ruby-calc 0.1.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.gitignore +15 -0
- data/.rubocop.yml +52 -0
- data/.rubocop_todo.yml +11 -0
- data/.travis.yml +15 -0
- data/.yardopts +1 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +497 -0
- data/Rakefile +23 -0
- data/bin/console +10 -0
- data/bin/install_calc.sh +18 -0
- data/bin/makefile.patch +48 -0
- data/bin/setup +7 -0
- data/bin/todo.rb +374 -0
- data/ext/calc/c.c +775 -0
- data/ext/calc/calc.c +192 -0
- data/ext/calc/calc.h +71 -0
- data/ext/calc/config.c +239 -0
- data/ext/calc/convert.c +193 -0
- data/ext/calc/extconf.rb +29 -0
- data/ext/calc/math_error.c +72 -0
- data/ext/calc/numeric.c +623 -0
- data/ext/calc/q.c +2755 -0
- data/lib/calc.rb +214 -0
- data/lib/calc/c.rb +371 -0
- data/lib/calc/import.rb +6 -0
- data/lib/calc/numeric.rb +208 -0
- data/lib/calc/q.rb +628 -0
- data/lib/calc/version.rb +3 -0
- data/ruby-calc.gemspec +29 -0
- metadata +167 -0
data/ext/calc/q.c
ADDED
@@ -0,0 +1,2755 @@
|
|
1
|
+
#include "calc.h"
|
2
|
+
|
3
|
+
/* Document-class: Calc::Q
|
4
|
+
*
|
5
|
+
* Calc rational number (fraction).
|
6
|
+
*
|
7
|
+
* A rational number consists of an arbitrarily large numerator and
|
8
|
+
* denominator. The numerator and denominator are always in lowest terms, and
|
9
|
+
* the sign of the number is contained in the numerator.
|
10
|
+
*
|
11
|
+
* Wraps the libcalc C type NUMBER*.
|
12
|
+
*/
|
13
|
+
VALUE cQ;
|
14
|
+
|
15
|
+
/*****************************************************************************
|
16
|
+
* functions related to memory allocation and object initialization *
|
17
|
+
*****************************************************************************/
|
18
|
+
|
19
|
+
static ID id_add;
|
20
|
+
static ID id_and;
|
21
|
+
static ID id_coerce;
|
22
|
+
static ID id_divide;
|
23
|
+
static ID id_multiply;
|
24
|
+
static ID id_new;
|
25
|
+
static ID id_or;
|
26
|
+
static ID id_spaceship;
|
27
|
+
static ID id_subtract;
|
28
|
+
static ID id_xor;
|
29
|
+
|
30
|
+
void
|
31
|
+
cq_free(void *p)
|
32
|
+
{
|
33
|
+
qfree((NUMBER *) p);
|
34
|
+
}
|
35
|
+
|
36
|
+
const rb_data_type_t calc_q_type = {
|
37
|
+
"Calc::Q",
|
38
|
+
{0, cq_free, 0}, /* TODO: 3rd param is optional dsize */
|
39
|
+
0, 0
|
40
|
+
#ifdef RUBY_TYPED_FREE_IMMEDATELY
|
41
|
+
, RUBY_TYPED_FREE_IMMEDIATELY /* flags is in 2.1+ */
|
42
|
+
#endif
|
43
|
+
};
|
44
|
+
|
45
|
+
/* because the true type of rationals in calc is (NUMBER*), we don't do any
|
46
|
+
* additional memory allocation in cq_alloc. the 'data' elemnt of underlying
|
47
|
+
* RTypedData struct is accessed directly via the DATA_PTR macro.
|
48
|
+
*
|
49
|
+
* DATA_PTR isn't documented, but it is used by some built in ruby ext libs.
|
50
|
+
*
|
51
|
+
* the data element can be replaced by assining to the DATA_PTR macro. be
|
52
|
+
* careful to free any existing value before replacing (most qmath.c functions
|
53
|
+
* actually allocate a new NUMBER and return a pointer to it).
|
54
|
+
*/
|
55
|
+
|
56
|
+
/* no additional allocation beyond normal ruby alloc is required */
|
57
|
+
VALUE
|
58
|
+
cq_alloc(VALUE klass)
|
59
|
+
{
|
60
|
+
return TypedData_Wrap_Struct(klass, &calc_q_type, 0);
|
61
|
+
}
|
62
|
+
|
63
|
+
/* Creates a new rational number.
|
64
|
+
*
|
65
|
+
* Arguments are either a numerator/denominator pair, or a single numerator.
|
66
|
+
* With a single parameter, a denominator of 1 is implied. Valid types are:
|
67
|
+
* * Fixnum
|
68
|
+
* * Bignum
|
69
|
+
* * Rational
|
70
|
+
* * Calc::Q
|
71
|
+
* * String
|
72
|
+
* * Float
|
73
|
+
*
|
74
|
+
* Strings can be in rational, floating point, exponential, hex or octal, eg:
|
75
|
+
* Calc::Q("3/10") #=> Calc::Q(0.3)
|
76
|
+
* Calc::Q("0.5") #=> Calc::Q(0.5)
|
77
|
+
* Calc::Q("1e10") #=> Calc::Q(10000000000)
|
78
|
+
* Calc::Q("1e-10") #=> Calc::Q(0.0000000001)
|
79
|
+
* Calc::Q("0x2a") #=> Calc::Q(42)
|
80
|
+
* Calc::Q("052") #=> Calc::Q(42)
|
81
|
+
*
|
82
|
+
* Note that a Float cannot precisely equal many values; it will be converted
|
83
|
+
* the the closest rational number which may not be what you expect, eg:
|
84
|
+
* Calc::Q(0.3) #=> Calc::Q(~0.29999999999999998890)
|
85
|
+
* for this reason, it is best to avoid Floats. Libcalc's string parsing will
|
86
|
+
* work better:
|
87
|
+
* Calc::Q("0.3") #=> Calc::Q(0.3)
|
88
|
+
*
|
89
|
+
* @param num [Numeric,Calc::Q,String]
|
90
|
+
* @param den [Numeric,Calc::Q,String] (optional)
|
91
|
+
* @return [Calc::Q]
|
92
|
+
* @raise [ZeroDivisionError] if denominator of new number is zero
|
93
|
+
*/
|
94
|
+
static VALUE
|
95
|
+
cq_initialize(int argc, VALUE * argv, VALUE self)
|
96
|
+
{
|
97
|
+
NUMBER *qself, *qnum, *qden;
|
98
|
+
VALUE num, den;
|
99
|
+
setup_math_error();
|
100
|
+
|
101
|
+
if (rb_scan_args(argc, argv, "11", &num, &den) == 1) {
|
102
|
+
/* single param */
|
103
|
+
qself = value_to_number(num, 1);
|
104
|
+
}
|
105
|
+
else {
|
106
|
+
/* 2 params. divide first by second. */
|
107
|
+
qden = value_to_number(den, 1);
|
108
|
+
if (qiszero(qden)) {
|
109
|
+
qfree(qden);
|
110
|
+
rb_raise(rb_eZeroDivError, "division by zero");
|
111
|
+
}
|
112
|
+
qnum = value_to_number(num, 1);
|
113
|
+
qself = qqdiv(qnum, qden);
|
114
|
+
qfree(qden);
|
115
|
+
qfree(qnum);
|
116
|
+
}
|
117
|
+
DATA_PTR(self) = qself;
|
118
|
+
|
119
|
+
return self;
|
120
|
+
}
|
121
|
+
|
122
|
+
static VALUE
|
123
|
+
cq_initialize_copy(VALUE obj, VALUE orig)
|
124
|
+
{
|
125
|
+
NUMBER *qorig, *qobj;
|
126
|
+
|
127
|
+
if (obj == orig) {
|
128
|
+
return obj;
|
129
|
+
}
|
130
|
+
if (!CALC_Q_P(orig)) {
|
131
|
+
rb_raise(rb_eTypeError, "wrong argument type");
|
132
|
+
}
|
133
|
+
|
134
|
+
qorig = DATA_PTR(orig);
|
135
|
+
qobj = qlink(qorig);
|
136
|
+
DATA_PTR(obj) = qobj;
|
137
|
+
|
138
|
+
return obj;
|
139
|
+
}
|
140
|
+
|
141
|
+
/*****************************************************************************
|
142
|
+
* private functions used by instance methods *
|
143
|
+
*****************************************************************************/
|
144
|
+
|
145
|
+
static VALUE
|
146
|
+
numeric_op(VALUE self, VALUE other,
|
147
|
+
NUMBER * (*fqq) (NUMBER *, NUMBER *), NUMBER * (*fql) (NUMBER *, long), ID func)
|
148
|
+
{
|
149
|
+
NUMBER *qother, *qresult;
|
150
|
+
VALUE ary;
|
151
|
+
setup_math_error();
|
152
|
+
|
153
|
+
if (fql && TYPE(other) == T_FIXNUM) {
|
154
|
+
qresult = (*fql) (DATA_PTR(self), NUM2LONG(other));
|
155
|
+
}
|
156
|
+
else if (CALC_Q_P(other)) {
|
157
|
+
qresult = (*fqq) (DATA_PTR(self), DATA_PTR(other));
|
158
|
+
}
|
159
|
+
else if (TYPE(other) == T_FIXNUM || TYPE(other) == T_BIGNUM || TYPE(other) == T_FLOAT
|
160
|
+
|| TYPE(other) == T_RATIONAL) {
|
161
|
+
qother = value_to_number(other, 0);
|
162
|
+
qresult = (*fqq) (DATA_PTR(self), qother);
|
163
|
+
qfree(qother);
|
164
|
+
}
|
165
|
+
else if (rb_respond_to(other, id_coerce)) {
|
166
|
+
if (TYPE(other) == T_COMPLEX) {
|
167
|
+
other = rb_funcall(cC, id_new, 1, other);
|
168
|
+
}
|
169
|
+
ary = rb_funcall(other, id_coerce, 1, self);
|
170
|
+
if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
|
171
|
+
rb_raise(rb_eTypeError, "coerce must return [x, y]");
|
172
|
+
}
|
173
|
+
return rb_funcall(RARRAY_AREF(ary, 0), func, 1, RARRAY_AREF(ary, 1));
|
174
|
+
}
|
175
|
+
else {
|
176
|
+
rb_raise(rb_eTypeError,
|
177
|
+
"%" PRIsVALUE " (%" PRIsVALUE ") can't be coerced into %" PRIsVALUE, other,
|
178
|
+
rb_obj_class(other), rb_obj_class(self));
|
179
|
+
}
|
180
|
+
return wrap_number(qresult);
|
181
|
+
}
|
182
|
+
|
183
|
+
static VALUE
|
184
|
+
trans_function(int argc, VALUE * argv, VALUE self, NUMBER * (*f) (NUMBER *, NUMBER *),
|
185
|
+
COMPLEX * (*fcomplex) (COMPLEX *, NUMBER *))
|
186
|
+
{
|
187
|
+
NUMBER *qepsilon, *qresult;
|
188
|
+
COMPLEX *cself, *cresult;
|
189
|
+
VALUE epsilon, result;
|
190
|
+
setup_math_error();
|
191
|
+
|
192
|
+
if (rb_scan_args(argc, argv, "01", &epsilon) == 0) {
|
193
|
+
qepsilon = NULL;
|
194
|
+
}
|
195
|
+
else {
|
196
|
+
qepsilon = value_to_number(epsilon, 1);
|
197
|
+
}
|
198
|
+
qresult = (*f) (DATA_PTR(self), qepsilon ? qepsilon : conf->epsilon);
|
199
|
+
if (qresult) {
|
200
|
+
result = wrap_number(qresult);
|
201
|
+
}
|
202
|
+
else if (fcomplex) {
|
203
|
+
/* non-real result, call complex version. see calc's func.c */
|
204
|
+
cself = comalloc();
|
205
|
+
qfree(cself->real);
|
206
|
+
cself->real = qlink((NUMBER *) DATA_PTR(self));
|
207
|
+
cresult = (*fcomplex) (cself, qepsilon ? qepsilon : conf->epsilon);
|
208
|
+
comfree(cself);
|
209
|
+
if (cresult) {
|
210
|
+
result = wrap_complex(cresult);
|
211
|
+
}
|
212
|
+
else {
|
213
|
+
/* Can this happen? */
|
214
|
+
rb_raise(e_MathError,
|
215
|
+
"Unhandled NULL from complex version of transcendental function");
|
216
|
+
}
|
217
|
+
}
|
218
|
+
else {
|
219
|
+
if (qepsilon) {
|
220
|
+
qfree(qepsilon);
|
221
|
+
}
|
222
|
+
rb_raise(e_MathError, "Unhandled NULL from transcendental function");
|
223
|
+
}
|
224
|
+
if (qepsilon) {
|
225
|
+
qfree(qepsilon);
|
226
|
+
}
|
227
|
+
return result;
|
228
|
+
}
|
