nil)
|
1895
|
-
context = Decimal.define_context(context)
|
1896
|
-
other = _convert(other)
|
1897
|
-
|
1898
|
-
ans = _check_nans(context,other)
|
1899
|
-
return ans if ans
|
1900
|
-
|
1901
|
-
#sign = self.sign * other.sign
|
1902
|
-
|
1903
|
-
if self.infinite?
|
1904
|
-
return context.exception(InvalidOperation, 'INF % x')
|
1905
|
-
elsif other.zero?
|
1906
|
-
if self.zero?
|
1907
|
-
return context.exception(DivisionUndefined, '0 % 0')
|
1908
|
-
else
|
1909
|
-
return context.exception(InvalidOperation, 'x % 0')
|
1910
|
-
end
|
1911
|
-
end
|
1912
|
-
|
1913
|
-
return self._divide_truncate(other, context).last._fix(context)
|
1914
|
-
end
|
1915
|
-
|
1916
|
-
# General Decimal Arithmetic Specification remainder-near:
|
1917
|
-
# x - y*round_half_even(x/y)
|
1918
|
-
def remainder_near(other, context=nil)
|
1919
|
-
context = Decimal.define_context(context)
|
1920
|
-
other = _convert(other)
|
1921
|
-
|
1922
|
-
ans = _check_nans(context,other)
|
1923
|
-
return ans if ans
|
1924
|
-
|
1925
|
-
sign = self.sign * other.sign
|
1926
|
-
|
1927
|
-
if self.infinite?
|
1928
|
-
return context.exception(InvalidOperation, 'remainder_near(INF,x)')
|
1929
|
-
elsif other.zero?
|
1930
|
-
if self.zero?
|
1931
|
-
return context.exception(DivisionUndefined, 'remainder_near(0,0)')
|
1932
|
-
else
|
1933
|
-
return context.exception(InvalidOperation, 'remainder_near(x,0)')
|
1934
|
-
end
|
1935
|
-
end
|
1936
|
-
|
1937
|
-
if other.infinite?
|
1938
|
-
return Decimal.new(self)._fix(context)
|
1939
|
-
end
|
1940
|
-
|
1941
|
-
ideal_exp = [self.exponent, other.exponent].min
|
1942
|
-
if self.zero?
|
1943
|
-
return Decimal([self.sign, 0, ideal_exp])._fix(context)
|
1944
|
-
end
|
1945
|
-
|
1946
|
-
expdiff = self.adjusted_exponent - other.adjusted_exponent
|
1947
|
-
if (expdiff >= context.precision+1) && !context.exact?
|
1948
|
-
return context.exception(DivisionImpossible)
|
1949
|
-
elsif expdiff <= -2
|
1950
|
-
return self._rescale(ideal_exp, context.rounding)._fix(context)
|
1951
|
-
end
|
1952
|
-
|
1953
|
-
self_coeff = self.coefficient
|
1954
|
-
other_coeff = other.coefficient
|
1955
|
-
de = self.exponent - other.exponent
|
1956
|
-
if de >= 0
|
1957
|
-
self_coeff = Decimal.int_mult_radix_power(self_coeff, de)
|
1958
|
-
else
|
1959
|
-
other_coeff = Decimal.int_mult_radix_power(other_coeff, -de)
|
1960
|
-
end
|
1961
|
-
q, r = self_coeff.divmod(other_coeff)
|
1962
|
-
if 2*r + (q&1) > other_coeff
|
1963
|
-
r -= other_coeff
|
1964
|
-
q += 1
|
1965
|
-
end
|
1966
|
-
|
1967
|
-
return context.exception(DivisionImpossible) if q >= Decimal.int_radix_power(context.precision) && !context.exact?
|
1968
|
-
|
1969
|
-
sign = self.sign
|
1970
|
-
if r < 0
|
1971
|
-
sign = -sign
|
1972
|
-
r = -r
|
1973
|
-
end
|
1974
|
-
|
1975
|
-
return Decimal.new([sign, r, ideal_exp])._fix(context)
|
1976
|
-
|
1977
|
-
end
|
1978
|
-
|
1979
|
-
# Reduces an operand to its simplest form
|
1980
|
-
# by removing trailing 0s and incrementing the exponent.
|
1981
|
-
# (formerly called normalize in GDAS)
|
1982
|
-
def reduce(context=nil)
|
1983
|
-
context = Decimal.define_context(context)
|
1984
|
-
if special?
|
1985
|
-
ans = _check_nans(context)
|
1986
|
-
return ans if ans
|
1987
|
-
end
|
1988
|
-
dup = _fix(context)
|
1989
|
-
return dup if dup.infinite?
|
1990
|
-
|
1991
|
-
return Decimal.new([dup.sign, 0, 0]) if dup.zero?
|
1992
|
-
|
1993
|
-
exp_max = context.clamp? ? context.etop : context.emax
|
1994
|
-
end_d = nd = dup.number_of_digits
|
1995
|
-
exp = dup.exponent
|
1996
|
-
coeff = dup.coefficient
|
1997
|
-
dgs = dup.digits
|
1998
|
-
while (dgs[end_d-1]==0) && (exp < exp_max)
|
1999
|
-
exp += 1
|
2000
|
-
end_d -= 1
|
2001
|
-
end
|
2002
|
-
return Decimal.new([dup.sign, coeff/Decimal.int_radix_power(nd-end_d), exp])
|
2003
|
-
end
|
2004
|
-
|
2005
|
-
# normalizes so that the coefficient has precision digits
|
2006
|
-
# (this is not the old GDA normalize function)
|
2007
|
-
def normalize(context=nil)
|
2008
|
-
context = Decimal.define_context(context)
|
2009
|
-
return Decimal(self) if self.special? || self.zero?
|
2010
|
-
return context.exception(InvalidOperation, "Normalize in exact context") if context.exact?
|
2011
|
-
return context.exception(Subnormal, "Cannot normalize subnormal") if self.subnormal?
|
2012
|
-
min_normal_coeff = Decimal.int_radix_power(context.precision-1)
|
2013
|
-
sign, coeff, exp = self._fix(context).split
|
2014
|
-
while coeff < min_normal_coeff
|
2015
|
-
coeff *= Decimal.radix
|
2016
|
-
exp -= 1
|
2017
|
-
end
|
2018
|
-
Decimal(sign, coeff, exp)
|
2019
|
-
end
|
2020
|
-
|
2021
|
-
# Returns the exponent of the magnitude of the most significant digit.
|
2022
|
-
#
|
2023
|
-
# The result is the integer which is the exponent of the magnitude
|
2024
|
-
# of the most significant digit of the number (as though it were truncated
|
2025
|
-
# to a single digit while maintaining the value of that digit and
|
2026
|
-
# without limiting the resulting exponent).
|
2027
|
-
def logb(context=nil)
|
2028
|
-
context = Decimal.define_context(context)
|
2029
|
-
ans = _check_nans(context)
|
2030
|
-
return ans if ans
|
2031
|
-
return Decimal.infinity if infinite?
|
2032
|
-
return context.exception(DivisionByZero,'logb(0)',-1) if zero?
|
2033
|
-
Decimal.new(adjusted_exponent)
|
2034
|
-
end
|
2035
|
-
|
2036
|
-
# Adds a value to the exponent.
|
2037
|
-
def scaleb(other, context=nil)
|
2038
|
-
|
2039
|
-
context = Decimal.define_context(context)
|
2040
|
-
other = _convert(other)
|
2041
|
-
ans = _check_nans(context, other)
|
2042
|
-
return ans if ans
|
2043
|
-
return context.exception(InvalidOperation) if other.infinite? || other.exponent != 0
|
2044
|
-
unless context.exact?
|
2045
|
-
liminf = -2 * (context.emax + context.precision)
|
2046
|
-
limsup = 2 * (context.emax + context.precision)
|
2047
|
-
i = other.to_i
|
2048
|
-
return context.exception(InvalidOperation) if !((liminf <= i) && (i <= limsup))
|
2049
|
-
end
|
2050
|
-
return Decimal.new(self) if infinite?
|
2051
|
-
return Decimal.new(@sign, @coeff, @exp+i)._fix(context)
|
2052
|
-
|
2053
|
-
end
|
2054
|
-
|
2055
|
-
# Convert to other numerical type.
|
2056
|
-
def convert_to(type, context=nil)
|
2057
|
-
context = Decimal.define_context(context)
|
2058
|
-
context.convert_to(type, self)
|
2059
|
-
end
|
2060
|
-
|
2061
|
-
# Ruby-style to integer conversion.
|
2062
|
-
def to_i
|
2063
|
-
if special?
|
2064
|
-
if nan?
|
2065
|
-
#return Decimal.context.exception(InvalidContext)
|
2066
|
-
Decimal.context.exception InvalidContext
|
2067
|
-
return nil
|
2068
|
-
end
|
2069
|
-
raise Error, "Cannot convert infinity to Integer"
|
2070
|
-
end
|
2071
|
-
if @exp >= 0
|
2072
|
-
return @sign*Decimal.int_mult_radix_power(@coeff,@exp)
|
2073
|
-
else
|
2074
|
-
return @sign*Decimal.int_div_radix_power(@coeff,-@exp)
|
2075
|
-
end
|
2076
|
-
end
|
2077
|
-
|
2078
|
-
# Ruby-style to string conversion.
|
2079
|
-
def to_s(eng=false,context=nil)
|
2080
|
-
# (context || Decimal.context).to_string(self)
|
2081
|
-
context = Decimal.define_context(context)
|
2082
|
-
sgn = sign<0 ? '-' : ''
|
2083
|
-
if special?
|
2084
|
-
if @exp==:inf
|
2085
|
-
"#{sgn}Infinity"
|
2086
|
-
elsif @exp==:nan
|
2087
|
-
"#{sgn}NaN#{@coeff}"
|
2088
|
-
else # exp==:snan
|
2089
|
-
"#{sgn}sNaN#{@coeff}"
|
2090
|
-
end
|
2091
|
-
else
|
2092
|
-
ds = @coeff.to_s
|
2093
|
-
n_ds = ds.size
|
2094
|
-
exp = integral_exponent
|
2095
|
-
leftdigits = exp + n_ds
|
2096
|
-
if exp<=0 && leftdigits>-6
|
2097
|
-
dotplace = leftdigits
|
2098
|
-
elsif !eng
|
2099
|
-
dotplace = 1
|
2100
|
-
elsif @coeff==0
|
2101
|
-
dotplace = (leftdigits+1)%3 - 1
|
2102
|
-
else
|
2103
|
-
dotplace = (leftdigits-1)%3 + 1
|
2104
|
-
end
|
2105
|
-
|
2106
|
-
if dotplace <=0
|
2107
|
-
intpart = '0'
|
2108
|
-
fracpart = '.' + '0'*(-dotplace) + ds
|
2109
|
-
elsif dotplace >= n_ds
|
2110
|
-
intpart = ds + '0'*(dotplace - n_ds)
|
2111
|
-
fracpart = ''
|
2112
|
-
else
|
2113
|
-
intpart = ds[0...dotplace]
|
2114
|
-
fracpart = '.' + ds[dotplace..-1]
|
2115
|
-
end
|
2116
|
-
|
2117
|
-
if leftdigits == dotplace
|
2118
|
-
e = ''
|
2119
|
-
else
|
2120
|
-
e = (context.capitals ? 'E' : 'e') + "%+d"%(leftdigits-dotplace)
|
2121
|
-
end
|
2122
|
-
|
2123
|
-
sgn + intpart + fracpart + e
|
2124
|
-
|
2125
|
-
end
|
2126
|
-
end
|
2127
|
-
|
2128
|
-
# Conversion to Rational.
|
2129
|
-
# Conversion of special values will raise an exception under Ruby 1.9
|
2130
|
-
def to_r
|
2131
|
-
if special?
|
2132
|
-
num = (@exp == :inf) ? @sign : 0
|
2133
|
-
Rational.respond_to?(:new!) ? Rational.new!(num,0) : Rational(num,0)
|
2134
|
-
else
|
2135
|
-
if @exp < 0
|
2136
|
-
Rational(@sign*@coeff, Decimal.int_radix_power(-@exp))
|
2137
|
-
else
|
2138
|
-
Rational(Decimal.int_mult_radix_power(@sign*@coeff,@exp), 1)
|
2139
|
-
end
|
2140
|
-
end
|
2141
|
-
end
|
2142
|
-
|
2143
|
-
# Conversion to Float
|
2144
|
-
def to_f
|
2145
|
-
if special?
|
2146
|
-
if @exp==:inf
|
2147
|
-
@sign/0.0
|
2148
|
-
else
|
2149
|
-
0.0/0.0
|
2150
|
-
end
|
2151
|
-
else
|
2152
|
-
# to_rational.to_f
|
2153
|
-
# to_s.to_f
|
2154
|
-
@sign*@coeff*(10.0**@exp)
|
2155
|
-
end
|
2156
|
-
end
|
2157
|
-
|
2158
|
-
# ulp (unit in the last place) according to the definition proposed by J.M. Muller in
|
2159
|
-
# "On the definition of ulp(x)" INRIA No. 5504
|
2160
|
-
def ulp(context = nil)
|
2161
|
-
context = Decimal.define_context(context)
|
2162
|
-
|
2163
|
-
return context.exception(InvalidOperation, "ulp in exact context") if context.exact?
|
2164
|
-
|
2165
|
-
if self.nan?
|
2166
|
-
return Decimal(self)
|
2167
|
-
elsif self.infinite?
