ruby-decimal 0.1.0 → 0.2.0
Sign up to get free protection for your applications and to get access to all the features.
- data/History.txt +7 -1
- data/README.txt +6 -3
- data/lib/decimal/decimal.rb +1680 -486
- data/lib/decimal/version.rb +1 -1
- data/test/test_dectest.rb +15 -6
- data/test/test_exact.rb +120 -5
- data/test/test_odd_even.rb +78 -0
- metadata +4 -2
data/History.txt
CHANGED
data/README.txt
CHANGED
@@ -9,6 +9,10 @@ define a nice feature-set and API for Decimal and have a good test suite for its
|
|
9
9
|
specification. Then an efficient implementation could be written, for example
|
10
10
|
by using a C extension wrapper around the decNumber library.
|
11
11
|
|
12
|
+
The documentation for this package is available at http://ruby-decimal.rubyforge.org/
|
13
|
+
|
14
|
+
The code is at http://github.com/jgoizueta/ruby-decimal/
|
15
|
+
|
12
16
|
== Standars compliance.
|
13
17
|
|
14
18
|
Decimal pretends to be conformant to the General Decimal Arithmetic Specification
|
@@ -248,7 +252,7 @@ Note that the conversion we've defined depends on the context precision:
|
|
248
252
|
|
249
253
|
Decimal.local_context(:precision=>12) { puts Decimal(0.1) } -> 0.100000000000
|
250
254
|
|
251
|
-
==
|
255
|
+
== More Information
|
252
256
|
|
253
257
|
Consult the documentation for the classes Decimal and Decimal::Context.
|
254
258
|
|
@@ -301,6 +305,5 @@ EXPAND+
|
|
301
305
|
|
302
306
|
= Roadmap
|
303
307
|
|
308
|
+
* Version 0.3.0: Implement the remaining of GDA functions
|
304
309
|
* Complete documentation (README sections on special values & exceptions, etc. and method descriptions.)
|
305
|
-
* Version 0.2.0: Implement GDAS exp(), power(), ln() log10() and also the Ruby-style operator **.
|
306
|
-
* Version 0.3.0:
|
data/lib/decimal/decimal.rb
CHANGED
@@ -37,6 +37,16 @@ class Decimal
|
|
37
37
|
attr_reader :base_conversions
|
38
38
|
end
|
39
39
|
|
40
|
+
#--
|
41
|
+
# Some functions use the next methods instead of 10, 10**x, etc.
|
42
|
+
# This has been done for two reasons:
|
43
|
+
# * Much of the code of Decimal is generic enough to work for non-decimal floating-point numbers.
|
44
|
+
# In the future a binary (or arbitrary radix) class could be derived from Decimal.
|
45
|
+
# * The radix power operations could be optimized (specinally for binary)
|
46
|
+
# But note that some code (e.g. powers & logarithms, auxiliar funtions) use algorithms
|
47
|
+
# that assume radix=10.
|
48
|
+
#++
|
49
|
+
|
40
50
|
# Numerical base of Decimal.
|
41
51
|
def self.radix
|
42
52
|
10
|
@@ -146,8 +156,12 @@ class Decimal
|
|
146
156
|
# This occurs and signals inexact whenever the result of an operation is
|
147
157
|
# not exact (that is, it needed to be rounded and any discarded digits
|
148
158
|
# were non-zero), or if an overflow or underflow condition occurs. The
|
149
|
-
# result in all cases is unchanged
|
159
|
+
# result in all cases is unchanged unless the context has exact precision,
|
160
|
+
# in which case the result is Nan
|
150
161
|
class Inexact < Exception
|
162
|
+
def self.handle(context, *args)
|
163
|
+
Decimal.nan if context.exact?
|
164
|
+
end
|
151
165
|
end
|
152
166
|
|
153
167
|
# Overflow Exception.
|
@@ -308,6 +322,13 @@ class Decimal
|
|
308
322
|
|
309
323
|
attr_accessor :rounding, :emin, :emax, :flags, :traps, :ignored_flags, :capitals, :clamp
|
310
324
|
|
325
|
+
# TODO: consider the convenience of adding accessors of this kind:
|
326
|
+
# def rounding(new_rounding=nil)
|
327
|
+
# old_rounding = @rounding
|
328
|
+
# @rounding = new_rounding unless new_rounding.nil?
|
329
|
+
# old_rounding
|
330
|
+
# end
|
331
|
+
|
311
332
|
# Ignore all flags if they are raised
|
312
333
|
def ignore_all_flags
|
313
334
|
#@ignored_flags << EXCEPTIONS
|
@@ -450,42 +471,42 @@ class Decimal
|
|
450
471
|
|
451
472
|
# Addition of two decimal numbers
|
452
473
|
def add(x,y)
|
453
|
-
|
474
|
+
_convert(x).add(y,self)
|
454
475
|
end
|
455
476
|
|
456
477
|
# Subtraction of two decimal numbers
|
457
478
|
def subtract(x,y)
|
458
|
-
|
479
|
+
_convert(x).subtract(y,self)
|
459
480
|
end
|
460
481
|
|
461
482
|
# Multiplication of two decimal numbers
|
462
483
|
def multiply(x,y)
|
463
|
-
|
484
|
+
_convert(x).multiply(y,self)
|
464
485
|
end
|
465
486
|
|
466
487
|
# Division of two decimal numbers
|
467
488
|
def divide(x,y)
|
468
|
-
|
489
|
+
_convert(x).divide(y,self)
|
469
490
|
end
|
470
491
|
|
471
492
|
# Absolute value of a decimal number
|
472
493
|
def abs(x)
|
473
|
-
|
494
|
+
_convert(x).abs(self)
|
474
495
|
end
|
475
496
|
|
476
497
|
# Unary prefix plus operator
|
477
498
|
def plus(x)
|
478
|
-
|
499
|
+
_convert(x).plus(self)
|
479
500
|
end
|
480
501
|
|
481
502
|
# Unary prefix minus operator
|
482
503
|
def minus(x)
|
483
|
-
|
504
|
+
_convert(x)._neg(self)
|
484
505
|
end
|
485
506
|
|
486
507
|
# Converts a number to a string
|
487
508
|
def to_string(x, eng=false)
|
488
|
-
|
509
|
+
_convert(x)._fix(self).to_s(eng, self)
|
489
510
|
end
|
490
511
|
|
491
512
|
# Converts a number to a string, using scientific notation
|
@@ -502,106 +523,125 @@ class Decimal
|
|
502
523
|
# by removing trailing 0s and incrementing the exponent.
|
503
524
|
# (formerly called normalize in GDAS)
|
504
525
|
def reduce(x)
|
505
|
-
|
526
|
+
_convert(x).reduce(self)
|
506
527
|
end
|
507
528
|
|
508
529
|
# Adjusted exponent of x returned as a Decimal value.
|
509
530
|
def logb(x)
|
510
|
-
|
531
|
+
_convert(x).logb(self)
|
511
532
|
end
|
512
533
|
|
513
534
|
# Adds the second value to the exponent of the first: x*(radix**y)
|
514
535
|
#
|
515
536
|
# y must be an integer
|
516
537
|
def scaleb(x, y)
|
517
|
-
|
538
|
+
_convert(x).scaleb(y,self)
|
539
|
+
end
|
540
|
+
|
541
|
+
# Power. See Decimal#power()
|
542
|
+
def power(x,y,modulo=nil)
|
543
|
+
_convert(x).power(y,modulo,self)
|
544
|
+
end
|
545
|
+
|
546
|
+
# Returns the base 10 logarithm
|
547
|
+
def log10(x)
|
548
|
+
_convert(x).log10(self)
|
549
|
+
end
|
550
|
+
|
551
|
+
# Exponential function: e**x
|
552
|
+
def exp(x)
|
553
|
+
_convert(x).exp(self)
|
518
554
|
end
|
519
555
|
|
556
|
+
# Returns the natural (base e) logarithm
|
557
|
+
def ln(x)
|
558
|
+
_convert(x).ln(self)
|
559
|
+
end
|
520
560
|
|
521
561
|
# Exponent in relation to the significand as an integer
|
522
562
|
# normalized to precision digits. (minimum exponent)
|
523
563
|
def normalized_integral_exponent(x)
|
524
|
-
x =
|
564
|
+
x = _convert(x)
|
525
565
|
x.integral_exponent - (precision - x.number_of_digits)
|
526
566
|
end
|
527
567
|
|
528
568
|
# Significand normalized to precision digits
|
529
569
|
# x == normalized_integral_significand(x) * radix**(normalized_integral_exponent)
|
530
570
|
def normalized_integral_significand(x)
|
531
|
-
x =
|
571
|
+
x = _convert(x)
|
532
572
|
x.integral_significand*(Decimal.int_radix_power(precision - x.number_of_digits))
|
533
573
|
end
|
534
574
|
|
535
575
|
# Returns both the (signed) normalized integral significand and the corresponding exponent
|
536
576
|
def to_normalized_int_scale(x)
|
537
|
-
x =
|
577
|
+
x = _convert(x)
|
538
578
|
[x.sign*normalized_integral_significand(x), normalized_integral_exponent(x)]
|
539
579
|
end
|
540
580
|
|
541
581
|
# Is a normal number?
|
542
582
|
def normal?(x)
|
543
|
-
|
583
|
+
_convert(x).normal?(self)
|
544
584
|
end
|
545
585
|
|
546
586
|
# Is a subnormal number?
|
547
587
|
def subnormal?(x)
|
548
|
-
|
588
|
+
_convert(x).subnormal?(self)
|
549
589
|
end
|
550
590
|
|
551
591
|
# Classifies a number as one of
|
552
592
|
# 'sNaN', 'NaN', '-Infinity', '-Normal', '-Subnormal', '-Zero',
|
553
593
|
# '+Zero', '+Subnormal', '+Normal', '+Infinity'
|
554
594
|
def number_class(x)
|
555
|
-
|
595
|
+
_convert(x).number_class(self)
|
556
596
|
end
|
557
597
|
|
558
598
|
# Square root of a decimal number
|
559
599
|
def sqrt(x)
|
560
|
-
|
600
|
+
_convert(x).sqrt(self)
|
561
601
|
end
|
562
602
|
|
563
603
|
# Ruby-style integer division: (x/y).floor
|
564
604
|
def div(x,y)
|
565
|
-
|
605
|
+
_convert(x).div(y,self)
|
566
606
|
end
|
567
607
|
|
568
608
|
# Ruby-style modulo: x - y*div(x,y)
|
569
609
|
def modulo(x,y)
|
570
|
-
|
610
|
+
_convert(x).modulo(y,self)
|
571
611
|
end
|
572
612
|
|
573
613
|
# Ruby-style integer division and modulo: (x/y).floor, x - y*(x/y).floor
|
574
614
|
def divmod(x,y)
|
575
|
-
|
615
|
+
_convert(x).divmod(y,self)
|
576
616
|
end
|
577
617
|
|
578
618
|
# General Decimal Arithmetic Specification integer division: (x/y).truncate
|
579
619
|
def divide_int(x,y)
|
580
|
-
|
620
|
+
_convert(x).divide_int(y,self)
|
581
621
|
end
|
582
622
|
|
583
623
|
# General Decimal Arithmetic Specification remainder: x - y*divide_int(x,y)
|
584
624
|
def remainder(x,y)
|
585
|
-
|
625
|
+
_convert(x).remainder(y,self)
|
586
626
|
end
|
587
627
|
|
588
628
|
# General Decimal Arithmetic Specification remainder-near
|
589
629
|
# x - y*round_half_even(x/y)
|
590
630
|
def remainder_near(x,y)
|
591
|
-
|
631
|
+
_convert(x).remainder_near(y,self)
|
592
632
|
end
|
593
633
|
|
594
634
|
# General Decimal Arithmetic Specification integer division and remainder:
|
595
635
|
# (x/y).truncate, x - y*(x/y).truncate
|
596
636
|
def divrem(x,y)
|
597
|
-
|
637
|
+
_convert(x).divrem(y,self)
|
598
638
|
end
|
599
639
|
|
600
640
|
# Fused multiply-add.
|
601
641
|
#
|
602
642
|
# Computes (x*y+z) with no rounding of the intermediate product x*y.
|
603
643
|
def fma(x,y,z)
|
604
|
-
|
644
|
+
_convert(x).fma(y,z,self)
|
605
645
|
end
|
606
646
|
|
607
647
|
# Compares like <=> but returns a Decimal value.
|
@@ -610,33 +650,33 @@ class Decimal
|
|
610
650
|
# * +1 if x > y
|
611
651
|
# * NaN if x or y is NaN
|
612
652
|
def compare(x,y)
|
613
|
-
|
653
|
+
_convert(x).compare(y, self)
|
614
654
|
end
|
615
655
|
|
616
656
|
# Returns a copy of x with the sign set to +
|
617
657
|
def copy_abs(x)
|
618
|
-
|
658
|
+
_convert(x).copy_abs
|
619
659
|
end
|
620
660
|
|
621
661
|
# Returns a copy of x with the sign inverted
|
622
662
|
def copy_negate(x)
|
623
|
-
|
663
|
+
_convert(x).copy_negate
|
624
664
|
end
|
625
665
|
|
626
666
|
# Returns a copy of x with the sign of y
|
627
667
|
def copy_sign(x,y)
|
628
|
-
|
668
|
+
_convert(x).copy_sign(y)
|
629
669
|
end
|
630
670
|
|
631
671
|
# Rescale x so that the exponent is exp, either by padding with zeros
|
632
672
|
# or by truncating digits.
|
633
673
|
def rescale(x, exp, watch_exp=true)
|
634
|
-
|
674
|
+
_convert(x).rescale(exp, self, watch_exp)
|
635
675
|
end
|
636
676
|
|
637
677
|
# Quantize x so its exponent is the same as that of y.
|
638
678
|
def quantize(x, y, watch_exp=true)
|
639
|
-
|
679
|
+
_convert(x).quantize(y, self, watch_exp)
|
640
680
|
end
|
641
681
|
|
642
682
|
# Return true if x and y have the same exponent.
|
@@ -646,7 +686,7 @@ class Decimal
|
|
646
686
|
# * return true if both operands are NaNs
|
647
687
|
# * otherwise, return false.
|
648
688
|
def same_quantum?(x,y)
|
649
|
-
|
689
|
+
_convert(x).same_quantum?(y)
|
650
690
|
end
|
651
691
|
|
652
692
|
# Rounds to a nearby integer.
|
@@ -654,7 +694,7 @@ class Decimal
|
|
654
694
|
# See also: Decimal#to_integral_value(), which does exactly the same as
|
655
695
|
# this method except that it doesn't raise Inexact or Rounded.
|
656
696
|
def to_integral_exact(x)
|
657
|
-
|
697
|
+
_convert(x).to_integral_exact(self)
|
658
698
|
end
|
659
699
|
|
660
700
|
# Rounds to a nearby integerwithout raising inexact, rounded.
|
@@ -662,17 +702,17 @@ class Decimal
|
|
662
702
|
# See also: Decimal#to_integral_exact(), which does exactly the same as
|
663
703
|
# this method except that it may raise Inexact or Rounded.
|
664
704
|
def to_integral_value(x)
|
665
|
-
|
705
|
+
_convert(x).to_integral_value(self)
|
666
706
|
end
|
667
707
|
|
668
708
|
# Returns the largest representable number smaller than x.
|
669
709
|
def next_minus(x)
|
670
|
-
|
710
|
+
_convert(x).next_minus(self)
|
671
711
|
end
|
672
712
|
|
673
713
|
# Returns the smallest representable number larger than x.
|
674
714
|
def next_plus(x)
|
675
|
-
|
715
|
+
_convert(x).next_plus(self)
|
676
716
|
end
|
677
717
|
|
678
718
|
# Returns the number closest to x, in the direction towards y.
|
@@ -683,7 +723,7 @@ class Decimal
|
|
683
723
|
# numerically equal, then the result is a copy of x with the
|
684
724
|
# sign set to be the same as the sign of y.
|
685
725
|
def next_toward(x, y)
|
686
|
-
|
726
|
+
_convert(x).next_toward(y, self)
|
687
727
|
end
|
688
728
|
|
689
729
|
def to_s
|
@@ -763,6 +803,11 @@ class Decimal
|
|
763
803
|
end
|
764
804
|
|
765
805
|
private
|
806
|
+
|
807
|
+
def _convert(x)
|
808
|
+
AuxiliarFunctions._convert(x)
|
809
|
+
end
|
810
|
+
|
766
811
|
def update_precision
|
767
812
|
if @exact || @precision==0
|
768
813
|
@exact = true
|
@@ -874,6 +919,13 @@ class Decimal
|
|
874
919
|
keep = context.dup
|
875
920
|
Decimal.context = define_context(*args)
|
876
921
|
result = yield Decimal.context
|
922
|
+
# TODO: consider the convenience of copying the flags from Decimal.context to keep
|
923
|
+
# This way a local context does not affect the settings of the previous context,
|
924
|
+
# but flags are transferred.
|
925
|
+
# (this could be done always or be controlled by some option)
|
926
|
+
# keep.flags = Decimal.context.flags
|
927
|
+
# Another alternative to consider: logically or the flags:
|
928
|
+
# keep.flags ||= Decimal.context.flags # (this requires implementing || in Flags)
|
877
929
|
Decimal.context = keep
|
878
930
|
result
|
879
931
|
end
|
@@ -958,7 +1010,7 @@ class Decimal
|
|
958
1010
|
# and the left hand is another numeric type
|
959
1011
|
# * Decimal#_bin_op() used internally to define binary operators and use the Ruby coerce protocol:
|
960
1012
|
# if the right-hand operand is of known type it is converted with Decimal; otherwise use coerce
|
961
|
-
# *
|
1013
|
+
# * _convert() converts known types to Decimal with Decimal() or raises an exception.
|
962
1014
|
# * Decimal() casts known types and text representations of numbers to Decimal using the constructor.
|
963
1015
|
# * Decimal#initialize performs the actual type conversion
|
964
1016
|
#
|
@@ -1212,11 +1264,16 @@ class Decimal
|
|
1212
1264
|
_bin_op :%, :modulo, other, context
|
1213
1265
|
end
|
1214
1266
|
|
1267
|
+
# Power
|
1268
|
+
def **(other, context=nil)
|
1269
|
+
_bin_op :**, :power, other, context
|
1270
|
+
end
|
1271
|
+
|
1215
1272
|
# Addition
|
1216
1273
|
def add(other, context=nil)
|
1217
1274
|
|
1218
1275
|
context = Decimal.define_context(context)
|
1219
|
-
other =
|
1276
|
+
other = _convert(other)
|
1220
1277
|
|
1221
1278
|
if self.special? || other.special?