229
|
+
|
230
|
+
/* same as trans_function(), except for functions where there are 2 NUMBER*
|
231
|
+
* arguments, eg atan2. the first param is the receiver (self). */
|
232
|
+
static VALUE
|
233
|
+
trans_function2(int argc, VALUE * argv, VALUE self,
|
234
|
+
NUMBER * (*f) (NUMBER *, NUMBER *, NUMBER *))
|
235
|
+
{
|
236
|
+
NUMBER *qarg, *qepsilon, *qresult;
|
237
|
+
VALUE arg, epsilon;
|
238
|
+
setup_math_error();
|
239
|
+
|
240
|
+
if (rb_scan_args(argc, argv, "11", &arg, &epsilon) == 1) {
|
241
|
+
qarg = value_to_number(arg, 0);
|
242
|
+
qresult = (*f) (DATA_PTR(self), qarg, conf->epsilon);
|
243
|
+
qfree(qarg);
|
244
|
+
}
|
245
|
+
else {
|
246
|
+
qarg = value_to_number(arg, 0);
|
247
|
+
qepsilon = value_to_number(epsilon, 1);
|
248
|
+
qresult = (*f) (DATA_PTR(self), qarg, qepsilon);
|
249
|
+
qfree(qarg);
|
250
|
+
qfree(qepsilon);
|
251
|
+
}
|
252
|
+
if (!qresult) {
|
253
|
+
rb_raise(e_MathError, "Transcendental function returned NULL");
|
254
|
+
}
|
255
|
+
return wrap_number(qresult);
|
256
|
+
}
|
257
|
+
|
258
|
+
static VALUE
|
259
|
+
rounding_function(int argc, VALUE * argv, VALUE self, NUMBER * (f) (NUMBER *, long, long))
|
260
|
+
{
|
261
|
+
VALUE places, rnd;
|
262
|
+
long n, p, r;
|
263
|
+
setup_math_error();
|
264
|
+
|
265
|
+
n = rb_scan_args(argc, argv, "02", &places, &rnd);
|
266
|
+
p = (n >= 1) ? value_to_long(places) : 0;
|
267
|
+
r = (n == 2) ? value_to_long(rnd) : conf->round;
|
268
|
+
return wrap_number((*f) (DATA_PTR(self), p, r));
|
269
|
+
}
|
270
|
+
|
271
|
+
static VALUE
|
272
|
+
cand_navigation(int argc, VALUE * argv, VALUE self,
|
273
|
+
BOOL(f) (ZVALUE, long, ZVALUE, ZVALUE, ZVALUE, ZVALUE *))
|
274
|
+
{
|
275
|
+
VALUE count, skip, residue, modulus;
|
276
|
+
NUMBER *qself, *qcount, *qskip, *qresidue, *qmodulus, *qresult;
|
277
|
+
ZVALUE tmp;
|
278
|
+
int n;
|
279
|
+
const char *error = NULL;
|
280
|
+
setup_math_error();
|
281
|
+
|
282
|
+
n = rb_scan_args(argc, argv, "04", &count, &skip, &residue, &modulus);
|
283
|
+
qself = DATA_PTR(self);
|
284
|
+
qcount = (n >= 1) ? value_to_number(count, 1) : qlink(&_qone_);
|
285
|
+
qskip = (n >= 2) ? value_to_number(skip, 1) : qlink(&_qone_);
|
286
|
+
qresidue = (n >= 3) ? value_to_number(residue, 1) : qlink(&_qzero_);
|
287
|
+
qmodulus = (n >= 4) ? value_to_number(modulus, 1) : qlink(&_qone_);
|
288
|
+
qresult = NULL;
|
289
|
+
|
290
|
+
if (!qisint(qself) || !qisint(qcount) || !qisint(qskip) || !qisint(qresidue)
|
291
|
+
|| !qisint(qmodulus)) {
|
292
|
+
error = "receiver and all arguments must be integers";
|
293
|
+
}
|
294
|
+
else if (zge24b(qcount->num)) {
|
295
|
+
error = "count must be < 2^24";
|
296
|
+
}
|
297
|
+
else {
|
298
|
+
if ((*f)
|
299
|
+
(qself->num, ztoi(qcount->num), qskip->num, qresidue->num, qmodulus->num, &tmp)) {
|
300
|
+
qresult = qalloc();
|
301
|
+
qresult->num = tmp;
|
302
|
+
}
|
303
|
+
}
|
304
|
+
|
305
|
+
qfree(qcount);
|
306
|
+
qfree(qskip);
|
307
|
+
qfree(qresidue);
|
308
|
+
qfree(qmodulus);
|
309
|
+
|
310
|
+
if (error) {
|
311
|
+
rb_raise(e_MathError, "%s", error);
|
312
|
+
}
|
313
|
+
else if (qresult) {
|
314
|
+
return wrap_number(qresult);
|
315
|
+
}
|
316
|
+
return Qnil;
|
317
|
+
}
|
318
|
+
|
319
|
+
static VALUE
|
320
|
+
trunc_function(int argc, VALUE * argv, VALUE self, NUMBER * (f) (NUMBER *, NUMBER *))
|
321
|
+
{
|
322
|
+
VALUE places;
|
323
|
+
NUMBER *qplaces, *qresult;
|
324
|
+
setup_math_error();
|
325
|
+
|
326
|
+
if (rb_scan_args(argc, argv, "01", &places) == 1) {
|
327
|
+
qplaces = value_to_number(places, 0);
|
328
|
+
qresult = (*f) (DATA_PTR(self), qplaces);
|
329
|
+
qfree(qplaces);
|
330
|
+
}
|
331
|
+
else {
|
332
|
+
qresult = (*f) (DATA_PTR(self), &_qzero_);
|
333
|
+
}
|
334
|
+
return wrap_number(qresult);
|
335
|
+
}
|
336
|
+
|
337
|
+
/*****************************************************************************
|
338
|
+
* instance method implementations *
|
339
|
+
*****************************************************************************/
|
340
|
+
|
341
|
+
/* Bitwise AND
|
342
|
+
*
|
343
|
+
* @param y [Integer]
|
344
|
+
* @return [Calc::Q]
|
345
|
+
* @example
|
346
|
+
* Calc::Q(18) & 20 #=> Calc::Q(16)
|
347
|
+
*/
|
348
|
+
static VALUE
|
349
|
+
cq_and(VALUE x, VALUE y)
|
350
|
+
{
|
351
|
+
return numeric_op(x, y, &qand, NULL, id_and);
|
352
|
+
}
|
353
|
+
|
354
|
+
/* Performs multiplication.
|
355
|
+
*
|
356
|
+
* @param y [Numeric,Calc::Q]
|
357
|
+
* @return [Calc::Q]
|
358
|
+
* @example:
|
359
|
+
* Calc::Q(2) * 3 #=> Calc::Q(6)
|
360
|
+
*/
|
361
|
+
static VALUE
|
362
|
+
cq_multiply(VALUE x, VALUE y)
|
363
|
+
{
|
364
|
+
return numeric_op(x, y, &qmul, &qmuli, id_multiply);
|
365
|
+
}
|
366
|
+
|
367
|
+
/* Performs addition.
|
368
|
+
*
|
369
|
+
* @param y [Numeric,Calc::Q]
|
370
|
+
* @return [Calc::Q]
|
371
|
+
* @example
|
372
|
+
* Calc::Q(1) + 2 #=> Calc::Q(3)
|
373
|
+
*/
|
374
|
+
static VALUE
|
375
|
+
cq_add(VALUE x, VALUE y)
|
376
|
+
{
|
377
|
+
/* fourth arg was &qaddi, but this segfaults with ruby 2.1.x */
|
378
|
+
return numeric_op(x, y, &qqadd, NULL, id_add);
|
379
|
+
}
|
380
|
+
|
381
|
+
/* Performs subtraction.
|
382
|
+
*
|
383
|
+
* @param y [Numeric,Calc::Q]
|
384
|
+
* @return [Calc::Q]
|
385
|
+
* @example:
|
386
|
+
* Calc::Q(1) - 2 #=> Calc::Q(-1)
|
387
|
+
*/
|
388
|
+
static VALUE
|
389
|
+
cq_subtract(VALUE x, VALUE y)
|
390
|
+
{
|
391
|
+
return numeric_op(x, y, &qsub, NULL, id_subtract);
|
392
|
+
}
|
393
|
+
|
394
|
+
/* Unary minus. Returns the receiver's value, negated.
|
395
|
+
*
|
396
|
+
* @return [Calc::Q]
|
397
|
+
* @example
|
398
|
+
* -Calc::Q(1) #=> Calc::Q(-1)
|
399
|
+
*/
|
400
|
+
static VALUE
|
401
|
+
cq_uminus(VALUE self)
|
402
|
+
{
|
403
|
+
setup_math_error();
|
404
|
+
return wrap_number(qsub(&_qzero_, DATA_PTR(self)));
|
405
|
+
}
|
406
|
+
|
407
|
+
/* Performs division.
|
408
|
+
*
|
409
|
+
* @param y [Numeric,Calc::Q]
|
410
|
+
* @return [Calc::Q]
|
411
|
+
* @raise [Calc::MathError] if other is zero
|
412
|
+
* @example:
|
413
|
+
* Calc::Q(2) / 4 #=> Calc::Q(0.5)
|
414
|
+
*/
|
415
|
+
static VALUE
|
416
|
+
cq_divide(VALUE x, VALUE y)
|
417
|
+
{
|
418
|
+
return numeric_op(x, y, &qqdiv, &qdivi, id_divide);
|
419
|
+
}
|
420
|
+
|
421
|
+
/* Comparison - Returns -1, 0, +1 or nil depending on whether `y` is less than,
|
422
|
+
* equal to, or greater than `x`.
|
423
|
+
*
|
424
|
+
* This is used by the `Comparable` module to implement `==`, `!=`, `<`, `<=`,
|
425
|
+
* `>` and `>=`.
|
426
|
+
*
|
427
|
+
* nil is returned if the two values are incomparable.
|
428
|
+
*
|
429
|
+
* @param other [Numeric,Calc::Q]
|
430
|
+
* @return [Fixnum,nil]
|
431
|
+
* @example:
|
432
|
+
* Calc::Q(5) <=> 4 #=> 1
|
433
|
+
* Calc::Q(5) <=> 5.1 #=> -1
|
434
|
+
* Calc::Q(5) <=> 5 #=> 0
|
435
|
+
* Calc::Q(5) <=> "cat" #=> nil
|
436
|
+
*/
|
437
|
+
static VALUE
|
438
|
+
cq_spaceship(VALUE self, VALUE other)
|
439
|
+
{
|
440
|
+
VALUE ary;
|
441
|
+
NUMBER *qself, *qother;
|
442
|
+
int result;
|
443
|
+
setup_math_error();
|
444
|
+
|
445
|
+
qself = DATA_PTR(self);
|
446
|
+
/* qreli returns incorrect results if self > 0 and other == 0
|
447
|
+
if (TYPE(other) == T_FIXNUM) {
|
448
|
+
result = qreli(qself, NUM2LONG(other));
|
449
|
+
}
|
450
|
+
*/
|
451
|
+
if (CALC_Q_P(other)) {
|
452
|
+
result = qrel(qself, DATA_PTR(other));
|
453
|
+
}
|
454
|
+
else if (TYPE(other) == T_FIXNUM || TYPE(other) == T_BIGNUM || TYPE(other) == T_FLOAT
|
455
|
+
|| TYPE(other) == T_RATIONAL) {
|
456
|
+
qother = value_to_number(other, 0);
|
457
|
+
result = qrel(qself, qother);
|
458
|
+
qfree(qother);
|
459
|
+
}
|
460
|
+
else if (rb_respond_to(other, id_coerce)) {
|
461
|
+
if (TYPE(other) == T_COMPLEX) {
|
462
|
+
other = rb_funcall(cC, id_new, 1, other);
|
463
|
+
}
|
464
|
+
ary = rb_funcall(other, id_coerce, 1, self);
|
465
|
+
if (!RB_TYPE_P(ary, T_ARRAY) || RARRAY_LEN(ary) != 2) {
|
466
|
+
rb_raise(rb_eTypeError, "coerce must return [x, y]");
|
467
|
+
}
|
468
|
+
return rb_funcall(RARRAY_AREF(ary, 0), id_spaceship, 1, RARRAY_AREF(ary, 1));
|
469
|
+
}
|
470
|
+
else {
|
471
|
+
return Qnil;
|
472
|
+
}
|
473
|
+
|
474
|
+
return INT2FIX(result);
|
475
|
+
}
|
476
|
+
|
477
|
+
/* Bitwise exclusive or (xor)
|
478
|
+
*
|
479
|
+
* Note that for ruby compatibility, ^ is an xor operator, unlike in calc
|
480
|
+
* where it is a power operator.
|
481
|
+
*
|
482
|
+
* @return [Calc::Q]
|
483
|
+
* @example
|
484
|
+
* Calc::Q(5).xor(3) #=> Calc::Q(6)
|
485
|
+
*/
|
486
|
+
static VALUE
|
487
|
+
cq_xor(VALUE x, VALUE y)
|
488
|
+
{
|
489
|
+
return numeric_op(x, y, &qxor, NULL, id_xor);
|
490
|
+
}
|
491
|
+
|
492
|
+
/* Bitwise OR
|
493
|
+
*
|
494
|
+
* @param y [Integer]
|
495
|
+
* @return [Calc::Q]
|
496
|
+
* @example
|
497
|
+
* Calc::Q(18) | 20 #=> Calc::Q(22)
|
498
|
+
*/
|
499
|
+
static VALUE
|
500
|
+
cq_or(VALUE x, VALUE y)
|
501
|
+
{
|
502
|
+
return numeric_op(x, y, &qor, NULL, id_or);
|
503
|
+
}
|
504
|
+
|
505
|
+
/* Bitwise NOT (complement)
|
506
|
+
*
|
507
|
+
* This is `-self - 1` if self is an integer, `-self` otherwise.