|
2168
|
-
# The ulp here is context.maximum_finite - context.maximum_finite.next_minus
|
2169
|
-
return Decimal(+1, 1, context.etop)
|
2170
|
-
elsif self.zero? || self.adjusted_exponent <= context.emin
|
2171
|
-
# This is the ulp value for self.abs <= context.minimum_normal*Decimal.context
|
2172
|
-
# Here we use it for self.abs < context.minimum_normal*Decimal.context;
|
2173
|
-
# because of the simple exponent check; the remaining cases are handled below.
|
2174
|
-
return context.minimum_nonzero
|
2175
|
-
else
|
2176
|
-
# The next can compute the ulp value for the values that
|
2177
|
-
# self.abs > context.minimum_normal && self.abs <= context.maximum_finite
|
2178
|
-
# The cases self.abs < context.minimum_normal*Decimal.context have been handled above.
|
2179
|
-
|
2180
|
-
# assert self.normal? && self.abs>context.minimum_nonzero
|
2181
|
-
norm = self.normalize
|
2182
|
-
exp = norm.integral_exponent
|
2183
|
-
sig = norm.integral_significand
|
2184
|
-
|
2185
|
-
# Powers of the radix, r**n, are between areas with different ulp values: r**(n-p-1) and r**(n-p)
|
2186
|
-
# (p is context.precision).
|
2187
|
-
# This method and the ulp definitions by Muller, Kahan and Harrison assign the smaller ulp value
|
2188
|
-
# to r**n; the definition by Goldberg assigns it to the larger ulp.
|
2189
|
-
# The next line selects the smaller ulp for powers of the radix:
|
2190
|
-
exp -= 1 if sig == Decimal.int_radix_power(context.precision-1)
|
2191
|
-
|
2192
|
-
return Decimal(+1, 1, exp)
|
2193
|
-
end
|
2194
|
-
end
|
2195
|
-
|
2196
|
-
def inspect
|
2197
|
-
if $DEBUG
|
2198
|
-
"Decimal('#{self}') [coeff:#{@coeff.inspect} exp:#{@exp.inspect} s:#{@sign.inspect}]"
|
2199
|
-
else
|
2200
|
-
"Decimal('#{self}')"
|
2201
|
-
end
|
2202
|
-
end
|
2203
|
-
|
2204
|
-
# Internal comparison operator: returns -1 if the first number is less than the second,
|
2205
|
-
# 0 if both are equal or +1 if the first is greater than the secong.
|
2206
|
-
def <=>(other)
|
2207
|
-
case other
|
2208
|
-
when *Decimal.context.coercible_types_or_decimal
|
2209
|
-
other = Decimal(other)
|
2210
|
-
if self.special? || other.special?
|
2211
|
-
if self.nan? || other.nan?
|
2212
|
-
1
|
2213
|
-
else
|
2214
|
-
self_v = self.finite? ? 0 : self.sign
|
2215
|
-
other_v = other.finite? ? 0 : other.sign
|
2216
|
-
self_v <=> other_v
|
2217
|
-
end
|
2218
|
-
else
|
2219
|
-
if self.zero?
|
2220
|
-
if other.zero?
|
2221
|
-
0
|
2222
|
-
else
|
2223
|
-
-other.sign
|
2224
|
-
end
|
2225
|
-
elsif other.zero?
|
2226
|
-
self.sign
|
2227
|
-
elsif other.sign < self.sign
|
2228
|
-
+1
|
2229
|
-
elsif self.sign < other.sign
|
2230
|
-
-1
|
2231
|
-
else
|
2232
|
-
self_adjusted = self.adjusted_exponent
|
2233
|
-
other_adjusted = other.adjusted_exponent
|
2234
|
-
if self_adjusted == other_adjusted
|
2235
|
-
self_padded,other_padded = self.coefficient,other.coefficient
|
2236
|
-
d = self.exponent - other.exponent
|
2237
|
-
if d>0
|
2238
|
-
self_padded *= Decimal.int_radix_power(d)
|
2239
|
-
else
|
2240
|
-
other_padded *= Decimal.int_radix_power(-d)
|
2241
|
-
end
|
2242
|
-
(self_padded <=> other_padded)*self.sign
|
2243
|
-
elsif self_adjusted > other_adjusted
|
2244
|
-
self.sign
|
2245
|
-
else
|
2246
|
-
-self.sign
|
2247
|
-
end
|
2248
|
-
end
|
2249
|
-
end
|
2250
|
-
else
|
2251
|
-
if !self.nan? && defined? other.coerce
|
2252
|
-
x, y = other.coerce(self)
|
2253
|
-
x <=> y
|
2254
|
-
else
|
2255
|
-
nil
|
2256
|
-
end
|
2257
|
-
end
|
2258
|
-
end
|
2259
|
-
def ==(other)
|
2260
|
-
(self<=>other) == 0
|
2261
|
-
end
|
2262
|
-
include Comparable
|
2263
|
-
|
2264
|
-
def hash
|
2265
|
-
([Decimal]+reduce.split).hash # TODO: optimize
|
2266
|
-
end
|
2267
|
-
|
2268
|
-
def eql?(other)
|
2269
|
-
return false unless other.is_a?(Decimal)
|
2270
|
-
reduce.split == other.reduce.split
|
2271
|
-
end
|
2272
|
-
|
2273
|
-
# Compares like <=> but returns a Decimal value.
|
2274
|
-
def compare(other, context=nil)
|
2275
|
-
|
2276
|
-
other = _convert(other)
|
2277
|
-
|
2278
|
-
if self.special? || other.special?
|
2279
|
-
ans = _check_nans(context, other)
|
2280
|
-
return ans if ans
|
2281
|
-
end
|
2282
|
-
|
2283
|
-
return Decimal(self <=> other)
|
2284
|
-
|
2285
|
-
end
|
2286
|
-
|
2287
|
-
# Digits of the significand as an array of integers
|
2288
|
-
def digits
|
2289
|
-
@coeff.to_s.split('').map{|d| d.to_i}
|
2290
|
-
end
|
2291
|
-
|
2292
|
-
# Exponent of the magnitude of the most significant digit of the operand
|
2293
|
-
def adjusted_exponent
|
2294
|
-
if special?
|
2295
|
-
0
|
2296
|
-
else
|
2297
|
-
@exp + number_of_digits - 1
|
2298
|
-
end
|
2299
|
-
end
|
2300
|
-
|
2301
|
-
# Synonym for Decimal#adjusted_exponent()
|
2302
|
-
def scientific_exponent
|
2303
|
-
adjusted_exponent
|
2304
|
-
end
|
2305
|
-
|
2306
|
-
# Exponent as though the significand were a fraction (the decimal point before its first digit)
|
2307
|
-
def fractional_exponent
|
2308
|
-
scientific_exponent + 1
|
2309
|
-
end
|
2310
|
-
|
2311
|
-
# Number of digits in the significand
|
2312
|
-
def number_of_digits
|
2313
|
-
# digits.size
|
2314
|
-
@coeff.to_s.size
|
2315
|
-
end
|
2316
|
-
|
2317
|
-
# Significand as an integer, unsigned. Synonym of coefficient
|
2318
|
-
def integral_significand
|
2319
|
-
@coeff
|
2320
|
-
end
|
2321
|
-
|
2322
|
-
# Exponent of the significand as an integer. Synonym of exponent
|
2323
|
-
def integral_exponent
|
2324
|
-
# fractional_exponent - number_of_digits
|
2325
|
-
@exp
|
2326
|
-
end
|
2327
|
-
|
2328
|
-
# Sign of the number: +1 for plus / -1 for minus.
|
2329
|
-
def sign
|
2330
|
-
@sign
|
2331
|
-
end
|
2332
|
-
|
2333
|
-
# Significand as an integer, unsigned
|
2334
|
-
def coefficient
|
2335
|
-
@coeff
|
2336
|
-
end
|
2337
|
-
|
2338
|
-
# Exponent of the significand as an integer.
|
2339
|
-
def exponent
|
2340
|
-
@exp
|
2341
|
-
end
|
2342
|
-
|
2343
|
-
# Return the value of the number as an signed integer and a scale.
|
2344
|
-
def to_int_scale
|
2345
|
-
if special?
|
2346
|
-
nil
|
2347
|
-
else
|
2348
|
-
[@sign*integral_significand, integral_exponent]
|
2349
|
-
end
|
2350
|
-
end
|
2351
|
-
|
2352
|
-
# Returns a copy of with the sign set to +
|
2353
|
-
def copy_abs
|
2354
|
-
Decimal.new([+1,@coeff,@exp])
|
2355
|
-
end
|
2356
|
-
|
2357
|
-
# Returns a copy of with the sign inverted
|
2358
|
-
def copy_negate
|
2359
|
-
Decimal.new([-@sign,@coeff,@exp])
|
2360
|
-
end
|
2361
|
-
|
2362
|
-
# Returns a copy of with the sign of other
|
2363
|
-
def copy_sign(other)
|
2364
|
-
Decimal.new([other.sign, @coeff, @exp])
|
2365
|
-
end
|
2366
|
-
|
2367
|
-
# Returns true if the value is an integer
|
2368
|
-
def integral?
|
2369
|
-
if finite?
|
2370
|
-
if @exp>=0 || @coeff==0
|
2371
|
-
true
|
2372
|
-
else
|
2373
|
-
if @exp <= -number_of_digits
|
2374
|
-
false
|
2375
|
-
else
|
2376
|
-
m = Decimal.int_radix_power(-@exp)
|
2377
|
-
(@coeff % m) == 0
|
2378
|
-
end
|
2379
|
-
end
|
2380
|
-
else
|
2381
|
-
false
|
2382
|
-
end
|
2383
|
-
end
|
2384
|
-
|
2385
|
-
# returns true if is an even integer
|
2386
|
-
def even?
|
2387
|
-
# integral? && ((to_i%2)==0)
|
2388
|
-
if finite?
|
2389
|
-
if @exp>0 || @coeff==0
|
2390
|
-
true
|
2391
|
-
else
|
2392
|
-
if @exp <= -number_of_digits
|
2393
|
-
false
|
2394
|
-
else
|
2395
|
-
m = Decimal.int_radix_power(-@exp)
|
2396
|
-
if (@coeff % m) == 0
|
2397
|
-
# ((@coeff / m) % 2) == 0
|
2398
|
-
((@coeff / m) & 1) == 0
|
2399
|
-
else
|
2400
|
-
false
|
2401
|
-
end
|
2402
|
-
end
|
2403
|
-
end
|
2404
|
-
else
|
2405
|
-
false
|
2406
|
-
end
|
2407
|
-
end
|
2408
|
-
|
2409
|
-
# returns true if is an odd integer
|
2410
|
-
def odd?
|
2411
|
-
# integral? && ((to_i%2)==1)
|
2412
|
-
# integral? && !even?
|
2413
|
-
if finite?
|
2414
|
-
if @exp>0 || @coeff==0
|
2415
|
-
false
|
2416
|
-
else
|
2417
|
-
if @exp <= -number_of_digits
|
2418
|
-
false
|
2419
|
-
else
|
2420
|
-
m = Decimal.int_radix_power(-@exp)
|
2421
|
-
if (@coeff % m) == 0
|
2422
|
-
# ((@coeff / m) % 2) == 1
|
2423
|
-
((@coeff / m) & 1) == 1
|
2424
|
-
else
|
2425
|
-
false
|
2426
|
-
end
|
2427
|
-
end
|
2428
|
-
end
|
2429
|
-
else
|
2430
|
-
false
|
2431
|
-
end
|
2432
|
-
end
|
2433
|
-
|
2434
|
-
# Rescale so that the exponent is exp, either by padding with zeros
|
2435
|
-
# or by truncating digits.
|
2436
|
-
def rescale(exp, context=nil, watch_exp=true)
|
2437
|
-
context = Decimal.define_context(context)
|
2438
|
-
exp = _convert(exp)
|
2439
|
-
if self.special? || exp.special?
|
2440
|
-
ans = _check_nans(context, exp)
|
2441
|
-
return ans if ans
|
2442
|
-
if exp.infinite? || self.infinite?
|
2443
|
-
return Decimal.new(self) if exp.infinite? && self.infinite?
|
2444
|
-
return context.exception(InvalidOperation, 'rescale with one INF')
|
2445
|
-
end
|
2446
|
-
end
|
2447
|
-
return context.exception(InvalidOperation,"exponent of rescale is not integral") unless exp.integral?
|
2448
|
-
exp = exp.to_i
|
2449
|
-
_watched_rescale(exp, context, watch_exp)
|
2450
|
-
end
|
2451
|
-
|
2452
|
-
# Quantize so its exponent is the same as that of y.
|
2453
|
-
def quantize(exp, context=nil, watch_exp=true)
|
2454
|
-
exp = _convert(exp)
|
2455
|
-
context = Decimal.define_context(context)
|
2456
|
-
if self.special? || exp.special?
|
2457
|
-
ans = _check_nans(context, exp)
|
2458
|
-
return ans if ans
|
2459
|
-
if exp.infinite? || self.infinite?
|
2460
|
-
return Decimal.new(self) if exp.infinite? && self.infinite?
|
2461
|
-
return context.exception(InvalidOperation, 'quantize with one INF')
|
2462
|
-
end
|
2463
|
-
end
|
2464
|
-
exp = exp.exponent
|
2465
|
-
_watched_rescale(exp, context, watch_exp)
|
2466
|
-
end
|
2467
|
-
|
2468
|
-
# Return true if has the same exponent as other.
|
2469
|
-
#
|
2470
|
-
# If either operand is a special value, the following rules are used:
|
2471
|
-
# * return true if both operands are infinities
|
2472
|
-
# * return true if both operands are NaNs
|
2473
|
-
# * otherwise, return false.
|
2474
|
-
def same_quantum?(other)
|
2475
|
-
other = _convert(other)
|
2476
|
-
if self.special? || other.special?
|
2477
|
-
return (self.nan? && other.nan?) || (self.infinite? && other.infinite?)
|
2478
|
-
end
|
2479
|
-
return self.exponent == other.exponent
|
2480
|
-
end
|
2481
|
-
|
2482
|
-
# Rounds to a nearby integer. May raise Inexact or Rounded.
|
2483
|
-
def to_integral_exact(context=nil)
|
2484
|
-
context = Decimal.define_context(context)
|
2485
|
-
if special?
|
2486
|
-
ans = _check_nans(context)
|
2487
|
-
return ans if ans
|
2488
|
-
return Decimal.new(self)
|
2489
|
-
end
|
2490
|
-
return Decimal.new(self) if @exp >= 0
|
2491
|
-
return Decimal.new([@sign, 0, 0]) if zero?
|
2492
|
-
context.exception Rounded
|
2493
|
-
ans = _rescale(0, context.rounding)
|
2494
|
-
context.exception Inexact if ans != self
|
2495
|
-
return ans
|
2496
|
-
end
|
2497
|
-
|
2498
|
-
# Rounds to a nearby integer. Doesn't raise Inexact or Rounded.
|
2499
|
-
def to_integral_value(context=nil)
|
2500
|
-
context = Decimal.define_context(context)
|
2501
|
-
if special?