|
1222
1279
|
ans = _check_nans(context,other)
|
@@ -1252,7 +1309,7 @@ class Decimal
|
|
1252
1309
|
return self._rescale(exp, context.rounding)._fix(context)
|
1253
1310
|
end
|
1254
1311
|
|
1255
|
-
op1, op2 =
|
1312
|
+
op1, op2 = _normalize(self, other, context.precision)
|
1256
1313
|
|
1257
1314
|
result_sign = result_coeff = result_exp = nil
|
1258
1315
|
if op1.sign != op2.sign
|
@@ -1267,9 +1324,6 @@ class Decimal
|
|
1267
1324
|
result_sign = +1
|
1268
1325
|
end
|
1269
1326
|
|
1270
|
-
#puts "op1=#{op1.inspect} op2=#{op2.inspect}"
|
1271
|
-
|
1272
|
-
|
1273
1327
|
if op2.sign == +1
|
1274
1328
|
result_coeff = op1.integral_significand + op2.integral_significand
|
1275
1329
|
else
|
@@ -1278,8 +1332,6 @@ class Decimal
|
|
1278
1332
|
|
1279
1333
|
result_exp = op1.integral_exponent
|
1280
1334
|
|
1281
|
-
#puts "->#{Decimal([result_sign, result_coeff, result_exp]).inspect}"
|
1282
|
-
|
1283
1335
|
return Decimal([result_sign, result_coeff, result_exp])._fix(context)
|
1284
1336
|
|
1285
1337
|
end
|
@@ -1289,7 +1341,7 @@ class Decimal
|
|
1289
1341
|
def subtract(other, context=nil)
|
1290
1342
|
|
1291
1343
|
context = Decimal.define_context(context)
|
1292
|
-
other =
|
1344
|
+
other = _convert(other)
|
1293
1345
|
|
1294
1346
|
if self.special? || other.special?
|
1295
1347
|
ans = _check_nans(context,other)
|
@@ -1301,7 +1353,7 @@ class Decimal
|
|
1301
1353
|
# Multiplication
|
1302
1354
|
def multiply(other, context=nil)
|
1303
1355
|
context = Decimal.define_context(context)
|
1304
|
-
other =
|
1356
|
+
other = _convert(other)
|
1305
1357
|
resultsign = self.sign * other.sign
|
1306
1358
|
if self.special? || other.special?
|
1307
1359
|
ans = _check_nans(context,other)
|
@@ -1330,7 +1382,7 @@ class Decimal
|
|
1330
1382
|
# Division
|
1331
1383
|
def divide(other, context=nil)
|
1332
1384
|
context = Decimal.define_context(context)
|
1333
|
-
other =
|
1385
|
+
other = _convert(other)
|
1334
1386
|
resultsign = self.sign * other.sign
|
1335
1387
|
if self.special? || other.special?
|
1336
1388
|
ans = _check_nans(context,other)
|
@@ -1414,6 +1466,8 @@ class Decimal
|
|
1414
1466
|
end
|
1415
1467
|
end
|
1416
1468
|
|
1469
|
+
return context.exception(InvalidOperation, 'Exact next minus') if context.exact?
|
1470
|
+
|
1417
1471
|
result = nil
|
1418
1472
|
Decimal.local_context(context) do |local|
|
1419
1473
|
local.rounding = :floor
|
@@ -1429,6 +1483,7 @@ class Decimal
|
|
1429
1483
|
# Smallest representable number larger than itself
|
1430
1484
|
def next_plus(context=nil)
|
1431
1485
|
context = Decimal.define_context(context)
|
1486
|
+
|
1432
1487
|
if special?
|
1433
1488
|
ans = _check_nans(context)
|
1434
1489
|
return ans if ans
|
@@ -1443,6 +1498,8 @@ class Decimal
|
|
1443
1498
|
end
|
1444
1499
|
end
|
1445
1500
|
|
1501
|
+
return context.exception(InvalidOperation, 'Exact next plus') if context.exact?
|
1502
|
+
|
1446
1503
|
result = nil
|
1447
1504
|
Decimal.local_context(context) do |local|
|
1448
1505
|
local.rounding = :ceiling
|
@@ -1459,10 +1516,12 @@ class Decimal
|
|
1459
1516
|
# Returns the number closest to self, in the direction towards other.
|
1460
1517
|
def next_toward(other, context=nil)
|
1461
1518
|
context = Decimal.define_context(context)
|
1462
|
-
other =
|
1519
|
+
other = _convert(other)
|
1463
1520
|
ans = _check_nans(context,other)
|
1464
1521
|
return ans if ans
|
1465
1522
|
|
1523
|
+
return context.exception(InvalidOperation, 'Exact next_toward') if context.exact?
|
1524
|
+
|
1466
1525
|
comparison = self <=> other
|
1467
1526
|
return self.copy_sign(other) if comparison == 0
|
1468
1527
|
|
@@ -1549,7 +1608,7 @@ class Decimal
|
|
1549
1608
|
# (x/y).truncate, x - y*(x/y).truncate
|
1550
1609
|
def divrem(other, context=nil)
|
1551
1610
|
context = Decimal.define_context(context)
|
1552
|
-
other =
|
1611
|
+
other = _convert(other)
|
1553
1612
|
|
1554
1613
|
ans = _check_nans(context,other)
|
1555
1614
|
return [ans,ans] if ans
|
@@ -1582,7 +1641,7 @@ class Decimal
|
|
1582
1641
|
# Ruby-style integer division and modulo: (x/y).floor, x - y*(x/y).floor
|
1583
1642
|
def divmod(other, context=nil)
|
1584
1643
|
context = Decimal.define_context(context)
|
1585
|
-
other =
|
1644
|
+
other = _convert(other)
|
1586
1645
|
|
1587
1646
|
ans = _check_nans(context,other)
|
1588
1647
|
return [ans,ans] if ans
|
@@ -1616,7 +1675,7 @@ class Decimal
|
|
1616
1675
|
# General Decimal Arithmetic Specification integer division: (x/y).truncate
|
1617
1676
|
def divide_int(other, context=nil)
|
1618
1677
|
context = Decimal.define_context(context)
|
1619
|
-
other =
|
1678
|
+
other = _convert(other)
|
1620
1679
|
|
1621
1680
|
ans = _check_nans(context,other)
|
1622
1681
|
return ans if ans
|
@@ -1641,7 +1700,7 @@ class Decimal
|
|
1641
1700
|
# Ruby-style integer division: (x/y).floor
|
1642
1701
|
def div(other, context=nil)
|
1643
1702
|
context = Decimal.define_context(context)
|
1644
|
-
other =
|
1703
|
+
other = _convert(other)
|
1645
1704
|
|
1646
1705
|
ans = _check_nans(context,other)
|
1647
1706
|
return [ans,ans] if ans
|
@@ -1667,7 +1726,7 @@ class Decimal
|
|
1667
1726
|
# Ruby-style modulo: x - y*div(x,y)
|
1668
1727
|
def modulo(other, context=nil)
|
1669
1728
|
context = Decimal.define_context(context)
|
1670
|
-
other =
|
1729
|
+
other = _convert(other)
|
1671
1730
|
|
1672
1731
|
ans = _check_nans(context,other)
|
1673
1732
|
return ans if ans
|
@@ -1690,7 +1749,7 @@ class Decimal
|
|
1690
1749
|
# General Decimal Arithmetic Specification remainder: x - y*divide_int(x,y)
|
1691
1750
|
def remainder(other, context=nil)
|
1692
1751
|
context = Decimal.define_context(context)
|
1693
|
-
other =
|
1752
|
+
other = _convert(other)
|
1694
1753
|
|
1695
1754
|
ans = _check_nans(context,other)
|
1696
1755
|
return ans if ans
|
@@ -1714,7 +1773,7 @@ class Decimal
|
|
1714
1773
|
# x - y*round_half_even(x/y)
|
1715
1774
|
def remainder_near(other, context=nil)
|
1716
1775
|
context = Decimal.define_context(context)
|
1717
|
-
other =
|
1776
|
+
other = _convert(other)
|
1718
1777
|
|
1719
1778
|
ans = _check_nans(context,other)
|
1720
1779
|
return ans if ans
|
@@ -1819,7 +1878,7 @@ class Decimal
|
|
1819
1878
|
def scaleb(other, context=nil)
|
1820
1879
|
|
1821
1880
|
context = Decimal.define_context(context)
|
1822
|
-
other =
|
1881
|
+
other = _convert(other)
|
1823
1882
|
ans = _check_nans(context, other)
|
1824
1883
|
return ans if ans
|
1825
1884
|
return context.exception(InvalidOperation) if other.infinite? || other.integral_exponent != 0
|
@@ -1843,7 +1902,11 @@ class Decimal
|
|
1843
1902
|
# Ruby-style to integer conversion.
|
1844
1903
|
def to_i
|
1845
1904
|
if special?
|
1846
|
-
|
1905
|
+
if nan?
|
1906
|
+
#return Decimal.context.exception(InvalidContext)
|
1907
|
+
Decimal.context.exception InvalidContext
|
1908
|
+
return nil
|
1909
|
+
end
|
1847
1910
|
raise Error, "Cannot convert infinity to Integer"
|
1848
1911
|
end
|
1849
1912
|
if @exp >= 0
|
@@ -2011,7 +2074,7 @@ class Decimal
|
|
2011
2074
|
# Compares like <=> but returns a Decimal value.
|
2012
2075
|
def compare(other, context=nil)
|
2013
2076
|
|
2014
|
-
other =
|
2077
|
+
other = _convert(other)
|
2015
2078
|
|
2016
2079
|
if self.special? || other.special?
|
2017
2080
|
ans = _check_nans(context, other)
|
@@ -2052,14 +2115,15 @@ class Decimal
|
|
2052
2115
|
@coeff.to_s.size
|
2053
2116
|
end
|
2054
2117
|
|
2055
|
-
# Significand as an integer
|
2118
|
+
# Significand as an integer, unsigned
|
2056
2119
|
def integral_significand
|
2057
2120
|
@coeff
|
2058
2121
|
end
|
2059
2122
|
|
2060
2123
|
# Exponent of the significand as an integer
|
2061
2124
|
def integral_exponent
|
2062
|
-
fractional_exponent - number_of_digits
|
2125
|
+
# fractional_exponent - number_of_digits
|
2126
|
+
@exp
|
2063
2127
|
end
|
2064
2128
|
|
2065
2129
|
# Sign of the number: +1 for plus / -1 for minus.
|
@@ -2076,262 +2140,635 @@ class Decimal
|
|
2076
2140
|
end
|
2077
2141
|
end
|
2078
2142
|
|
2079
|
-
# Returns copy with sign
|
2080
|
-
def
|
2081
|
-
|
2082
|
-
ans = _check_nans(context)
|
2083
|
-
return ans if ans
|
2084
|
-
end
|
2085
|
-
if zero?
|
2086
|
-
ans = copy_abs
|
2087
|
-
else
|
2088
|
-
ans = copy_negate
|
2089
|
-
end
|
2090
|
-
context = Decimal.define_context(context)
|
2091
|
-
ans._fix(context)
|
2143
|
+
# Returns a copy of with the sign set to +
|
2144
|
+
def copy_abs
|
2145
|
+
Decimal.new([+1,@coeff,@exp])
|
2092
2146
|
end
|
2093
2147
|
|
2094
|
-
# Returns a copy with
|
2095
|
-
def
|
2096
|
-
|
2097
|
-
ans = _check_nans(context)
|
2098
|
-
return ans if ans
|
2099
|
-
end
|
2100
|
-
if zero?
|
2101
|
-
ans = copy_abs
|
2102
|
-
else
|
2103
|
-
ans = Decimal.new(self)
|
2104
|
-
end
|
2105
|
-
context = Decimal.define_context(context)
|
2106
|
-
ans._fix(context)
|
2148
|
+
# Returns a copy of with the sign inverted
|
2149
|
+
def copy_negate
|
2150
|
+
Decimal.new([-@sign,@coeff,@exp])
|
2107
2151
|
end
|
2108
2152
|
|
2109
|
-
# Returns a copy with
|
2110
|
-
def
|
2111
|
-
|
2112
|
-
|
2113
|
-
if special?
|
2114
|
-
ans = _check_nans(context)
|
2115
|
-
return ans if ans
|
2116
|
-
end
|
2117
|
-
if sign>0
|
2118
|
-
ans = _neg(context)
|
2119
|
-
else
|
2120
|
-
ans = _pos(context)
|
2121
|
-
end
|
2122
|
-
ans
|
2153
|
+
# Returns a copy of with the sign of other
|
2154
|
+
def copy_sign(other)
|
2155
|
+
Decimal.new([other.sign, @coeff, @exp])
|
2123
2156
|
end
|
2124
2157
|
|
2125
|
-
#
|
2126
|
-
def
|
2127
|
-
|
2128
|
-
|
2129
|
-
|
2130
|
-
if nan?
|
2131
|
-
return _fix_nan(context)
|
2158
|
+
# Returns true if the value is an integer
|
2159
|
+
def integral?
|
2160
|
+
if finite?
|
2161
|
+
if @exp>=0 || @coeff==0
|
2162
|
+
true
|
2132
2163
|
else
|
2133
|
-
|
2164
|
+
if @exp <= -number_of_digits
|
2165
|
+
false
|
2166
|
+
else
|
2167
|
+
m = Decimal.int_radix_power(-@exp)
|
2168
|
+
(@coeff % m) == 0
|
2169
|
+
end
|
2134
2170
|
end
|
2171
|
+
else
|
2172
|
+
false
|
2135
2173
|
end
|
2174
|
+
end
|
2136
2175
|
|
2137
|
-
|
2138
|
-
|
2139
|
-
|
2140
|
-
|
2141
|
-
|
2142
|
-
|
2143
|
-
context.exception Clamped
|
2144
|
-
return Decimal.new([sign,0,new_exp])
|
2176
|
+
# returns true if is an even integer
|
2177
|
+
def even?
|
2178
|
+
# integral? && ((to_i%2)==0)
|
2179
|
+
if finite?