|
508
|
+
*
|
509
|
+
* @example
|
510
|
+
* ~Calc::Q(7) #=> Calc::Q(-8)
|
511
|
+
* ~Calc::Q(0.5) #=> Calc::Q(-0.5)
|
512
|
+
*/
|
513
|
+
static VALUE
|
514
|
+
cq_comp(VALUE self)
|
515
|
+
{
|
516
|
+
setup_math_error();
|
517
|
+
return wrap_number(qcomp(DATA_PTR(self)));
|
518
|
+
}
|
519
|
+
|
520
|
+
/* Absolute value
|
521
|
+
*
|
522
|
+
* @return [Calc::Q]
|
523
|
+
* @example
|
524
|
+
* Calc::Q(1).abs #=> Calc::Q(1)
|
525
|
+
* Calc::Q(-1).abs #=> Calc::Q(1)
|
526
|
+
*/
|
527
|
+
static VALUE
|
528
|
+
cq_abs(VALUE self)
|
529
|
+
{
|
530
|
+
setup_math_error();
|
531
|
+
return wrap_number(qqabs(DATA_PTR(self)));
|
532
|
+
}
|
533
|
+
|
534
|
+
/* Inverse trigonometric cosine
|
535
|
+
*
|
536
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
537
|
+
* @return [Calc::Q,Calc::C]
|
538
|
+
* @example
|
539
|
+
* Calc::Q(0.5).acos #=> Calc::Q(1.04719755119659774615)
|
540
|
+
* Calc::Q(2.0).acos #=> Calc::C(1.31695789692481670863i)
|
541
|
+
*/
|
542
|
+
static VALUE
|
543
|
+
cq_acos(int argc, VALUE * argv, VALUE self)
|
544
|
+
{
|
545
|
+
return trans_function(argc, argv, self, &qacos, &c_acos);
|
546
|
+
}
|
547
|
+
|
548
|
+
/* Inverse hyperbolic cosine
|
549
|
+
*
|
550
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
551
|
+
* @return [Calc::Q,Calc::C]
|
552
|
+
* @example
|
553
|
+
* Calc::Q(2).acosh #=> Calc::Q(1.31695789692481670862)
|
554
|
+
* Calc::Q(0).acosh #=> Calc::C(1.57079632679489661923i)
|
555
|
+
*/
|
556
|
+
static VALUE
|
557
|
+
cq_acosh(int argc, VALUE * argv, VALUE self)
|
558
|
+
{
|
559
|
+
return trans_function(argc, argv, self, &qacosh, &c_acosh);
|
560
|
+
}
|
561
|
+
|
562
|
+
/* Inverse trigonometric cotangent
|
563
|
+
*
|
564
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
565
|
+
* @return [Calc::Q]
|
566
|
+
* @example
|
567
|
+
* Calc::Q(2).acot #=> Calc::Q(0.46364760900080611621)
|
568
|
+
*/
|
569
|
+
static VALUE
|
570
|
+
cq_acot(int argc, VALUE * argv, VALUE self)
|
571
|
+
{
|
572
|
+
return trans_function(argc, argv, self, &qacot, NULL);
|
573
|
+
}
|
574
|
+
|
575
|
+
/* Inverse hyperbolic cotangent
|
576
|
+
*
|
577
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
578
|
+
* @return [Calc::Q,Calc::C]
|
579
|
+
* @example
|
580
|
+
* Calc::Q(2).acoth #=> Calc::Q(0.5493061443340548457)
|
581
|
+
* Calc::Q(0.5).acoth #=> Calc::C(0.5493061443340548457+1.57079632679489661923i)
|
582
|
+
*/
|
583
|
+
static VALUE
|
584
|
+
cq_acoth(int argc, VALUE * argv, VALUE self)
|
585
|
+
{
|
586
|
+
return trans_function(argc, argv, self, &qacoth, &c_acoth);
|
587
|
+
}
|
588
|
+
|
589
|
+
/* Inverse trigonometric cosecant
|
590
|
+
*
|
591
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
592
|
+
* @return [Calc::Q,Calc::C]
|
593
|
+
* @example
|
594
|
+
* Calc::Q(2).acsc #=> Calc::Q(0.52359877559829887308)
|
595
|
+
* Calc::Q(0.5).acsc #=> Calc::C(1.57079632679489661923-1.31695789692481670863i)
|
596
|
+
*/
|
597
|
+
static VALUE
|
598
|
+
cq_acsc(int argc, VALUE * argv, VALUE self)
|
599
|
+
{
|
600
|
+
return trans_function(argc, argv, self, &qacsc, &c_acsc);
|
601
|
+
}
|
602
|
+
|
603
|
+
/* Inverse hyperbolic cosecant
|
604
|
+
*
|
605
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
606
|
+
* @return [Calc::Q]
|
607
|
+
* @raise [Calc::MathError] if self is zero
|
608
|
+
* @example
|
609
|
+
* Calc::Q(2).acsch #=> Calc::Q(0.4812118250596034475)
|
610
|
+
*/
|
611
|
+
static VALUE
|
612
|
+
cq_acsch(int argc, VALUE * argv, VALUE self)
|
613
|
+
{
|
614
|
+
return trans_function(argc, argv, self, &qacsch, &c_acsch);
|
615
|
+
}
|
616
|
+
|
617
|
+
/* Approximate numbers by multiples of a specified number
|
618
|
+
*
|
619
|
+
* Returns the approximate value of self as specified by an error (defaults to
|
620
|
+
* Calc.config(:epsilon)) and rounding mode (defaults to Calc.config(:appr)).
|
621
|
+
*
|
622
|
+
* Type "help appr" in calc for a description of the rounding modes.
|
623
|
+
*
|
624
|
+
* @param y [Numeric,Calc::Q] (optional) error
|
625
|
+
* @param z [Interger] (optional) rounding mode
|
626
|
+
* @example
|
627
|
+
* Calc::Q("5.44").appr("0.1",0) #=> Calc::Q(5.4)
|
628
|
+
*/
|
629
|
+
static VALUE
|
630
|
+
cq_appr(int argc, VALUE * argv, VALUE self)
|
631
|
+
{
|
632
|
+
VALUE result, epsilon, rounding;
|
633
|
+
NUMBER *qepsilon, *qrounding;
|
634
|
+
long R = 0;
|
635
|
+
int n;
|
636
|
+
setup_math_error();
|
637
|
+
|
638
|
+
n = rb_scan_args(argc, argv, "02", &epsilon, &rounding);
|
639
|
+
if (n == 2) {
|
640
|
+
if (FIXNUM_P(rounding)) {
|
641
|
+
R = FIX2LONG(rounding);
|
642
|
+
}
|
643
|
+
else {
|
644
|
+
qrounding = value_to_number(rounding, 1);
|
645
|
+
if (qisfrac(qrounding)) {
|
646
|
+
rb_raise(e_MathError, "fractional rounding for appr");
|
647
|
+
}
|
648
|
+
R = qtoi(DATA_PTR(qrounding));
|
649
|
+
qfree(qrounding);
|
650
|
+
}
|
651
|
+
}
|
652
|
+
else {
|
653
|
+
R = conf->appr;
|
654
|
+
}
|
655
|
+
if (n >= 1) {
|
656
|
+
qepsilon = value_to_number(epsilon, 1);
|
657
|
+
}
|
658
|
+
else {
|
659
|
+
qepsilon = NULL;
|
660
|
+
}
|
661
|
+
result = wrap_number(qmappr(DATA_PTR(self), qepsilon ? qepsilon : conf->epsilon, R));
|
662
|
+
if (qepsilon) {
|
663
|
+
qfree(qepsilon);
|
664
|
+
}
|
665
|
+
return result;
|
666
|
+
}
|
667
|
+
|
668
|
+
/* Inverse trigonometric secant
|
669
|
+
*
|
670
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
671
|
+
* @return [Calc::Q,Calc::C]
|
672
|
+
* @example
|
673
|
+
* Calc::Q(2).asec #=> Calc::Q(1.04719755119659774615)
|
674
|
+
*/
|
675
|
+
static VALUE
|
676
|
+
cq_asec(int argc, VALUE * argv, VALUE self)
|
677
|
+
{
|
678
|
+
return trans_function(argc, argv, self, &qasec, &c_asec);
|
679
|
+
}
|
680
|
+
|
681
|
+
/* Inverse hyperbolic secant
|
682
|
+
*
|
683
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
684
|
+
* @return [Calc::Q,Calc::C]
|
685
|
+
* @raise [Calc::MathError] if self is zero
|
686
|
+
* @example
|
687
|
+
* Calc::Q(0.5).asech #=> Calc::Q(1.31695789692481670862)
|
688
|
+
*/
|
689
|
+
static VALUE
|
690
|
+
cq_asech(int argc, VALUE * argv, VALUE self)
|
691
|
+
{
|
692
|
+
return trans_function(argc, argv, self, &qasech, &c_asech);
|
693
|
+
}
|
694
|
+
|
695
|
+
/* Inverse trigonometric sine
|
696
|
+
*
|
697
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
698
|
+
* @return [Calc::Q,Calc::C]
|
699
|
+
* @example
|
700
|
+
* Calc::Q(0.5).asin #=> Calc::Q(0.52359877559829887308)
|
701
|
+
*/
|
702
|
+
static VALUE
|
703
|
+
cq_asin(int argc, VALUE * argv, VALUE self)
|
704
|
+
{
|
705
|
+
return trans_function(argc, argv, self, &qasin, &c_asin);
|
706
|
+
}
|
707
|
+
|
708
|
+
/* Inverse hyperbolic sine
|
709
|
+
*
|
710
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
711
|
+
* @return [Calc::Q]
|
712
|
+
* @example
|
713
|
+
* Calc::Q(2).asinh #=> Calc::Q(1.44363547517881034249)
|
714
|
+
*/
|
715
|
+
static VALUE
|
716
|
+
cq_asinh(int argc, VALUE * argv, VALUE self)
|
717
|
+
{
|
718
|
+
return trans_function(argc, argv, self, &qasinh, NULL);
|
719
|
+
}
|
720
|
+
|
721
|
+
/* Inverse trigonometric tangent
|
722
|
+
*
|
723
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
724
|
+
* @return [Calc::Q]
|
725
|
+
* @example
|
726
|
+
* Calc::Q(2).atan #=> Calc::Q(1.10714871779409050302)
|
727
|
+
*/
|
728
|
+
static VALUE
|
729
|
+
cq_atan(int argc, VALUE * argv, VALUE self)
|
730
|
+
{
|
731
|
+
return trans_function(argc, argv, self, &qatan, NULL);
|
732
|
+
}
|
733
|
+
|
734
|
+
/* Angle to point (arctangent with 2 arguments)
|
735
|
+
*
|
736
|
+
* To match normal calling conventions, `y.atan2(x)` is equivalent to
|
737
|
+
* `Math.atan2(y,x)`. To avoid confusion, the class method may be
|
738
|
+
* preferrable: `Calc::Q.atan2(y,x)`.
|
739
|
+
*
|
740
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
741
|
+
* @return [Calc::Q]
|
742
|
+
* @example
|
743
|
+
* Calc::Q(0).atan2(0) #=> Calc::Q(0)
|
744
|
+
* Calc::Q(17).atan2(52) #=> Calc::Q(0.31597027195298044266)
|
745
|
+
*/
|
746
|
+
static VALUE
|
747
|
+
cq_atan2(int argc, VALUE * argv, VALUE self)
|
748
|
+
{
|
749
|
+
return trans_function2(argc, argv, self, &qatan2);
|
750
|
+
}
|
751
|
+
|
752
|
+
/* Inverse hyperbolic tangent
|
753
|
+
*
|
754
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
755
|
+
* @return [Calc::Q,Calc::C]
|
756
|
+
* @example
|
757
|
+
* Calc::Q(0.5).atanh #=> Calc::Q(0.87758256189037271612)
|
758
|
+
*/
|
759
|
+
static VALUE
|
760
|
+
cq_atanh(int argc, VALUE * argv, VALUE self)
|
761
|
+
{
|
762
|
+
return trans_function(argc, argv, self, &qatanh, &c_atanh);
|
763
|
+
}
|
764
|
+
|
765
|
+
/* Returns the bernoulli number with index self. Self must be an integer,
|
766
|
+
* and < 2^31 if even.
|
767
|
+
*
|
768
|
+
* @return [Calc::Q]
|
769
|
+
* @raise [Calc::MathError] if self is fractional or even and >= 2^31
|
770
|
+
* @example
|
771
|
+
* Calc::Q(20).bernoulli.to_s(:frac) #=> "-174611/330"
|
772
|
+
*/
|
773
|
+
static VALUE
|
774
|
+
cq_bernoulli(VALUE self)
|
775
|
+
{
|
776
|
+
NUMBER *qself, *qresult;
|
777
|
+
setup_math_error();
|
778
|
+
|
779
|
+
qself = DATA_PTR(self);
|
780
|
+
if (qisfrac(qself)) {
|
781
|
+
rb_raise(e_MathError, "Non-integer argument for bernoulli");
|
782
|
+
}
|
783
|
+
qresult = qbern(qself->num);
|
784
|
+
if (!qresult) {
|
785
|
+
rb_raise(e_MathError, "Bad argument for bern");
|
786
|
+
}
|
787
|
+
return wrap_number(qresult);
|
788
|
+
}
|
789
|
+
|
790
|
+
/* Returns true if binary bit y is set in self, otherwise false.
|
791
|
+
*
|
792
|
+
* @param y [Numeric] bit position
|
793
|
+
* @return [Boolean]
|
794
|
+
* @example
|
795
|
+
* Calc::Q(9).bit?(0) #=> true
|
796
|
+
* Calc::Q(9).bit?(1) #=> false
|
797
|
+
* @see bit
|
798
|
+
*/
|
799
|
+
static VALUE
|
800
|
+
cq_bitp(VALUE self, VALUE y)
|
801
|
+
{
|
802
|
+
/* this is an "opcode" in calc rather than a builtin ("help bit" is
|
803
|
+
* wrong!). this is based on calc's opcodes.c#o_bit() */
|
804
|
+
NUMBER *qself, *qy;
|
805
|
+
long index;
|
806
|
+
int r;
|
807
|
+
setup_math_error();
|
808
|
+
|
809
|
+
qself = DATA_PTR(self);
|
810
|
+
qy = value_to_number(y, 0);
|
811
|
+
if (qisfrac(qy)) {
|
812
|
+
qfree(qy);
|
813
|
+
rb_raise(e_MathError, "Bad argument type for bit"); /* E_BIT1 */
|
814
|
+
}
|
815
|
+
if (zge31b(qy->num)) {
|
816
|
+
qfree(qy);
|
817
|
+
rb_raise(e_MathError, "Index too large for bit"); /* E_BIT2 */
|
818
|
+
}
|
819
|
+
index = qtoi(qy);
|
820
|
+
qfree(qy);
|
821
|
+
r = qisset(qself, index);
|
822
|
+
return r ? Qtrue : Qfalse;
|
823
|
+
}
|
824
|
+
|
825
|
+
/* Round to a specified number of binary digits
|
826
|
+
*
|
827
|
+
* Rounds self rounded to the specified number of significant binary digits.
|
828
|
+
* For the meanings of the rounding flags, see "help bround".
|
829
|
+
*
|
830
|
+
* @return [Calc::Q]
|
831
|
+
* @param places [Integer] number of binary digits to round to (default 0)
|
832
|
+
* @param rnd [Integer] rounding flags (default Calc.config(:round)
|
833
|
+
* @example
|
834
|
+
* Calc::Q(7,32).bround(3) #=> Calc::Q(0.25)
|
835
|
+
*/
|
836
|
+
static VALUE
|
837
|
+
cq_bround(int argc, VALUE * argv, VALUE self)
|
838
|
+
{
|
839
|
+
return rounding_function(argc, argv, self, &qbround);
|
840
|
+
}
|
841
|
+
|
842
|
+
/* Truncate to a number of binary places
|
843
|
+
*
|
844
|
+
* Truncates to j binary places. If j is omitted, 0 places is assumed.
|
845
|
+
* Truncation of a non-integer prouces values nearer to zero.
|
846
|
+
*
|
847
|
+
* @param j [Integer]
|
848
|
+
* @return [Calc::Q]
|
849
|
+
* @example
|
850
|
+
* Calc.pi.btrunc #=> Calc::Q(3)
|
851
|
+
* Calc.pi.btrunc(5) #=> Calc::Q(3.125)
|
852
|
+
*/
|
853
|
+
static VALUE
|
854
|
+
cq_btrunc(int argc, VALUE * argv, VALUE self)
|
855
|
+
{
|
856
|
+
return trunc_function(argc, argv, self, &qbtrunc);
|
857
|
+
}
|
858
|
+
|
859
|
+
/* Returns the Catalan number for index self. If self is negative, zero is
|
860
|
+
* returned.