|
2502
|
-
ans = _check_nans(context)
|
2503
|
-
return ans if ans
|
2504
|
-
return Decimal.new(self)
|
2505
|
-
end
|
2506
|
-
return Decimal.new(self) if @exp >= 0
|
2507
|
-
return _rescale(0, context.rounding)
|
2508
|
-
end
|
2509
|
-
|
2510
|
-
# General rounding.
|
2511
|
-
#
|
2512
|
-
# With an integer argument this acts like Float#round: the parameter specifies the number
|
2513
|
-
# of fractional digits (or digits to the left of the decimal point if negative).
|
2514
|
-
#
|
2515
|
-
# Options can be passed as a Hash instead; valid options are:
|
2516
|
-
# * :rounding method for rounding (see Context#new())
|
2517
|
-
# The precision can be specified as:
|
2518
|
-
# * :places number of fractional digits as above.
|
2519
|
-
# * :exponent specifies the exponent corresponding to the
|
2520
|
-
# digit to be rounded (exponent == -places)
|
2521
|
-
# * :precision or :significan_digits is the number of digits
|
2522
|
-
# * :power 10^exponent, value of the digit to be rounded,
|
2523
|
-
# should be passed as a type convertible to Decimal.
|
2524
|
-
# * :index 0-based index of the digit to be rounded
|
2525
|
-
# * :rindex right 0-based index of the digit to be rounded
|
2526
|
-
#
|
2527
|
-
# The default is :places=>0 (round to integer).
|
2528
|
-
#
|
2529
|
-
# Example: ways of specifiying the rounding position
|
2530
|
-
# number: 1 2 3 4 . 5 6 7 8
|
2531
|
-
# :places -3 -2 -1 0 1 2 3 4
|
2532
|
-
# :exponent 3 2 1 0 -1 -2 -3 -4
|
2533
|
-
# :precision 1 2 3 4 5 6 7 8
|
2534
|
-
# :power 1E3 1E2 10 1 0.1 1E-2 1E-3 1E-4
|
2535
|
-
# :index 0 1 2 3 4 5 6 7
|
2536
|
-
# :index 7 6 5 4 3 2 1 0
|
2537
|
-
def round(opt={})
|
2538
|
-
opt = { :places=>opt } if opt.kind_of?(Integer)
|
2539
|
-
r = opt[:rounding] || :half_up
|
2540
|
-
as_int = false
|
2541
|
-
if v=(opt[:precision] || opt[:significant_digits])
|
2542
|
-
prec = v
|
2543
|
-
elsif v=(opt[:places])
|
2544
|
-
prec = adjusted_exponent + 1 + v
|
2545
|
-
elsif v=(opt[:exponent])
|
2546
|
-
prec = adjusted_exponent + 1 - v
|
2547
|
-
elsif v=(opt[:power])
|
2548
|
-
prec = adjusted_exponent + 1 - Decimal(v).adjusted_exponent
|
2549
|
-
elsif v=(opt[:index])
|
2550
|
-
prec = i+1
|
2551
|
-
elsif v=(opt[:rindex])
|
2552
|
-
prec = number_of_digits - v
|
2553
|
-
else
|
2554
|
-
prec = adjusted_exponent + 1
|
2555
|
-
as_int = true
|
2556
|
-
end
|
2557
|
-
dg = number_of_digits-prec
|
2558
|
-
changed = _round(r, dg)
|
2559
|
-
coeff = Decimal.int_div_radix_power(@coeff, dg)
|
2560
|
-
exp = @exp + dg
|
2561
|
-
coeff += 1 if changed==1
|
2562
|
-
result = Decimal(@sign, coeff, exp)
|
2563
|
-
return as_int ? result.to_i : result
|
2564
|
-
end
|
2565
|
-
|
2566
|
-
# General ceiling operation (as for Float) with same options for precision
|
2567
|
-
# as Decimal#round()
|
2568
|
-
def ceil(opt={})
|
2569
|
-
opt[:rounding] = :ceiling
|
2570
|
-
round opt
|
2571
|
-
end
|
2572
|
-
|
2573
|
-
# General floor operation (as for Float) with same options for precision
|
2574
|
-
# as Decimal#round()
|
2575
|
-
def floor(opt={})
|
2576
|
-
opt[:rounding] = :floor
|
2577
|
-
round opt
|
2578
|
-
end
|
2579
|
-
|
2580
|
-
# General truncate operation (as for Float) with same options for precision
|
2581
|
-
# as Decimal#round()
|
2582
|
-
def truncate(opt={})
|
2583
|
-
opt[:rounding] = :down
|
2584
|
-
round opt
|
2585
|
-
end
|
2586
|
-
|
2587
|
-
# Fused multiply-add.
|
2588
|
-
#
|
2589
|
-
# Computes (self*other+third) with no rounding of the intermediate product self*other.
|
2590
|
-
def fma(other, third, context=nil)
|
2591
|
-
context = Decimal.define_context(context)
|
2592
|
-
other = _convert(other)
|
2593
|
-
third = _convert(third)
|
2594
|
-
if self.special? || other.special?
|
2595
|
-
return context.exception(InvalidOperation, 'sNaN', self) if self.snan?
|
2596
|
-
return context.exception(InvalidOperation, 'sNaN', other) if other.snan?
|
2597
|
-
if self.nan?
|
2598
|
-
product = self
|
2599
|
-
elsif other.nan?
|
2600
|
-
product = other
|
2601
|
-
elsif self.infinite?
|
2602
|
-
return context.exception(InvalidOperation, 'INF * 0 in fma') if other.zero?
|
2603
|
-
product = Decimal.infinity(self.sign*other.sign)
|
2604
|
-
elsif other.infinite?
|
2605
|
-
return context.exception(InvalidOperation, '0 * INF in fma') if self.zero?
|
2606
|
-
product = Decimal.infinity(self.sign*other.sign)
|
2607
|
-
end
|
2608
|
-
else
|
2609
|
-
product = Decimal.new([self.sign*other.sign,self.coefficient*other.coefficient, self.exponent+other.exponent])
|
2610
|
-
end
|
2611
|
-
return product.add(third, context)
|
2612
|
-
end
|
2613
|
-
|
2614
|
-
# Raises to the power of x, to modulo if given.
|
2615
|
-
#
|
2616
|
-
# With two arguments, compute self**other. If self is negative then other
|
2617
|
-
# must be integral. The result will be inexact unless other is
|
2618
|
-
# integral and the result is finite and can be expressed exactly
|
2619
|
-
# in 'precision' digits.
|
2620
|
-
#
|
2621
|
-
# With three arguments, compute (self**other) % modulo. For the
|
2622
|
-
# three argument form, the following restrictions on the
|
2623
|
-
# arguments hold:
|
2624
|
-
#
|
2625
|
-
# - all three arguments must be integral
|
2626
|
-
# - other must be nonnegative
|
2627
|
-
# - at least one of self or other must be nonzero
|
2628
|
-
# - modulo must be nonzero and have at most 'precision' digits
|
2629
|
-
#
|
2630
|
-
# The result of a.power(b, modulo) is identical to the result
|
2631
|
-
# that would be obtained by computing (a**b) % modulo with
|
2632
|
-
# unbounded precision, but is computed more efficiently. It is
|
2633
|
-
# always exact.
|
2634
|
-
def power(other, modulo=nil, context=nil)
|
2635
|
-
|
2636
|
-
if context.nil? && (modulo.is_a?(Context) || modulo.is_a?(Hash))
|
2637
|
-
context = modulo
|
2638
|
-
modulo = nil
|
2639
|
-
end
|
2640
|
-
|
2641
|
-
return self.power_modulo(other, modulo, context) if modulo
|
2642
|
-
|
2643
|
-
context = Decimal.define_context(context)
|
2644
|
-
other = _convert(other)
|
2645
|
-
|
2646
|
-
ans = _check_nans(context, other)
|
2647
|
-
return ans if ans
|
2648
|
-
|
2649
|
-
# 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
|
2650
|
-
if other.zero?
|
2651
|
-
if self.zero?
|
2652
|
-
return context.exception(InvalidOperation, '0 ** 0')
|
2653
|
-
else
|
2654
|
-
return Decimal(1)
|
2655
|
-
end
|
2656
|
-
end
|
2657
|
-
|
2658
|
-
# result has sign -1 iff self.sign is -1 and other is an odd integer
|
2659
|
-
result_sign = +1
|
2660
|
-
_self = self
|
2661
|
-
if _self.sign == -1
|
2662
|
-
if other.integral?
|
2663
|
-
result_sign = -1 if !other.even?
|
2664
|
-
else
|
2665
|
-
# -ve**noninteger = NaN
|
2666
|
-
# (-0)**noninteger = 0**noninteger
|
2667
|
-
unless self.zero?
|
2668
|
-
return context.exception(InvalidOperation, 'x ** y with x negative and y not an integer')
|
2669
|
-
end
|
2670
|
-
end
|
2671
|
-
# negate self, without doing any unwanted rounding
|
2672
|
-
_self = self.copy_negate
|
2673
|
-
end
|
2674
|
-
|
2675
|
-
# 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
|
2676
|
-
if _self.zero?
|
2677
|
-
return (other.sign == +1) ? Decimal(result_sign, 0, 0) : Decimal.infinity(result_sign)
|
2678
|
-
end
|
2679
|
-
|
2680
|
-
# Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
|
2681
|
-
if _self.infinite?
|
2682
|
-
return (other.sign == +1) ? Decimal.infinity(result_sign) : Decimal(result_sign, 0, 0)
|
2683
|
-
end
|
2684
|
-
|
2685
|
-
# 1**other = 1, but the choice of exponent and the flags
|
2686
|
-
# depend on the exponent of self, and on whether other is a
|
2687
|
-
# positive integer, a negative integer, or neither
|
2688
|
-
if _self == Decimal(1)
|
2689
|
-
return _self if context.exact?
|
2690
|
-
if other.integral?
|
2691
|
-
# exp = max(self._exp*max(int(other), 0),
|
2692
|
-
# 1-context.prec) but evaluating int(other) directly
|
2693
|
-
# is dangerous until we know other is small (other
|
2694
|
-
# could be 1e999999999)
|
2695
|
-
if other.sign == -1
|
2696
|
-
multiplier = 0
|
2697
|
-
elsif other > context.precision
|
2698
|
-
multiplier = context.precision
|
2699
|
-
else
|
2700
|
-
multiplier = other.to_i
|
2701
|
-
end
|
2702
|
-
|
2703
|
-
exp = _self.exponent * multiplier
|
2704
|
-
if exp < 1-context.precision
|
2705
|
-
exp = 1-context.precision
|
2706
|
-
context.exception Rounded
|
2707
|
-
end
|
2708
|
-
else
|
2709
|
-
context.exception Rounded
|
2710
|
-
context.exception Inexact
|
2711
|
-
exp = 1-context.precision
|
2712
|
-
end
|
2713
|
-
|
2714
|
-
return Decimal(result_sign, Decimal.int_radix_power(-exp), exp)
|
2715
|
-
end
|
2716
|
-
|
2717
|
-
# compute adjusted exponent of self
|
2718
|
-
self_adj = _self.adjusted_exponent
|
2719
|
-
|
2720
|
-
# self ** infinity is infinity if self > 1, 0 if self < 1
|
2721
|
-
# self ** -infinity is infinity if self < 1, 0 if self > 1
|
2722
|
-
if other.infinite?
|
2723
|
-
if (other.sign == +1) == (self_adj < 0)
|
2724
|
-
return Decimal(result_sign, 0, 0)
|
2725
|
-
else
|
2726
|
-
return Decimal.infinity(result_sign)
|
2727
|
-
end
|
2728
|
-
end
|
2729
|
-
|
2730
|
-
# from here on, the result always goes through the call
|
2731
|
-
# to _fix at the end of this function.
|
2732
|
-
ans = nil
|
2733
|
-
|
2734
|
-
# crude test to catch cases of extreme overflow/underflow. If
|
2735
|
-
# log10(self)*other >= 10**bound and bound >= len(str(Emax))
|
2736
|
-
# then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
|
2737
|
-
# self**other >= 10**(Emax+1), so overflow occurs. The test
|
2738
|
-
# for underflow is similar.
|
2739
|
-
bound = _self._log10_exp_bound + other.adjusted_exponent
|
2740
|
-
if (self_adj >= 0) == (other.sign == +1)
|
2741
|
-
# self > 1 and other +ve, or self < 1 and other -ve
|
2742
|
-
# possibility of overflow
|
2743
|
-
if bound >= context.emax.to_s.length
|
2744
|
-
ans = Decimal(result_sign, 1, context.emax+1)
|
2745
|
-
end
|
2746
|
-
else
|
2747
|
-
# self > 1 and other -ve, or self < 1 and other +ve
|
2748
|
-
# possibility of underflow to 0
|
2749
|
-
etiny = context.etiny
|
2750
|
-
if bound >= (-etiny).to_s.length
|
2751
|
-
ans = Decimal(result_sign, 1, etiny-1)
|
2752
|
-
end
|
2753
|
-
end
|
2754
|
-
|
2755
|
-
# try for an exact result with precision +1
|
2756
|
-
if ans.nil?
|
2757
|
-
if context.exact?
|
2758
|
-
if other.adjusted_exponent < 100
|
2759
|
-
test_precision = _self.number_of_digits*other.to_i+1
|
2760
|
-
else
|
2761
|
-
test_precision = _self.number_of_digits+1
|
2762
|
-
end
|
2763
|
-
else
|
2764
|
-
test_precision = context.precision + 1
|
2765
|
-
end
|
2766
|
-
ans = _self._power_exact(other, test_precision)
|
2767
|
-
if !ans.nil? && (result_sign == -1)
|
2768
|
-
ans = Decimal(-1, ans.coefficient, ans.exponent)
|
2769
|
-
end
|
2770
|
-
end
|
2771
|
-
|
2772
|
-
# usual case: inexact result, x**y computed directly as exp(y*log(x))
|
2773
|
-
if !ans.nil?
|
2774
|
-
return ans if context.exact?
|
2775
|
-
else
|
2776
|
-
return context.exception(Inexact, "Inexact power") if context.exact?