|
2180
|
+
if @exp>0 || @coeff==0
|
2181
|
+
true
|
2145
2182
|
else
|
2146
|
-
|
2183
|
+
if @exp <= -number_of_digits
|
2184
|
+
false
|
2185
|
+
else
|
2186
|
+
m = Decimal.int_radix_power(-@exp)
|
2187
|
+
if (@coeff % m) == 0
|
2188
|
+
# ((@coeff / m) % 2) == 0
|
2189
|
+
((@coeff / m) & 1) == 0
|
2190
|
+
else
|
2191
|
+
false
|
2192
|
+
end
|
2193
|
+
end
|
2147
2194
|
end
|
2195
|
+
else
|
2196
|
+
false
|
2148
2197
|
end
|
2198
|
+
end
|
2149
2199
|
|
2150
|
-
|
2151
|
-
|
2152
|
-
|
2153
|
-
|
2154
|
-
|
2155
|
-
|
2156
|
-
|
2157
|
-
|
2158
|
-
self_is_subnormal = exp_min < etiny
|
2159
|
-
|
2160
|
-
if self_is_subnormal
|
2161
|
-
context.exception Subnormal
|
2162
|
-
exp_min = etiny
|
2163
|
-
end
|
2164
|
-
|
2165
|
-
if @exp < exp_min
|
2166
|
-
#puts "_fix(#{self}) rounded; e=#{@exp} em=#{exp_min}"
|
2167
|
-
context.exception Rounded
|
2168
|
-
# dig is the digits number from 0 (MS) to number_of_digits-1 (LS)
|
2169
|
-
# dg = numberof_digits-dig is from 1 (LS) to number_of_digits (MS)
|
2170
|
-
dg = exp_min - @exp # dig = number_of_digits + exp - exp_min
|
2171
|
-
if dg > number_of_digits # dig<0
|
2172
|
-
d = Decimal.new([sign,1,exp_min-1])
|
2173
|
-
dg = number_of_digits # dig = 0
|
2200
|
+
# returns true if is an odd integer
|
2201
|
+
def odd?
|
2202
|
+
# integral? && ((to_i%2)==1)
|
2203
|
+
# integral? && !even?
|
2204
|
+
if finite?
|
2205
|
+
if @exp>0 || @coeff==0
|
2206
|
+
false
|
2174
2207
|
else
|
2175
|
-
|
2176
|
-
|
2177
|
-
|
2178
|
-
|
2179
|
-
|
2180
|
-
|
2181
|
-
|
2182
|
-
context.exception Inexact
|
2183
|
-
if self_is_subnormal
|
2184
|
-
context.exception Underflow
|
2185
|
-
if ans.zero?
|
2186
|
-
context.exception Clamped
|
2187
|
-
end
|
2188
|
-
elsif ans.number_of_digits == context.precision+1
|
2189
|
-
if ans.integral_exponent< etop
|
2190
|
-
ans = Decimal.new([ans.sign, Decimal.int_div_radix_power(ans.integral_significand,1), ans.integral_exponent+1])
|
2208
|
+
if @exp <= -number_of_digits
|
2209
|
+
false
|
2210
|
+
else
|
2211
|
+
m = Decimal.int_radix_power(-@exp)
|
2212
|
+
if (@coeff % m) == 0
|
2213
|
+
# ((@coeff / m) % 2) == 1
|
2214
|
+
((@coeff / m) & 1) == 1
|
2191
2215
|
else
|
2192
|
-
|
2216
|
+
false
|
2193
2217
|
end
|
2194
2218
|
end
|
2195
2219
|
end
|
2196
|
-
|
2220
|
+
else
|
2221
|
+
false
|
2197
2222
|
end
|
2223
|
+
end
|
2198
2224
|
|
2199
|
-
|
2200
|
-
|
2201
|
-
|
2202
|
-
|
2225
|
+
# Rescale so that the exponent is exp, either by padding with zeros
|
2226
|
+
# or by truncating digits.
|
2227
|
+
def rescale(exp, context=nil, watch_exp=true)
|
2228
|
+
context = Decimal.define_context(context)
|
2229
|
+
exp = _convert(exp)
|
2230
|
+
if self.special? || exp.special?
|
2231
|
+
ans = _check_nans(context, exp)
|
2232
|
+
return ans if ans
|
2233
|
+
if exp.infinite? || self.infinite?
|
2234
|
+
return Decimal.new(self) if exp.infinite? && self.infinite?
|
2235
|
+
return context.exception(InvalidOperation, 'rescale with one INF')
|
2236
|
+
end
|
2203
2237
|
end
|
2204
|
-
|
2205
|
-
|
2206
|
-
|
2238
|
+
return context.exception(InvalidOperation,"exponent of rescale is not integral") unless exp.integral?
|
2239
|
+
exp = exp.to_i
|
2240
|
+
_watched_rescale(exp, context, watch_exp)
|
2207
2241
|
end
|
2208
2242
|
|
2243
|
+
# Quantize so its exponent is the same as that of y.
|
2244
|
+
def quantize(exp, context=nil, watch_exp=true)
|
2245
|
+
exp = _convert(exp)
|
2246
|
+
context = Decimal.define_context(context)
|
2247
|
+
if self.special? || exp.special?
|
2248
|
+
ans = _check_nans(context, exp)
|
2249
|
+
return ans if ans
|
2250
|
+
if exp.infinite? || self.infinite?
|
2251
|
+
return Decimal.new(self) if exp.infinite? && self.infinite?
|
2252
|
+
return context.exception(InvalidOperation, 'quantize with one INF')
|
2253
|
+
end
|
2254
|
+
end
|
2255
|
+
exp = exp.integral_exponent
|
2256
|
+
_watched_rescale(exp, context, watch_exp)
|
2257
|
+
end
|
2209
2258
|
|
2210
|
-
|
2211
|
-
|
2212
|
-
#
|
2213
|
-
|
2214
|
-
|
2259
|
+
# Return true if has the same exponent as other.
|
2260
|
+
#
|
2261
|
+
# If either operand is a special value, the following rules are used:
|
2262
|
+
# * return true if both operands are infinities
|
2263
|
+
# * return true if both operands are NaNs
|
2264
|
+
# * otherwise, return false.
|
2265
|
+
def same_quantum?(other)
|
2266
|
+
other = _convert(other)
|
2267
|
+
if self.special? || other.special?
|
2268
|
+
return (self.nan? && other.nan?) || (self.infinite? && other.infinite?)
|
2269
|
+
end
|
2270
|
+
return self.integral_exponent == other.integral_exponent
|
2215
2271
|
end
|
2216
2272
|
|
2217
|
-
#
|
2218
|
-
def
|
2219
|
-
|
2220
|
-
|
2221
|
-
|
2222
|
-
|
2223
|
-
|
2224
|
-
d[p..-1].match(/\A0+\Z/) ? 0 : -1
|
2273
|
+
# Rounds to a nearby integer. May raise Inexact or Rounded.
|
2274
|
+
def to_integral_exact(context=nil)
|
2275
|
+
context = Decimal.define_context(context)
|
2276
|
+
if special?
|
2277
|
+
ans = _check_nans(context)
|
2278
|
+
return ans if ans
|
2279
|
+
return Decimal.new(self)
|
2225
2280
|
end
|
2281
|
+
return Decimal.new(self) if @exp >= 0
|
2282
|
+
return Decimal.new([@sign, 0, 0]) if zero?
|
2283
|
+
context.exception Rounded
|
2284
|
+
ans = _rescale(0, context.rounding)
|
2285
|
+
context.exception Inexact if ans != self
|
2286
|
+
return ans
|
2226
2287
|
end
|
2227
2288
|
|
2228
|
-
#
|
2229
|
-
def
|
2230
|
-
|
2289
|
+
# Rounds to a nearby integer. Doesn't raise Inexact or Rounded.
|
2290
|
+
def to_integral_value(context=nil)
|
2291
|
+
context = Decimal.define_context(context)
|
2292
|
+
if special?
|
2293
|
+
ans = _check_nans(context)
|
2294
|
+
return ans if ans
|
2295
|
+
return Decimal.new(self)
|
2296
|
+
end
|
2297
|
+
return Decimal.new(self) if @exp >= 0
|
2298
|
+
return _rescale(0, context.rounding)
|
2231
2299
|
end
|
2232
2300
|
|
2233
|
-
#
|
2234
|
-
|
2235
|
-
|
2236
|
-
|
2237
|
-
|
2238
|
-
|
2239
|
-
|
2240
|
-
|
2241
|
-
|
2301
|
+
# General rounding.
|
2302
|
+
#
|
2303
|
+
# With an integer argument this acts like Float#round: the parameter specifies the number
|
2304
|
+
# of fractional digits (or digits to the left of the decimal point if negative).
|
2305
|
+
#
|
2306
|
+
# Options can be passed as a Hash instead; valid options are:
|
2307
|
+
# * :rounding method for rounding (see Context#new())
|
2308
|
+
# The precision can be specified as:
|
2309
|
+
# * :places number of fractional digits as above.
|
2310
|
+
# * :exponent specifies the exponent corresponding to the
|
2311
|
+
# digit to be rounded (exponent == -places)
|
2312
|
+
# * :precision or :significan_digits is the number of digits
|
2313
|
+
# * :power 10^exponent, value of the digit to be rounded,
|
2314
|
+
# should be passed as a type convertible to Decimal.
|
2315
|
+
# * :index 0-based index of the digit to be rounded
|
2316
|
+
# * :rindex right 0-based index of the digit to be rounded
|
2317
|
+
#
|
2318
|
+
# The default is :places=>0 (round to integer).
|
2319
|
+
#
|
2320
|
+
# Example: ways of specifiying the rounding position
|
2321
|
+
# number: 1 2 3 4 . 5 6 7 8
|
2322
|
+
# :places -3 -2 -1 0 1 2 3 4
|
2323
|
+
# :exponent 3 2 1 0 -1 -2 -3 -4
|
2324
|
+
# :precision 1 2 3 4 5 6 7 8
|
2325
|
+
# :power 1E3 1E2 10 1 0.1 1E-2 1E-3 1E-4
|
2326
|
+
# :index 0 1 2 3 4 5 6 7
|
2327
|
+
# :index 7 6 5 4 3 2 1 0
|
2328
|
+
def round(opt={})
|
2329
|
+
opt = { :places=>opt } if opt.kind_of?(Integer)
|
2330
|
+
r = opt[:rounding] || :half_up
|
2331
|
+
as_int = false
|
2332
|
+
if v=(opt[:precision] || opt[:significant_digits])
|
2333
|
+
prec = v
|
2334
|
+
elsif v=(opt[:places])
|
2335
|
+
prec = adjusted_exponent + 1 + v
|
2336
|
+
elsif v=(opt[:exponent])
|
2337
|
+
prec = adjusted_exponent + 1 - v
|
2338
|
+
elsif v=(opt[:power])
|
2339
|
+
prec = adjusted_exponent + 1 - Decimal(v).adjusted_exponent
|
2340
|
+
elsif v=(opt[:index])
|
2341
|
+
prec = i+1
|
2342
|
+
elsif v=(opt[:rindex])
|
2343
|
+
prec = number_of_digits - v
|
2242
2344
|
else
|
2243
|
-
|
2244
|
-
|
2245
|
-
d[p..-1].match(/^5d*$/) ? -1 : _round_half_up(i)
|
2345
|
+
prec = adjusted_exponent + 1
|
2346
|
+
as_int = true
|
2246
2347
|
end
|
2348
|
+
result = plus(:rounding=>r, :precision=>prec)
|
2349
|
+
return as_int ? result.to_i : result
|
2350
|
+
end
|
2247
2351
|
|
2352
|
+
# General ceiling operation (as for Float) with same options for precision
|
2353
|
+
# as Decimal#round()
|
2354
|
+
def ceil(opt={})
|
2355
|
+
opt[:rounding] = :ceiling
|
2356
|
+
round opt
|
2248
2357
|
end
|
2249
2358
|
|
2250
|
-
#
|
2251
|
-
|
2252
|
-
|
2253
|
-
|
2254
|
-
|
2255
|
-
|
2256
|
-
|
2257
|
-
|
2359
|
+
# General floor operation (as for Float) with same options for precision
|
2360
|
+
# as Decimal#round()
|
2361
|
+
def floor(opt={})
|
2362
|
+
opt[:rounding] = :floor
|
2363
|
+
round opt
|
2364
|
+
end
|
2365
|
+
|
2366
|
+
# General truncate operation (as for Float) with same options for precision
|
2367
|
+
# as Decimal#round()
|
2368
|
+
def truncate(opt={})
|
2369
|
+
opt[:rounding] = :down
|
2370
|
+
round opt
|
2371
|
+
end
|
2372
|
+
|
2373
|
+
# Fused multiply-add.
|
2374
|
+
#
|
2375
|
+
# Computes (self*other+third) with no rounding of the intermediate product self*other.
|
2376
|
+
def fma(other, third, context=nil)
|
2377
|
+
context = Decimal.define_context(context)
|
2378
|
+
other = _convert(other)
|
2379
|
+
third = _convert(third)
|
2380
|
+
if self.special? || other.special?
|
2381
|
+
return context.exception(InvalidOperation, 'sNaN', self) if self.snan?
|
2382
|
+
return context.exception(InvalidOperation, 'sNaN', other) if other.snan?
|
2383
|
+
if self.nan?
|
2384
|
+
product = self
|
2385
|
+
elsif other.nan?
|
2386
|
+
product = other
|
2387
|
+
elsif self.infinite?
|
2388
|
+
return context.exception(InvalidOperation, 'INF * 0 in fma') if other.zero?
|
2389
|
+
product = Decimal.infinity(self.sign*other.sign)
|
2390
|
+
elsif other.infinite?
|
2391
|
+
return context.exception(InvalidOperation, '0 * INF in fma') if self.zero?
|
2392
|
+
product = Decimal.infinity(self.sign*other.sign)
|
2258
2393
|
end
|
2259
2394
|
else
|
2260
|
-
|
2261
|
-
|
2262
|
-
|
2263
|
-
|
2395
|
+
product = Decimal.new([self.sign*other.sign,self.integral_significand*other.integral_significand, self.integral_exponent+other.integral_exponent])
|
2396
|
+
end
|
2397
|
+
return product.add(third, context)
|
2398
|
+
end
|
2399
|
+
|
2400
|
+
# Raises to the power of x, to modulo if given.
|
2401
|
+
#
|
2402
|
+
# With two arguments, compute self**other. If self is negative then other
|
2403
|
+
# must be integral. The result will be inexact unless other is
|
2404
|
+
# integral and the result is finite and can be expressed exactly
|
2405
|
+
# in 'precision' digits.
|
2406
|
+
#
|
2407
|
+
# With three arguments, compute (self**other) % modulo. For the
|
2408
|
+
# three argument form, the following restrictions on the
|
2409
|
+
# arguments hold:
|
2410
|
+
#
|
2411
|
+
# - all three arguments must be integral
|
2412
|
+
# - other must be nonnegative
|
2413
|
+
# - at least one of self or other must be nonzero
|
2414
|
+
# - modulo must be nonzero and have at most 'precision' digits
|
2415
|
+
#
|
2416
|
+
# The result of a.power(b, modulo) is identical to the result
|
2417
|
+
# that would be obtained by computing (a**b) % modulo with
|
2418
|
+
# unbounded precision, but is computed more efficiently. It is
|
2419
|
+
# always exact.
|
2420
|
+
def power(other, modulo=nil, context=nil)
|
2421
|
+
|
2422
|
+
if context.nil? && (modulo.is_a?(Context) || modulo.is_a?(Hash))
|
2423
|
+
context = modulo
|
2424
|
+
modulo = nil
|
2425
|
+
end
|
2426
|
+
|
2427
|
+
return self.power_modulo(other, modulo, context) if modulo
|
2428
|
+
|
2429
|
+
context = Decimal.define_context(context)
|
2430
|
+
other = _convert(other)
|
2431
|
+
|
2432
|
+
ans = _check_nans(context, other)
|
2433
|
+
return ans if ans
|
2434
|
+
|
2435
|
+
# 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
|
2436
|
+
if other.zero?
|
2437
|
+
if self.zero?
|
2438
|
+
return context.exception(InvalidOperation, '0 ** 0')
|
2264
2439
|
else
|
2265
|
-
|
2440
|
+
return Decimal(1)
|
2266
2441
|
end
|
2267
2442
|
end
|
2268
2443
|
|
2269
|
-
|
2444
|
+
# result has sign -1 iff self.sign is -1 and other is an odd integer
|
2445
|
+
result_sign = +1
|
2446
|
+
_self = self
|
2447
|
+
if _self.sign == -1
|
2448
|
+
if other.integral?
|
2449
|
+
result_sign = -1 if !other.even?
|
2450
|
+
else
|
2451
|
+
# -ve**noninteger = NaN
|
2452
|
+
# (-0)**noninteger = 0**noninteger
|
2453
|
+
unless self.zero?