|
861
|
+
*
|
862
|
+
* @return [Calc::Q]
|
863
|
+
* @raise [Calc::MathError] if self is not an integer or >= 2^31
|
864
|
+
* @example
|
865
|
+
* Calc::Q(2).catalan #=> Calc::Q(2)
|
866
|
+
* Calc::Q(5).catalan #=> Calc::Q(42)
|
867
|
+
* Calc::Q(20).catalan #=> Calc::Q(6564120420)
|
868
|
+
*/
|
869
|
+
static VALUE
|
870
|
+
cq_catalan(VALUE self)
|
871
|
+
{
|
872
|
+
NUMBER *qself, *qresult;
|
873
|
+
setup_math_error();
|
874
|
+
|
875
|
+
qself = DATA_PTR(self);
|
876
|
+
if (qisfrac(qself)) {
|
877
|
+
rb_raise(e_MathError, "Non-integer value for catalan");
|
878
|
+
}
|
879
|
+
else if (zge31b(qself->num)) {
|
880
|
+
rb_raise(e_MathError, "Value too large for catalan");
|
881
|
+
}
|
882
|
+
qresult = qcatalan(qself);
|
883
|
+
if (!qresult) {
|
884
|
+
rb_raise(e_MathError, "qcatalan() returned NULL");
|
885
|
+
}
|
886
|
+
return wrap_number(qresult);
|
887
|
+
}
|
888
|
+
|
889
|
+
/* Approximation using continued fractions
|
890
|
+
*
|
891
|
+
* If self is an integer or eps is zero, returns x.
|
892
|
+
*
|
893
|
+
* If abs(eps) < 1, returns the smallest denominator number in one of the three
|
894
|
+
* intervals [self, self+abs(eps)], [self-abs(eps), self], [self-abs(eps)/2,
|
895
|
+
* self+abs(eps)/2].
|
896
|
+
*
|
897
|
+
* If eps >= 1 and den(self) > n, returns the nearest above, below or
|
898
|
+
* approximation with denominatior less than or equal to n.
|
899
|
+
*
|
900
|
+
* If den(self) <= eps, returns self.
|
901
|
+
*
|
902
|
+
* When the result is not self, the rounding is controlled by the final
|
903
|
+
* parameter; see "help cfappr" for details.
|
904
|
+
*
|
905
|
+
* @return [Calc::Q]
|
906
|
+
* @param eps [Numeric] epsilon or upper limit of denominator (default: Calc.config("epsilon"))
|
907
|
+
* @param rnd [Integer] rounding flags (default: Calc.config("cfappr"))
|
908
|
+
* @example
|
909
|
+
* Calc.pi.cfappr(1).to_s(:frac) #=> "3"
|
910
|
+
* Calc.pi.cfappr(10).to_s(:frac) #=> "25/8"
|
911
|
+
* Calc.pi.cfappr(50).to_s(:frac) #=> "157/50"
|
912
|
+
* Calc.pi.cfappr(100).to_s(:frac) #=> "311/99"
|
913
|
+
*/
|
914
|
+
static VALUE
|
915
|
+
cq_cfappr(int argc, VALUE * argv, VALUE self)
|
916
|
+
{
|
917
|
+
VALUE eps, rnd, result;
|
918
|
+
NUMBER *q;
|
919
|
+
long n, R;
|
920
|
+
setup_math_error();
|
921
|
+
|
922
|
+
n = rb_scan_args(argc, argv, "02", &eps, &rnd);
|
923
|
+
q = (n >= 1) ? value_to_number(eps, 1) : conf->epsilon;
|
924
|
+
R = (n == 2) ? value_to_long(rnd) : conf->cfappr;
|
925
|
+
result = wrap_number(qcfappr(DATA_PTR(self), q, R));
|
926
|
+
if (n >= 1) {
|
927
|
+
qfree(q);
|
928
|
+
}
|
929
|
+
return result;
|
930
|
+
}
|
931
|
+
|
932
|
+
/* Simplify using continued fractions
|
933
|
+
*
|
934
|
+
* If self is not an integer, returns either the nearest above or below number
|
935
|
+
* with denominator less than self.den.
|
936
|
+
*
|
937
|
+
* Rounding is controlled by rnd (default: Calc.config(:cfsim)).
|
938
|
+
*
|
939
|
+
* See "help cfsim" for details of rounding values.
|
940
|
+
*
|
941
|
+
* Repeated calls to cfsim give a sequence of good approximations with
|
942
|
+
* decreasing denominators and correspondinlgy decreasing accuracy.
|
943
|
+
*
|
944
|
+
* @return [Calc::Q]
|
945
|
+
* @param rnd [Integer] rounding flags (default: Calc.config(:cfsim))
|
946
|
+
* @example
|
947
|
+
* x = Calc.pi; while (!x.int?) do; x = x.cfsim; puts x.to_s(:frac) if x.den < 1e6; end
|
948
|
+
* 1146408/364913
|
949
|
+
* 312689/99532
|
950
|
+
* 104348/33215
|
951
|
+
* 355/113
|
952
|
+
* 22/7
|
953
|
+
* 3
|
954
|
+
*/
|
955
|
+
static VALUE
|
956
|
+
cq_cfsim(int argc, VALUE * argv, VALUE self)
|
957
|
+
{
|
958
|
+
VALUE rnd;
|
959
|
+
long n, R;
|
960
|
+
setup_math_error();
|
961
|
+
|
962
|
+
n = rb_scan_args(argc, argv, "01", &rnd);
|
963
|
+
R = (n >= 1) ? value_to_long(rnd) : conf->cfsim;
|
964
|
+
return wrap_number(qcfsim(DATA_PTR(self), R));
|
965
|
+
}
|
966
|
+
|
967
|
+
/* Cosine
|
968
|
+
*
|
969
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
970
|
+
* @return [Calc::Q]
|
971
|
+
* @example
|
972
|
+
* Calc::Q(1).cos #=> Calc::Q(0.5403023058681397174)
|
973
|
+
*/
|
974
|
+
static VALUE
|
975
|
+
cq_cos(int argc, VALUE * argv, VALUE self)
|
976
|
+
{
|
977
|
+
return trans_function(argc, argv, self, &qcos, NULL);
|
978
|
+
}
|
979
|
+
|
980
|
+
/* Hyperbolic cosine
|
981
|
+
*
|
982
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
983
|
+
* @return [Calc::Q]
|
984
|
+
* @example
|
985
|
+
* Calc::Q(1).cosh #=> Calc::Q(1.54308063481524377848)
|
986
|
+
*/
|
987
|
+
static VALUE
|
988
|
+
cq_cosh(int argc, VALUE * argv, VALUE self)
|
989
|
+
{
|
990
|
+
return trans_function(argc, argv, self, &qcosh, NULL);
|
991
|
+
}
|
992
|
+
|
993
|
+
/* Trigonometric cotangent
|
994
|
+
*
|
995
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
996
|
+
* @return [Calc::Q]
|
997
|
+
* @raise [Calc::MathError] if self is zero
|
998
|
+
* @example
|
999
|
+
* Calc::Q(1).cot #=> Calc::Q(0.64209261593433070301)
|
1000
|
+
*/
|
1001
|
+
static VALUE
|
1002
|
+
cq_cot(int argc, VALUE * argv, VALUE self)
|
1003
|
+
{
|
1004
|
+
return trans_function(argc, argv, self, &qcot, NULL);
|
1005
|
+
}
|
1006
|
+
|
1007
|
+
/* Hyperbolic cotangent
|
1008
|
+
*
|
1009
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
1010
|
+
* @return [Calc::Q]
|
1011
|
+
* @raise [Calc::MathError] if self is zero
|
1012
|
+
* @example
|
1013
|
+
* Calc::Q(1).coth #=> Calc::Q(1.31303528549933130364)
|
1014
|
+
*/
|
1015
|
+
static VALUE
|
1016
|
+
cq_coth(int argc, VALUE * argv, VALUE self)
|
1017
|
+
{
|
1018
|
+
return trans_function(argc, argv, self, &qcoth, NULL);
|
1019
|
+
}
|
1020
|
+
|
1021
|
+
/* Trigonometric cosecant
|
1022
|
+
*
|
1023
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
1024
|
+
* @return [Calc::Q]
|
1025
|
+
* @example
|
1026
|
+
* Calc::Q(1).csc #=> Calc::Q(1.18839510577812121626)
|
1027
|
+
*/
|
1028
|
+
static VALUE
|
1029
|
+
cq_csc(int argc, VALUE * argv, VALUE self)
|
1030
|
+
{
|
1031
|
+
return trans_function(argc, argv, self, &qcsc, NULL);
|
1032
|
+
}
|
1033
|
+
|
1034
|
+
/* Hyperbolic cosecant
|
1035
|
+
*
|
1036
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
1037
|
+
* @return [Calc::Q]
|
1038
|
+
* @raise [Calc::MathError] if self is zero
|
1039
|
+
* @example
|
1040
|
+
* Calc::Q(1).csch #=> Calc::Q(0.85091812823932154513)
|
1041
|
+
*/
|
1042
|
+
static VALUE
|
1043
|
+
cq_csch(int argc, VALUE * argv, VALUE self)
|
1044
|
+
{
|
1045
|
+
return trans_function(argc, argv, self, &qcsch, NULL);
|
1046
|
+
}
|
1047
|
+
|
1048
|
+
/* Returns the denominator. Always positive.
|
1049
|
+
*
|
1050
|
+
* @return [Calc::Q]
|
1051
|
+
* @example:
|
1052
|
+
* Calc::Q(1,3).den #=> Calc::Q(3)
|
1053
|
+
* Calc::Q(-1,3).den #=> Calc::Q(3)
|
1054
|
+
*/
|
1055
|
+
static VALUE
|
1056
|
+
cq_den(VALUE self)
|
1057
|
+
{
|
1058
|
+
setup_math_error();
|
1059
|
+
return wrap_number(qden(DATA_PTR(self)));
|
1060
|
+
}
|
1061
|
+
|
1062
|
+
/* Returns the digit at the specified position on decimal or any other base.
|
1063
|
+
*
|
1064
|
+
* @return [Calc::Q]
|
1065
|
+
* @param n [Integer] index. negative indices are to the right of any decimal point
|
1066
|
+
* @param b [Integer] (optional) base >= 2 (default 10)
|
1067
|
+
* @example
|
1068
|
+
* Calc::Q("123456.789").digit(3) #=> Calc::Q(3)
|
1069
|
+
* Calc::Q("123456.789").digit(-3) #=> Calc::Q(9)
|
1070
|
+
*/
|
1071
|
+
static VALUE
|
1072
|
+
cq_digit(int argc, VALUE * argv, VALUE self)
|
1073
|
+
{
|
1074
|
+
VALUE pos, base;
|
1075
|
+
NUMBER *qpos, *qbase, *qresult;
|
1076
|
+
long n;
|
1077
|
+
setup_math_error();
|
1078
|
+
|
1079
|
+
n = rb_scan_args(argc, argv, "11", &pos, &base);
|
1080
|
+
qpos = value_to_number(pos, 1);
|
1081
|
+
if (qisfrac(qpos)) {
|
1082
|
+
qfree(qpos);
|
1083
|
+
rb_raise(e_MathError, "non-integer position for digit");
|
1084
|
+
}
|
1085
|
+
if (n >= 2) {
|
1086
|
+
qbase = value_to_number(base, 1);
|
1087
|
+
if (qisfrac(qbase)) {
|
1088
|
+
qfree(qpos);
|
1089
|
+
qfree(qbase);
|
1090
|
+
rb_raise(e_MathError, "non-integer base for digit");
|
1091
|
+
}
|
1092
|
+
}
|
1093
|
+
else {
|
1094
|
+
qbase = NULL;
|
1095
|
+
}
|
1096
|
+
qresult = qdigit(DATA_PTR(self), qpos->num, qbase ? qbase->num : _ten_);
|
1097
|
+
qfree(qpos);
|
1098
|
+
if (qbase)
|
1099
|
+
qfree(qbase);
|
1100
|
+
if (qresult == NULL) {
|
1101
|
+
rb_raise(e_MathError, "Invalid arguments for digit");
|
1102
|
+
}
|
1103
|
+
return wrap_number(qresult);
|
1104
|
+
}
|
1105
|
+
|
1106
|
+
/* Returns the number of digits of the integral part of self in decimal or another base
|
1107
|
+
*
|
1108
|
+
* @return [Calc::Q]
|
1109
|
+
* @param b [Integer] (optional) base >= 2 (default 10)
|
1110
|
+
* @example
|
1111
|
+
* Calc::Q("12.3456").digits #=> Calc::Q(2)
|
1112
|
+
* Calc::Q(-1234).digits #=> Calc::Q(4)
|
1113
|
+
* Calc::Q(0).digits #=> Calc::Q(1)
|
1114
|
+
* Calc::Q("-0.123").digits #=> Calc::Q(1)
|
1115
|
+
*/
|
1116
|
+
static VALUE
|
1117
|
+
cq_digits(int argc, VALUE * argv, VALUE self)
|
1118
|
+
{
|
1119
|
+
VALUE base;
|
1120
|
+
NUMBER *qbase, *qresult;
|
1121
|
+
long n;
|
1122
|
+
setup_math_error();
|
1123
|
+
|
1124
|
+
n = rb_scan_args(argc, argv, "01", &base);
|
1125
|
+
if (n >= 1) {
|
1126
|
+
qbase = value_to_number(base, 1);
|
1127
|
+
if (qisfrac(qbase) || qiszero(qbase) || qisunit(qbase)) {
|
1128
|
+
qfree(qbase);
|
1129
|
+
rb_raise(e_MathError, "base must be integer greater than 1 for digits");
|
1130
|
+
}
|
1131
|
+
}
|
1132
|
+
qresult = itoq(qdigits(DATA_PTR(self), n >= 1 ? qbase->num : _ten_));
|
1133
|
+
if (n >= 1)
|
1134
|
+
qfree(qbase);
|
1135
|
+
return wrap_number(qresult);
|
1136
|
+
}
|
1137
|
+
|
1138
|
+
/* Euler number
|
1139
|
+
*
|
1140
|
+
* Returns the euler number of a specified index.
|
1141
|
+
*
|
1142
|
+
* Considerable runtime and memory are required for calculating the euler
|
1143
|
+
* number for large even indices. Calculated values are stored in a table so
|
1144
|
+
* that later calls are executed quickly. This memory can be freed with
|
1145
|
+
* `Calc.freeeuler`.