|
2777
|
-
|
2778
|
-
p = context.precision
|
2779
|
-
xc = _self.coefficient
|
2780
|
-
xe = _self.exponent
|
2781
|
-
yc = other.coefficient
|
2782
|
-
ye = other.exponent
|
2783
|
-
yc = -yc if other.sign == -1
|
2784
|
-
|
2785
|
-
# compute correctly rounded result: start with precision +3,
|
2786
|
-
# then increase precision until result is unambiguously roundable
|
2787
|
-
extra = 3
|
2788
|
-
coeff, exp = nil, nil
|
2789
|
-
loop do
|
2790
|
-
coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
|
2791
|
-
#break if (coeff % Decimal.int_mult_radix_power(5,coeff.to_s.length-p-1)) != 0
|
2792
|
-
break if (coeff % (5*10**(coeff.to_s.length-p-1))) != 0
|
2793
|
-
extra += 3
|
2794
|
-
end
|
2795
|
-
ans = Decimal(result_sign, coeff, exp)
|
2796
|
-
end
|
2797
|
-
|
2798
|
-
# the specification says that for non-integer other we need to
|
2799
|
-
# raise Inexact, even when the result is actually exact. In
|
2800
|
-
# the same way, we need to raise Underflow here if the result
|
2801
|
-
# is subnormal. (The call to _fix will take care of raising
|
2802
|
-
# Rounded and Subnormal, as usual.)
|
2803
|
-
if !other.integral?
|
2804
|
-
context.exception Inexact
|
2805
|
-
# pad with zeros up to length context.precision+1 if necessary
|
2806
|
-
if ans.number_of_digits <= context.precision
|
2807
|
-
expdiff = context.precision+1 - ans.number_of_digits
|
2808
|
-
ans = Decimal(ans.sign, Decimal.int_mult_radix_power(ans.coefficient, expdiff), ans.exponent-expdiff)
|
2809
|
-
end
|
2810
|
-
context.exception Underflow if ans.adjusted_exponent < context.emin
|
2811
|
-
end
|
2812
|
-
# unlike exp, ln and log10, the power function respects the
|
2813
|
-
# rounding mode; no need to use ROUND_HALF_EVEN here
|
2814
|
-
ans._fix(context)
|
2815
|
-
end
|
2816
|
-
|
2817
|
-
# Returns the base 10 logarithm
|
2818
|
-
def log10(context=nil)
|
2819
|
-
context = Decimal.define_context(context)
|
2820
|
-
|
2821
|
-
# log10(NaN) = NaN
|
2822
|
-
ans = _check_nans(context)
|
2823
|
-
return ans if ans
|
2824
|
-
|
2825
|
-
# log10(0.0) == -Infinity
|
2826
|
-
return Decimal.infinity(-1) if self.zero?
|
2827
|
-
|
2828
|
-
# log10(Infinity) = Infinity
|
2829
|
-
return Decimal.infinity if self.infinite? && self.sign == +1
|
2830
|
-
|
2831
|
-
# log10(negative or -Infinity) raises InvalidOperation
|
2832
|
-
return context.exception(InvalidOperation, 'log10 of a negative value') if self.sign == -1
|
2833
|
-
|
2834
|
-
digits = self.digits
|
2835
|
-
# log10(10**n) = n
|
2836
|
-
if digits.first == 1 && digits[1..-1].all?{|d| d==0}
|
2837
|
-
# answer may need rounding
|
2838
|
-
ans = Decimal(self.exponent + digits.size - 1)
|
2839
|
-
return ans if context.exact?
|
2840
|
-
else
|
2841
|
-
# result is irrational, so necessarily inexact
|
2842
|
-
return context.exception(Inexact, "Inexact power") if context.exact?
|
2843
|
-
c = self.coefficient
|
2844
|
-
e = self.exponent
|
2845
|
-
p = context.precision
|
2846
|
-
|
2847
|
-
# correctly rounded result: repeatedly increase precision
|
2848
|
-
# until result is unambiguously roundable
|
2849
|
-
places = p-self._log10_exp_bound+2
|
2850
|
-
coeff = nil
|
2851
|
-
loop do
|
2852
|
-
coeff = _dlog10(c, e, places)
|
2853
|
-
# assert coeff.abs.to_s.length-p >= 1
|
2854
|
-
break if (coeff % (5*10**(coeff.abs.to_s.length-p-1)))!=0
|
2855
|
-
places += 3
|
2856
|
-
end
|
2857
|
-
ans = Decimal(coeff<0 ? -1 : +1, coeff.abs, -places)
|
2858
|
-
end
|
2859
|
-
|
2860
|
-
Decimal.context(context, :rounding=>:half_even) do |local_context|
|
2861
|
-
ans = ans._fix(local_context)
|
2862
|
-
context.flags = local_context.flags
|
2863
|
-
end
|
2864
|
-
return ans
|
2865
|
-
end
|
2866
|
-
|
2867
|
-
# Exponential function
|
2868
|
-
def exp(context=nil)
|
2869
|
-
context = Decimal.define_context(context)
|
2870
|
-
|
2871
|
-
# exp(NaN) = NaN
|
2872
|
-
ans = _check_nans(context)
|
2873
|
-
return ans if ans
|
2874
|
-
|
2875
|
-
# exp(-Infinity) = 0
|
2876
|
-
return Decimal.zero if self.infinite? && (self.sign == -1)
|
2877
|
-
|
2878
|
-
# exp(0) = 1
|
2879
|
-
return Decimal(1) if self.zero?
|
2880
|
-
|
2881
|
-
# exp(Infinity) = Infinity
|
2882
|
-
return Decimal(self) if self.infinite?
|
2883
|
-
|
2884
|
-
# the result is now guaranteed to be inexact (the true
|
2885
|
-
# mathematical result is transcendental). There's no need to
|
2886
|
-
# raise Rounded and Inexact here---they'll always be raised as
|
2887
|
-
# a result of the call to _fix.
|
2888
|
-
return context.exception(Inexact, 'Inexact exp') if context.exact?
|
2889
|
-
p = context.precision
|
2890
|
-
adj = self.adjusted_exponent
|
2891
|
-
|
2892
|
-
# we only need to do any computation for quite a small range
|
2893
|
-
# of adjusted exponents---for example, -29 <= adj <= 10 for
|
2894
|
-
# the default context. For smaller exponent the result is
|
2895
|
-
# indistinguishable from 1 at the given precision, while for
|
2896
|
-
# larger exponent the result either overflows or underflows.
|
2897
|
-
if self.sign == +1 and adj > ((context.emax+1)*3).to_s.length
|
2898
|
-
# overflow
|
2899
|
-
ans = Decimal(+1, 1, context.emax+1)
|
2900
|
-
elsif self.sign == -1 and adj > ((-context.etiny+1)*3).to_s.length
|
2901
|
-
# underflow to 0
|
2902
|
-
ans = Decimal(+1, 1, context.etiny-1)
|
2903
|
-
elsif self.sign == +1 and adj < -p
|
2904
|
-
# p+1 digits; final round will raise correct flags
|
2905
|
-
ans = Decimal(+1, Decimal.int_radix_power(p)+1, -p)
|
2906
|
-
elsif self.sign == -1 and adj < -p-1
|
2907
|
-
# p+1 digits; final round will raise correct flags
|
2908
|
-
ans = Decimal(+1, Decimal.int_radix_power(p+1)-1, -p-1)
|
2909
|
-
else
|
2910
|
-
# general case
|
2911
|
-
c = self.coefficient
|
2912
|
-
e = self.exponent
|
2913
|
-
c = -c if self.sign == -1
|
2914
|
-
|
2915
|
-
# compute correctly rounded result: increase precision by
|
2916
|
-
# 3 digits at a time until we get an unambiguously
|
2917
|
-
# roundable result
|
2918
|
-
extra = 3
|
2919
|
-
coeff = exp = nil
|
2920
|
-
loop do
|
2921
|
-
coeff, exp = _dexp(c, e, p+extra)
|
2922
|
-
break if (coeff % (5*10**(coeff.to_s.length-p-1)))!=0
|
2923
|
-
extra += 3
|
2924
|
-
end
|
2925
|
-
ans = Decimal(+1, coeff, exp)
|
2926
|
-
end
|
2927
|
-
|
2928
|
-
# at this stage, ans should round correctly with *any*
|
2929
|
-
# rounding mode, not just with ROUND_HALF_EVEN
|
2930
|
-
Decimal.context(context, :rounding=>:half_even) do |local_context|
|
2931
|
-
ans = ans._fix(local_context)
|
2932
|
-
context.flags = local_context.flags
|
2933
|
-
end
|
2934
|
-
|
2935
|
-
return ans
|
2936
|
-
end
|
2937
|
-
|
2938
|
-
# Returns the natural (base e) logarithm
|
2939
|
-
def ln(context=nil)
|
2940
|
-
context = Decimal.define_context(context)
|
2941
|
-
|
2942
|
-
# ln(NaN) = NaN
|
2943
|
-
ans = _check_nans(context)
|
2944
|
-
return ans if ans
|
2945
|
-
|
2946
|
-
# ln(0.0) == -Infinity
|
2947
|
-
return Decimal.infinity(-1) if self.zero?
|
2948
|
-
|
2949
|
-
# ln(Infinity) = Infinity
|
2950
|
-
return Decimal.infinity if self.infinite? && self.sign == +1
|
2951
|
-
|
2952
|
-
# ln(1.0) == 0.0
|
2953
|
-
return Decimal.zero if self == Decimal(1)
|
2954
|
-
|
2955
|
-
# ln(negative) raises InvalidOperation
|
2956
|
-
return context.exception(InvalidOperation, 'ln of a negative value') if self.sign==-1
|
2957
|
-
|
2958
|
-
# result is irrational, so necessarily inexact
|
2959
|
-
return context.exception(Inexact, 'Inexact exp') if context.exact?
|
2960
|
-
|
2961
|
-
c = self.coefficient
|
2962
|
-
e = self.exponent
|
2963
|
-
p = context.precision
|
2964
|
-
|
2965
|
-
# correctly rounded result: repeatedly increase precision by 3
|
2966
|
-
# until we get an unambiguously roundable result
|
2967
|
-
places = p - self._ln_exp_bound + 2 # at least p+3 places
|
2968
|
-
coeff = nil
|
2969
|
-
loop do
|
2970
|
-
coeff = _dlog(c, e, places)
|
2971
|
-
# assert coeff.to_s.length-p >= 1
|
2972
|
-
break if (coeff % (5*10**(coeff.abs.to_s.length-p-1))) != 0
|
2973
|
-
places += 3
|
2974
|
-
end
|
2975
|
-
ans = Decimal((coeff<0) ? -1 : +1, coeff.abs, -places)
|
2976
|
-
|
2977
|
-
Decimal.context(context, :rounding=>:half_even) do |local_context|
|
2978
|
-
ans = ans._fix(local_context)
|
2979
|
-
context.flags = local_context.flags
|
2980
|
-
end
|
2981
|
-
return ans
|
2982
|
-
end
|
2983
|
-
|
2984
|
-
# Auxiliar Methods
|
2985
|
-
|
2986
|
-
# Check if the number or other is NaN, signal if sNaN or return NaN;
|
2987
|
-
# return nil if none is NaN.
|
2988
|
-
def _check_nans(context=nil, other=nil)
|
2989
|
-
#self_is_nan = self.nan?
|
2990
|
-
#other_is_nan = other.nil? ? false : other.nan?
|
2991
|
-
if self.nan? || (other && other.nan?)
|
2992
|
-
context = Decimal.define_context(context)
|
2993
|
-
return context.exception(InvalidOperation, 'sNaN', self) if self.snan?
|
2994
|
-
return context.exception(InvalidOperation, 'sNaN', other) if other && other.snan?
|
2995
|
-
return self._fix_nan(context) if self.nan?
|
2996
|
-
return other._fix_nan(context)
|
2997
|
-
else
|
2998
|
-
return nil
|
2999
|
-
end
|
3000
|
-
end
|
3001
|
-
|
3002
|
-
# Rescale so that the exponent is exp, either by padding with zeros
|
3003
|
-
# or by truncating digits, using the given rounding mode.
|
3004
|
-
#
|
3005
|
-
# Specials are returned without change. This operation is
|
3006
|
-
# quiet: it raises no flags, and uses no information from the
|
3007
|
-
# context.
|
3008
|
-
#
|
3009
|
-
# exp = exp to scale to (an integer)
|
3010
|
-
# rounding = rounding mode
|
3011
|
-
def _rescale(exp, rounding)
|
3012
|
-
|
3013
|
-
return Decimal.new(self) if special?
|
3014
|
-
return Decimal.new([sign, 0, exp]) if zero?
|
3015
|
-
return Decimal.new([sign, @coeff*Decimal.int_radix_power(self.exponent - exp), exp]) if self.exponent > exp
|
3016
|
-
#nd = number_of_digits + self.exponent - exp
|
3017
|
-
nd = exp - self.exponent
|
3018
|
-
if number_of_digits < nd
|
3019
|
-
slf = Decimal.new([sign, 1, exp-1])
|
3020
|
-
nd = number_of_digits
|
3021
|
-
else
|
3022
|
-
slf = Decimal.new(self)
|
3023
|
-
end
|
3024
|
-
changed = slf._round(rounding, nd)
|
3025
|
-
coeff = Decimal.int_div_radix_power(@coeff, nd)
|
3026
|
-
coeff += 1 if changed==1
|
3027
|
-
Decimal.new([slf.sign, coeff, exp])
|
3028
|
-
|
3029
|
-
end
|
3030
|
-
|
3031
|
-
def _watched_rescale(exp, context, watch_exp)
|
3032
|
-
if !watch_exp
|
3033
|
-
ans = _rescale(exp, context.rounding)
|
3034
|
-
context.exception(Rounded) if ans.exponent > self.exponent
|
3035
|
-
context.exception(Inexact) if ans != self
|
3036
|
-
return ans
|
3037
|
-
end
|
3038
|
-
|
3039
|
-
if exp < context.etiny || exp > context.emax
|
3040
|
-
return context.exception(InvalidOperation, "target operation out of bounds in quantize/rescale")
|
3041
|
-
end
|
3042
|
-
|
3043
|
-
return Decimal.new([@sign, 0, exp])._fix(context) if zero?
|
3044
|
-
|
3045
|
-
self_adjusted = adjusted_exponent
|
3046
|
-
return context.exception(InvalidOperation,"exponent of quantize/rescale result too large for current context") if self_adjusted > context.emax
|
3047
|
-
return context.exception(InvalidOperation,"quantize/rescale has too many digits for current context") if (self_adjusted - exp + 1 > context.precision) && !context.exact?