|
2454
|
+
return context.exception(InvalidOperation, 'x ** y with x negative and y not an integer')
|
2455
|
+
end
|
2456
|
+
end
|
2457
|
+
# negate self, without doing any unwanted rounding
|
2458
|
+
_self = self.copy_negate
|
2459
|
+
end
|
2460
|
+
|
2461
|
+
# 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
|
2462
|
+
if _self.zero?
|
2463
|
+
return (other.sign == +1) ? Decimal(result_sign, 0, 0) : Decimal.infinity(result_sign)
|
2464
|
+
end
|
2465
|
+
|
2466
|
+
# Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
|
2467
|
+
if _self.infinite?
|
2468
|
+
return (other.sign == +1) ? Decimal.infinity(result_sign) : Decimal(result_sign, 0, 0)
|
2469
|
+
end
|
2470
|
+
|
2471
|
+
# 1**other = 1, but the choice of exponent and the flags
|
2472
|
+
# depend on the exponent of self, and on whether other is a
|
2473
|
+
# positive integer, a negative integer, or neither
|
2474
|
+
if _self == Decimal(1)
|
2475
|
+
return _self if context.exact?
|
2476
|
+
if other.integral?
|
2477
|
+
# exp = max(self._exp*max(int(other), 0),
|
2478
|
+
# 1-context.prec) but evaluating int(other) directly
|
2479
|
+
# is dangerous until we know other is small (other
|
2480
|
+
# could be 1e999999999)
|
2481
|
+
if other.sign == -1
|
2482
|
+
multiplier = 0
|
2483
|
+
elsif other > context.precision
|
2484
|
+
multiplier = context.precision
|
2485
|
+
else
|
2486
|
+
multiplier = other.to_i
|
2487
|
+
end
|
2270
2488
|
|
2271
|
-
|
2272
|
-
|
2273
|
-
|
2274
|
-
|
2275
|
-
|
2276
|
-
-1
|
2489
|
+
exp = _self.integral_exponent * multiplier
|
2490
|
+
if exp < 1-context.precision
|
2491
|
+
exp = 1-context.precision
|
2492
|
+
context.exception Rounded
|
2493
|
+
end
|
2277
2494
|
else
|
2278
|
-
|
2495
|
+
context.exception Rounded
|
2496
|
+
context.exception Inexact
|
2497
|
+
exp = 1-context.precision
|
2498
|
+
end
|
2499
|
+
|
2500
|
+
return Decimal(result_sign, Decimal.int_radix_power(-exp), exp)
|
2501
|
+
end
|
2502
|
+
|
2503
|
+
# compute adjusted exponent of self
|
2504
|
+
self_adj = _self.adjusted_exponent
|
2505
|
+
|
2506
|
+
# self ** infinity is infinity if self > 1, 0 if self < 1
|
2507
|
+
# self ** -infinity is infinity if self < 1, 0 if self > 1
|
2508
|
+
if other.infinite?
|
2509
|
+
if (other.sign == +1) == (self_adj < 0)
|
2510
|
+
return Decimal(result_sign, 0, 0)
|
2511
|
+
else
|
2512
|
+
return Decimal.infinity(result_sign)
|
2513
|
+
end
|
2514
|
+
end
|
2515
|
+
|
2516
|
+
# from here on, the result always goes through the call
|
2517
|
+
# to _fix at the end of this function.
|
2518
|
+
ans = nil
|
2519
|
+
|
2520
|
+
# crude test to catch cases of extreme overflow/underflow. If
|
2521
|
+
# log10(self)*other >= 10**bound and bound >= len(str(Emax))
|
2522
|
+
# then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
|
2523
|
+
# self**other >= 10**(Emax+1), so overflow occurs. The test
|
2524
|
+
# for underflow is similar.
|
2525
|
+
bound = _self._log10_exp_bound + other.adjusted_exponent
|
2526
|
+
if (self_adj >= 0) == (other.sign == +1)
|
2527
|
+
# self > 1 and other +ve, or self < 1 and other -ve
|
2528
|
+
# possibility of overflow
|
2529
|
+
if bound >= context.emax.to_s.length
|
2530
|
+
ans = Decimal(result_sign, 1, context.emax+1)
|
2279
2531
|
end
|
2280
2532
|
else
|
2281
|
-
|
2282
|
-
|
2533
|
+
# self > 1 and other -ve, or self < 1 and other +ve
|
2534
|
+
# possibility of underflow to 0
|
2535
|
+
etiny = context.etiny
|
2536
|
+
if bound >= (-etiny).to_s.length
|
2537
|
+
ans = Decimal(result_sign, 1, etiny-1)
|
2538
|
+
end
|
2539
|
+
end
|
2283
2540
|
|
2284
|
-
|
2285
|
-
|
2541
|
+
# try for an exact result with precision +1
|
2542
|
+
if ans.nil?
|
2543
|
+
if context.exact?
|
2544
|
+
if other.adjusted_exponent < 100
|
2545
|
+
test_precision = _self.number_of_digits*other.to_i+1
|
2546
|
+
else
|
2547
|
+
test_precision = _self.number_of_digits+1
|
2548
|
+
end
|
2286
2549
|
else
|
2287
|
-
|
2550
|
+
test_precision = context.precision + 1
|
2288
2551
|
end
|
2552
|
+
ans = _self._power_exact(other, test_precision)
|
2553
|
+
if !ans.nil? && (result_sign == -1)
|
2554
|
+
ans = Decimal(-1, ans.integral_significand, ans.integral_exponent)
|
2555
|
+
end
|
2556
|
+
end
|
2289
2557
|
|
2558
|
+
# usual case: inexact result, x**y computed directly as exp(y*log(x))
|
2559
|
+
if !ans.nil?
|
2560
|
+
return ans if context.exact?
|
2561
|
+
else
|
2562
|
+
return context.exception(Inexact, "Inexact power") if context.exact?
|
2563
|
+
|
2564
|
+
p = context.precision
|
2565
|
+
xc = _self.integral_significand
|
2566
|
+
xe = _self.integral_exponent
|
2567
|
+
yc = other.integral_significand
|
2568
|
+
ye = other.integral_exponent
|
2569
|
+
yc = -yc if other.sign == -1
|
2570
|
+
|
2571
|
+
# compute correctly rounded result: start with precision +3,
|
2572
|
+
# then increase precision until result is unambiguously roundable
|
2573
|
+
extra = 3
|
2574
|
+
coeff, exp = nil, nil
|
2575
|
+
loop do
|
2576
|
+
coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
|
2577
|
+
#break if (coeff % Decimal.int_mult_radix_power(5,coeff.to_s.length-p-1)) != 0
|
2578
|
+
break if (coeff % (5*10**(coeff.to_s.length-p-1))) != 0
|
2579
|
+
extra += 3
|
2580
|
+
end
|
2581
|
+
ans = Decimal(result_sign, coeff, exp)
|
2290
2582
|
end
|
2291
|
-
end
|
2292
2583
|
|
2293
|
-
|
2294
|
-
|
2295
|
-
|
2584
|
+
# the specification says that for non-integer other we need to
|
2585
|
+
# raise Inexact, even when the result is actually exact. In
|
2586
|
+
# the same way, we need to raise Underflow here if the result
|
2587
|
+
# is subnormal. (The call to _fix will take care of raising
|
2588
|
+
# Rounded and Subnormal, as usual.)
|
2589
|
+
if !other.integral?
|
2590
|
+
context.exception Inexact
|
2591
|
+
# pad with zeros up to length context.precision+1 if necessary
|
2592
|
+
if ans.number_of_digits <= context.precision
|
2593
|
+
expdiff = context.precision+1 - ans.number_of_digits
|
2594
|
+
ans = Decimal(ans.sign, Decimal.int_mult_radix_power(ans.integral_significand, expdiff), ans.integral_exponent-expdiff)
|
2595
|
+
end
|
2596
|
+
context.exception Underflow if ans.adjusted_exponent < context.emin
|
2597
|
+
end
|
2598
|
+
# unlike exp, ln and log10, the power function respects the
|
2599
|
+
# rounding mode; no need to use ROUND_HALF_EVEN here
|
2600
|
+
ans._fix(context)
|
2296
2601
|
end
|
2297
2602
|
|
2298
|
-
#
|
2299
|
-
def
|
2300
|
-
|
2301
|
-
end
|
2603
|
+
# Returns the base 10 logarithm
|
2604
|
+
def log10(context=nil)
|
2605
|
+
context = Decimal.define_context(context)
|
2302
2606
|
|
2303
|
-
|
2304
|
-
|
2305
|
-
if
|
2306
|
-
|
2607
|
+
# log10(NaN) = NaN
|
2608
|
+
ans = _check_nans(context)
|
2609
|
+
return ans if ans
|
2610
|
+
|
2611
|
+
# log10(0.0) == -Infinity
|
2612
|
+
return Decimal.infinity(-1) if self.zero?
|
2613
|
+
|
2614
|
+
# log10(Infinity) = Infinity
|
2615
|
+
return Decimal.infinity if self.infinite? && self.sign == +1
|
2616
|
+
|
2617
|
+
# log10(negative or -Infinity) raises InvalidOperation
|
2618
|
+
return context.exception(InvalidOperation, 'log10 of a negative value') if self.sign == -1
|
2619
|
+
|
2620
|
+
digits = self.digits
|
2621
|
+
# log10(10**n) = n
|
2622
|
+
if digits.first == 1 && digits[1..-1].all?{|d| d==0}
|
2623
|
+
# answer may need rounding
|
2624
|
+
ans = Decimal(self.integral_exponent + digits.size - 1)
|
2625
|
+
return ans if context.exact?
|
2307
2626
|
else
|
2308
|
-
|
2309
|
-
|
2310
|
-
|
2627
|
+
# result is irrational, so necessarily inexact
|
2628
|
+
return context.exception(Inexact, "Inexact power") if context.exact?
|
2629
|
+
c = self.integral_significand
|
2630
|
+
e = self.integral_exponent
|
2631
|
+
p = context.precision
|
2632
|
+
|
2633
|
+
# correctly rounded result: repeatedly increase precision
|
2634
|
+
# until result is unambiguously roundable
|
2635
|
+
places = p-self._log10_exp_bound+2
|
2636
|
+
coeff = nil
|
2637
|
+
loop do
|
2638
|
+
coeff = _dlog10(c, e, places)
|
2639
|
+
# assert coeff.abs.to_s.length-p >= 1
|
2640
|
+
break if (coeff % (5*10**(coeff.abs.to_s.length-p-1)))!=0
|
2641
|
+
places += 3
|
2642
|
+
end
|
2643
|
+
ans = Decimal(coeff<0 ? -1 : +1, coeff.abs, -places)
|
2311
2644
|
end
|
2312
|
-
|
2313
|
-
|
2314
|
-
|
2315
|
-
|
2645
|
+
|
2646
|
+
Decimal.context(context, :rounding=>:half_even) do |local_context|
|
2647
|
+
ans = ans._fix(local_context)
|
2648
|
+
context.flags = local_context.flags
|
2316
2649
|
end
|
2650
|
+
return ans
|
2317
2651
|
end
|
2318
2652
|
|
2319
|
-
#
|
2320
|
-
def
|
2321
|
-
|
2322
|
-
payload = @coeff
|
2323
|
-
payload = nil if payload==0
|
2653
|
+
# Exponential function
|
2654
|
+
def exp(context=nil)
|
2655
|
+
context = Decimal.define_context(context)
|
2324
2656
|
|
2325
|
-
|
2657
|
+
# exp(NaN) = NaN
|
2658
|
+
ans = _check_nans(context)
|
2659
|
+
return ans if ans
|
2326
2660
|
|
2327
|
-
|
2328
|
-
|
2329
|
-
|
2661
|
+
# exp(-Infinity) = 0
|
2662
|
+
return Decimal.zero if self.infinite? && (self.sign == -1)
|
2663
|
+
|
2664
|
+
# exp(0) = 1
|
2665
|
+
return Decimal(1) if self.zero?
|
2666
|
+
|
2667
|
+
# exp(Infinity) = Infinity
|
2668
|
+
return Decimal(self) if self.infinite?
|
2669
|
+
|
2670
|
+
# the result is now guaranteed to be inexact (the true
|
2671
|
+
# mathematical result is transcendental). There's no need to
|
2672
|
+
# raise Rounded and Inexact here---they'll always be raised as
|
2673
|
+
# a result of the call to _fix.
|
2674
|
+
return context.exception(Inexact, 'Inexact exp') if context.exact?
|
2675
|
+
p = context.precision
|
2676
|
+
adj = self.adjusted_exponent
|
2677
|
+
|
2678
|
+
# we only need to do any computation for quite a small range
|
2679
|
+
# of adjusted exponents---for example, -29 <= adj <= 10 for
|
2680
|
+
# the default context. For smaller exponent the result is
|
2681
|
+
# indistinguishable from 1 at the given precision, while for
|
2682
|
+
# larger exponent the result either overflows or underflows.
|
2683
|
+
if self.sign == +1 and adj > ((context.emax+1)*3).to_s.length
|
2684
|
+
# overflow
|
2685
|
+
ans = Decimal(+1, 1, context.emax+1)
|
2686
|
+
elsif self.sign == -1 and adj > ((-context.etiny+1)*3).to_s.length
|
2687
|
+
# underflow to 0
|
2688
|
+
ans = Decimal(+1, 1, context.etiny-1)
|
2689
|
+
elsif self.sign == +1 and adj < -p
|
2690
|
+
# p+1 digits; final round will raise correct flags
|
2691
|
+
ans = Decimal(+1, Decimal.int_radix_power(p)+1, -p)
|
2692
|
+
elsif self.sign == -1 and adj < -p-1
|
2693
|
+
# p+1 digits; final round will raise correct flags
|
2694
|
+
ans = Decimal(+1, Decimal.int_radix_power(p+1)-1, -p-1)
|
2695
|
+
else
|
2696
|
+
# general case
|
2697
|
+
c = self.integral_significand
|
2698
|
+
e = self.integral_exponent
|
2699
|
+
c = -c if self.sign == -1
|
2700
|
+
|
2701
|
+
# compute correctly rounded result: increase precision by
|
2702
|
+
# 3 digits at a time until we get an unambiguously
|
2703
|
+
# roundable result
|
2704
|
+
extra = 3
|
2705
|
+
coeff = exp = nil
|
2706
|
+
loop do
|
2707
|
+
coeff, exp = _dexp(c, e, p+extra)
|
2708
|
+
break if (coeff % (5*10**(coeff.to_s.length-p-1)))!=0
|
2709
|
+
extra += 3
|
2330
2710
|
end
|
2711
|
+
ans = Decimal(+1, coeff, exp)
|
2331
2712
|
end
|
2332
|
-
|
2713
|
+
|
2714
|
+
# at this stage, ans should round correctly with *any*
|
2715
|
+
# rounding mode, not just with ROUND_HALF_EVEN
|
2716
|
+
Decimal.context(context, :rounding=>:half_even) do |local_context|
|
2717
|
+
ans = ans._fix(local_context)
|
2718
|
+
context.flags = local_context.flags
|
2719
|
+
end
|
2720
|
+
|
2721
|
+
return ans
|
2722
|
+
end
|
2723
|
+
|
2724
|
+
# Returns the natural (base e) logarithm
|
2725
|
+
def ln(context=nil)
|
2726
|
+
context = Decimal.define_context(context)
|
2727
|
+
|
2728
|
+
# ln(NaN) = NaN
|
2729
|
+
ans = _check_nans(context)
|
2730
|
+
return ans if ans
|
2731
|
+
|
2732
|
+
# ln(0.0) == -Infinity
|
2733
|
+
return Decimal.infinity(-1) if self.zero?
|
2734
|
+
|
2735
|
+
# ln(Infinity) = Infinity
|
2736
|
+
return Decimal.infinity if self.infinite? && self.sign == +1
|
2737
|
+
|
2738
|
+
# ln(1.0) == 0.0
|
2739
|
+
return Decimal.zero if self == Decimal(1)
|
2740
|
+
|
2741
|
+
# ln(negative) raises InvalidOperation
|
2742
|
+
return context.exception(InvalidOperation, 'ln of a negative value') if self.sign==-1
|
2743
|
+
|
2744
|
+
# result is irrational, so necessarily inexact
|
2745
|
+
return context.exception(Inexact, 'Inexact exp') if context.exact?