|
1146
|
+
*
|
1147
|
+
* @example
|
1148
|
+
* Calc::Q(18).euler #=> Calc::Q(-2404879675441)
|
1149
|
+
* Calc::Q(19).euler #=> Calc::Q(0)
|
1150
|
+
* Calc::Q(20).euler #=> Calc::Q(370371188237525)
|
1151
|
+
*/
|
1152
|
+
static VALUE
|
1153
|
+
cq_euler(VALUE self)
|
1154
|
+
{
|
1155
|
+
NUMBER *qself, *qresult;
|
1156
|
+
setup_math_error();
|
1157
|
+
|
1158
|
+
qself = DATA_PTR(self);
|
1159
|
+
if (qisfrac(qself)) {
|
1160
|
+
rb_raise(e_MathError, "non-integer value for euler");
|
1161
|
+
}
|
1162
|
+
qresult = qeuler(qself->num);
|
1163
|
+
if (qresult == NULL) {
|
1164
|
+
rb_raise(e_MathError, "number too big or out of memory for euler");
|
1165
|
+
}
|
1166
|
+
return wrap_number(qresult);
|
1167
|
+
}
|
1168
|
+
|
1169
|
+
/* Returns true if the number is an even integer
|
1170
|
+
*
|
1171
|
+
* @return [Boolean]
|
1172
|
+
* @example
|
1173
|
+
* Calc::Q(1).even? #=> false
|
1174
|
+
* Calc::Q(2).even? #=> true
|
1175
|
+
*/
|
1176
|
+
static VALUE
|
1177
|
+
cq_evenp(VALUE self)
|
1178
|
+
{
|
1179
|
+
return qiseven((NUMBER *) DATA_PTR(self)) ? Qtrue : Qfalse;
|
1180
|
+
}
|
1181
|
+
|
1182
|
+
/* Exponential function
|
1183
|
+
*
|
1184
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
1185
|
+
* @return [Calc::Q]
|
1186
|
+
* @example
|
1187
|
+
* Calc::Q(1).exp #=> Calc::Q(2.71828182845904523536)
|
1188
|
+
* Calc::Q(2).exp #=> Calc::Q(7.38905609893065022723)
|
1189
|
+
*/
|
1190
|
+
static VALUE
|
1191
|
+
cq_exp(int argc, VALUE * argv, VALUE self)
|
1192
|
+
{
|
1193
|
+
return trans_function(argc, argv, self, &qexp, NULL);
|
1194
|
+
}
|
1195
|
+
|
1196
|
+
/* Returns the factorial of a number.
|
1197
|
+
*
|
1198
|
+
* @return [Calc::Q]
|
1199
|
+
* @raise [Calc::MathError] if self is negative or not an integer
|
1200
|
+
* @raise [Calc::MathError] if abs(self) >= 2^31
|
1201
|
+
* @example:
|
1202
|
+
* Calc::Q(10).fact #=> Calc::Q(3628800)
|
1203
|
+
*/
|
1204
|
+
static VALUE
|
1205
|
+
cq_fact(VALUE self)
|
1206
|
+
{
|
1207
|
+
setup_math_error();
|
1208
|
+
return wrap_number(qfact(DATA_PTR(self)));
|
1209
|
+
}
|
1210
|
+
|
1211
|
+
/* Smallest prime factor not exceeding specified limit
|
1212
|
+
*
|
1213
|
+
* Ignoring signs of self and limit; if self has a prime factor less than or
|
1214
|
+
* equal to limit, then returns the smallest such factor.
|
1215
|
+
*
|
1216
|
+
* @param limit [Numeric] (optional) limit, defaults to 2^32-1
|
1217
|
+
* @return [Calc::Q]
|
1218
|
+
* @raise [Calc::MathError] if self or limit are not integers
|
1219
|
+
* @raise [Calc::MathError] if limit is >= 2^32
|
1220
|
+
* @example
|
1221
|
+
* Calc::Q(2).power(32).+(1).factor #=> Calc::Q(641)
|
1222
|
+
*/
|
1223
|
+
static VALUE
|
1224
|
+
cq_factor(int argc, VALUE * argv, VALUE self)
|
1225
|
+
{
|
1226
|
+
VALUE limit;
|
1227
|
+
NUMBER *qself, *qlimit, *qfactor;
|
1228
|
+
ZVALUE zlimit;
|
1229
|
+
long a;
|
1230
|
+
int res;
|
1231
|
+
setup_math_error();
|
1232
|
+
|
1233
|
+
a = rb_scan_args(argc, argv, "01", &limit);
|
1234
|
+
if (a >= 1) {
|
1235
|
+
qlimit = value_to_number(limit, 0);
|
1236
|
+
if (qisfrac(qlimit)) {
|
1237
|
+
qfree(qlimit);
|
1238
|
+
rb_raise(e_MathError, "non-integer limit for factor");
|
1239
|
+
}
|
1240
|
+
zcopy(qlimit->num, &zlimit);
|
1241
|
+
qfree(qlimit);
|
1242
|
+
}
|
1243
|
+
else {
|
1244
|
+
/* default limit is 2^32-1 */
|
1245
|
+
utoz((FULL) 0xffffffff, &zlimit);
|
1246
|
+
}
|
1247
|
+
qself = DATA_PTR(self);
|
1248
|
+
if (qisfrac(qself)) {
|
1249
|
+
zfree(zlimit);
|
1250
|
+
rb_raise(e_MathError, "non-integer for factor");
|
1251
|
+
}
|
1252
|
+
|
1253
|
+
qfactor = qalloc();
|
1254
|
+
res = zfactor(qself->num, zlimit, &(qfactor->num));
|
1255
|
+
if (res < 0) {
|
1256
|
+
qfree(qfactor);
|
1257
|
+
zfree(zlimit);
|
1258
|
+
rb_raise(e_MathError, "limit >= 2^32 for factor");
|
1259
|
+
}
|
1260
|
+
zfree(zlimit);
|
1261
|
+
return wrap_number(qfactor);
|
1262
|
+
}
|
1263
|
+
|
1264
|
+
/* Count number of times an integer divides self.
|
1265
|
+
*
|
1266
|
+
* Returns the greatest non-negative n for which y^n is a divisor of self.
|
1267
|
+
* Zero is returns if self is not divisible by y.
|
1268
|
+
*
|
1269
|
+
* @return [Calc::Q]
|
1270
|
+
* @raise [Calc::MathError] if self or y is non-integer
|
1271
|
+
* @param y [Integer]
|
1272
|
+
* @example
|
1273
|
+
* Calc::Q(24).fcnt(4) #=> Calc::Q(1)
|
1274
|
+
* Calc::Q(48).fcnt(4) #=> Calc::Q(2)
|
1275
|
+
*/
|
1276
|
+
static VALUE
|
1277
|
+
cq_fcnt(VALUE self, VALUE y)
|
1278
|
+
{
|
1279
|
+
VALUE result;
|
1280
|
+
NUMBER *qself, *qy;
|
1281
|
+
setup_math_error();
|
1282
|
+
|
1283
|
+
qself = DATA_PTR(self);
|
1284
|
+
qy = value_to_number(y, 0);
|
1285
|
+
if (qisfrac(qself) || qisfrac(qy)) {
|
1286
|
+
qfree(qy);
|
1287
|
+
rb_raise(e_MathError, "non-integral argument for fcnt");
|
1288
|
+
}
|
1289
|
+
result = wrap_number(itoq(zdivcount(qself->num, qy->num)));
|
1290
|
+
qfree(qy);
|
1291
|
+
return result;
|
1292
|
+
}
|
1293
|
+
|
1294
|
+
/* Return the fractional part of self
|
1295
|
+
*
|
1296
|
+
* @return [Calc::Q]
|
1297
|
+
* @example
|
1298
|
+
* Calc::Q(22,7).frac.to_s(:frac) #=> "1/7"
|
1299
|
+
*/
|
1300
|
+
static VALUE
|
1301
|
+
cq_frac(VALUE self)
|
1302
|
+
{
|
1303
|
+
NUMBER *qself;
|
1304
|
+
setup_math_error();
|
1305
|
+
|
1306
|
+
qself = DATA_PTR(self);
|
1307
|
+
if (qisint(qself)) {
|
1308
|
+
return wrap_number(qlink(&_qzero_));
|
1309
|
+
}
|
1310
|
+
else {
|
1311
|
+
return wrap_number(qfrac(qself));
|
1312
|
+
}
|
1313
|
+
}
|
1314
|
+
|
1315
|
+
/* Remove specified integer factors from self.
|
1316
|
+
*
|
1317
|
+
* @return [Calc::Q]
|
1318
|
+
* @raise [Calc::MathError] if self or y is non-integer
|
1319
|
+
* @param y [Integer]
|
1320
|
+
* @example
|
1321
|
+
* Calc::Q(7).frem(4) #=> 7
|
1322
|
+
* Calc::Q(24).frem(4) #=> 6
|
1323
|
+
* Calc::Q(48).frem(4) #=> 3
|
1324
|
+
* Calc::Q(-48).frem(4) #=> 3
|
1325
|
+
*/
|
1326
|
+
static VALUE
|
1327
|
+
cq_frem(VALUE self, VALUE y)
|
1328
|
+
{
|
1329
|
+
VALUE result;
|
1330
|
+
NUMBER *qy;
|
1331
|
+
|
1332
|
+
qy = value_to_number(y, 0);
|
1333
|
+
result = wrap_number(qfacrem(DATA_PTR(self), qy));
|
1334
|
+
qfree(qy);
|
1335
|
+
return result;
|
1336
|
+
}
|
1337
|
+
|
1338
|
+
/* Returns the Fibonacci number with index self.
|
1339
|
+
*
|
1340
|
+
* @return [Calc::Q]
|
1341
|
+
* @raise [Calc::MathError] if self is not an integer
|
1342
|
+
* @raise [Calc::MathError] if abs(self) >= 2^31
|
1343
|
+
* @example
|
1344
|
+
* Calc::Q(10).fib #=> Calc::Q(55)
|
1345
|
+
*/
|
1346
|
+
static VALUE
|
1347
|
+
cq_fib(VALUE self)
|
1348
|
+
{
|
1349
|
+
setup_math_error();
|
1350
|
+
return wrap_number(qfib(DATA_PTR(self)));
|
1351
|
+
}
|
1352
|
+
|
1353
|
+
/* Greatest common divisor
|
1354
|
+
*
|
1355
|
+
* Returns the greatest common divisor of self and all arguments. If no
|
1356
|
+
* arguments, returns self.
|
1357
|
+
*
|
1358
|
+
* @return [Calc::Q]
|
1359
|
+
* @example
|
1360
|
+
* Calc::Q(12).gcd(8) #=> Calc::Q(4)
|
1361
|
+
* Calc::Q(12).gcd(8, 6) #=> Calc::Q(2)
|
1362
|
+
* Calc.gcd("9/10", "11/5", "4/25") #=> Calc::Q(0.02)
|
1363
|
+
*/
|
1364
|
+
static VALUE
|
1365
|
+
cq_gcd(int argc, VALUE * argv, VALUE self)
|
1366
|
+
{
|
1367
|
+
NUMBER *qresult, *qarg, *qtmp;
|
1368
|
+
int i;
|
1369
|
+
setup_math_error();
|
1370
|
+
|
1371
|
+
qresult = qqabs(DATA_PTR(self));
|
1372
|
+
for (i = 0; i < argc; i++) {
|
1373
|
+
qarg = value_to_number(argv[i], 1);
|
1374
|
+
qtmp = qgcd(qresult, qarg);
|
1375
|
+
qfree(qarg);
|
1376
|
+
qfree(qresult);
|
1377
|
+
qresult = qtmp;
|
1378
|
+
}
|
1379
|
+
return wrap_number(qresult);
|
1380
|
+
}
|
1381
|
+
|
1382
|
+
/* Returns greatest integer divisor of self relatively prime to other
|
1383
|
+
*
|
1384
|
+
* @return [Calc::Q]
|
1385
|
+
* @example
|
1386
|
+
* Calc::Q(6).gcdrem(15) #=> Calc::Q(2)
|
1387
|
+
* Calc::Q(15).gcdrem(6) #=> Calc::Q(5)
|
1388
|
+
*/
|
1389
|
+
static VALUE
|
1390
|
+
cq_gcdrem(VALUE self, VALUE other)
|
1391
|
+
{
|
1392
|
+
NUMBER *qother, *qresult;
|
1393
|
+
setup_math_error();
|
1394
|
+
|
1395
|
+
qother = value_to_number(other, 0);
|
1396
|
+
qresult = qgcdrem(DATA_PTR(self), qother);
|
1397
|
+
qfree(qother);
|
1398
|
+
return wrap_number(qresult);
|
1399
|
+
}
|
1400
|
+
|
1401
|
+
/* Returns index of highest bit in binary representation of self
|
1402
|
+
*
|
1403
|
+
* If self is a non-zero integer, higbit returns the index of the highest bit
|
1404
|
+
* in the binary representation of abs(self). Equivalently, x.highbit = n
|
1405
|
+
* if 2^n <= abs(x) < 2^(n+1); the binary representation of x then has n + 1
|
1406
|
+
* digits.