|
3048
|
-
|
3049
|
-
ans = _rescale(exp, context.rounding)
|
3050
|
-
return context.exception(InvalidOperation,"exponent of rescale result too large for current context") if ans.adjusted_exponent > context.emax
|
3051
|
-
return context.exception(InvalidOperation,"rescale result has too many digits for current context") if (ans.number_of_digits > context.precision) && !context.exact?
|
3052
|
-
if ans.exponent > self.exponent
|
3053
|
-
context.exception(Rounded)
|
3054
|
-
context.exception(Inexact) if ans!=self
|
3055
|
-
end
|
3056
|
-
context.exception(Subnormal) if !ans.zero? && (ans.adjusted_exponent < context.emin)
|
3057
|
-
return ans._fix(context)
|
3058
|
-
end
|
3059
|
-
|
3060
|
-
# Returns copy with sign inverted
|
3061
|
-
def _neg(context=nil)
|
3062
|
-
if special?
|
3063
|
-
ans = _check_nans(context)
|
3064
|
-
return ans if ans
|
3065
|
-
end
|
3066
|
-
if zero?
|
3067
|
-
ans = copy_abs
|
3068
|
-
else
|
3069
|
-
ans = copy_negate
|
3070
|
-
end
|
3071
|
-
context = Decimal.define_context(context)
|
3072
|
-
ans._fix(context)
|
3073
|
-
end
|
3074
|
-
|
3075
|
-
# Returns a copy with precision adjusted
|
3076
|
-
def _pos(context=nil)
|
3077
|
-
if special?
|
3078
|
-
ans = _check_nans(context)
|
3079
|
-
return ans if ans
|
3080
|
-
end
|
3081
|
-
if zero?
|
3082
|
-
ans = copy_abs
|
3083
|
-
else
|
3084
|
-
ans = Decimal.new(self)
|
3085
|
-
end
|
3086
|
-
context = Decimal.define_context(context)
|
3087
|
-
ans._fix(context)
|
3088
|
-
end
|
3089
|
-
|
3090
|
-
# Returns a copy with positive sign
|
3091
|
-
def _abs(round=true, context=nil)
|
3092
|
-
return copy_abs if not round
|
3093
|
-
|
3094
|
-
if special?
|
3095
|
-
ans = _check_nans(context)
|
3096
|
-
return ans if ans
|
3097
|
-
end
|
3098
|
-
if sign>0
|
3099
|
-
ans = _neg(context)
|
3100
|
-
else
|
3101
|
-
ans = _pos(context)
|
3102
|
-
end
|
3103
|
-
ans
|
3104
|
-
end
|
3105
|
-
|
3106
|
-
# Round if it is necessary to keep within precision.
|
3107
|
-
def _fix(context)
|
3108
|
-
return self if context.exact?
|
3109
|
-
|
3110
|
-
if special?
|
3111
|
-
if nan?
|
3112
|
-
return _fix_nan(context)
|
3113
|
-
else
|
3114
|
-
return Decimal.new(self)
|
3115
|
-
end
|
3116
|
-
end
|
3117
|
-
|
3118
|
-
etiny = context.etiny
|
3119
|
-
etop = context.etop
|
3120
|
-
if zero?
|
3121
|
-
exp_max = context.clamp? ? etop : context.emax
|
3122
|
-
new_exp = [[@exp, etiny].max, exp_max].min
|
3123
|
-
if new_exp!=@exp
|
3124
|
-
context.exception Clamped
|
3125
|
-
return Decimal.new([sign,0,new_exp])
|
3126
|
-
else
|
3127
|
-
return Decimal.new(self)
|
3128
|
-
end
|
3129
|
-
end
|
3130
|
-
|
3131
|
-
nd = number_of_digits
|
3132
|
-
exp_min = nd + @exp - context.precision
|
3133
|
-
if exp_min > etop
|
3134
|
-
context.exception Inexact
|
3135
|
-
context.exception Rounded
|
3136
|
-
return context.exception(Overflow, 'above Emax', sign)
|
3137
|
-
end
|
3138
|
-
|
3139
|
-
self_is_subnormal = exp_min < etiny
|
3140
|
-
|
3141
|
-
if self_is_subnormal
|
3142
|
-
context.exception Subnormal
|
3143
|
-
exp_min = etiny
|
3144
|
-
end
|
3145
|
-
|
3146
|
-
if @exp < exp_min
|
3147
|
-
context.exception Rounded
|
3148
|
-
# dig is the digits number from 0 (MS) to number_of_digits-1 (LS)
|
3149
|
-
# dg = numberof_digits-dig is from 1 (LS) to number_of_digits (MS)
|
3150
|
-
dg = exp_min - @exp # dig = number_of_digits + exp - exp_min
|
3151
|
-
if dg > number_of_digits # dig<0
|
3152
|
-
d = Decimal.new([sign,1,exp_min-1])
|
3153
|
-
dg = number_of_digits # dig = 0
|
3154
|
-
else
|
3155
|
-
d = Decimal.new(self)
|
3156
|
-
end
|
3157
|
-
changed = d._round(context.rounding, dg)
|
3158
|
-
coeff = Decimal.int_div_radix_power(d.coefficient, dg)
|
3159
|
-
coeff += 1 if changed==1
|
3160
|
-
ans = Decimal.new([sign, coeff, exp_min])
|
3161
|
-
if changed!=0
|
3162
|
-
context.exception Inexact
|
3163
|
-
if self_is_subnormal
|
3164
|
-
context.exception Underflow
|
3165
|
-
if ans.zero?
|
3166
|
-
context.exception Clamped
|
3167
|
-
end
|
3168
|
-
elsif ans.number_of_digits == context.precision+1
|
3169
|
-
if ans.exponent< etop
|
3170
|
-
ans = Decimal.new([ans.sign, Decimal.int_div_radix_power(ans.coefficient,1), ans.exponent+1])
|
3171
|
-
else
|
3172
|
-
ans = context.exception(Overflow, 'above Emax', d.sign)
|
3173
|
-
end
|
3174
|
-
end
|
3175
|
-
end
|
3176
|
-
return ans
|
3177
|
-
end
|
3178
|
-
|
3179
|
-
if context.clamp? && @exp>etop
|
3180
|
-
context.exception Clamped
|
3181
|
-
self_padded = Decimal.int_mult_radix_power(@coeff, @exp-etop)
|
3182
|
-
return Decimal.new([sign,self_padded,etop])
|
3183
|
-
end
|
3184
|
-
|
3185
|
-
return Decimal.new(self)
|
3186
|
-
|
3187
|
-
end
|
3188
|
-
|
3189
|
-
# adjust payload of a NaN to the context
|
3190
|
-
def _fix_nan(context)
|
3191
|
-
if !context.exact?
|
3192
|
-
payload = @coeff
|
3193
|
-
payload = nil if payload==0
|
3194
|
-
|
3195
|
-
max_payload_len = context.maximum_nan_diagnostic_digits
|
3196
|
-
|
3197
|
-
if number_of_digits > max_payload_len
|
3198
|
-
payload = payload.to_s[-max_payload_len..-1].to_i
|
3199
|
-
return Decimal([@sign, payload, @exp])
|
3200
|
-
end
|
3201
|
-
end
|
3202
|
-
Decimal(self)
|
3203
|
-
end
|
3204
|
-
|
3205
|
-
protected
|
3206
|
-
|
3207
|
-
def _divide_truncate(other, context)
|
3208
|
-
context = Decimal.define_context(context)
|
3209
|
-
sign = self.sign * other.sign
|
3210
|
-
if other.infinite?
|
3211
|
-
ideal_exp = self.exponent
|
3212
|
-
else
|
3213
|
-
ideal_exp = [self.exponent, other.exponent].min
|
3214
|
-
end
|
3215
|
-
|
3216
|
-
expdiff = self.adjusted_exponent - other.adjusted_exponent
|
3217
|
-
if self.zero? || other.infinite? || (expdiff <= -2)
|
3218
|
-
return [Decimal.new([sign, 0, 0]), _rescale(ideal_exp, context.rounding)]
|
3219
|
-
end
|
3220
|
-
if (expdiff <= context.precision) || context.exact?
|
3221
|
-
self_coeff = self.coefficient
|
3222
|
-
other_coeff = other.coefficient
|
3223
|
-
de = self.exponent - other.exponent
|
3224
|
-
if de >= 0
|
3225
|
-
self_coeff = Decimal.int_mult_radix_power(self_coeff, de)
|
3226
|
-
else
|
3227
|
-
other_coeff = Decimal.int_mult_radix_power(other_coeff, -de)
|
3228
|
-
end
|
3229
|
-
q, r = self_coeff.divmod(other_coeff)
|
3230
|
-
if (q < Decimal.int_radix_power(context.precision)) || context.exact?
|
3231
|
-
return [Decimal([sign, q, 0]),Decimal([self.sign, r, ideal_exp])]
|
3232
|
-
end
|
3233
|
-
end
|
3234
|
-
# Here the quotient is too large to be representable
|
3235
|
-
ans = context.exception(DivisionImpossible, 'quotient too large in //, % or divmod')
|
3236
|
-
return [ans, ans]
|
3237
|
-
|
3238
|
-
end
|
3239
|
-
|
3240
|
-
def _divide_floor(other, context)
|
3241
|
-
context = Decimal.define_context(context)
|
3242
|
-
sign = self.sign * other.sign
|
3243
|
-
if other.infinite?
|
3244
|
-
ideal_exp = self.exponent
|
3245
|
-
else
|
3246
|
-
ideal_exp = [self.exponent, other.exponent].min
|
3247
|
-
end
|
3248
|
-
|
3249
|
-
expdiff = self.adjusted_exponent - other.adjusted_exponent
|
3250
|
-
if self.zero? || other.infinite? || (expdiff <= -2)
|
3251
|
-
return [Decimal.new([sign, 0, 0]), _rescale(ideal_exp, context.rounding)]
|
3252
|
-
end
|
3253
|
-
if (expdiff <= context.precision) || context.exact?
|
3254
|
-
self_coeff = self.coefficient*self.sign
|
3255
|
-
other_coeff = other.coefficient*other.sign
|
3256
|
-
de = self.exponent - other.exponent
|
3257
|
-
if de >= 0
|
3258
|
-
self_coeff = Decimal.int_mult_radix_power(self_coeff, de)
|
3259
|
-
else
|
3260
|
-
other_coeff = Decimal.int_mult_radix_power(other_coeff, -de)
|
3261
|
-
end
|
3262
|
-
q, r = self_coeff.divmod(other_coeff)
|
3263
|
-
if r<0
|
3264
|
-
r = -r
|
3265
|
-
rs = -1
|
3266
|
-
else
|
3267
|
-
rs = +1
|
3268
|
-
end
|
3269
|
-
if q<0
|
3270
|
-
q = -q
|
3271
|
-
qs = -1
|
3272
|
-
else
|
3273
|
-
qs = +1
|
3274
|
-
end
|
3275
|
-
if (q < Decimal.int_radix_power(context.precision)) || context.exact?
|
3276
|
-
return [Decimal([qs, q, 0]),Decimal([rs, r, ideal_exp])]
|
3277
|
-
end
|
3278
|
-
end
|
3279
|
-
# Here the quotient is too large to be representable
|
3280
|
-
ans = context.exception(DivisionImpossible, 'quotient too large in //, % or divmod')
|
3281
|
-
return [ans, ans]
|
3282
|
-
|
3283
|
-
end
|
3284
|
-
|
3285
|
-
# Power-modulo: self._power_modulo(other, modulo) == (self**other) % modulo
|
3286
|
-
# This is equivalent to Python's 3-argument version of pow()
|
3287
|
-
def _power_modulo(other, modulo, context=nil)
|
3288
|
-
|
3289
|
-
context = Decimal.define_context(context)
|
3290
|
-
other = _convert(other)
|
3291
|
-
modulo = _convert(third)
|
3292
|
-
|
3293
|
-
if self.nan? || other.nan? || modulo.nan?
|
3294
|
-
return context.exception(InvalidOperation, 'sNaN', self) if self.snan?
|
3295
|
-
return context.exception(InvalidOperation, 'sNaN', other) if other.snan?
|
3296
|
-
return context.exception(InvalidOperation, 'sNaN', modulo) if other.modulo?
|
3297
|
-
return self._fix_nan(context) if self.nan?
|
3298
|
-
return other._fix_nan(context) if other.nan?
|
3299
|
-
return modulo._fix_nan(context) # if modulo.nan?
|
3300
|
-
end
|
3301
|
-
|
3302
|
-
if !(self.integral? && other.integral? && modulo.integral?)
|
3303
|
-
return context.exception(InvalidOperation, '3-argument power not allowed unless all arguments are integers.')
|
3304
|
-
end
|
3305
|
-
|
3306
|
-
if other < 0
|
3307
|
-
return context.exception(InvalidOperation, '3-argument power cannot have a negative 2nd argument.')
|
3308
|
-
end
|
3309
|
-
|
3310
|
-
if modulo.zero?
|
3311
|
-
return context.exception(InvalidOperation, '3-argument power cannot have a 0 3rd argument.')
|
3312
|
-
end
|
3313
|
-
|
3314
|
-
if modulo.adjusted_exponent >= context.precision
|
3315
|
-
return context.exception(InvalidOperation, 'insufficient precision: power 3rd argument must not have more than precision digits')
|
3316
|
-
end
|
3317
|
-
|
3318
|
-
if other.zero? && self.zero?