|
2746
|
+
|
2747
|
+
c = self.integral_significand
|
2748
|
+
e = self.integral_exponent
|
2749
|
+
p = context.precision
|
2750
|
+
|
2751
|
+
# correctly rounded result: repeatedly increase precision by 3
|
2752
|
+
# until we get an unambiguously roundable result
|
2753
|
+
places = p - self._ln_exp_bound + 2 # at least p+3 places
|
2754
|
+
coeff = nil
|
2755
|
+
loop do
|
2756
|
+
coeff = _dlog(c, e, places)
|
2757
|
+
# assert coeff.to_s.length-p >= 1
|
2758
|
+
break if (coeff % (5*10**(coeff.abs.to_s.length-p-1))) != 0
|
2759
|
+
places += 3
|
2760
|
+
end
|
2761
|
+
ans = Decimal((coeff<0) ? -1 : +1, coeff.abs, -places)
|
2762
|
+
|
2763
|
+
Decimal.context(context, :rounding=>:half_even) do |local_context|
|
2764
|
+
ans = ans._fix(local_context)
|
2765
|
+
context.flags = local_context.flags
|
2766
|
+
end
|
2767
|
+
return ans
|
2333
2768
|
end
|
2334
2769
|
|
2770
|
+
# Auxiliar Methods
|
2771
|
+
|
2335
2772
|
# Check if the number or other is NaN, signal if sNaN or return NaN;
|
2336
2773
|
# return nil if none is NaN.
|
2337
2774
|
def _check_nans(context=nil, other=nil)
|
@@ -2377,113 +2814,23 @@ class Decimal
|
|
2377
2814
|
|
2378
2815
|
end
|
2379
2816
|
|
2380
|
-
|
2381
|
-
|
2382
|
-
|
2383
|
-
|
2384
|
-
|
2385
|
-
|
2386
|
-
else
|
2387
|
-
swap = false
|
2388
|
-
tmp,other = op1,op2
|
2817
|
+
def _watched_rescale(exp, context, watch_exp)
|
2818
|
+
if !watch_exp
|
2819
|
+
ans = _rescale(exp, context.rounding)
|
2820
|
+
context.exception(Rounded) if ans.integral_exponent > self.integral_exponent
|
2821
|
+
context.exception(Inexact) if ans != self
|
2822
|
+
return ans
|
2389
2823
|
end
|
2390
|
-
|
2391
|
-
|
2392
|
-
|
2393
|
-
#puts "exp=#{exp}"
|
2394
|
-
if (other_len+other.integral_exponent-1 < exp) && prec>0
|
2395
|
-
other = Decimal.new([other.sign, 1, exp])
|
2396
|
-
#puts "other = #{other.inspect}"
|
2824
|
+
|
2825
|
+
if exp < context.etiny || exp > context.emax
|
2826
|
+
return context.exception(InvalidOperation, "target operation out of bounds in quantize/rescale")
|
2397
2827
|
end
|
2398
|
-
tmp = Decimal.new([tmp.sign, int_mult_radix_power(tmp.integral_significand, tmp.integral_exponent-other.integral_exponent), other.integral_exponent])
|
2399
|
-
#puts "tmp=#{tmp.inspect}"
|
2400
|
-
return swap ? [other, tmp] : [tmp, other]
|
2401
|
-
end
|
2402
2828
|
|
2403
|
-
|
2404
|
-
def copy_abs
|
2405
|
-
Decimal.new([+1,@coeff,@exp])
|
2406
|
-
end
|
2829
|
+
return Decimal.new([@sign, 0, exp])._fix(context) if zero?
|
2407
2830
|
|
2408
|
-
|
2409
|
-
|
2410
|
-
|
2411
|
-
end
|
2412
|
-
|
2413
|
-
# Returns a copy of with the sign of other
|
2414
|
-
def copy_sign(other)
|
2415
|
-
Decimal.new([other.sign, @coeff, @exp])
|
2416
|
-
end
|
2417
|
-
|
2418
|
-
# Returns true if the value is an integer
|
2419
|
-
def integral?
|
2420
|
-
if finite?
|
2421
|
-
if @exp>=0 || @coeff==0
|
2422
|
-
true
|
2423
|
-
else
|
2424
|
-
if @exp <= -number_of_digits
|
2425
|
-
false
|
2426
|
-
else
|
2427
|
-
m = Decimal.int_radix_power(-@exp)
|
2428
|
-
(@coeff % m) == 0
|
2429
|
-
end
|
2430
|
-
end
|
2431
|
-
else
|
2432
|
-
false
|
2433
|
-
end
|
2434
|
-
end
|
2435
|
-
|
2436
|
-
# Rescale so that the exponent is exp, either by padding with zeros
|
2437
|
-
# or by truncating digits.
|
2438
|
-
def rescale(exp, context=nil, watch_exp=true)
|
2439
|
-
context = Decimal.define_context(context)
|
2440
|
-
exp = Decimal._convert(exp)
|
2441
|
-
if self.special? || exp.special?
|
2442
|
-
ans = _check_nans(context, exp)
|
2443
|
-
return ans if ans
|
2444
|
-
if exp.infinite? || self.infinite?
|
2445
|
-
return Decimal.new(self) if exp.infinite? && self.infinite?
|
2446
|
-
return context.exception(InvalidOperation, 'rescale with one INF')
|
2447
|
-
end
|
2448
|
-
end
|
2449
|
-
return context.exception(InvalidOperation,"exponent of rescale is not integral") unless exp.integral?
|
2450
|
-
exp = exp.to_i
|
2451
|
-
_watched_rescale(exp, context, watch_exp)
|
2452
|
-
end
|
2453
|
-
|
2454
|
-
# Quantize so its exponent is the same as that of y.
|
2455
|
-
def quantize(exp, context=nil, watch_exp=true)
|
2456
|
-
exp = Decimal._convert(exp)
|
2457
|
-
context = Decimal.define_context(context)
|
2458
|
-
if self.special? || exp.special?
|
2459
|
-
ans = _check_nans(context, exp)
|
2460
|
-
return ans if ans
|
2461
|
-
if exp.infinite? || self.infinite?
|
2462
|
-
return Decimal.new(self) if exp.infinite? && self.infinite?
|
2463
|
-
return context.exception(InvalidOperation, 'quantize with one INF')
|
2464
|
-
end
|
2465
|
-
end
|
2466
|
-
exp = exp.integral_exponent
|
2467
|
-
_watched_rescale(exp, context, watch_exp)
|
2468
|
-
end
|
2469
|
-
|
2470
|
-
def _watched_rescale(exp, context, watch_exp)
|
2471
|
-
if !watch_exp
|
2472
|
-
ans = _rescale(exp, context.rounding)
|
2473
|
-
context.exception(Rounded) if ans.integral_exponent > self.integral_exponent
|
2474
|
-
context.exception(Inexact) if ans != self
|
2475
|
-
return ans
|
2476
|
-
end
|
2477
|
-
|
2478
|
-
if exp < context.etiny || exp > context.emax
|
2479
|
-
return context.exception(InvalidOperation, "target operation out of bounds in quantize/rescale")
|
2480
|
-
end
|
2481
|
-
|
2482
|
-
return Decimal.new([@sign, 0, exp])._fix(context) if zero?
|
2483
|
-
|
2484
|
-
self_adjusted = adjusted_exponent
|
2485
|
-
return context.exception(InvalidOperation,"exponent of quantize/rescale result too large for current context") if self_adjusted > context.emax
|
2486
|
-
return context.exception(InvalidOperation,"quantize/rescale has too many digits for current context") if (self_adjusted - exp + 1 > context.precision) && !context.exact?
|
2831
|
+
self_adjusted = adjusted_exponent
|
2832
|
+
return context.exception(InvalidOperation,"exponent of quantize/rescale result too large for current context") if self_adjusted > context.emax
|
2833
|
+
return context.exception(InvalidOperation,"quantize/rescale has too many digits for current context") if (self_adjusted - exp + 1 > context.precision) && !context.exact?
|
2487
2834
|
|
2488
2835
|
ans = _rescale(exp, context.rounding)
|
2489
2836
|
return context.exception(InvalidOperation,"exponent of rescale result too large for current context") if ans.adjusted_exponent > context.emax
|
@@ -2496,147 +2843,153 @@ class Decimal
|
|
2496
2843
|
return ans._fix(context)
|
2497
2844
|
end
|
2498
2845
|
|
2499
|
-
#
|
2500
|
-
|
2501
|
-
|
2502
|
-
|
2503
|
-
|
2504
|
-
# * otherwise, return false.
|
2505
|
-
def same_quantum?(other)
|
2506
|
-
other = Decimal._convert(other)
|
2507
|
-
if self.special? || other.special?
|
2508
|
-
return (self.nan? && other.nan?) || (self.infinite? && other.infinite?)
|
2846
|
+
# Returns copy with sign inverted
|
2847
|
+
def _neg(context=nil)
|
2848
|
+
if special?
|
2849
|
+
ans = _check_nans(context)
|
2850
|
+
return ans if ans
|
2509
2851
|
end
|
2510
|
-
|
2852
|
+
if zero?
|
2853
|
+
ans = copy_abs
|
2854
|
+
else
|
2855
|
+
ans = copy_negate
|
2856
|
+
end
|
2857
|
+
context = Decimal.define_context(context)
|
2858
|
+
ans._fix(context)
|
2511
2859
|
end
|
2512
2860
|
|
2513
|
-
#
|
2514
|
-
def
|
2515
|
-
context = Decimal.define_context(context)
|
2861
|
+
# Returns a copy with precision adjusted
|
2862
|
+
def _pos(context=nil)
|
2516
2863
|
if special?
|
2517
2864
|
ans = _check_nans(context)
|
2518
2865
|
return ans if ans
|
2519
|
-
return Decimal.new(self)
|
2520
2866
|
end
|
2521
|
-
|
2522
|
-
|
2523
|
-
|
2524
|
-
|
2525
|
-
|
2526
|
-
|
2867
|
+
if zero?
|
2868
|
+
ans = copy_abs
|
2869
|
+
else
|
2870
|
+
ans = Decimal.new(self)
|
2871
|
+
end
|
2872
|
+
context = Decimal.define_context(context)
|
2873
|
+
ans._fix(context)
|
2527
2874
|
end
|
2528
2875
|
|
2529
|
-
#
|
2530
|
-
def
|
2531
|
-
|
2876
|
+
# Returns a copy with positive sign
|
2877
|
+
def _abs(round=true, context=nil)
|
2878
|
+
return copy_abs if not round
|
2879
|
+
|
2532
2880
|
if special?
|
2533
2881
|
ans = _check_nans(context)
|
2534
2882
|
return ans if ans
|
2535
|
-
return Decimal.new(self)
|
2536
2883
|
end
|
2537
|
-
|
2538
|
-
|
2539
|
-
end
|
2540
|
-
|
2541
|
-
# General rounding.
|
2542
|
-
#
|
2543
|
-
# With an integer argument this acts like Float#round: the parameter specifies the number
|
2544
|
-
# of fractional digits (or digits to the left of the decimal point if negative).
|
2545
|
-
#
|
2546
|
-
# Options can be passed as a Hash instead; valid options are:
|
2547
|
-
# * :rounding method for rounding (see Context#new())
|
2548
|
-
# The precision can be specified as:
|
2549
|
-
# * :places number of fractional digits as above.
|
2550
|
-
# * :exponent specifies the exponent corresponding to the
|
2551
|
-
# digit to be rounded (exponent == -places)
|
2552
|
-
# * :precision or :significan_digits is the number of digits
|
2553
|
-
# * :power 10^exponent, value of the digit to be rounded,
|
2554
|
-
# should be passed as a type convertible to Decimal.
|
2555
|
-
# * :index 0-based index of the digit to be rounded
|
2556
|
-
# * :rindex right 0-based index of the digit to be rounded
|
2557
|
-
#
|
2558
|
-
# The default is :places=>0 (round to integer).
|
2559
|
-
#
|
2560
|
-
# Example: ways of specifiying the rounding position
|
2561
|
-
# number: 1 2 3 4 . 5 6 7 8
|
2562
|
-
# :places -3 -2 -1 0 1 2 3 4
|
2563
|
-
# :exponent 3 2 1 0 -1 -2 -3 -4
|
2564
|
-
# :precision 1 2 3 4 5 6 7 8
|
2565
|
-
# :power 1E3 1E2 10 1 0.1 1E-2 1E-3 1E-4
|
2566
|
-
# :index 0 1 2 3 4 5 6 7
|
2567
|
-
# :index 7 6 5 4 3 2 1 0
|
2568
|
-
def round(opt={})
|
2569
|
-
opt = { :places=>opt } if opt.kind_of?(Integer)
|
2570
|
-
r = opt[:rounding] || :half_up
|
2571
|
-
as_int = false
|
2572
|
-
if v=(opt[:precision] || opt[:significant_digits])
|
2573
|
-
prec = v
|
2574
|
-
elsif v=(opt[:places])
|
2575
|
-
prec = adjusted_exponent + 1 + v
|
2576
|
-
elsif v=(opt[:exponent])
|
2577
|
-
prec = adjusted_exponent + 1 - v
|
2578
|
-
elsif v=(opt[:power])
|
2579
|
-
prec = adjusted_exponent + 1 - Decimal(v).adjusted_exponent
|
2580
|
-
elsif v=(opt[:index])
|
2581
|
-
prec = i+1
|
2582
|
-
elsif v=(opt[:rindex])
|
2583
|
-
prec = number_of_digits - v
|
2884
|
+
if sign>0
|
2885
|
+
ans = _neg(context)
|
2584
2886
|
else
|
2585
|
-
|
2586
|
-
as_int = true
|
2887
|
+
ans = _pos(context)
|
2587
2888
|
end
|
2588
|
-
|
2589
|
-
return as_int ? result.to_i : result
|
2889
|
+
ans
|
2590
2890
|
end
|
2591
2891
|
|
2592
|
-
#
|
2593
|
-
|
2594
|
-
|
2595
|
-
opt[:rounding] = :ceiling
|
2596
|
-
round opt
|
2597
|
-
end
|
2892
|
+
# Round if it is necessary to keep within precision.
|
2893
|
+
def _fix(context)
|
2894
|
+
return self if context.exact?
|
2598
2895
|
|
2599
|
-
|
2600
|
-
|
2601
|
-
|
2602
|
-
|
2603
|
-
|
2604
|
-
|
2896
|
+
if special?
|
2897
|
+
if nan?
|
2898
|
+
return _fix_nan(context)
|
2899
|
+
else
|
2900
|
+
return Decimal.new(self)
|
2901
|
+
end
|
2902
|
+
end
|
2903
|
+
|
2904
|
+
etiny = context.etiny
|
2905
|
+
etop = context.etop
|
2906
|
+
if zero?
|
2907
|
+
exp_max = context.clamp? ? etop : context.emax
|
2908
|
+
new_exp = [[@exp, etiny].max, exp_max].min
|
2909
|
+
if new_exp!=@exp
|
2910
|
+
context.exception Clamped
|
2911
|
+
return Decimal.new([sign,0,new_exp])
|
2912
|
+
else
|
2913
|
+
return Decimal.new(self)
|
2914
|
+
end
|
2915
|
+
end
|
2916
|
+
|
2917
|
+
nd = number_of_digits
|
2918
|
+
exp_min = nd + @exp - context.precision
|
2919
|
+
if exp_min > etop
|
2920
|
+
context.exception Inexact
|
2921
|
+
context.exception Rounded
|
2922
|
+
return context.exception(Overflow, 'above Emax', sign)
|
2923
|
+
end
|
2924
|
+
|
2925
|
+
self_is_subnormal = exp_min < etiny
|
2926
|
+
|
2927
|
+
if self_is_subnormal
|
2928
|
+
context.exception Subnormal
|
2929
|
+
exp_min = etiny
|
2930
|
+
end
|
2931
|
+
|
2932
|
+
if @exp < exp_min
|
2933
|
+
context.exception Rounded
|
2934
|
+
# dig is the digits number from 0 (MS) to number_of_digits-1 (LS)
|
2935
|
+
# dg = numberof_digits-dig is from 1 (LS) to number_of_digits (MS)
|
2936
|
+
dg = exp_min - @exp # dig = number_of_digits + exp - exp_min
|
2937
|
+
if dg > number_of_digits # dig<0
|
2938
|
+
d = Decimal.new([sign,1,exp_min-1])
|
2939
|
+
dg = number_of_digits # dig = 0
|
2940
|
+
else
|
2941
|
+
d = Decimal.new(self)
|
2942
|
+
end
|
2943
|
+
changed = d._round(context.rounding, dg)
|
2944
|
+
coeff = Decimal.int_div_radix_power(d.integral_significand, dg)
|
2945
|
+
coeff += 1 if changed==1
|
2946
|
+
ans = Decimal.new([sign, coeff, exp_min])
|
2947
|
+
if changed!=0
|
2948
|
+
context.exception Inexact
|
2949
|
+
if self_is_subnormal
|
2950
|
+
context.exception Underflow
|
2951
|
+
if ans.zero?