|
1407
|
+
*
|
1408
|
+
* @return [Calc::Q]
|
1409
|
+
* @example
|
1410
|
+
* Calc::Q(4).highbit #=> Calc::Q(2)
|
1411
|
+
* Calc::Q(2).**(27).highbit #=> Calc::Q(27)
|
1412
|
+
*/
|
1413
|
+
static VALUE
|
1414
|
+
cq_highbit(VALUE self)
|
1415
|
+
{
|
1416
|
+
NUMBER *qself;
|
1417
|
+
setup_math_error();
|
1418
|
+
|
1419
|
+
qself = DATA_PTR(self);
|
1420
|
+
if (qisfrac(qself)) {
|
1421
|
+
rb_raise(e_MathError, "non-integer argument for highbit");
|
1422
|
+
}
|
1423
|
+
if (qiszero(qself)) {
|
1424
|
+
return wrap_number(qlink(&_qnegone_));
|
1425
|
+
}
|
1426
|
+
else {
|
1427
|
+
return wrap_number(itoq(zhighbit(qself->num)));
|
1428
|
+
}
|
1429
|
+
}
|
1430
|
+
|
1431
|
+
/* Returns the hypotenuse of a right-angled triangle given the other sides
|
1432
|
+
*
|
1433
|
+
* @param y [Numeric,Calc::Numeric] other side
|
1434
|
+
* @return [Calc::Q]
|
1435
|
+
* @example:
|
1436
|
+
* Calc::Q(3).hypot(4) #=> Calc::Q(5)
|
1437
|
+
* Calc::Q(2).hypot(-3) #=> Calc::Q(3.60555127546398929312)
|
1438
|
+
*/
|
1439
|
+
static VALUE
|
1440
|
+
cq_hypot(int argc, VALUE * argv, VALUE self)
|
1441
|
+
{
|
1442
|
+
return trans_function2(argc, argv, self, &qhypot);
|
1443
|
+
}
|
1444
|
+
|
1445
|
+
/* Integer part of the number
|
1446
|
+
*
|
1447
|
+
* @return [Calc::Q]
|
1448
|
+
* @example
|
1449
|
+
* Calc::Q(3).int #=> Calc::Q(3)
|
1450
|
+
* Calc::Q("30/7").int #=> Calc::Q(4)
|
1451
|
+
* Calc::Q(-3.125).int #=> Calc::Q(-3)
|
1452
|
+
*/
|
1453
|
+
static VALUE
|
1454
|
+
cq_int(VALUE self)
|
1455
|
+
{
|
1456
|
+
NUMBER *qself;
|
1457
|
+
setup_math_error();
|
1458
|
+
|
1459
|
+
qself = DATA_PTR(self);
|
1460
|
+
if (qisint(qself)) {
|
1461
|
+
return self;
|
1462
|
+
}
|
1463
|
+
return wrap_number(qint(qself));
|
1464
|
+
}
|
1465
|
+
|
1466
|
+
/* Returns true if the number is an integer.
|
1467
|
+
*
|
1468
|
+
* @return [Boolean]
|
1469
|
+
* @example
|
1470
|
+
* Calc::Q(2).int? #=> true
|
1471
|
+
* Calc::Q(0.1).int? #=> false
|
1472
|
+
*/
|
1473
|
+
static VALUE
|
1474
|
+
cq_intp(VALUE self)
|
1475
|
+
{
|
1476
|
+
return qisint((NUMBER *) DATA_PTR(self)) ? Qtrue : Qfalse;
|
1477
|
+
}
|
1478
|
+
|
1479
|
+
/* Inverse of a real number
|
1480
|
+
*
|
1481
|
+
* @return [Calc::Q]
|
1482
|
+
* @raise [Calc::MathError] if self is zero
|
1483
|
+
* @example:
|
1484
|
+
* Calc::Q(3).inverse #=> Calc::Q(0.25)
|
1485
|
+
*/
|
1486
|
+
static VALUE
|
1487
|
+
cq_inverse(VALUE self)
|
1488
|
+
{
|
1489
|
+
setup_math_error();
|
1490
|
+
return wrap_number(qinv(DATA_PTR(self)));
|
1491
|
+
}
|
1492
|
+
|
1493
|
+
/* Integer part of specified root
|
1494
|
+
*
|
1495
|
+
* x.iroot(n) returns the greatest integer v for which v^n <= x.
|
1496
|
+
*
|
1497
|
+
* @param n [Integer]
|
1498
|
+
* @return [Calc::Q]
|
1499
|
+
* @raise [Calc::MathError] if n is not a positive integer
|
1500
|
+
* @example
|
1501
|
+
* Calc::Q(100).iroot(3) #=> Calc::Q(4)
|
1502
|
+
*/
|
1503
|
+
static VALUE
|
1504
|
+
cq_iroot(VALUE self, VALUE other)
|
1505
|
+
{
|
1506
|
+
NUMBER *qother, *qresult;
|
1507
|
+
setup_math_error();
|
1508
|
+
|
1509
|
+
qother = value_to_number(other, 0);
|
1510
|
+
qresult = qiroot(DATA_PTR(self), qother);
|
1511
|
+
qfree(qother);
|
1512
|
+
return wrap_number(qresult);
|
1513
|
+
}
|
1514
|
+
|
1515
|
+
/* Integer part of square root
|
1516
|
+
*
|
1517
|
+
* x.isqrt returns the greatest integer n for which n^2 <= x.
|
1518
|
+
*
|
1519
|
+
* @return [Calc::Q]
|
1520
|
+
* @raise [Calc::MathError] if self is negative
|
1521
|
+
* @example
|
1522
|
+
* Calc::Q("8.5").isqrt #=> Calc::Q(2)
|
1523
|
+
* Calc::Q(200).isqrt #=> Calc::Q(14)
|
1524
|
+
* Calc::Q("2e6").isqrt #=> Calc::Q(1414)
|
1525
|
+
*/
|
1526
|
+
static VALUE
|
1527
|
+
cq_isqrt(VALUE self)
|
1528
|
+
{
|
1529
|
+
setup_math_error();
|
1530
|
+
return wrap_number(qisqrt(DATA_PTR(self)));
|
1531
|
+
}
|
1532
|
+
|
1533
|
+
/* Compute the Jacobi function (x = self / y)
|
1534
|
+
*
|
1535
|
+
* Returns:
|
1536
|
+
* -1 if x is not quadratic residue mod y
|
1537
|
+
* 1 if y is composite, or x is a quadratic residue of y]
|
1538
|
+
* 0 if y is even or y is < 0
|
1539
|
+
*
|
1540
|
+
* @param y [Integer]
|
1541
|
+
* @return [Calc::Q]
|
1542
|
+
* @raise [Calc::MathError] if either value is not an integer
|
1543
|
+
* @example
|
1544
|
+
* Calc::Q(2).jacobi(5) #=> Calc::Q(-1)
|
1545
|
+
* Calc::Q(2).jacobi(15) #=> Calc::Q(1)
|
1546
|
+
*/
|
1547
|
+
static VALUE
|
1548
|
+
cq_jacobi(VALUE self, VALUE y)
|
1549
|
+
{
|
1550
|
+
NUMBER *qy, *qresult;
|
1551
|
+
setup_math_error();
|
1552
|
+
|
1553
|
+
qy = value_to_number(y, 0);
|
1554
|
+
qresult = qjacobi(DATA_PTR(self), qy);
|
1555
|
+
qfree(qy);
|
1556
|
+
return wrap_number(qresult);
|
1557
|
+
}
|
1558
|
+
|
1559
|
+
/* Least common multiple
|
1560
|
+
*
|
1561
|
+
* If no value is zero, lcm returns the least positive number which is a
|
1562
|
+
* multiple of all values. If at least one value is zero, the lcm is zero.
|
1563
|
+
*
|
1564
|
+
* @param v [Numeric] zero or more values
|
1565
|
+
* @return [Calc::Q]
|
1566
|
+
* @example
|
1567
|
+
* Calc::Q(12).lcm(24, 30) #=> Calc::Q(120)
|
1568
|
+
*/
|
1569
|
+
static VALUE
|
1570
|
+
cq_lcm(int argc, VALUE * argv, VALUE self)
|
1571
|
+
{
|
1572
|
+
NUMBER *qresult, *qarg, *qtmp;
|
1573
|
+
int i;
|
1574
|
+
setup_math_error();
|
1575
|
+
|
1576
|
+
qresult = qqabs(DATA_PTR(self));
|
1577
|
+
for (i = 0; i < argc; i++) {
|
1578
|
+
qarg = value_to_number(argv[i], 1);
|
1579
|
+
qtmp = qlcm(qresult, qarg);
|
1580
|
+
qfree(qarg);
|
1581
|
+
qfree(qresult);
|
1582
|
+
qresult = qtmp;
|
1583
|
+
if (qiszero(qresult))
|
1584
|
+
break;
|
1585
|
+
}
|
1586
|
+
return wrap_number(qresult);
|
1587
|
+
}
|
1588
|
+
|
1589
|
+
/* Least common multiple of positive integers up to specified integer
|
1590
|
+
*
|
1591
|
+
* Retrurns the lcm of the integers 1, 2, ..., self
|
1592
|
+
*
|
1593
|
+
* @return [Calc::Q]
|
1594
|
+
* @example
|
1595
|
+
* Calc::Q(6).lcmfact #=> Calc::Q(60)
|
1596
|
+
* Calc::Q(7).lcmfact #=> Calc::Q(420)
|
1597
|
+
*/
|
1598
|
+
static VALUE
|
1599
|
+
cq_lcmfact(VALUE self)
|
1600
|
+
{
|
1601
|
+
setup_math_error();
|
1602
|
+
return wrap_number(qlcmfact(DATA_PTR(self)));
|
1603
|
+
}
|
1604
|
+
|
1605
|
+
/* Smallest prime factor in first specified number of primes
|
1606
|
+
*
|
1607
|
+
* If n is nonzero and abs(n) has a prime factor in the first m primes (2, 3,
|
1608
|
+
* 5, ...), then n.lfactor(m) returns the smallest such factor. Otherwise it
|
1609
|
+
* returns 1.
|
1610
|
+
*
|
1611
|
+
* @param m [Numeric]
|
1612
|
+
* @return [Calc::Q]
|
1613
|
+
* @example
|
1614
|
+
* Calc::Q(2**32 + 1).lfactor(116) #=> Calc::Q(641)
|
1615
|
+
*/
|
1616
|
+
static VALUE
|
1617
|
+
cq_lfactor(VALUE self, VALUE other)
|
1618
|
+
{
|
1619
|
+
NUMBER *qother, *qresult;
|
1620
|
+
setup_math_error();
|
1621
|
+
|
1622
|
+
qother = value_to_number(other, 1);
|
1623
|
+
qresult = qlowfactor(DATA_PTR(self), qother);
|
1624
|
+
qfree(qother);
|
1625
|
+
return wrap_number(qresult);
|
1626
|
+
}
|
1627
|
+
|
1628
|
+
/* Index of lowest nonzero bit in binary representation
|
1629
|
+
*
|
1630
|
+
* Returns the index of the lowest nonzero bit in the binary representation of
|
1631
|
+
* abs(self). If self is zero, returns -1.
|
1632
|
+
*
|
1633
|
+
* @return [Calc::Q]
|
1634
|
+
* @raise [Calc::MathError] if self is not an integer
|
1635
|
+
* @example
|
1636
|
+
* Calc::Q(2).lowbit #=> Calc::Q(1)
|
1637
|
+
* Calc::Q(2**27).lowbit #=> Calc::Q(27)
|
1638
|
+
*/
|
1639
|
+
static VALUE
|
1640
|
+
cq_lowbit(VALUE self)
|
1641
|
+
{
|
1642
|
+
NUMBER *qself;
|
1643
|
+
long index;
|
1644
|
+
setup_math_error();
|
1645
|
+
|
1646
|
+
qself = DATA_PTR(self);
|
1647
|
+
if (qiszero(qself)) {
|
1648
|
+
index = -1;
|
1649
|
+
}
|
1650
|
+
else if (qisfrac(qself)) {
|
1651
|
+
rb_raise(e_MathError, "non-integer argument for lowbit");
|
1652
|
+
}
|
1653
|
+
else {
|
1654
|
+
index = zlowbit(qself->num);
|
1655
|
+
}
|
1656
|
+
return wrap_number(itoq(index));
|
1657
|
+
}
|
1658
|
+
|
1659
|
+
/* leg-to-leg - third side of a right angled triangle
|
1660
|
+
*
|
1661
|
+
* Returns the third side of a right-angled triangle with unit hypotenuse,
|
1662
|
+
* given one other side. x.ltol is equivalent to sqrt(1 - x**2). Result
|
1663
|
+
* is to nearest multiple of eps which defaults to Calc.config(:epsilon).
|
1664
|
+
*
|
1665
|
+
* @param eps [Numeric] (optional) calculation accuracy
|
1666
|
+
* @return [Calc::Q]
|
1667
|
+
* @raise [Calc::MathError] if self it too large
|
1668
|
+
* @example
|
1669
|
+
* Calc::Q("0.5").ltol #=> Calc::Q(0.86602540378443864676)
|
1670
|
+
*/
|
1671
|
+
static VALUE
|
1672
|
+
cq_ltol(int argc, VALUE * argv, VALUE self)
|
1673
|
+
{
|
1674
|
+
VALUE epsilon;
|
1675
|
+
NUMBER *qresult, *qepsilon;
|
1676
|
+
setup_math_error();
|
1677
|
+
|
1678
|
+
if (rb_scan_args(argc, argv, "01", &epsilon) == 0) {
|
1679
|
+
qresult = qlegtoleg(DATA_PTR(self), conf->epsilon, FALSE);
|
1680
|
+
}
|
1681
|
+
else {
|
1682
|
+
qepsilon = value_to_number(epsilon, 1);
|
1683
|
+
qresult = qlegtoleg(DATA_PTR(self), qepsilon, FALSE);
|
1684
|
+
qfree(qepsilon);
|
1685
|
+
}
|
1686
|
+
return wrap_number(qresult);
|
1687
|
+
}
|
1688
|
+
|
1689
|
+
/* test for equality modulo a specific number
|
1690
|
+
*
|
1691
|
+
* Returns true if self is congruent to y modulo md.
|
1692
|
+
*
|
1693
|
+
* @param y [Numeric]
|
1694
|
+
* @param md [Numeric]
|
1695
|
+
* @return [Boolean]
|
1696
|
+
* @example
|
1697
|
+
* Calc::Q(5).meq?(33, 7) #=> true
|
1698
|
+
* Calc::Q(5).meq?(32, 7) #=> false
|
1699
|
+
* @see Calc::Q#meq
|
1700
|
+
*/
|
1701
|
+
static VALUE
|
1702
|
+
cq_meqp(VALUE self, VALUE y, VALUE md)
|
1703
|
+
{
|
1704
|
+
VALUE result;
|
1705
|
+
NUMBER *qy, *qmd, *qtmp;
|
1706
|
+
setup_math_error();
|
1707
|
+
|
1708
|
+
qy = value_to_number(y, 1);
|
1709
|
+
qmd = value_to_number(md, 1);
|
1710
|
+
qtmp = qsub(DATA_PTR(self), qy);
|
1711
|
+
result = qdivides(qtmp, qmd) ? Qtrue : Qfalse;
|
1712
|
+
qfree(qtmp);
|
1713
|
+
qfree(qmd);
|
1714
|
+
qfree(qy);
|
1715
|
+
return result;
|
1716
|
+
}
|
1717
|
+
|
1718
|
+
/* Inverse of an integer modulo a specified integer
|
1719
|
+
*
|
1720
|
+
* Finds x such that:
|
1721
|
+
* self * x = 1 (mod md)
|
1722
|
+
* If self and md are not relatively prime, zero is returned.