|
3319
|
-
return context.exception(InvalidOperation, "0**0 not defined")
|
3320
|
-
end
|
3321
|
-
|
3322
|
-
sign = other.even? ? +1 : -1
|
3323
|
-
modulo = modulo.to_i.abs
|
3324
|
-
|
3325
|
-
base = (self.coefficient % modulo * (Decimal.int_radix_power(self.exponent) % modulo)) % modulo
|
3326
|
-
|
3327
|
-
other.exponent.times do
|
3328
|
-
base = (base**Decimal.radix) % modulo
|
3329
|
-
end
|
3330
|
-
base = (base**other.coefficient) % modulo
|
3331
|
-
|
3332
|
-
Decimal(sign, base, 0)
|
3333
|
-
end
|
3334
|
-
|
3335
|
-
# Attempt to compute self**other exactly
|
3336
|
-
# Given Decimals self and other and an integer p, attempt to
|
3337
|
-
# compute an exact result for the power self**other, with p
|
3338
|
-
# digits of precision. Return nil if self**other is not
|
3339
|
-
# exactly representable in p digits.
|
3340
|
-
#
|
3341
|
-
# Assumes that elimination of special cases has already been
|
3342
|
-
# performed: self and other must both be nonspecial; self must
|
3343
|
-
# be positive and not numerically equal to 1; other must be
|
3344
|
-
# nonzero. For efficiency, other.exponent should not be too large,
|
3345
|
-
# so that 10**other.exponent.abs is a feasible calculation.
|
3346
|
-
def _power_exact(other, p)
|
3347
|
-
|
3348
|
-
# In the comments below, we write x for the value of self and
|
3349
|
-
# y for the value of other. Write x = xc*10**xe and y =
|
3350
|
-
# yc*10**ye.
|
3351
|
-
|
3352
|
-
# The main purpose of this method is to identify the *failure*
|
3353
|
-
# of x**y to be exactly representable with as little effort as
|
3354
|
-
# possible. So we look for cheap and easy tests that
|
3355
|
-
# eliminate the possibility of x**y being exact. Only if all
|
3356
|
-
# these tests are passed do we go on to actually compute x**y.
|
3357
|
-
|
3358
|
-
# Here's the main idea. First normalize both x and y. We
|
3359
|
-
# express y as a rational m/n, with m and n relatively prime
|
3360
|
-
# and n>0. Then for x**y to be exactly representable (at
|
3361
|
-
# *any* precision), xc must be the nth power of a positive
|
3362
|
-
# integer and xe must be divisible by n. If m is negative
|
3363
|
-
# then additionally xc must be a power of either 2 or 5, hence
|
3364
|
-
# a power of 2**n or 5**n.
|
3365
|
-
#
|
3366
|
-
# There's a limit to how small |y| can be: if y=m/n as above
|
3367
|
-
# then:
|
3368
|
-
#
|
3369
|
-
# (1) if xc != 1 then for the result to be representable we
|
3370
|
-
# need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
|
3371
|
-
# if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
|
3372
|
-
# 2**(1/|y|), hence xc**|y| < 2 and the result is not
|
3373
|
-
# representable.
|
3374
|
-
#
|
3375
|
-
# (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
|
3376
|
-
# |y| < 1/|xe| then the result is not representable.
|
3377
|
-
#
|
3378
|
-
# Note that since x is not equal to 1, at least one of (1) and
|
3379
|
-
# (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
|
3380
|
-
# 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
|
3381
|
-
#
|
3382
|
-
# There's also a limit to how large y can be, at least if it's
|
3383
|
-
# positive: the normalized result will have coefficient xc**y,
|
3384
|
-
# so if it's representable then xc**y < 10**p, and y <
|
3385
|
-
# p/log10(xc). Hence if y*log10(xc) >= p then the result is
|
3386
|
-
# not exactly representable.
|
3387
|
-
|
3388
|
-
# if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
|
3389
|
-
# so |y| < 1/xe and the result is not representable.
|
3390
|
-
# Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
|
3391
|
-
# < 1/nbits(xc).
|
3392
|
-
|
3393
|
-
xc = self.coefficient
|
3394
|
-
xe = self.exponent
|
3395
|
-
while (xc % Decimal.radix) == 0
|
3396
|
-
xc /= Decimal.radix
|
3397
|
-
xe += 1
|
3398
|
-
end
|
3399
|
-
|
3400
|
-
yc = other.coefficient
|
3401
|
-
ye = other.exponent
|
3402
|
-
while (yc % Decimal.radix) == 0
|
3403
|
-
yc /= Decimal.radix
|
3404
|
-
ye += 1
|
3405
|
-
end
|
3406
|
-
|
3407
|
-
# case where xc == 1: result is 10**(xe*y), with xe*y
|
3408
|
-
# required to be an integer
|
3409
|
-
if xc == 1
|
3410
|
-
if ye >= 0
|
3411
|
-
exponent = xe*yc*Decimal.int_radix_power(ye)
|
3412
|
-
else
|
3413
|
-
exponent, remainder = (xe*yc).divmod(Decimal.int_radix_power(-ye))
|
3414
|
-
return nil if remainder!=0
|
3415
|
-
end
|
3416
|
-
exponent = -exponent if other.sign == -1
|
3417
|
-
# if other is a nonnegative integer, use ideal exponent
|
3418
|
-
if other.integral? and (other.sign == +1)
|
3419
|
-
ideal_exponent = self.exponent*other.to_i
|
3420
|
-
zeros = [exponent-ideal_exponent, p-1].min
|
3421
|
-
else
|
3422
|
-
zeros = 0
|
3423
|
-
end
|
3424
|
-
return Decimal(+1, Decimal.int_radix_power(zeros), exponent-zeros)
|
3425
|
-
end
|
3426
|
-
|
3427
|
-
# case where y is negative: xc must be either a power
|
3428
|
-
# of 2 or a power of 5.
|
3429
|
-
if other.sign == -1
|
3430
|
-
last_digit = (xc % 10)
|
3431
|
-
if [2,4,6,8].include?(last_digit)
|
3432
|
-
# quick test for power of 2
|
3433
|
-
return nil if xc & -xc != xc
|
3434
|
-
# now xc is a power of 2; e is its exponent
|
3435
|
-
e = _nbits(xc)-1
|
3436
|
-
# find e*y and xe*y; both must be integers
|
3437
|
-
if ye >= 0
|
3438
|
-
y_as_int = yc*Decimal.int_radix_power(ye)
|
3439
|
-
e = e*y_as_int
|
3440
|
-
xe = xe*y_as_int
|
3441
|
-
else
|
3442
|
-
ten_pow = Decimal.int_radix_power(-ye)
|
3443
|
-
e, remainder = (e*yc).divmod(ten_pow)
|
3444
|
-
return nil if remainder!=0
|
3445
|
-
xe, remainder = (xe*yc).divmod(ten_pow)
|
3446
|
-
return nil if remainder!=0
|
3447
|
-
end
|
3448
|
-
|
3449
|
-
return nil if e*65 >= p*93 # 93/65 > log(10)/log(5)
|
3450
|
-
xc = 5**e
|
3451
|
-
elsif last_digit == 5
|
3452
|
-
# e >= log_5(xc) if xc is a power of 5; we have
|
3453
|
-
# equality all the way up to xc=5**2658
|
3454
|
-
e = _nbits(xc)*28/65
|
3455
|
-
xc, remainder = (5**e).divmod(xc)
|
3456
|
-
return nil if remainder!=0
|
3457
|
-
while (xc % 5) == 0
|
3458
|
-
xc /= 5
|
3459
|
-
e -= 1
|
3460
|
-
end
|
3461
|
-
if ye >= 0
|
3462
|
-
y_as_integer = Decimal.int_mult_radix_power(yc,ye)
|
3463
|
-
e = e*y_as_integer
|
3464
|
-
xe = xe*y_as_integer
|
3465
|
-
else
|
3466
|
-
ten_pow = Decimal.int_radix_power(-ye)
|
3467
|
-
e, remainder = (e*yc).divmod(ten_pow)
|
3468
|
-
return nil if remainder
|
3469
|
-
xe, remainder = (xe*yc).divmod(ten_pow)
|
3470
|
-
return nil if remainder
|
3471
|
-
end
|
3472
|
-
return nil if e*3 >= p*10 # 10/3 > log(10)/log(2)
|
3473
|
-
xc = 2**e
|
3474
|
-
else
|
3475
|
-
return nil
|
3476
|
-
end
|
3477
|
-
|
3478
|
-
return nil if xc >= Decimal.int_radix_power(p)
|
3479
|
-
xe = -e-xe
|
3480
|
-
return Decimal(+1, xc, xe)
|
3481
|
-
|
3482
|
-
end
|
3483
|
-
|
3484
|
-
# now y is positive; find m and n such that y = m/n
|
3485
|
-
if ye >= 0
|
3486
|
-
m, n = yc*10**ye, 1
|
3487
|
-
else
|
3488
|
-
return nil if (xe != 0) and ((yc*xe).abs.to_s.length <= -ye)
|
3489
|
-
xc_bits = _nbits(xc)
|
3490
|
-
return nil if (xc != 1) and ((yc.abs*xc_bits).to_s.length <= -ye)
|
3491
|
-
m, n = yc, Decimal.int_radix_power(-ye)
|
3492
|
-
while ((m % 2) == 0) && ((n % 2) == 0)
|
3493
|
-
m /= 2
|
3494
|
-
n /= 2
|
3495
|
-
end
|
3496
|
-
while ((m % 5) == 0) && ((n % 5) == 0)
|
3497
|
-
m /= 5
|
3498
|
-
n /= 5
|
3499
|
-
end
|
3500
|
-
end
|
3501
|
-
|
3502
|
-
# compute nth root of xc*10**xe
|
3503
|
-
if n > 1
|
3504
|
-
# if 1 < xc < 2**n then xc isn't an nth power
|
3505
|
-
return nil if xc != 1 and xc_bits <= n
|
3506
|
-
|
3507
|
-
xe, rem = xe.divmod(n)
|
3508
|
-
return nil if rem != 0
|
3509
|
-
|
3510
|
-
# compute nth root of xc using Newton's method
|
3511
|
-
a = 1 << -(-_nbits(xc)/n) # initial estimate
|
3512
|
-
q = r = nil
|
3513
|
-
loop do
|
3514
|
-
q, r = xc.divmod(a**(n-1))
|
3515
|
-
break if a <= q
|
3516
|
-
a = (a*(n-1) + q)/n
|
3517
|
-
end
|
3518
|
-
return nil if !((a == q) and (r == 0))
|
3519
|
-
xc = a
|
3520
|
-
end
|
3521
|
-
|
3522
|
-
# now xc*10**xe is the nth root of the original xc*10**xe
|
3523
|
-
# compute mth power of xc*10**xe
|
3524
|
-
|
3525
|
-
# if m > p*100/_log10_lb(xc) then m > p/log10(xc), hence xc**m >
|
3526
|
-
# 10**p and the result is not representable.
|
3527
|
-
return nil if (xc > 1) and (m > p*100/_log10_lb(xc))
|
3528
|
-
xc = xc**m
|
3529
|
-
xe *= m
|
3530
|
-
return nil if xc > 10**p
|
3531
|
-
|
3532
|
-
# by this point the result *is* exactly representable
|
3533
|
-
# adjust the exponent to get as close as possible to the ideal
|
3534
|
-
# exponent, if necessary
|
3535
|
-
str_xc = xc.to_s
|
3536
|
-
if other.integral? && other.sign == +1
|
3537
|
-
ideal_exponent = self.exponent*other.to_i
|
3538
|
-
zeros = [xe-ideal_exponent, p-str_xc.length].min
|
3539
|
-
else
|
3540
|
-
zeros = 0
|
3541
|
-
end
|
3542
|
-
return Decimal(+1, Decimal.int_mult_radix_power(xc, zeros), xe-zeros)
|
3543
|
-
end
|
3544
|
-
|
3545
|
-
ROUND_ARITHMETIC = true
|
3546
|
-
|
3547
|
-
# Round to i digits using the specified method
|
3548
|
-
def _round(rounding, i)
|
3549
|
-
send("_round_#{rounding}", i)
|
3550
|
-
end
|
3551
|
-
|
3552
|
-
# Round down (toward 0, truncate) to i digits
|
3553
|
-
def _round_down(i)
|
3554
|
-
if ROUND_ARITHMETIC
|
3555
|
-
(@coeff % Decimal.int_radix_power(i))==0 ? 0 : -1
|
3556
|
-
else
|
3557
|
-
return 0 if i==0
|
3558
|
-
d = @coeff.to_s
|
3559
|
-
tail = d[-i..-1]
|
3560
|
-
(tail.nil? || tail.match(/\A0*\Z/)) ? 0 : -1
|
3561
|
-
end
|
3562
|
-
end
|
3563
|
-
|
3564
|
-
# Round up (away from 0) to i digits
|
3565
|
-
def _round_up(i)
|
3566
|
-
-_round_down(i)
|
3567
|
-
end
|
3568
|
-
|
3569
|
-
# Round to closest i-digit number with ties down (rounds 5 toward 0)
|
3570
|
-
def _round_half_down(i)
|
3571
|
-
if ROUND_ARITHMETIC
|
3572
|
-
m = Decimal.int_radix_power(i)
|
3573
|
-
if (m>1) && ((@coeff%m) == m/2)
|
3574
|
-
-1
|
3575
|
-
else
|
3576
|
-
_round_half_up(i)
|
3577
|
-
end
|
3578
|
-
else
|
3579
|
-
return 0 if i==0
|
3580
|
-
d = @coeff.to_s
|
3581
|
-
p = d.size - i
|
3582
|
-
rdig = d[p,1]
|
3583
|
-
if '6789'.include?(rdig)
|
3584
|
-
1
|
3585
|
-
elsif '1234'.include?(rdig)
|
3586
|
-
-1
|
3587
|
-
elsif rdig=='5'
|
3588
|
-
d[p+1..-1].match(/^0*$/) ? -1 : +1
|
3589
|
-
else # rdig=='0'
|
3590
|
-
d[p..-1].match(/^0*$/) ? 0 : -1
|
3591
|
-
end
|
3592
|
-
end
|
3593
|
-
|
3594
|
-
end
|
3595
|
-
|
3596
|
-
# Round to closest i-digit number with ties up (rounds 5 away from 0)
|
3597
|
-
def _round_half_up(i)
|
3598
|
-
if ROUND_ARITHMETIC
|
3599
|
-
m = Decimal.int_radix_power(i)
|
3600
|
-
if (m>1) && ((@coeff % m) >= m/2)
|
3601
|
-
1
|
3602
|
-
else
|
3603
|
-
(@coeff % m)==0 ? 0 : -1
|
3604
|
-
end
|
3605
|
-
else
|
3606
|
-
return 0 if i==0
|
3607
|
-
d = @coeff.to_s
|
3608
|
-
p = d.size - i
|
3609
|
-
if '56789'.include?(d[p,1])
|
3610
|
-
1
|
3611
|
-
else
|
3612
|
-
d[p..-1].match(/^0+$/) ? 0 : -1
|
3613
|
-
end
|
3614
|
-
end
|
3615
|
-
|
3616
|
-
end
|
3617
|
-
|
3618
|
-
# Round to closest i-digit number with ties (5) to an even digit
|
3619
|
-
def _round_half_even(i)
|
3620
|
-
if ROUND_ARITHMETIC
|
3621
|
-
m = Decimal.int_radix_power(i)
|
3622
|
-
if (m>1) && ((@coeff%m) == m/2 && ((@coeff/m)%2)==0)
|
3623
|
-
-1
|
3624
|
-
else
|
3625
|
-
_round_half_up(i)
|
3626
|
-
end
|
3627
|
-
else
|
3628
|
-
return 0 if i==0
|
3629
|
-
d = @coeff.to_s
|
3630
|
-
p = d.size - i
|
3631
|
-
|
3632
|
-
if d[p..-1].match(/\A#{Decimal.radix/2}0*\Z/) && (p==0 || ((d[p-1,1].to_i%2)==0))
|
3633
|
-
-1
|
3634
|
-
else
|
3635
|
-
_round_half_up(i)
|
3636
|
-
end
|
3637
|
-
|
3638
|
-
end
|
3639
|
-
end
|
3640
|
-
|
3641
|
-
# Round up (not away from 0 if negative) to i digits
|
3642
|
-
def _round_ceiling(i)
|
3643
|
-
sign<0 ? _round_down(i) : -_round_down(i)
|
3644
|
-
end
|
3645
|
-
|
3646
|
-
# Round down (not toward 0 if negative) to i digits
|
3647
|
-
def _round_floor(i)
|
3648
|
-
sign>0 ? _round_down(i) : -_round_down(i)
|
3649
|
-
end
|
3650
|
-
|
3651
|
-
# Round down unless digit i-1 is 0 or 5
|
3652
|
-
def _round_up05(i)
|
3653
|
-
if ROUND_ARITHMETIC
|
3654
|
-
dg = (@coeff%Decimal.int_radix_power(i+1))/Decimal.int_radix_power(i)
|
3655
|
-
else
|
3656
|
-
d = @coeff.to_s
|
3657
|
-
p = d.size - i
|
3658
|
-
dg = (p>0) ? d[p-1,1].to_i : 0
|
3659
|
-
end
|
3660
|
-
if [0,Decimal.radix/2].include?(dg)
|
3661
|
-
-_round_down(i)
|
3662
|
-
else
|
3663
|
-
_round_down(i)