|
2952
|
+
context.exception Clamped
|
2953
|
+
end
|
2954
|
+
elsif ans.number_of_digits == context.precision+1
|
2955
|
+
if ans.integral_exponent< etop
|
2956
|
+
ans = Decimal.new([ans.sign, Decimal.int_div_radix_power(ans.integral_significand,1), ans.integral_exponent+1])
|
2957
|
+
else
|
2958
|
+
ans = context.exception(Overflow, 'above Emax', d.sign)
|
2959
|
+
end
|
2960
|
+
end
|
2961
|
+
end
|
2962
|
+
return ans
|
2963
|
+
end
|
2964
|
+
|
2965
|
+
if context.clamp? && @exp>etop
|
2966
|
+
context.exception Clamped
|
2967
|
+
self_padded = Decimal.int_mult_radix_power(@coeff, @exp-etop)
|
2968
|
+
return Decimal.new([sign,self_padded,etop])
|
2969
|
+
end
|
2970
|
+
|
2971
|
+
return Decimal.new(self)
|
2605
2972
|
|
2606
|
-
# General truncate operation (as for Float) with same options for precision
|
2607
|
-
# as Decimal#round()
|
2608
|
-
def truncate(opt={})
|
2609
|
-
opt[:rounding] = :down
|
2610
|
-
round opt
|
2611
2973
|
end
|
2612
2974
|
|
2613
|
-
#
|
2614
|
-
|
2615
|
-
|
2616
|
-
|
2617
|
-
|
2618
|
-
|
2619
|
-
|
2620
|
-
|
2621
|
-
|
2622
|
-
|
2623
|
-
|
2624
|
-
product = self
|
2625
|
-
elsif other.nan?
|
2626
|
-
product = other
|
2627
|
-
elsif self.infinite?
|
2628
|
-
return context.exception(InvalidOperation, 'INF * 0 in fma') if other.zero?
|
2629
|
-
product = Decimal.infinity(self.sign*other.sign)
|
2630
|
-
elsif other.infinite?
|
2631
|
-
return context.exception(InvalidOperation, '0 * INF in fma') if self.zero?
|
2632
|
-
product = Decimal.infinity(self.sign*other.sign)
|
2975
|
+
# adjust payload of a NaN to the context
|
2976
|
+
def _fix_nan(context)
|
2977
|
+
if !context.exact?
|
2978
|
+
payload = @coeff
|
2979
|
+
payload = nil if payload==0
|
2980
|
+
|
2981
|
+
max_payload_len = context.maximum_nan_diagnostic_digits
|
2982
|
+
|
2983
|
+
if number_of_digits > max_payload_len
|
2984
|
+
payload = payload.to_s[-max_payload_len..-1].to_i
|
2985
|
+
return Decimal([@sign, payload, @exp])
|
2633
2986
|
end
|
2634
|
-
else
|
2635
|
-
product = Decimal.new([self.sign*other.sign,self.integral_significand*other.integral_significand, self.integral_exponent+other.integral_exponent])
|
2636
2987
|
end
|
2637
|
-
|
2988
|
+
Decimal(self)
|
2638
2989
|
end
|
2639
2990
|
|
2991
|
+
protected
|
2992
|
+
|
2640
2993
|
def _divide_truncate(other, context)
|
2641
2994
|
context = Decimal.define_context(context)
|
2642
2995
|
sign = self.sign * other.sign
|
@@ -2715,28 +3068,869 @@ class Decimal
|
|
2715
3068
|
|
2716
3069
|
end
|
2717
3070
|
|
2718
|
-
#
|
2719
|
-
|
2720
|
-
|
2721
|
-
|
2722
|
-
|
2723
|
-
|
2724
|
-
|
3071
|
+
# Power-modulo: self._power_modulo(other, modulo) == (self**other) % modulo
|
3072
|
+
# This is equivalent to Python's 3-argument version of pow()
|
3073
|
+
def _power_modulo(other, modulo, context=nil)
|
3074
|
+
|
3075
|
+
context = Decimal.define_context(context)
|
3076
|
+
other = _convert(other)
|
3077
|
+
modulo = _convert(third)
|
3078
|
+
|
3079
|
+
if self.nan? || other.nan? || modulo.nan?
|
3080
|
+
return context.exception(InvalidOperation, 'sNaN', self) if self.snan?
|
3081
|
+
return context.exception(InvalidOperation, 'sNaN', other) if other.snan?
|
3082
|
+
return context.exception(InvalidOperation, 'sNaN', modulo) if other.modulo?
|
3083
|
+
return self._fix_nan(context) if self.nan?
|
3084
|
+
return other._fix_nan(context) if other.nan?
|
3085
|
+
return modulo._fix_nan(context) # if modulo.nan?
|
3086
|
+
end
|
3087
|
+
|
3088
|
+
if !(self.integral? && other.integral? && modulo.integral?)
|
3089
|
+
return context.exception(InvalidOperation, '3-argument power not allowed unless all arguments are integers.')
|
3090
|
+
end
|
3091
|
+
|
3092
|
+
if other < 0
|
3093
|
+
return context.exception(InvalidOperation, '3-argument power cannot have a negative 2nd argument.')
|
3094
|
+
end
|
3095
|
+
|
3096
|
+
if modulo.zero?
|
3097
|
+
return context.exception(InvalidOperation, '3-argument power cannot have a 0 3rd argument.')
|
3098
|
+
end
|
3099
|
+
|
3100
|
+
if modulo.adjusted_exponent >= context.precision
|
3101
|
+
return context.exception(InvalidOperation, 'insufficient precision: power 3rd argument must not have more than precision digits')
|
3102
|
+
end
|
3103
|
+
|
3104
|
+
if other.zero? && self.zero?
|
3105
|
+
return context.exception(InvalidOperation, "0**0 not defined")
|
3106
|
+
end
|
3107
|
+
|
3108
|
+
sign = other.even? ? +1 : -1
|
3109
|
+
modulo = modulo.to_i.abs
|
3110
|
+
|
3111
|
+
base = (self.integral_significand % modulo * (Decimal.int_radix_power(self.integral_exponent) % modulo)) % modulo
|
3112
|
+
|
3113
|
+
other.integral_exponent.times do
|
3114
|
+
base = (base**Decimal.radix) % modulo
|
3115
|
+
end
|
3116
|
+
base = (base**other.integral_significand) % modulo
|
3117
|
+
|
3118
|
+
Decimal(sign, base, 0)
|
3119
|
+
end
|
3120
|
+
|
3121
|
+
# Attempt to compute self**other exactly
|
3122
|
+
# Given Decimals self and other and an integer p, attempt to
|
3123
|
+
# compute an exact result for the power self**other, with p
|
3124
|
+
# digits of precision. Return nil if self**other is not
|
3125
|
+
# exactly representable in p digits.
|
3126
|
+
#
|
3127
|
+
# Assumes that elimination of special cases has already been
|
3128
|
+
# performed: self and other must both be nonspecial; self must
|
3129
|
+
# be positive and not numerically equal to 1; other must be
|
3130
|
+
# nonzero. For efficiency, other.integral_exponent should not be too large,
|
3131
|
+
# so that 10**other.integral.exponent.abs is a feasible calculation.
|
3132
|
+
def _power_exact(other, p)
|
3133
|
+
|
3134
|
+
# In the comments below, we write x for the value of self and
|
3135
|
+
# y for the value of other. Write x = xc*10**xe and y =
|
3136
|
+
# yc*10**ye.
|
3137
|
+
|
3138
|
+
# The main purpose of this method is to identify the *failure*
|
3139
|
+
# of x**y to be exactly representable with as little effort as
|
3140
|
+
# possible. So we look for cheap and easy tests that
|
3141
|
+
# eliminate the possibility of x**y being exact. Only if all
|
3142
|
+
# these tests are passed do we go on to actually compute x**y.
|
3143
|
+
|
3144
|
+
# Here's the main idea. First normalize both x and y. We
|
3145
|
+
# express y as a rational m/n, with m and n relatively prime
|
3146
|
+
# and n>0. Then for x**y to be exactly representable (at
|
3147
|
+
# *any* precision), xc must be the nth power of a positive
|
3148
|
+
# integer and xe must be divisible by n. If m is negative
|
3149
|
+
# then additionally xc must be a power of either 2 or 5, hence
|
3150
|
+
# a power of 2**n or 5**n.
|
3151
|
+
#
|
3152
|
+
# There's a limit to how small |y| can be: if y=m/n as above
|
3153
|
+
# then:
|
3154
|
+
#
|
3155
|
+
# (1) if xc != 1 then for the result to be representable we
|
3156
|
+
# need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
|
3157
|
+
# if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
|
3158
|
+
# 2**(1/|y|), hence xc**|y| < 2 and the result is not
|
3159
|
+
# representable.
|
3160
|
+
#
|
3161
|
+
# (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
|
3162
|
+
# |y| < 1/|xe| then the result is not representable.
|
3163
|
+
#
|
3164
|
+
# Note that since x is not equal to 1, at least one of (1) and
|
3165
|
+
# (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
|
3166
|
+
# 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
|
3167
|
+
#
|
3168
|
+
# There's also a limit to how large y can be, at least if it's
|
3169
|
+
# positive: the normalized result will have coefficient xc**y,
|
3170
|
+
# so if it's representable then xc**y < 10**p, and y <
|
3171
|
+
# p/log10(xc). Hence if y*log10(xc) >= p then the result is
|
3172
|
+
# not exactly representable.
|
3173
|
+
|
3174
|
+
# if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
|
3175
|
+
# so |y| < 1/xe and the result is not representable.
|
3176
|
+
# Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
|
3177
|
+
# < 1/nbits(xc).
|
3178
|
+
|
3179
|
+
xc = self.integral_significand
|
3180
|
+
xe = self.integral_exponent
|
3181
|
+
while (xc % Decimal.radix) == 0
|
3182
|
+
xc /= Decimal.radix
|
3183
|
+
xe += 1
|
3184
|
+
end
|
3185
|
+
|
3186
|
+
yc = other.integral_significand
|
3187
|
+
ye = other.integral_exponent
|
3188
|
+
while (yc % Decimal.radix) == 0
|
3189
|
+
yc /= Decimal.radix
|
3190
|
+
ye += 1
|
3191
|
+
end
|
3192
|
+
|
3193
|
+
# case where xc == 1: result is 10**(xe*y), with xe*y
|
3194
|
+
# required to be an integer
|
3195
|
+
if xc == 1
|
3196
|
+
if ye >= 0
|
3197
|
+
exponent = xe*yc*Decimal.int_radix_power(ye)
|
3198
|
+
else
|
3199
|
+
exponent, remainder = (xe*yc).divmod(Decimal.int_radix_power(-ye))
|
3200
|
+
return nil if remainder!=0
|
3201
|
+
end
|
3202
|
+
exponent = -exponent if other.sign == -1
|
3203
|
+
# if other is a nonnegative integer, use ideal exponent
|
3204
|
+
if other.integral? and (other.sign == +1)
|
3205
|
+
ideal_exponent = self.integral_exponent*other.to_i
|
3206
|
+
zeros = [exponent-ideal_exponent, p-1].min
|
3207
|
+
else
|
3208
|
+
zeros = 0
|
3209
|
+
end
|
3210
|
+
return Decimal(+1, Decimal.int_radix_power(zeros), exponent-zeros)
|
3211
|
+
end
|
3212
|
+
|
3213
|
+
# case where y is negative: xc must be either a power
|
3214
|
+
# of 2 or a power of 5.
|
3215
|
+
if other.sign == -1
|
3216
|
+
last_digit = (xc % 10)
|
3217
|
+
if [2,4,6,8].include?(last_digit)
|
3218
|
+
# quick test for power of 2
|
3219
|
+
return nil if xc & -xc != xc
|
3220
|
+
# now xc is a power of 2; e is its exponent
|
3221
|
+
e = _nbits(xc)-1
|
3222
|
+
# find e*y and xe*y; both must be integers
|
3223
|
+
if ye >= 0
|
3224
|
+
y_as_int = yc*Decimal.int_radix_power(ye)
|
3225
|
+
e = e*y_as_int
|
3226
|
+
xe = xe*y_as_int
|
3227
|
+
else
|
3228
|
+
ten_pow = Decimal.int_radix_power(-ye)
|
3229
|
+
e, remainder = (e*yc).divmod(ten_pow)
|
3230
|
+
return nil if remainder!=0
|
3231
|
+
xe, remainder = (xe*yc).divmod(ten_pow)
|
3232
|
+
return nil if remainder!=0
|
3233
|
+
end
|
3234
|
+
|
3235
|
+
return nil if e*65 >= p*93 # 93/65 > log(10)/log(5)
|
3236
|
+
xc = 5**e
|
3237
|
+
elsif last_digit == 5
|
3238
|
+
# e >= log_5(xc) if xc is a power of 5; we have
|
3239
|
+
# equality all the way up to xc=5**2658
|
3240
|
+
e = _nbits(xc)*28/65
|
3241
|
+
xc, remainder = (5**e).divmod(xc)
|
3242
|
+
return nil if remainder!=0
|
3243
|
+
while (xc % 5) == 0
|
3244
|
+
xc /= 5
|
3245
|
+
e -= 1
|
3246
|
+
end
|
3247
|
+
if ye >= 0
|
3248
|
+
y_as_integer = Decimal.int_mult_radix_power(yc,ye)
|
3249
|
+
e = e*y_as_integer
|
3250
|
+
xe = xe*y_as_integer
|
3251
|
+
else
|
3252
|
+
ten_pow = Decimal.int_radix_power(-ye)
|
3253
|
+
e, remainder = (e*yc).divmod(ten_pow)
|
3254
|
+
return nil if remainder
|
3255
|
+
xe, remainder = (xe*yc).divmod(ten_pow)
|
3256
|
+
return nil if remainder
|
3257
|
+
end
|
3258
|
+
return nil if e*3 >= p*10 # 10/3 > log(10)/log(2)
|
3259
|
+
xc = 2**e
|
3260
|
+
else
|
3261
|
+
return nil
|
3262
|
+
end
|
3263
|
+
|
3264
|
+
return nil if xc >= Decimal.int_radix_power(p)
|
3265
|
+
xe = -e-xe
|
3266
|
+
return Decimal(+1, xc, xe)
|
3267
|
+
|
3268
|
+
end
|
3269
|
+
|
3270
|
+
# now y is positive; find m and n such that y = m/n
|
3271
|
+
if ye >= 0
|
3272
|
+
m, n = yc*10**ye, 1
|
2725
3273
|
else
|
2726
|
-
|
2727
|
-
|
3274
|
+
return nil if (xe != 0) and ((yc*xe).abs.to_s.length <= -ye)
|
3275
|
+
xc_bits = _nbits(xc)
|
3276
|
+
return nil if (xc != 1) and ((yc.abs*xc_bits).to_s.length <= -ye)
|
3277
|
+
m, n = yc, Decimal.int_radix_power(-ye)
|
3278
|
+
while ((m % 2) == 0) && ((n % 2) == 0)
|
3279
|
+
m /= 2
|
3280
|
+
n /= 2
|
3281
|
+
end
|
3282
|
+
while ((m % 5) == 0) && ((n % 5) == 0)
|
3283
|
+
m /= 5
|
3284
|
+
n /= 5
|
3285
|
+
end
|
3286
|
+
end
|
3287
|
+
|
3288
|
+
# compute nth root of xc*10**xe
|
3289
|
+
if n > 1
|
3290
|
+
# if 1 < xc < 2**n then xc isn't an nth power
|
3291
|
+
return nil if xc != 1 and xc_bits <= n
|
3292
|
+
|
3293
|
+
xe, rem = xe.divmod(n)
|
3294
|
+
return nil if rem != 0
|
3295
|
+
|
3296
|
+
# compute nth root of xc using Newton's method
|
3297
|
+
a = 1 << -(-_nbits(xc)/n) # initial estimate
|
3298
|
+
q = r = nil
|
3299
|
+
loop do
|
3300
|
+
q, r = xc.divmod(a**(n-1))
|
3301
|
+
break if a <= q
|
3302
|
+
a = (a*(n-1) + q)/n
|
3303
|
+
end
|
3304
|
+
return nil if !((a == q) and (r == 0))