|
1723
|
+
*
|
1724
|
+
* The canonical residues modulo md are determined by Calc.config(:mod)
|
1725
|
+
* (run "help minv" in calc for details).
|
1726
|
+
*
|
1727
|
+
* @param md [Integer]
|
1728
|
+
* @return [Calc::Q]
|
1729
|
+
* @raise [Calc::MathError] if self or md are non-integers
|
1730
|
+
* @example
|
1731
|
+
* Calc::Q(3).minv(10) #=> Calc::Q(7)
|
1732
|
+
* Calc::Q(-3).minv(10) #=> Calc::Q(3)
|
1733
|
+
*/
|
1734
|
+
static VALUE
|
1735
|
+
cq_minv(VALUE self, VALUE md)
|
1736
|
+
{
|
1737
|
+
NUMBER *qmd, *qresult;
|
1738
|
+
setup_math_error();
|
1739
|
+
|
1740
|
+
qmd = value_to_number(md, 1);
|
1741
|
+
qresult = qminv(DATA_PTR(self), qmd);
|
1742
|
+
qfree(qmd);
|
1743
|
+
return wrap_number(qresult);
|
1744
|
+
}
|
1745
|
+
|
1746
|
+
/* Computes the remainder for an integer quotient
|
1747
|
+
*
|
1748
|
+
* @param y [Numeric,Calc::Q]
|
1749
|
+
* @param rnd [Integer] rounding flags (default Calc.config(:mod))
|
1750
|
+
* @return [Calc::Q]
|
1751
|
+
* @example:
|
1752
|
+
* Calc::Q(11).mod(5) #=> Calc::Q(1)
|
1753
|
+
*/
|
1754
|
+
static VALUE
|
1755
|
+
cq_mod(int argc, VALUE * argv, VALUE self)
|
1756
|
+
{
|
1757
|
+
VALUE other, rnd;
|
1758
|
+
NUMBER *qother, *qresult;
|
1759
|
+
long n;
|
1760
|
+
setup_math_error();
|
1761
|
+
|
1762
|
+
n = rb_scan_args(argc, argv, "11", &other, &rnd);
|
1763
|
+
qother = value_to_number(other, 0);
|
1764
|
+
if (qiszero(qother)) {
|
1765
|
+
qfree(qother);
|
1766
|
+
rb_raise(rb_eZeroDivError, "division by zero in mod");
|
1767
|
+
}
|
1768
|
+
qresult = qmod(DATA_PTR(self), qother, (n == 2) ? value_to_long(rnd) : conf->mod);
|
1769
|
+
qfree(qother);
|
1770
|
+
return wrap_number(qresult);
|
1771
|
+
}
|
1772
|
+
|
1773
|
+
/* Returns true if self exactly divides y, otherwise return false.
|
1774
|
+
*
|
1775
|
+
* @return [Boolean]
|
1776
|
+
* @example
|
1777
|
+
* Calc::Q(6).mult?(2) #=> true
|
1778
|
+
* Calc::Q(2).mult?(6) #=> false
|
1779
|
+
* @see Calc::Q#ismult
|
1780
|
+
*/
|
1781
|
+
static VALUE
|
1782
|
+
cq_multp(VALUE self, VALUE other)
|
1783
|
+
{
|
1784
|
+
VALUE result;
|
1785
|
+
NUMBER *qother;
|
1786
|
+
setup_math_error();
|
1787
|
+
|
1788
|
+
qother = value_to_number(other, 0);
|
1789
|
+
result = qdivides(DATA_PTR(self), qother) ? Qtrue : Qfalse;
|
1790
|
+
qfree(qother);
|
1791
|
+
return result;
|
1792
|
+
}
|
1793
|
+
|
1794
|
+
/* Compare nearness of two numbers with a standard
|
1795
|
+
*
|
1796
|
+
* Returns:
|
1797
|
+
* -1 if abs(self - other) < abs(eps)
|
1798
|
+
* 0 if abs(self - other) = abs(eps)
|
1799
|
+
* 1 if abs(self - other) > abs(eps)
|
1800
|
+
*
|
1801
|
+
* @param other [Numeric]
|
1802
|
+
* @param eps [Numeric] (optional) defaults to Calc.config(:epsilon)
|
1803
|
+
* @return [Calc::Q]
|
1804
|
+
* @example
|
1805
|
+
* Calc::Q("22/7").near("3.15", ".01") #=> Calc::Q(-1)
|
1806
|
+
* Calc::Q("22/7").near("3.15", ".005") #=> Calc::Q(1)
|
1807
|
+
*/
|
1808
|
+
static VALUE
|
1809
|
+
cq_near(int argc, VALUE * argv, VALUE self)
|
1810
|
+
{
|
1811
|
+
VALUE other, epsilon;
|
1812
|
+
NUMBER *qother, *qepsilon, *qresult;
|
1813
|
+
int n;
|
1814
|
+
setup_math_error();
|
1815
|
+
|
1816
|
+
n = rb_scan_args(argc, argv, "11", &other, &epsilon);
|
1817
|
+
qother = value_to_number(other, 1);
|
1818
|
+
qepsilon = (n == 2) ? value_to_number(epsilon, 1) : conf->epsilon;
|
1819
|
+
qresult = itoq((long) qnear(DATA_PTR(self), qother, qepsilon));
|
1820
|
+
qfree(qother);
|
1821
|
+
if (n == 2)
|
1822
|
+
qfree(qepsilon);
|
1823
|
+
return wrap_number(qresult);
|
1824
|
+
}
|
1825
|
+
|
1826
|
+
/* Next candidate for primeness
|
1827
|
+
*
|
1828
|
+
* Returns the least positive integer i greater than abs(self) expressible as
|
1829
|
+
* residue + k * modulus, where k is an integer, for which i.ptest?(count, skip)
|
1830
|
+
* is true, or if there is no such integer i, nil.
|
1831
|
+
*
|
1832
|
+
* See `ptest?` for a description of `count` and `skip`. For basic purposes,
|
1833
|
+
* use default values and count > 1. Higher counts increase the probability
|
1834
|
+
* that the returned value is prime.
|
1835
|
+
*
|
1836
|
+
* @param count [Integer] number of tests for ptest (default 1)
|
1837
|
+
* @param skip [Integer] base selection mode for ptest (default 1)
|
1838
|
+
* @param residue [Integer] (default 0)
|
1839
|
+
* @param modulus [Integer] (default 1)
|
1840
|
+
* @return [Calc::Q]
|
1841
|
+
* @raise [Calc::MathError] if self or any parameter is not an integer
|
1842
|
+
* @example
|
1843
|
+
* Calc::Q(100).nextcand(10) #=> Calc::Q(101)
|
1844
|
+
* Calc::Q(5000000000).nextcand(10) #=> Calc::Q(5000000029)
|
1845
|
+
*/
|
1846
|
+
static VALUE
|
1847
|
+
cq_nextcand(int argc, VALUE * argv, VALUE self)
|
1848
|
+
{
|
1849
|
+
return cand_navigation(argc, argv, self, &znextcand);
|
1850
|
+
}
|
1851
|
+
|
1852
|
+
/* libcalc constant for 2^32+15 - can't include prime.h for this */
|
1853
|
+
extern NUMBER _nxtprime_;
|
1854
|
+
|
1855
|
+
/* Next prime number
|
1856
|
+
*
|
1857
|
+
* If self is >= 2**32, raises an exception. Otherwise returns the next prime
|
1858
|
+
* number.
|
1859
|
+
*
|
1860
|
+
* @return [Calc::Q]
|
1861
|
+
* @raise [Calc::MathError] if self is >= 2**32
|
1862
|
+
* @example
|
1863
|
+
* Calc::Q(2).nextprime #=> Calc::Q(3)
|
1864
|
+
* Calc::Q(10).nextprime #=> Calc::Q(11)
|
1865
|
+
* Calc::Q(100).nextprime #=> Calc::Q(101)
|
1866
|
+
* Calc::Q("1e6").nextprime #=> Calc::Q(1000003)
|
1867
|
+
* Calc::Q(2**32 - 1).nextprime #=> Calc::Q(4294967311)
|
1868
|
+
*/
|
1869
|
+
static VALUE
|
1870
|
+
cq_nextprime(VALUE self)
|
1871
|
+
{
|
1872
|
+
NUMBER *qself;
|
1873
|
+
FULL next_prime;
|
1874
|
+
setup_math_error();
|
1875
|
+
|
1876
|
+
qself = DATA_PTR(self);
|
1877
|
+
if (qisfrac(qself)) {
|
1878
|
+
rb_raise(e_MathError, "non-integral for nextprime");
|
1879
|
+
}
|
1880
|
+
next_prime = znprime(qself->num);
|
1881
|
+
if (next_prime == 0) {
|
1882
|
+
/* return 2^32+15 */
|
1883
|
+
return wrap_number(qlink(&_nxtprime_));
|
1884
|
+
}
|
1885
|
+
else if (next_prime == 1) {
|
1886
|
+
rb_raise(e_MathError, "nextprime arg is >= 2^32");
|
1887
|
+
}
|
1888
|
+
return wrap_number(utoq(next_prime));
|
1889
|
+
}
|
1890
|
+
|
1891
|
+
/* Norm of a value
|
1892
|
+
*
|
1893
|
+
* For real values, norm is the square of the absolute value.
|
1894
|
+
*
|
1895
|
+
* @return [Calc::Q]
|
1896
|
+
* @example
|
1897
|
+
* Calc::Q("3.4").norm #=> Calc::Q(11.56)
|
1898
|
+
* Calc::Q("-3.4").norm #=> Calc::Q(11.56)
|
1899
|
+
*/
|
1900
|
+
static VALUE
|
1901
|
+
cq_norm(VALUE self)
|
1902
|
+
{
|
1903
|
+
setup_math_error();
|
1904
|
+
return wrap_number(qsquare(DATA_PTR(self)));
|
1905
|
+
}
|
1906
|
+
|
1907
|
+
/* Returns the numerator. Return value has the same sign as self.
|
1908
|
+
*
|
1909
|
+
* @return [Calc::Q]
|
1910
|
+
* @example:
|
1911
|
+
* Calc::Q(1,3).num #=> Calc::Q(1)
|
1912
|
+
* Calc::Q(-1,3).num #=> Calc::Q(-1)
|
1913
|
+
*/
|
1914
|
+
static VALUE
|
1915
|
+
cq_num(VALUE self)
|
1916
|
+
{
|
1917
|
+
setup_math_error();
|
1918
|
+
return wrap_number(qnum(DATA_PTR(self)));
|
1919
|
+
}
|
1920
|
+
|
1921
|
+
/* Returns true if the number is an odd integer
|
1922
|
+
*
|
1923
|
+
* @return [Boolean]
|
1924
|
+
* @example
|
1925
|
+
* Calc::Q(1).odd? #=> true
|
1926
|
+
* Calc::Q(2).odd? #=> false
|
1927
|
+
*/
|
1928
|
+
static VALUE
|
1929
|
+
cq_oddp(VALUE self)
|
1930
|
+
{
|
1931
|
+
return qisodd((NUMBER *) DATA_PTR(self)) ? Qtrue : Qfalse;
|
1932
|
+
}
|
1933
|
+
|
1934
|
+
/* Permutation number
|
1935
|
+
*
|
1936
|
+
* Returns the number of permutations in which `other` things may be chosen
|
1937
|
+
* from `self` items where order in which they are chosen matters.
|
1938
|
+
*
|
1939
|
+
* @return [Calc::Q]
|
1940
|
+
* @param other [Integer]
|
1941
|
+
* @example
|
1942
|
+
* Calc::Q(7).perm(3) #=> Calc::Q(210)
|
1943
|
+
*/
|
1944
|
+
static VALUE
|
1945
|
+
cq_perm(VALUE self, VALUE other)
|
1946
|
+
{
|
1947
|
+
NUMBER *qresult, *qother;
|
1948
|
+
setup_math_error();
|
1949
|
+
|
1950
|
+
qother = value_to_number(other, 0);
|
1951
|
+
qresult = qperm(DATA_PTR(self), qother);
|
1952
|
+
qfree(qother);
|
1953
|
+
return wrap_number(qresult);
|
1954
|
+
}
|
1955
|
+
|
1956
|
+
/* Product of primes up to specified integer
|
1957
|
+
*
|
1958
|
+
* @return [Calc::Q]
|
1959
|
+
* @raise [Calc::MathError] if self is not a positive integer
|
1960
|
+
* @example
|
1961
|
+
* Calc::Q(2).pfact #=> Calc::Q(2)
|
1962
|
+
* Calc::Q(10).pfact #=> Calc::Q(210)
|
1963
|
+
* Calc::Q(100).pfact #=> Calc::Q(2305567963945518424753102147331756070)
|
1964
|
+
*/
|
1965
|
+
static VALUE
|
1966
|
+
cq_pfact(VALUE self)
|
1967
|
+
{
|
1968
|
+
setup_math_error();
|
1969
|
+
return wrap_number(qpfact(DATA_PTR(self)));
|
1970
|
+
}
|
1971
|
+
|
1972
|
+
/* Number of primes not exceeded specified number
|
1973
|
+
*
|
1974
|
+
* @return [Calc::Q]
|
1975
|
+
* @raise [Calc::MathError] if self is >= 2**32
|
1976
|
+
* @example
|
1977
|
+
* Calc::Q(10).pix #=> Calc::Q(4)
|
1978
|
+
* Calc::Q(100).pix #=> Calc::Q(25)
|
1979
|
+
* Calc::Q(10**9).pix #=> Calc::Q(50847534)
|
1980
|
+
*/
|
1981
|
+
static VALUE
|
1982
|
+
cq_pix(VALUE self)
|
1983
|
+
{
|
1984
|
+
NUMBER *qself;
|
1985
|
+
long value;
|
1986
|
+
setup_math_error();
|
1987
|
+
|
1988
|
+
qself = DATA_PTR(self);
|
1989
|
+
if (qisfrac(qself)) {
|
1990
|
+
rb_raise(e_MathError, "non-integer value for pix");
|
1991
|
+
}
|
1992
|
+
value = zpix(qself->num);
|
1993
|
+
if (value >= 0) {
|
1994
|
+
return wrap_number(utoq(value));
|
1995
|
+
}
|
1996
|
+
rb_raise(e_MathError, "pix arg is >= 2^32");
|
1997
|
+
}
|
1998
|
+
|
1999
|
+
/* Number of decimal (or other) places in fractional part
|
2000
|
+
*
|
2001
|
+
* Returns the number of digits needed to express the fractional part of this
|
2002
|
+
* number in base b. If self is an integer, returns 0. If the expansion in
|
2003
|
+
* base b is infinite, returns nil.