|
3664
|
-
end
|
3665
|
-
end
|
3666
|
-
|
3667
|
-
|
3668
|
-
# Compute a lower bound for the adjusted exponent of self.log10()
|
3669
|
-
# In other words, find r such that self.log10() >= 10**r.
|
3670
|
-
# Assumes that self is finite and positive and that self != 1.
|
3671
|
-
def _log10_exp_bound
|
3672
|
-
# For x >= 10 or x < 0.1 we only need a bound on the integer
|
3673
|
-
# part of log10(self), and this comes directly from the
|
3674
|
-
# exponent of x. For 0.1 <= x <= 10 we use the inequalities
|
3675
|
-
# 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
|
3676
|
-
# (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
|
3677
|
-
|
3678
|
-
adj = self.exponent + number_of_digits - 1
|
3679
|
-
return adj.to_s.length - 1 if adj >= 1 # self >= 10
|
3680
|
-
return (-1-adj).to_s.length-1 if adj <= -2 # self < 0.1
|
3681
|
-
|
3682
|
-
c = self.coefficient
|
3683
|
-
e = self.exponent
|
3684
|
-
if adj == 0
|
3685
|
-
# 1 < self < 10
|
3686
|
-
num = (c - Decimal.int_radix_power(-e)).to_s
|
3687
|
-
den = (231*c).to_s
|
3688
|
-
return num.length - den.length - ((num < den) ? 1 : 0) + 2
|
3689
|
-
end
|
3690
|
-
# adj == -1, 0.1 <= self < 1
|
3691
|
-
num = (Decimal.int_radix_power(-e)-c).to_s
|
3692
|
-
return num.length + e - ((num < "231") ? 1 : 0) - 1
|
3693
|
-
end
|
3694
|
-
|
3695
|
-
# Compute a lower bound for the adjusted exponent of self.ln().
|
3696
|
-
# In other words, compute r such that self.ln() >= 10**r. Assumes
|
3697
|
-
# that self is finite and positive and that self != 1.
|
3698
|
-
def _ln_exp_bound
|
3699
|
-
# for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
|
3700
|
-
adj = self.exponent + number_of_digits - 1
|
3701
|
-
if adj >= 1
|
3702
|
-
# argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
|
3703
|
-
return (adj*23/10).to_s.length - 1
|
3704
|
-
end
|
3705
|
-
if adj <= -2
|
3706
|
-
# argument <= 0.1
|
3707
|
-
return ((-1-adj)*23/10).to_s.length - 1
|
3708
|
-
end
|
3709
|
-
c = self.coefficient
|
3710
|
-
e = self.exponent
|
3711
|
-
if adj == 0
|
3712
|
-
# 1 < self < 10
|
3713
|
-
num = (c-(10**-e)).to_s
|
3714
|
-
den = c.to_s
|
3715
|
-
return num.length - den.length - ((num < den) ? 1 : 0)
|
3716
|
-
end
|
3717
|
-
# adj == -1, 0.1 <= self < 1
|
3718
|
-
return e + (10**-e - c).to_s.length - 1
|
3719
|
-
end
|
3720
|
-
|
3721
|
-
module AuxiliarFunctions #:nodoc:
|
3722
|
-
|
3723
|
-
module_function
|
3724
|
-
|
3725
|
-
# Convert a numeric value to decimal (internal use)
|
3726
|
-
def _convert(x, error=true)
|
3727
|
-
case x
|
3728
|
-
when Decimal
|
3729
|
-
x
|
3730
|
-
when *Decimal.context.coercible_types
|
3731
|
-
Decimal.new(x)
|
3732
|
-
else
|
3733
|
-
raise TypeError, "Unable to convert #{x.class} to Decimal" if error
|
3734
|
-
nil
|
3735
|
-
end
|
3736
|
-
end
|
3737
|
-
|
3738
|
-
# Parse numeric text literals (internal use)
|
3739
|
-
def _parser(txt)
|
3740
|
-
md = /^\s*([-+])?(?:(?:(\d+)(?:\.(\d*))?|\.(\d+))(?:[eE]([-+]?\d+))?|Inf(?:inity)?|(s)?NaN(\d*))\s*$/i.match(txt)
|
3741
|
-
if md
|
3742
|
-
OpenStruct.new :sign=>md[1], :int=>md[2], :frac=>md[3], :onlyfrac=>md[4], :exp=>md[5],
|
3743
|
-
:signal=>md[6], :diag=>md[7]
|
3744
|
-
end
|
3745
|
-
end
|
3746
|
-
|
3747
|
-
# Normalizes op1, op2 to have the same exp and length of coefficient. Used for addition.
|
3748
|
-
def _normalize(op1, op2, prec=0)
|
3749
|
-
if op1.exponent < op2.exponent
|
3750
|
-
swap = true
|
3751
|
-
tmp,other = op2,op1
|
3752
|
-
else
|
3753
|
-
swap = false
|
3754
|
-
tmp,other = op1,op2
|
3755
|
-
end
|
3756
|
-
tmp_len = tmp.number_of_digits
|
3757
|
-
other_len = other.number_of_digits
|
3758
|
-
exp = tmp.exponent + [-1, tmp_len - prec - 2].min
|
3759
|
-
if (other_len+other.exponent-1 < exp) && prec>0
|
3760
|
-
other = Decimal.new([other.sign, 1, exp])
|
3761
|
-
end
|
3762
|
-
tmp = Decimal.new(tmp.sign,
|
3763
|
-
Decimal.int_mult_radix_power(tmp.coefficient, tmp.exponent-other.exponent),
|
3764
|
-
other.exponent)
|
3765
|
-
return swap ? [other, tmp] : [tmp, other]
|
3766
|
-
end
|
3767
|
-
|
3768
|
-
# Number of bits in binary representation of the positive integer n, or 0 if n == 0.
|
3769
|
-
#--
|
3770
|
-
# This function from Tim Peters was taken from here:
|
3771
|
-
# http://mail.python.org/pipermail/python-list/1999-July/007758.html
|
3772
|
-
# The correction being in the function definition is for speed, and
|
3773
|
-
# the whole function is not resolved with math.log because of avoiding
|
3774
|
-
# the use of floats.
|
3775
|
-
#++
|
3776
|
-
def _nbits(n, correction = { #:nodoc:
|
3777
|
-
'0'=> 4, '1'=> 3, '2'=> 2, '3'=> 2,
|
3778
|
-
'4'=> 1, '5'=> 1, '6'=> 1, '7'=> 1,
|
3779
|
-
'8'=> 0, '9'=> 0, 'a'=> 0, 'b'=> 0,
|
3780
|
-
'c'=> 0, 'd'=> 0, 'e'=> 0, 'f'=> 0})
|
3781
|
-
raise TypeError, "The argument to _nbits should be nonnegative." if n < 0
|
3782
|
-
hex_n = "%x" % n
|
3783
|
-
4*hex_n.length - correction[hex_n[0,1]]
|
3784
|
-
end
|
3785
|
-
|
3786
|
-
# Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
|
3787
|
-
# y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
|
3788
|
-
#
|
3789
|
-
# 10**(p-1) <= c <= 10**p, and
|
3790
|
-
# (c-1)*10**e < x**y < (c+1)*10**e
|
3791
|
-
#
|
3792
|
-
# in other words, c*10**e is an approximation to x**y with p digits
|
3793
|
-
# of precision, and with an error in c of at most 1. (This is
|
3794
|
-
# almost, but not quite, the same as the error being < 1ulp: when c
|
3795
|
-
# == 10**(p-1) we can only guarantee error < 10ulp.)
|
3796
|
-
#
|
3797
|
-
# We assume that: x is positive and not equal to 1, and y is nonzero.
|
3798
|
-
def _dpower(xc, xe, yc, ye, p)
|
3799
|
-
# Find b such that 10**(b-1) <= |y| <= 10**b
|
3800
|
-
b = yc.abs.to_s.length + ye
|
3801
|
-
|
3802
|
-
# log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
|
3803
|
-
lxc = _dlog(xc, xe, p+b+1)
|
3804
|
-
|
3805
|
-
# compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
|
3806
|
-
shift = ye-b
|
3807
|
-
if shift >= 0
|
3808
|
-
pc = lxc*yc*10**shift
|
3809
|
-
else
|
3810
|
-
pc = _div_nearest(lxc*yc, 10**-shift)
|
3811
|
-
end
|
3812
|
-
|
3813
|
-
if pc == 0
|
3814
|
-
# we prefer a result that isn't exactly 1; this makes it
|
3815
|
-
# easier to compute a correctly rounded result in __pow__
|
3816
|
-
if (xc.to_s.length + xe >= 1) == (yc > 0) # if x**y > 1:
|
3817
|
-
coeff, exp = 10**(p-1)+1, 1-p
|
3818
|
-
else
|
3819
|
-
coeff, exp = 10**p-1, -p
|
3820
|
-
end
|
3821
|
-
else
|
3822
|
-
coeff, exp = _dexp(pc, -(p+1), p+1)
|
3823
|
-
coeff = _div_nearest(coeff, 10)
|
3824
|
-
exp += 1
|
3825
|
-
end
|
3826
|
-
|
3827
|
-
return coeff, exp
|
3828
|
-
end
|
3829
|
-
|
3830
|
-
# Compute an approximation to exp(c*10**e), with p decimal places of precision.
|
3831
|
-
# Returns integers d, f such that:
|
3832
|
-
#
|
3833
|
-
# 10**(p-1) <= d <= 10**p, and
|
3834
|
-
# (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
3835
|
-
#
|
3836
|
-
# In other words, d*10**f is an approximation to exp(c*10**e) with p
|
3837
|
-
# digits of precision, and with an error in d of at most 1. This is
|
3838
|
-
# almost, but not quite, the same as the error being < 1ulp: when d
|
3839
|
-
# = 10**(p-1) the error could be up to 10 ulp.
|
3840
|
-
def _dexp(c, e, p)
|
3841
|
-
# we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
3842
|
-
p += 2
|
3843
|
-
|
3844
|
-
# compute log(10) with extra precision = adjusted exponent of c*10**e
|
3845
|
-
extra = [0, e + c.to_s.length - 1].max
|
3846
|
-
q = p + extra
|
3847
|
-
|
3848
|
-
# compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
3849
|
-
# rounding down
|
3850
|
-
shift = e+q
|
3851
|
-
if shift >= 0
|
3852
|
-
cshift = c*10**shift
|
3853
|
-
else
|
3854
|
-
cshift = c/10**-shift
|
3855
|
-
end
|
3856
|
-
quot, rem = cshift.divmod(_log10_digits(q))
|
3857
|
-
|
3858
|
-
# reduce remainder back to original precision
|
3859
|
-
rem = _div_nearest(rem, 10**extra)
|
3860
|
-
|
3861
|
-
# error in result of _iexp < 120; error after division < 0.62
|
3862
|
-
return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
3863
|
-
end
|
3864
|
-
|
3865
|
-
# Closest integer to a/b, a and b positive integers; rounds to even
|
3866
|
-
# in the case of a tie.
|
3867
|
-
def _div_nearest(a, b)
|
3868
|
-
q, r = a.divmod(b)
|
3869
|
-
q + (((2*r + (q&1)) > b) ? 1 : 0)
|
3870
|
-
end
|
3871
|
-
|
3872
|
-
# Closest integer to the square root of the positive integer n. a is
|
3873
|
-
# an initial approximation to the square root. Any positive integer
|
3874
|
-
# will do for a, but the closer a is to the square root of n the
|
3875
|
-
# faster convergence will be.
|
3876
|
-
def _sqrt_nearest(n, a)
|
3877
|
-
|
3878
|
-
if n <= 0 or a <= 0
|
3879
|
-
raise ArgumentError, "Both arguments to _sqrt_nearest should be positive."
|
3880
|
-
end
|
3881
|
-
|
3882
|
-
b=0
|
3883
|
-
while a != b
|
3884
|
-
b, a = a, a--n/a>>1 # ??