|
3305
|
+
xc = a
|
3306
|
+
end
|
3307
|
+
|
3308
|
+
# now xc*10**xe is the nth root of the original xc*10**xe
|
3309
|
+
# compute mth power of xc*10**xe
|
3310
|
+
|
3311
|
+
# if m > p*100/_log10_lb(xc) then m > p/log10(xc), hence xc**m >
|
3312
|
+
# 10**p and the result is not representable.
|
3313
|
+
return nil if (xc > 1) and (m > p*100/_log10_lb(xc))
|
3314
|
+
xc = xc**m
|
3315
|
+
xe *= m
|
3316
|
+
return nil if xc > 10**p
|
3317
|
+
|
3318
|
+
# by this point the result *is* exactly representable
|
3319
|
+
# adjust the exponent to get as close as possible to the ideal
|
3320
|
+
# exponent, if necessary
|
3321
|
+
str_xc = xc.to_s
|
3322
|
+
if other.integral? && other.sign == +1
|
3323
|
+
ideal_exponent = self.integral_exponent*other.to_i
|
3324
|
+
zeros = [xe-ideal_exponent, p-str_xc.length].min
|
3325
|
+
else
|
3326
|
+
zeros = 0
|
3327
|
+
end
|
3328
|
+
return Decimal(+1, Decimal.int_mult_radix_power(xc, zeros), xe-zeros)
|
3329
|
+
end
|
3330
|
+
|
3331
|
+
ROUND_ARITHMETIC = true
|
3332
|
+
|
3333
|
+
# Round to i digits using the specified method
|
3334
|
+
def _round(rounding, i)
|
3335
|
+
send("_round_#{rounding}", i)
|
3336
|
+
end
|
3337
|
+
|
3338
|
+
# Round down (toward 0, truncate) to i digits
|
3339
|
+
def _round_down(i)
|
3340
|
+
if ROUND_ARITHMETIC
|
3341
|
+
(@coeff % Decimal.int_radix_power(i))==0 ? 0 : -1
|
3342
|
+
else
|
3343
|
+
d = @coeff.to_s
|
3344
|
+
p = d.size - i
|
3345
|
+
d[p..-1].match(/\A0+\Z/) ? 0 : -1
|
3346
|
+
end
|
3347
|
+
end
|
3348
|
+
|
3349
|
+
# Round up (away from 0) to i digits
|
3350
|
+
def _round_up(i)
|
3351
|
+
-_round_down(i)
|
3352
|
+
end
|
3353
|
+
|
3354
|
+
# Round to closest i-digit number with ties down (rounds 5 toward 0)
|
3355
|
+
def _round_half_down(i)
|
3356
|
+
if ROUND_ARITHMETIC
|
3357
|
+
m = Decimal.int_radix_power(i)
|
3358
|
+
if (m>1) && ((@coeff%m) == m/2)
|
3359
|
+
-1
|
3360
|
+
else
|
3361
|
+
_round_half_up(i)
|
3362
|
+
end
|
3363
|
+
else
|
3364
|
+
d = @coeff.to_s
|
3365
|
+
p = d.size - i
|
3366
|
+
d[p..-1].match(/^5d*$/) ? -1 : _round_half_up(i)
|
3367
|
+
end
|
3368
|
+
|
3369
|
+
end
|
3370
|
+
|
3371
|
+
# Round to closest i-digit number with ties up (rounds 5 away from 0)
|
3372
|
+
def _round_half_up(i)
|
3373
|
+
if ROUND_ARITHMETIC
|
3374
|
+
m = Decimal.int_radix_power(i)
|
3375
|
+
if (m>1) && ((@coeff % m) >= m/2)
|
3376
|
+
1
|
3377
|
+
else
|
3378
|
+
(@coeff % m)==0 ? 0 : -1
|
3379
|
+
end
|
3380
|
+
else
|
3381
|
+
d = @coeff.to_s
|
3382
|
+
p = d.size - i
|
3383
|
+
if '56789'.include?(d[p,1])
|
3384
|
+
1
|
3385
|
+
else
|
3386
|
+
d[p..-1].match(/^0+$/) ? 0 : -1
|
3387
|
+
end
|
3388
|
+
end
|
3389
|
+
|
3390
|
+
end
|
3391
|
+
|
3392
|
+
# Round to closest i-digit number with ties (5) to an even digit
|
3393
|
+
def _round_half_even(i)
|
3394
|
+
if ROUND_ARITHMETIC
|
3395
|
+
m = Decimal.int_radix_power(i)
|
3396
|
+
if (m>1) && ((@coeff%m) == m/2 && ((@coeff/m)%2)==0)
|
3397
|
+
-1
|
3398
|
+
else
|
3399
|
+
_round_half_up(i)
|
3400
|
+
end
|
3401
|
+
else
|
3402
|
+
d = @coeff.to_s
|
3403
|
+
p = d.size - i
|
3404
|
+
|
3405
|
+
if d[p..-1].match(/\A#{Decimal.radix/2}0*\Z/) && (p==0 || ((d[p-1,1].to_i%2)==0))
|
3406
|
+
-1
|
3407
|
+
else
|
3408
|
+
_round_half_up(i)
|
3409
|
+
end
|
3410
|
+
|
2728
3411
|
end
|
2729
3412
|
end
|
2730
3413
|
|
2731
|
-
#
|
2732
|
-
def
|
2733
|
-
|
2734
|
-
|
2735
|
-
|
2736
|
-
|
3414
|
+
# Round up (not away from 0 if negative) to i digits
|
3415
|
+
def _round_ceiling(i)
|
3416
|
+
sign<0 ? _round_down(i) : -_round_down(i)
|
3417
|
+
end
|
3418
|
+
|
3419
|
+
# Round down (not toward 0 if negative) to i digits
|
3420
|
+
def _round_floor(i)
|
3421
|
+
sign>0 ? _round_down(i) : -_round_down(i)
|
3422
|
+
end
|
3423
|
+
|
3424
|
+
# Round down unless digit i-1 is 0 or 5
|
3425
|
+
def _round_up05(i)
|
3426
|
+
if ROUND_ARITHMETIC
|
3427
|
+
dg = (@coeff%Decimal.int_radix_power(i+1))/Decimal.int_radix_power(i)
|
3428
|
+
else
|
3429
|
+
d = @coeff.to_s
|
3430
|
+
p = d.size - i
|
3431
|
+
dg = (p>0) ? d[p-1,1].to_i : 0
|
3432
|
+
end
|
3433
|
+
if [0,Decimal.radix/2].include?(dg)
|
3434
|
+
-_round_down(i)
|
3435
|
+
else
|
3436
|
+
_round_down(i)
|
2737
3437
|
end
|
2738
3438
|
end
|
2739
3439
|
|
3440
|
+
|
3441
|
+
# Compute a lower bound for the adjusted exponent of self.log10()
|
3442
|
+
# In other words, find r such that self.log10() >= 10**r.
|
3443
|
+
# Assumes that self is finite and positive and that self != 1.
|
3444
|
+
def _log10_exp_bound
|
3445
|
+
# For x >= 10 or x < 0.1 we only need a bound on the integer
|
3446
|
+
# part of log10(self), and this comes directly from the
|
3447
|
+
# exponent of x. For 0.1 <= x <= 10 we use the inequalities
|
3448
|
+
# 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
|
3449
|
+
# (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
|
3450
|
+
|
3451
|
+
adj = self.integral_exponent + number_of_digits - 1
|
3452
|
+
return adj.to_s.length - 1 if adj >= 1 # self >= 10
|
3453
|
+
return (-1-adj).to_s.length-1 if adj <= -2 # self < 0.1
|
3454
|
+
|
3455
|
+
c = self.integral_significand
|
3456
|
+
e = self.integral_exponent
|
3457
|
+
if adj == 0
|
3458
|
+
# 1 < self < 10
|
3459
|
+
num = (c - Decimal.int_radix_power(-e)).to_s
|
3460
|
+
den = (231*c).to_s
|
3461
|
+
return num.length - den.length - ((num < den) ? 1 : 0) + 2
|
3462
|
+
end
|
3463
|
+
# adj == -1, 0.1 <= self < 1
|
3464
|
+
num = (Decimal.int_radix_power(-e)-c).to_s
|
3465
|
+
return num.length + e - ((num < "231") ? 1 : 0) - 1
|
3466
|
+
end
|
3467
|
+
|
3468
|
+
# Compute a lower bound for the adjusted exponent of self.ln().
|
3469
|
+
# In other words, compute r such that self.ln() >= 10**r. Assumes
|
3470
|
+
# that self is finite and positive and that self != 1.
|
3471
|
+
def _ln_exp_bound
|
3472
|
+
# for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
|
3473
|
+
adj = self.integral_exponent + number_of_digits - 1
|
3474
|
+
if adj >= 1
|
3475
|
+
# argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
|
3476
|
+
return (adj*23/10).to_s.length - 1
|
3477
|
+
end
|
3478
|
+
if adj <= -2
|
3479
|
+
# argument <= 0.1
|
3480
|
+
return ((-1-adj)*23/10).to_s.length - 1
|
3481
|
+
end
|
3482
|
+
c = self.integral_significand
|
3483
|
+
e = self.integral_exponent
|
3484
|
+
if adj == 0
|
3485
|
+
# 1 < self < 10
|
3486
|
+
num = (c-(10**-e)).to_s
|
3487
|
+
den = c.to_s
|
3488
|
+
return num.length - den.length - ((num < den) ? 1 : 0)
|
3489
|
+
end
|
3490
|
+
# adj == -1, 0.1 <= self < 1
|
3491
|
+
return e + (10**-e - c).to_s.length - 1
|
3492
|
+
end
|
3493
|
+
|
3494
|
+
module AuxiliarFunctions #:nodoc:
|
3495
|
+
|
3496
|
+
module_function
|
3497
|
+
|
3498
|
+
# Convert a numeric value to decimal (internal use)
|
3499
|
+
def _convert(x, error=true)
|
3500
|
+
case x
|
3501
|
+
when Decimal
|
3502
|
+
x
|
3503
|
+
when *Decimal.context.coercible_types
|
3504
|
+
Decimal.new(x)
|
3505
|
+
else
|
3506
|
+
raise TypeError, "Unable to convert #{x.class} to Decimal" if error
|
3507
|
+
nil
|
3508
|
+
end
|
3509
|
+
end
|
3510
|
+
|
3511
|
+
# Parse numeric text literals (internal use)
|
3512
|
+
def _parser(txt)
|
3513
|
+
md = /^\s*([-+])?(?:(?:(\d+)(?:\.(\d*))?|\.(\d+))(?:[eE]([-+]?\d+))?|Inf(?:inity)?|(s)?NaN(\d*))\s*$/i.match(txt)
|
3514
|
+
if md
|
3515
|
+
OpenStruct.new :sign=>md[1], :int=>md[2], :frac=>md[3], :onlyfrac=>md[4], :exp=>md[5],
|
3516
|
+
:signal=>md[6], :diag=>md[7]
|
3517
|
+
end
|
3518
|
+
end
|
3519
|
+
|
3520
|
+
# Normalizes op1, op2 to have the same exp and length of coefficient. Used for addition.
|
3521
|
+
def _normalize(op1, op2, prec=0)
|
3522
|
+
if op1.integral_exponent < op2.integral_exponent
|
3523
|
+
swap = true
|
3524
|
+
tmp,other = op2,op1
|
3525
|
+
else
|
3526
|
+
swap = false
|
3527
|
+
tmp,other = op1,op2
|
3528
|
+
end
|
3529
|
+
tmp_len = tmp.number_of_digits
|
3530
|
+
other_len = other.number_of_digits
|
3531
|
+
exp = tmp.integral_exponent + [-1, tmp_len - prec - 2].min
|
3532
|
+
if (other_len+other.integral_exponent-1 < exp) && prec>0
|
3533
|
+
other = Decimal.new([other.sign, 1, exp])
|
3534
|
+
end
|
3535
|
+
tmp = Decimal.new(tmp.sign,
|
3536
|
+
Decimal.int_mult_radix_power(tmp.integral_significand, tmp.integral_exponent-other.integral_exponent),
|
3537
|
+
other.integral_exponent)
|
3538
|
+
return swap ? [other, tmp] : [tmp, other]
|
3539
|
+
end
|
3540
|
+
|
3541
|
+
# Number of bits in binary representation of the positive integer n, or 0 if n == 0.
|
3542
|
+
#--
|
3543
|
+
# This function from Tim Peters was taken from here:
|
3544
|
+
# http://mail.python.org/pipermail/python-list/1999-July/007758.html
|
3545
|
+
# The correction being in the function definition is for speed, and
|
3546
|
+
# the whole function is not resolved with math.log because of avoiding
|
3547
|
+
# the use of floats.
|
3548
|
+
#++
|
3549
|
+
def _nbits(n, correction = { #:nodoc:
|
3550
|
+
'0'=> 4, '1'=> 3, '2'=> 2, '3'=> 2,
|
3551
|
+
'4'=> 1, '5'=> 1, '6'=> 1, '7'=> 1,
|
3552
|
+
'8'=> 0, '9'=> 0, 'a'=> 0, 'b'=> 0,
|
3553
|
+
'c'=> 0, 'd'=> 0, 'e'=> 0, 'f'=> 0})
|
3554
|
+
raise TypeError, "The argument to _nbits should be nonnegative." if n < 0
|
3555
|
+
hex_n = "%x" % n
|
3556
|
+
4*hex_n.length - correction[hex_n[0,1]]
|
3557
|
+
end
|
3558
|
+
|
3559
|
+
# Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
|
3560
|
+
# y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
|
3561
|
+
#
|
3562
|
+
# 10**(p-1) <= c <= 10**p, and
|
3563
|
+
# (c-1)*10**e < x**y < (c+1)*10**e
|
3564
|
+
#
|
3565
|
+
# in other words, c*10**e is an approximation to x**y with p digits
|
3566
|
+
# of precision, and with an error in c of at most 1. (This is
|
3567
|
+
# almost, but not quite, the same as the error being < 1ulp: when c
|
3568
|
+
# == 10**(p-1) we can only guarantee error < 10ulp.)
|
3569
|
+
#
|
3570
|
+
# We assume that: x is positive and not equal to 1, and y is nonzero.
|
3571
|
+
def _dpower(xc, xe, yc, ye, p)
|
3572
|
+
# Find b such that 10**(b-1) <= |y| <= 10**b
|
3573
|
+
b = yc.abs.to_s.length + ye
|
3574
|
+
|
3575
|
+
# log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
|
3576
|
+
lxc = _dlog(xc, xe, p+b+1)
|
3577
|
+
|
3578
|
+
# compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
|
3579
|
+
shift = ye-b
|
3580
|
+
if shift >= 0
|
3581
|
+
pc = lxc*yc*10**shift
|
3582
|
+
else
|
3583
|
+
pc = _div_nearest(lxc*yc, 10**-shift)
|
3584
|
+
end
|
3585
|
+
|
3586
|
+
if pc == 0
|
3587
|
+
# we prefer a result that isn't exactly 1; this makes it
|
3588
|
+
# easier to compute a correctly rounded result in __pow__
|
3589
|
+
if (xc.to_s.length + xe >= 1) == (yc > 0) # if x**y > 1:
|
3590
|
+
coeff, exp = 10**(p-1)+1, 1-p
|
3591
|
+
else
|
3592
|
+
coeff, exp = 10**p-1, -p
|
3593
|
+
end
|
3594
|
+
else
|
3595
|
+
coeff, exp = _dexp(pc, -(p+1), p+1)
|
3596
|
+
coeff = _div_nearest(coeff, 10)
|
3597
|
+
exp += 1
|
3598
|
+
end
|
3599
|
+
|
3600
|
+
return coeff, exp
|
3601
|
+
end
|
3602
|
+
|
3603
|
+
# Compute an approximation to exp(c*10**e), with p decimal places of precision.
|
3604
|
+
# Returns integers d, f such that:
|
3605
|
+
#
|
3606
|
+
# 10**(p-1) <= d <= 10**p, and
|
3607
|
+
# (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
3608
|
+
#
|
3609
|
+
# In other words, d*10**f is an approximation to exp(c*10**e) with p
|
3610
|
+
# digits of precision, and with an error in d of at most 1. This is
|
3611
|
+
# almost, but not quite, the same as the error being < 1ulp: when d
|
3612
|
+
# = 10**(p-1) the error could be up to 10 ulp.
|
3613
|
+
def _dexp(c, e, p)
|
3614
|
+
# we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
3615
|
+
p += 2
|
3616
|
+
|
3617
|
+
# compute log(10) with extra precision = adjusted exponent of c*10**e
|
3618
|
+
extra = [0, e + c.to_s.length - 1].max
|
3619
|
+
q = p + extra
|
3620
|
+
|
3621
|
+
# compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
3622
|
+
# rounding down
|
3623
|
+
shift = e+q
|
3624
|
+
if shift >= 0
|
3625
|
+
cshift = c*10**shift
|
3626
|
+
else
|
3627
|
+
cshift = c/10**-shift
|
3628
|
+
end
|
3629
|
+
quot, rem = cshift.divmod(_log10_digits(q))
|
3630
|
+
|
3631
|
+
# reduce remainder back to original precision
|
3632
|
+
rem = _div_nearest(rem, 10**extra)
|
3633
|
+
|
3634
|
+
# error in result of _iexp < 120; error after division < 0.62
|
3635
|
+
return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
3636
|
+
end
|
3637
|
+
|
3638
|
+
# Closest integer to a/b, a and b positive integers; rounds to even
|
3639
|
+
# in the case of a tie.
|
3640
|
+
def _div_nearest(a, b)
|
3641
|
+
q, r = a.divmod(b)
|
3642
|
+
q + (((2*r + (q&1)) > b) ? 1 : 0)
|
3643
|
+
end
|
3644
|
+
|
3645
|
+
# Closest integer to the square root of the positive integer n. a is
|
3646
|
+
# an initial approximation to the square root. Any positive integer
|
3647
|
+
# will do for a, but the closer a is to the square root of n the
|
3648
|
+
# faster convergence will be.
|
3649
|
+
def _sqrt_nearest(n, a)
|
3650
|
+
|
3651
|
+
if n <= 0 or a <= 0
|
3652
|
+
raise ArgumentError, "Both arguments to _sqrt_nearest should be positive."
|
3653
|
+
end
|
3654
|
+
|
3655
|
+
b=0
|
3656
|
+
while a != b
|
3657
|
+
b, a = a, a--n/a>>1 # ??
|
3658
|
+
end
|
3659
|
+
return a
|
3660
|
+
end
|
3661
|
+
|
3662
|
+
# Given an integer x and a nonnegative integer shift, return closest
|
3663
|
+
# integer to x / 2**shift; use round-to-even in case of a tie.
|
3664
|
+
def _rshift_nearest(x, shift)
|
3665
|
+
b, q = (1 << shift), (x >> shift)
|
3666
|
+
return q + (((2*(x & (b-1)) + (q&1)) > b) ? 1 : 0)
|
3667
|
+
#return q + (2*(x & (b-1)) + (((q&1) > b) ? 1 : 0))
|
3668
|
+
end
|
3669
|
+
|
3670
|
+
# Integer approximation to M*log(x/M), with absolute error boundable
|
3671
|
+
# in terms only of x/M.
|
3672
|
+
#
|
3673
|
+
# Given positive integers x and M, return an integer approximation to
|
3674
|
+
# M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
|
3675
|
+
# between the approximation and the exact result is at most 22. For
|
3676
|
+
# L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
|
3677
|
+
# both cases these are upper bounds on the error; it will usually be
|
3678
|
+
# much smaller.
|
3679
|
+
def _ilog(x, m, l = 8)
|
3680
|
+
# The basic algorithm is the following: let log1p be the function
|
3681
|
+
# log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
|
3682
|
+
# the reduction
|
3683
|
+
#
|
3684
|
+
# log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
|
3685
|
+
#
|
3686
|
+
# repeatedly until the argument to log1p is small (< 2**-L in
|
3687
|
+
# absolute value). For small y we can use the Taylor series
|
3688
|
+
# expansion
|
3689
|
+
#
|
3690
|
+
# log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
|
3691
|
+
#
|
3692
|
+
# truncating at T such that y**T is small enough. The whole
|
3693
|
+
# computation is carried out in a form of fixed-point arithmetic,
|
3694
|
+
# with a real number z being represented by an integer
|
3695
|
+
# approximation to z*M. To avoid loss of precision, the y below
|
3696
|
+
# is actually an integer approximation to 2**R*y*M, where R is the
|
3697
|
+
# number of reductions performed so far.
|
3698
|
+
|
3699
|
+
y = x-m
|
3700
|
+
# argument reduction; R = number of reductions performed
|
3701
|
+
r = 0
|
3702
|
+
# while (r <= l && y.abs << l-r >= m ||
|
3703
|
+
# r > l and y.abs>> r-l >= m)
|
3704
|
+
while (((r <= l) && ((y.abs << (l-r)) >= m)) ||
|
3705
|
+
((r > l) && ((y.abs>>(r-l)) >= m)))
|
3706
|
+
y = _div_nearest((m*y) << 1,
|
3707
|
+
m + _sqrt_nearest(m*(m+_rshift_nearest(y, r)), m))
|
3708
|
+
r += 1
|
3709
|
+
end
|
3710
|
+
|
3711
|
+
# Taylor series with T terms
|
3712
|
+
t = -(-10*m.to_s.length/(3*l)).to_i
|
3713
|
+
yshift = _rshift_nearest(y, r)
|
3714
|
+
w = _div_nearest(m, t)
|
3715
|
+
# (1...t).reverse_each do |k| # Ruby 1.9
|
3716
|
+
(1...t).to_a.reverse.each do |k|
|
3717
|
+
w = _div_nearest(m, k) - _div_nearest(yshift*w, m)
|
3718
|
+
end
|
3719
|
+
|
3720
|
+
return _div_nearest(w*y, m)
|
3721
|
+
end
|
3722
|
+
|
3723
|
+
# Given integers c, e and p with c > 0, p >= 0, compute an integer
|
3724
|
+
# approximation to 10**p * log10(c*10**e), with an absolute error of
|
3725
|
+
# at most 1. Assumes that c*10**e is not exactly 1.
|
3726
|
+
def _dlog10(c, e, p)
|
3727
|
+
# increase precision by 2; compensate for this by dividing
|
3728
|
+
# final result by 100
|
3729
|
+
p += 2
|
3730
|
+
|
3731
|
+
# write c*10**e as d*10**f with either:
|
3732
|
+
# f >= 0 and 1 <= d <= 10, or
|
3733
|
+
# f <= 0 and 0.1 <= d <= 1.
|
3734
|
+
# Thus for c*10**e close to 1, f = 0
|
3735
|
+
l = c.to_s.length
|
3736
|
+
f = e+l - ((e+l >= 1) ? 1 : 0)
|
3737
|
+
|
3738
|
+
if p > 0
|
3739
|
+
m = 10**p
|
3740
|
+
k = e+p-f
|
3741
|
+
if k >= 0
|
3742
|
+
c *= 10**k
|
3743
|
+
else
|
3744
|
+
c = _div_nearest(c, 10**-k)
|
3745
|
+
end
|
3746
|
+
log_d = _ilog(c, m) # error < 5 + 22 = 27
|
3747
|
+
log_10 = _log10_digits(p) # error < 1
|
3748
|
+
log_d = _div_nearest(log_d*m, log_10)
|
3749
|
+
log_tenpower = f*m # exact
|
3750
|
+
else
|
3751
|
+
log_d = 0 # error < 2.31
|
3752
|
+
log_tenpower = _div_nearest(f, 10**-p) # error < 0.5
|
3753
|
+
end
|
3754
|
+
|
3755
|
+
return _div_nearest(log_tenpower+log_d, 100)
|
3756
|
+
end
|
3757
|
+
|
3758
|
+
# Compute a lower bound for 100*log10(c) for a positive integer c.
|
3759
|
+
def _log10_lb(c, correction = {
|
3760
|
+
'1'=> 100, '2'=> 70, '3'=> 53, '4'=> 40, '5'=> 31,
|
3761
|
+
'6'=> 23, '7'=> 16, '8'=> 10, '9'=> 5})
|
3762
|
+
raise ArgumentError, "The argument to _log10_lb should be nonnegative." if c <= 0
|
3763
|
+
str_c = c.to_s
|
3764
|
+
return 100*str_c.length - correction[str_c[0,1]]
|
3765
|
+
end
|
3766
|
+
|
3767
|
+
# Given integers c, e and p with c > 0, compute an integer
|
3768
|
+
# approximation to 10**p * log(c*10**e), with an absolute error of
|
3769
|
+
# at most 1. Assumes that c*10**e is not exactly 1.
|
3770
|
+
def _dlog(c, e, p)
|
3771
|
+
|
3772
|
+
# Increase precision by 2. The precision increase is compensated
|
3773
|
+
# for at the end with a division by 100.
|
3774
|
+
p += 2
|
3775
|
+
|
3776
|
+
# rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
|
3777
|
+
# or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
|
3778
|
+
# as 10**p * log(d) + 10**p*f * log(10).
|
3779
|
+
l = c.to_s.length
|
3780
|
+
f = e+l - ((e+l >= 1) ? 1 : 0)
|
3781
|
+
|
3782
|
+
# compute approximation to 10**p*log(d), with error < 27
|
3783
|
+
if p > 0
|
3784
|
+
k = e+p-f
|
3785
|
+
if k >= 0
|
3786
|
+
c *= 10**k
|
3787
|
+
else
|
3788
|
+
c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
|
3789
|
+
end
|
3790
|
+
|
3791
|
+
# _ilog magnifies existing error in c by a factor of at most 10
|
3792
|
+
log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
|
3793
|
+
else
|
3794
|
+
# p <= 0: just approximate the whole thing by 0; error < 2.31
|
3795
|
+
log_d = 0
|
3796
|
+
end
|
3797
|
+
|
3798
|
+
# compute approximation to f*10**p*log(10), with error < 11.
|
3799
|
+
if f
|
3800
|
+
extra = f.abs.to_s.length - 1
|
3801
|
+
if p + extra >= 0
|
3802
|
+
# error in f * _log10_digits(p+extra) < |f| * 1 = |f|
|
3803
|
+
# after division, error < |f|/10**extra + 0.5 < 10 + 0.5 < 11
|
3804
|
+
f_log_ten = _div_nearest(f*_log10_digits(p+extra), 10**extra)
|
3805
|
+
else
|
3806
|
+
f_log_ten = 0
|
3807
|
+
end
|
3808
|
+
else
|
3809
|
+
f_log_ten = 0
|
3810
|
+
end
|
3811
|
+
|
3812
|
+
# error in sum < 11+27 = 38; error after division < 0.38 + 0.5 < 1
|
3813
|
+
return _div_nearest(f_log_ten + log_d, 100)
|
3814
|
+
end
|
3815
|
+
|
3816
|
+
# Given integers x and M, M > 0, such that x/M is small in absolute
|
3817
|
+
# value, compute an integer approximation to M*exp(x/M). For 0 <=
|
3818
|
+
# x/M <= 2.4, the absolute error in the result is bounded by 60 (and
|
3819
|
+
# is usually much smaller).
|
3820
|
+
def _iexp(x, m, l=8)
|
3821
|
+
|
3822
|
+
# Algorithm: to compute exp(z) for a real number z, first divide z
|
3823
|
+
# by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
|
3824
|
+
# compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
|
3825
|
+
# series
|
3826
|
+
#
|
3827
|
+
# expm1(x) = x + x**2/2! + x**3/3! + ...
|
3828
|
+
#
|
3829
|
+
# Now use the identity
|
3830
|
+
#
|
3831
|
+
# expm1(2x) = expm1(x)*(expm1(x)+2)
|
3832
|
+
#
|
3833
|
+
# R times to compute the sequence expm1(z/2**R),
|
3834
|
+
# expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
|
3835
|
+
|
3836
|
+
# Find R such that x/2**R/M <= 2**-L
|
3837
|
+
r = _nbits((x<<l)/m)
|
3838
|
+
|
3839
|
+
# Taylor series. (2**L)**T > M
|
3840
|
+
t = -(-10*m.to_s.length/(3*l)).to_i
|
3841
|
+
y = _div_nearest(x, t)
|
3842
|
+
mshift = m<<r
|
3843
|
+
(1...t).to_a.reverse.each do |i|
|
3844
|
+
y = _div_nearest(x*(mshift + y), mshift * i)
|
3845
|
+
end
|
3846
|
+
|
3847
|
+
# Expansion
|
3848
|
+
(0...r).to_a.reverse.each do |k|
|
3849
|
+
mshift = m<<(k+2)
|
3850
|
+
y = _div_nearest(y*(y+mshift), mshift)
|
3851
|
+
end
|
3852
|
+
|
3853
|
+
return m+y
|
3854
|
+
end
|
3855
|
+
|
3856
|
+
# We'll memoize the digits of log(10):
|
3857
|
+
@log10_digits = "23025850929940456840179914546843642076011014886"
|
3858
|
+
class <<self
|
3859
|
+
attr_accessor :log10_digits
|
3860
|
+
end
|
3861
|
+
|
3862
|
+
# Given an integer p >= 0, return floor(10**p)*log(10).
|
3863
|
+
def _log10_digits(p)
|
3864
|
+
# digits are stored as a string, for quick conversion to
|
3865
|
+
# integer in the case that we've already computed enough
|
3866
|
+
# digits; the stored digits should always be correct
|
3867
|
+
# (truncated, not rounded to nearest).
|
3868
|
+
raise ArgumentError, "p should be nonnegative" if p<0
|
3869
|
+
if p >= AuxiliarFunctions.log10_digits.length
|
3870
|
+
digits = nil
|
3871
|
+
# compute p+3, p+6, p+9, ... digits; continue until at
|
3872
|
+
# least one of the extra digits is nonzero
|
3873
|
+
extra = 3
|
3874
|
+
loop do
|
3875
|
+
# compute p+extra digits, correct to within 1ulp
|
3876
|
+
m = 10**(p+extra+2)
|
3877
|
+
digits = _div_nearest(_ilog(10*m, m), 100).to_s
|
3878
|
+
break if digits[-extra..-1] != '0'*extra
|
3879
|
+
extra += 3
|
3880
|
+
end
|
3881
|
+
# keep all reliable digits so far; remove trailing zeros
|
3882
|
+
# and next nonzero digit
|
3883
|
+
AuxiliarFunctions.log10_digits = digits.sub(/0*$/,'')[0...-1]
|
3884
|
+
end
|
3885
|
+
return (AuxiliarFunctions.log10_digits[0...p+1]).to_i
|
3886
|
+
end
|
3887
|
+
|
3888
|
+
# Compute an approximation to exp(c*10**e), with p decimal places of
|
3889
|
+
# precision.
|
3890
|
+
#
|
3891
|
+
# Returns integers d, f such that:
|
3892
|
+
#
|
3893
|
+
# 10**(p-1) <= d <= 10**p, and
|
3894
|
+
# (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
|
3895
|
+
#
|
3896
|
+
# In other words, d*10**f is an approximation to exp(c*10**e) with p
|
3897
|
+
# digits of precision, and with an error in d of at most 1. This is
|
3898
|
+
# almost, but not quite, the same as the error being < 1ulp: when d
|
3899
|
+
# = 10**(p-1) the error could be up to 10 ulp.
|
3900
|
+
def dexp(c, e, p)
|
3901
|
+
# we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
|
3902
|
+
p += 2
|
3903
|
+
|
3904
|
+
# compute log(10) with extra precision = adjusted exponent of c*10**e
|
3905
|
+
extra = [0, e + c.to_s.length - 1].max
|
3906
|
+
q = p + extra
|
3907
|
+
|
3908
|
+
# compute quotient c*10**e/(log(10)) = c*10**(e+q)/(log(10)*10**q),
|
3909
|
+
# rounding down
|
3910
|
+
shift = e+q
|
3911
|
+
if shift >= 0
|
3912
|
+
cshift = c*10**shift
|
3913
|
+
else
|
3914
|
+
cshift = c/10**-shift
|
3915
|
+
end
|
3916
|
+
quot, rem = cshift.divmod(_log10_digits(q))
|
3917
|
+
|
3918
|
+
# reduce remainder back to original precision
|
3919
|
+
rem = _div_nearest(rem, 10**extra)
|
3920
|
+
|
3921
|
+
# error in result of _iexp < 120; error after division < 0.62
|
3922
|
+
return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
|
3923
|
+
end
|
3924
|
+
|
3925
|
+
end # AuxiliarFunctions
|
3926
|
+
|
3927
|
+
# This is for using auxiliar functions from Decimal instance method
|
3928
|
+
# without the "AuxiliarFunctions." prefix
|
3929
|
+
include AuxiliarFunctions
|
3930
|
+
# If we need to use them from Decimal class methods, we can avoid
|
3931
|
+
# the use of the prefix with:
|
3932
|
+
# extend AuxiliarFunctions
|
3933
|
+
|
2740
3934
|
end
|
2741
3935
|
|
2742
3936
|
# Decimal constructor. See Decimal#new for the parameters.
|