|
3885
|
-
end
|
3886
|
-
return a
|
3887
|
-
end
|
3888
|
-
|
3889
|
-
# Given an integer x and a nonnegative integer shift, return closest
|
3890
|
-
# integer to x / 2**shift; use round-to-even in case of a tie.
|
3891
|
-
def _rshift_nearest(x, shift)
|
3892
|
-
b, q = (1 << shift), (x >> shift)
|
3893
|
-
return q + (((2*(x & (b-1)) + (q&1)) > b) ? 1 : 0)
|
3894
|
-
#return q + (2*(x & (b-1)) + (((q&1) > b) ? 1 : 0))
|
3895
|
-
end
|
3896
|
-
|
3897
|
-
# Integer approximation to M*log(x/M), with absolute error boundable
|
3898
|
-
# in terms only of x/M.
|
3899
|
-
#
|
3900
|
-
# Given positive integers x and M, return an integer approximation to
|
3901
|
-
# M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
|
3902
|
-
# between the approximation and the exact result is at most 22. For
|
3903
|
-
# L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
|
3904
|
-
# both cases these are upper bounds on the error; it will usually be
|
3905
|
-
# much smaller.
|
3906
|
-
def _ilog(x, m, l = 8)
|
3907
|
-
# The basic algorithm is the following: let log1p be the function
|
3908
|
-
# log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
|
3909
|
-
# the reduction
|
3910
|
-
#
|
3911
|
-
# log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
|
3912
|
-
#
|
3913
|
-
# repeatedly until the argument to log1p is small (< 2**-L in
|
3914
|
-
# absolute value). For small y we can use the Taylor series
|
3915
|
-
# expansion
|
3916
|
-
#
|
3917
|
-
# log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
|
3918
|
-
#
|
3919
|
-
# truncating at T such that y**T is small enough. The whole
|
3920
|
-
# computation is carried out in a form of fixed-point arithmetic,
|
3921
|
-
# with a real number z being represented by an integer
|
3922
|
-
# approximation to z*M. To avoid loss of precision, the y below
|
3923
|
-
# is actually an integer approximation to 2**R*y*M, where R is the
|
3924
|
-
# number of reductions performed so far.
|
3925
|
-
|
3926
|
-
y = x-m
|
3927
|
-
# argument reduction; R = number of reductions performed
|
3928
|
-
r = 0
|
3929
|
-
# while (r <= l && y.abs << l-r >= m ||
|
3930
|
-
# r > l and y.abs>> r-l >= m)
|
3931
|
-
while (((r <= l) && ((y.abs << (l-r)) >= m)) ||
|
3932
|
-
((r > l) && ((y.abs>>(r-l)) >= m)))
|
3933
|
-
y = _div_nearest((m*y) << 1,
|
3934
|
-
m + _sqrt_nearest(m*(m+_rshift_nearest(y, r)), m))
|
3935
|
-
r += 1
|
3936
|
-
end
|
3937
|
-
|
3938
|
-
# Taylor series with T terms
|
3939
|
-
t = -(-10*m.to_s.length/(3*l)).to_i
|
3940
|
-
yshift = _rshift_nearest(y, r)
|
3941
|
-
w = _div_nearest(m, t)
|
3942
|
-
# (1...t).reverse_each do |k| # Ruby 1.9
|
3943
|
-
(1...t).to_a.reverse.each do |k|
|
3944
|
-
w = _div_nearest(m, k) - _div_nearest(yshift*w, m)
|
3945
|
-
end
|
3946
|
-
|
3947
|
-
return _div_nearest(w*y, m)
|
3948
|
-
end
|
3949
|
-
|
3950
|
-
# Given integers c, e and p with c > 0, p >= 0, compute an integer
|
3951
|
-
# approximation to 10**p * log10(c*10**e), with an absolute error of
|
3952
|
-
# at most 1. Assumes that c*10**e is not exactly 1.
|
3953
|
-
def _dlog10(c, e, p)
|
3954
|
-
# increase precision by 2; compensate for this by dividing
|
3955
|
-
# final result by 100
|
3956
|
-
p += 2
|
3957
|
-
|
3958
|
-
# write c*10**e as d*10**f with either:
|
3959
|
-
# f >= 0 and 1 <= d <= 10, or
|
3960
|
-
# f <= 0 and 0.1 <= d <= 1.
|
3961
|
-
# Thus for c*10**e close to 1, f = 0
|
3962
|
-
l = c.to_s.length
|
3963
|
-
f = e+l - ((e+l >= 1) ? 1 : 0)
|
3964
|
-
|
3965
|
-
if p > 0
|
3966
|
-
m = 10**p
|
3967
|
-
k = e+p-f
|
3968
|
-
if k >= 0
|
3969
|
-
c *= 10**k
|
3970
|
-
else
|
3971
|
-
c = _div_nearest(c, 10**-k)
|
3972
|
-
end
|
3973
|
-
log_d = _ilog(c, m) # error < 5 + 22 = 27
|
3974
|
-
log_10 = _log10_digits(p) # error < 1
|
3975
|
-
log_d = _div_nearest(log_d*m, log_10)
|
3976
|
-
log_tenpower = f*m # exact
|
3977
|
-
else
|
3978
|
-
log_d = 0 # error < 2.31
|
3979
|
-
log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
|
3980
|
-
end
|
3981
|
-
|
3982
|
-
return _div_nearest(log_tenpower+log_d, 100)
|
3983
|
-
end
|
3984
|
-
|
3985
|
-
# Compute a lower bound for 100*log10(c) for a positive integer c.
|
3986
|
-
def _log10_lb(c, correction = {
|
3987
|
-
'1'=> 100, '2'=> 70, '3'=> 53, '4'=> 40, '5'=> 31,
|
3988
|
-
'6'=> 23, '7'=> 16, '8'=> 10, '9'=> 5})
|
3989
|
-
raise ArgumentError, "The argument to _log10_lb should be nonnegative." if c <= 0
|
3990
|
-
str_c = c.to_s
|
3991
|
-
return 100*str_c.length - correction[str_c[0,1]]
|
3992
|
-
end
|
3993
|
-
|
3994
|
-
# Given integers c, e and p with c > 0, compute an integer
|
3995
|
-
# approximation to 10**p * log(c*10**e), with an absolute error of
|
3996
|
-
# at most 1. Assumes that c*10**e is not exactly 1.
|
3997
|
-
def _dlog(c, e, p)
|
3998
|
-
|
3999
|
-
# Increase precision by 2. The precision increase is compensated
|
4000
|
-
# for at the end with a division by 100.
|
4001
|
-
p += 2
|
4002
|
-
|
4003
|
-
# rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
|
4004
|
-
# or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
|
4005
|
-
# as 10**p * log(d) + 10**p*f * log(10).
|
4006
|
-
l = c.to_s.length
|
4007
|
-
f = e+l - ((e+l >= 1) ? 1 : 0)
|
4008
|
-
|
4009
|
-
# compute approximation to 10**p*log(d), with error < 27
|
4010
|
-
if p > 0
|
4011
|
-
k = e+p-f
|
4012
|
-
if k >= 0
|
4013
|
-
c *= 10**k
|
4014
|
-
else
|
4015
|
-
c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
|
4016
|
-
end
|
4017
|
-
|
4018
|
-
# _ilog magnifies existing error in c by a factor of at most 10
|
4019
|
-
log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
|
4020
|
-
else
|
4021
|
-
# p <= 0: just approximate the whole thing by 0; error < 2.31
|
4022
|
-
log_d = 0
|
4023
|
-
end
|
4024
|
-
|
4025
|
-
# compute approximation to f*10**p*log(10), with error < 11.
|
4026
|
-
if f
|
4027
|
-
extra = f.abs.to_s.length - 1
|
4028
|
-
if p + extra >= 0
|
4029
|
-
# error in f * _log10_digits(p+extra) < |f| * 1 = |f|
|
4030
|
-
# after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
|
4031
|
-
f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
|
4032
|
-
else
|
4033
|
-
f_log_ten = 0
|
4034
|
-
end
|
4035
|
-
else
|
4036
|
-
f_log_ten = 0
|
4037
|
-
end
|
4038
|
-
|
4039
|
-
# error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
|
4040
|
-
return _div_nearest(f_log_ten + log_d, 100)
|
4041
|
-
end
|
4042
|
-
|
4043
|
-
# Given integers x and M, M > 0, such that x/M is small in absolute
|
4044
|
-
# value, compute an integer approximation to M*exp(x/M). For 0 <=
|
4045
|
-
# x/M <= 2.4, the absolute error in the result is bounded by 60 (and
|
4046
|
-
# is usually much smaller).
|
4047
|
-
def _iexp(x, m, l=8)
|
4048
|
-
|
4049
|
-
# Algorithm: to compute exp(z) for a real number z, first divide z
|
4050
|
-
# by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
|
4051
|
-
# compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
|
4052
|
-
# series
|
4053
|
-
#
|
4054
|
-
# expm1(x) = x + x**2/2! + x**3/3! + ...
|
4055
|
-
#
|
4056
|
-
# Now use the identity
|
4057
|
-
#
|
4058
|
-
# expm1(2x) = expm1(x)*(expm1(x)+2)
|
4059
|
-
#
|
4060
|
-
# R times to compute the sequence expm1(z/2**R),
|
4061
|
-
# expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
|
4062
|
-
|
4063
|
-
# Find R such that x/2**R/M <= 2**-L
|
4064
|
-
r = _nbits((x<<l)/m)
|
4065
|
-
|
4066
|
-
# Taylor series. (2**L)**T > M
|
4067
|
-
t = -(-10*m.to_s.length/(3*l)).to_i
|
4068
|
-
y = _div_nearest(x, t)
|
4069
|
-
mshift = m<<r
|
4070
|
-
(1...t).to_a.reverse.each do |i|
|
4071
|
-
y = _div_nearest(x*(mshift + y), mshift * i)
|
4072
|
-
end
|
4073
|
-
|
4074
|
-
# Expansion
|
4075
|
-
(0...r).to_a.reverse.each do |k|
|
4076
|
-
mshift = m<<(k+2)
|
4077
|
-
y = _div_nearest(y*(y+mshift), mshift)
|
4078
|
-
end
|
4079
|
-
|
4080
|
-
return m+y
|
4081
|
-
end
|
4082
|
-
|
4083
|
-
# We'll memoize the digits of log(10):
|
4084
|
-
@log10_digits = "23025850929940456840179914546843642076011014886"
|
4085
|
-
class <<self
|
4086
|
-
attr_accessor :log10_digits
|
4087
|
-
end
|
4088
|
-
|
4089
|
-
# Given an integer p >= 0, return floor(10**p)*log(10).
|
4090
|
-
def _log10_digits(p)
|
4091
|
-
# digits are stored as a string, for quick conversion to
|
4092
|
-
# integer in the case that we've already computed enough
|
4093
|
-
# digits; the stored digits should always be correct
|
4094
|
-
# (truncated, not rounded to nearest).
|
4095
|
-
raise ArgumentError, "p should be nonnegative" if p<0
|
4096
|
-
if p >= AuxiliarFunctions.log10_digits.length
|
4097
|
-
digits = nil
|
4098
|
-
# compute p+3, p+6, p+9, ... digits; continue until at
|
4099
|
-
# least one of the extra digits is nonzero
|
4100
|
-
extra = 3
|
4101
|
-
loop do
|
4102
|
-
# compute p+extra digits, correct to within 1ulp
|
4103
|
-
m = 10**(p+extra+2)
|
4104
|
-
digits = _div_nearest(_ilog(10*m, m), 100).to_s
|
4105
|
-
break if digits[-extra..-1] != '0'*extra
|
4106
|
-
extra += 3
|
4107
|
-
end
|
4108
|
-
# keep all reliable digits so far; remove trailing zeros
|
4109
|
-
# and next nonzero digit
|
4110
|
-
AuxiliarFunctions.log10_digits = digits.sub(/0*$/,'')[0...-1]
|
4111
|
-
end
|
4112
|
-
return (AuxiliarFunctions.log10_digits[0...p+1]).to_i
|
4113
|
-
end
|
4114
|
-
|
4115
|
-
# Compute an approximation to exp(c*10**e), with p decimal places of
|
4116
|
-
# precision.
|
4117
|
-
#
|
4118
|
-
# Returns integers d, f such that:
|
4119
|
-
#
|
4120
|
-
# 10**(p-1) <= d <= 10**p, and
|
4121
|
-
# (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
4122
|
-
#
|
4123
|
-
# In other words, d*10**f is an approximation to exp(c*10**e) with p
|
4124
|
-
# digits of precision, and with an error in d of at most 1. This is
|
4125
|
-
# almost, but not quite, the same as the error being < 1ulp: when d
|
4126
|
-
# = 10**(p-1) the error could be up to 10 ulp.
|
4127
|
-
def dexp(c, e, p)
|
4128
|
-
# we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
4129
|
-
p += 2
|
4130
|
-
|
4131
|
-
# compute log(10) with extra precision = adjusted exponent of c*10**e
|
4132
|
-
extra = [0, e + c.to_s.length - 1].max
|
4133
|
-
q = p + extra
|
4134
|
-
|
4135
|
-
# compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
4136
|
-
# rounding down
|
4137
|
-
shift = e+q
|
4138
|
-
if shift >= 0
|
4139
|
-
cshift = c*10**shift
|
4140
|
-
else
|
4141
|
-
cshift = c/10**-shift
|
4142
|
-
end
|
4143
|
-
quot, rem = cshift.divmod(_log10_digits(q))
|
4144
|
-
|
4145
|
-
# reduce remainder back to original precision
|
4146
|
-
rem = _div_nearest(rem, 10**extra)
|
4147
|
-
|
4148
|
-
# error in result of _iexp < 120; error after division < 0.62
|
4149
|
-
return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
4150
|
-
end
|
4151
|
-
|
4152
|
-
end # AuxiliarFunctions
|
4153
|
-
|
4154
|
-
# This is for using auxiliar functions from Decimal instance method
|
4155
|
-
# without the "AuxiliarFunctions." prefix
|
4156
|
-
include AuxiliarFunctions
|
4157
|
-
# If we need to use them from Decimal class methods, we can avoid
|
4158
|
-
# the use of the prefix with:
|
4159
|
-
# extend AuxiliarFunctions
|
4160
|
-
|
4161
|
-
end
|
4162
|
-
|
4163
|
-
# Decimal constructor. See Decimal#new for the parameters.
|
4164
|
-
# If a Decimal is passed a reference to it is returned (no new object is created).
|
4165
|
-
def Decimal(*args)
|
4166
|
-
if args.size==1 && args.first.instance_of?(Decimal)
|
4167
|
-
args.first
|
4168
|
-
else
|
4169
|
-
Decimal.new(*args)
|
4170
|
-
end
|
4171
|
-
end
|