|
2004
|
+
*
|
2005
|
+
* @param b [Integer] base (default 10)
|
2006
|
+
* @return [Calc::Q]
|
2007
|
+
* @raise [Calc::MathError] if base is invalid
|
2008
|
+
* @example
|
2009
|
+
* Calc::Q(3).places #=> Calc::Q(0)
|
2010
|
+
* Calc::Q("0.0123").places #=> Calc::Q(4)
|
2011
|
+
* Calc::Q("0.0123").places(2) #=> nil
|
2012
|
+
* Calc::Q(".625").places(2) #=> Calc::Q(3)
|
2013
|
+
*/
|
2014
|
+
static VALUE
|
2015
|
+
cq_places(int argc, VALUE * argv, VALUE self)
|
2016
|
+
{
|
2017
|
+
VALUE base;
|
2018
|
+
NUMBER *qbase;
|
2019
|
+
long places;
|
2020
|
+
setup_math_error();
|
2021
|
+
|
2022
|
+
if (rb_scan_args(argc, argv, "01", &base) == 0) {
|
2023
|
+
places = qdecplaces(DATA_PTR(self));
|
2024
|
+
}
|
2025
|
+
else {
|
2026
|
+
qbase = value_to_number(base, 0);
|
2027
|
+
if (qisfrac(qbase)) {
|
2028
|
+
qfree(qbase);
|
2029
|
+
rb_raise(e_MathError, "non-integer base for places");
|
2030
|
+
}
|
2031
|
+
places = qplaces(DATA_PTR(self), qbase->num);
|
2032
|
+
qfree(qbase);
|
2033
|
+
if (places == -2) {
|
2034
|
+
rb_raise(e_MathError, "invalid base for places");
|
2035
|
+
}
|
2036
|
+
}
|
2037
|
+
if (places == -1) {
|
2038
|
+
return Qnil;
|
2039
|
+
}
|
2040
|
+
return wrap_number(itoq(places));
|
2041
|
+
}
|
2042
|
+
|
2043
|
+
/* Integral power of an interger modulo a specified integer
|
2044
|
+
*
|
2045
|
+
* x.pmod(n, md) returns the integer value of the canonical reidue of
|
2046
|
+
* x^n modulo md. The canonical residue is determined by Calc.config(:mod).
|
2047
|
+
* See "help pmod" for full details.
|
2048
|
+
*
|
2049
|
+
* @param n [Integer]
|
2050
|
+
* @param md [Integer]
|
2051
|
+
* @return [Calc::Q]
|
2052
|
+
* @example
|
2053
|
+
* Calc::Q(2).pmod(3, 10) #=> Calc::Q(8)
|
2054
|
+
* Calc::Q(2).pmod(5, 10) #=> Calc::Q(2)
|
2055
|
+
*/
|
2056
|
+
static VALUE
|
2057
|
+
cq_pmod(VALUE self, VALUE n, VALUE md)
|
2058
|
+
{
|
2059
|
+
NUMBER *qn, *qmd, *qresult;
|
2060
|
+
setup_math_error();
|
2061
|
+
|
2062
|
+
qn = value_to_number(n, 0);
|
2063
|
+
qmd = value_to_number(md, 0);
|
2064
|
+
qresult = qpowermod(DATA_PTR(self), qn, qmd);
|
2065
|
+
qfree(qn);
|
2066
|
+
qfree(qmd);
|
2067
|
+
return wrap_number(qresult);
|
2068
|
+
}
|
2069
|
+
|
2070
|
+
/* Number of bits that match 0 or 1
|
2071
|
+
*
|
2072
|
+
* Counts of number of bits in abs(self) that match bitval (1 or 0, default 1)
|
2073
|
+
*
|
2074
|
+
* @param bitval [Integer] 0 or 1 (default 1)
|
2075
|
+
* @return [Calc::Q]
|
2076
|
+
* @example
|
2077
|
+
* Calc::Q(32767).popcnt #=> Calc::Q(15)
|
2078
|
+
* Calc::Q(32767).popcnt(0) #=> Calc::Q(0)
|
2079
|
+
*/
|
2080
|
+
static VALUE
|
2081
|
+
cq_popcnt(int argc, VALUE * argv, VALUE self)
|
2082
|
+
{
|
2083
|
+
VALUE bitval;
|
2084
|
+
NUMBER *qself, *qbitval, *qresult;
|
2085
|
+
int b = 1;
|
2086
|
+
setup_math_error();
|
2087
|
+
|
2088
|
+
if (rb_scan_args(argc, argv, "01", &bitval) == 1) {
|
2089
|
+
qbitval = value_to_number(bitval, 0);
|
2090
|
+
if (qiszero(qbitval)) {
|
2091
|
+
b = 0;
|
2092
|
+
}
|
2093
|
+
qfree(qbitval);
|
2094
|
+
}
|
2095
|
+
qself = DATA_PTR(self);
|
2096
|
+
if (qisint(qself)) {
|
2097
|
+
qresult = itoq(zpopcnt(qself->num, b));
|
2098
|
+
}
|
2099
|
+
else {
|
2100
|
+
qresult = itoq(zpopcnt(qself->num, b) + zpopcnt(qself->den, b));
|
2101
|
+
}
|
2102
|
+
return wrap_number(qresult);
|
2103
|
+
}
|
2104
|
+
|
2105
|
+
/* Evaluates a numeric power
|
2106
|
+
*
|
2107
|
+
* @param y [Numeric] power to raise by
|
2108
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
2109
|
+
* @return [Calc::Q,Calc::C]
|
2110
|
+
* @raise [Calc::MathError] if raising to a VERY large power
|
2111
|
+
* @example
|
2112
|
+
* Calc::Q("1.2345").power(10) #=> Calc::Q(8.2207405646327461795)
|
2113
|
+
* Calc::Q(-1).power("0.1") #=> Calc::C(0.95105651629515357212+0.3090169943749474241i)
|
2114
|
+
*/
|
2115
|
+
static VALUE
|
2116
|
+
cq_power(int argc, VALUE * argv, VALUE self)
|
2117
|
+
{
|
2118
|
+
/* ref: powervalue() in calc value.c. handle cases NUM,NUM and NUM,COM */
|
2119
|
+
VALUE arg, epsilon, result;
|
2120
|
+
NUMBER *qself, *qarg, *qepsilon;
|
2121
|
+
COMPLEX *cself, *carg;
|
2122
|
+
setup_math_error();
|
2123
|
+
|
2124
|
+
if (rb_scan_args(argc, argv, "11", &arg, &epsilon) == 1) {
|
2125
|
+
qepsilon = NULL;
|
2126
|
+
}
|
2127
|
+
else {
|
2128
|
+
qepsilon = value_to_number(epsilon, 1);
|
2129
|
+
}
|
2130
|
+
qself = DATA_PTR(self);
|
2131
|
+
if (CALC_C_P(arg) || TYPE(arg) == T_COMPLEX || qisneg(qself)) {
|
2132
|
+
cself = comalloc();
|
2133
|
+
qfree(cself->real);
|
2134
|
+
cself->real = qlink(qself);
|
2135
|
+
if (TYPE(arg) == T_STRING) {
|
2136
|
+
carg = comalloc();
|
2137
|
+
qfree(carg->real);
|
2138
|
+
carg->real = value_to_number(arg, 1);
|
2139
|
+
}
|
2140
|
+
else {
|
2141
|
+
carg = value_to_complex(arg);
|
2142
|
+
}
|
2143
|
+
result = wrap_complex(c_power(cself, carg, qepsilon ? qepsilon : conf->epsilon));
|
2144
|
+
comfree(cself);
|
2145
|
+
comfree(carg);
|
2146
|
+
}
|
2147
|
+
else {
|
2148
|
+
qarg = value_to_number(arg, 1);
|
2149
|
+
result = wrap_number(qpower(qself, qarg, qepsilon ? qepsilon : conf->epsilon));
|
2150
|
+
qfree(qarg)
|
2151
|
+
}
|
2152
|
+
if (qepsilon) {
|
2153
|
+
qfree(qepsilon);
|
2154
|
+
}
|
2155
|
+
return result;
|
2156
|
+
}
|
2157
|
+
|
2158
|
+
/* Previous candidate for primeness
|
2159
|
+
*
|
2160
|
+
* Returns the greatest positive integer i less than abs(self) expressible as
|
2161
|
+
* residue + k * modulus, where k is an integer, for which ptest?(count, skip)
|
2162
|
+
* is true, or if there is no such integer i, nil.
|
2163
|
+
*
|
2164
|
+
* See `ptest?` for a description of `count` and `skip`. For basic purposes,
|
2165
|
+
* use default values and count > 1. Higher counts increase the probability
|
2166
|
+
* that the returned value is prime.
|
2167
|
+
*
|
2168
|
+
* @param count [Integer] number of tests for ptest (default 1)
|
2169
|
+
* @param skip [Integer] base selection mode for ptest (default 1)
|
2170
|
+
* @param residue [Integer] (default 0)
|
2171
|
+
* @param modulus [Integer] (default 1)
|
2172
|
+
* @return [Calc::Q]
|
2173
|
+
* @raise [Calc::MathError] if self or any parameter is not an integer
|
2174
|
+
* @example
|
2175
|
+
* Calc::Q(100).prevcand(10) #=> Calc::Q(97)
|
2176
|
+
* Calc::Q(5000000000).prevcand(10) #=> Calc::Q(4999999937)
|
2177
|
+
*/
|
2178
|
+
static VALUE
|
2179
|
+
cq_prevcand(int argc, VALUE * argv, VALUE self)
|
2180
|
+
{
|
2181
|
+
return cand_navigation(argc, argv, self, &zprevcand);
|
2182
|
+
}
|
2183
|
+
|
2184
|
+
/* Previous prime number
|
2185
|
+
*
|
2186
|
+
* If self <= 2, returns nil. If self is >= 2**32, raises an exception.
|
2187
|
+
* Otherwise returns the previous prime number.
|
2188
|
+
*
|
2189
|
+
* @return [Calc::Q]
|
2190
|
+
* @raise [Calc::MathError] if self is >= 2**32
|
2191
|
+
* @example
|
2192
|
+
* Calc::Q(2).prevprime #=> nil
|
2193
|
+
* Calc::Q(10).prevprime #=> Calc::Q(7)
|
2194
|
+
* Calc::Q(100).prevprime #=> Calc::Q(97)
|
2195
|
+
* Calc::Q("1e6").prevprime #=> Calc::Q(999983)
|
2196
|
+
* Calc::Q(2**32 - 1).prevprime #=> Calc::Q(4294967291)
|
2197
|
+
*/
|
2198
|
+
static VALUE
|
2199
|
+
cq_prevprime(VALUE self)
|
2200
|
+
{
|
2201
|
+
NUMBER *qself;
|
2202
|
+
FULL prev_prime;
|
2203
|
+
setup_math_error();
|
2204
|
+
|
2205
|
+
qself = DATA_PTR(self);
|
2206
|
+
if (qisfrac(qself)) {
|
2207
|
+
rb_raise(e_MathError, "non-integral for prevprime");
|
2208
|
+
}
|
2209
|
+
prev_prime = zpprime(qself->num);
|
2210
|
+
if (prev_prime == 0) {
|
2211
|
+
return Qnil;
|
2212
|
+
}
|
2213
|
+
else if (prev_prime == 1) {
|
2214
|
+
rb_raise(e_MathError, "prevprime arg is >= 2^32");
|
2215
|
+
}
|
2216
|
+
return wrap_number(utoq(prev_prime));
|
2217
|
+
}
|
2218
|
+
|
2219
|
+
/* Small integer prime test
|
2220
|
+
*
|
2221
|
+
* Returns true if self is prime, false if it is not prime.
|
2222
|
+
* This function can't be used for odd numbers > 2^32.
|
2223
|
+
*
|
2224
|
+
* @return [Boolean]
|
2225
|
+
* @raise [Calc::MathError] if self is odd and > 2^32.
|
2226
|
+
* @example
|
2227
|
+
* Calc::Q(2**31 - 9).prime? #=> false
|
2228
|
+
* Calc::Q(2**31 - 1).prime? #=> true
|
2229
|
+
* @see Calc::Q#isprime
|
2230
|
+
*/
|
2231
|
+
static VALUE
|
2232
|
+
cq_primep(VALUE self)
|
2233
|
+
{
|
2234
|
+
NUMBER *qself;
|
2235
|
+
setup_math_error();
|
2236
|
+
|
2237
|
+
qself = DATA_PTR(self);
|
2238
|
+
if (qisfrac(qself)) {
|
2239
|
+
rb_raise(e_MathError, "non-integral for prime?");
|
2240
|
+
}
|
2241
|
+
switch (zisprime(qself->num)) {
|
2242
|
+
case 0:
|
2243
|
+
return Qfalse;
|
2244
|
+
case 1:
|
2245
|
+
return Qtrue;
|
2246
|
+
default:
|
2247
|
+
rb_raise(e_MathError, "prime? argument is an odd value > 2^32");
|
2248
|
+
}
|
2249
|
+
}
|
2250
|
+
|
2251
|
+
/* Probabilistic test of primality
|
2252
|
+
*
|
2253
|
+
* Returns false if self is definitely not a prime. Returns true if self is
|
2254
|
+
* probably prime.
|
2255
|
+
*
|
2256
|
+
* If self is < 2**32, essentially calles prime? and returns true only if self
|
2257
|
+
* is prime.
|
2258
|
+
*
|
2259
|
+
* If self is > 2**32 and is divisible by a prime <= 101, returns false.
|
2260
|
+
*
|
2261
|
+
* In other cases, performs abs(count) tests of bases of possible primality.
|
2262
|
+
*
|
2263
|
+
* `skip` specifies how to select bases for testing:
|
2264
|
+
* 0: random in [2, self-2]
|
2265
|
+
* 1: successive primes [2, 3, 5, ...] not exceeding min(self, 65536)
|
2266
|
+
* otherwise: integers starting from `skip`
|
2267
|
+
*
|
2268
|
+
* For a full explanation of the tests, see "help ptest".
|
2269
|
+
*
|
2270
|
+
* Returning true from this function means self is either prime or a strong
|
2271
|
+
* psuedoprime. The probability that a composite number returns true is less
|
2272
|
+
* than (1/4)**count. For example, ptest(10) incorrectly returns true less
|
2273
|
+
* than once in a million numbers; ptest(20) incorrectly returns true less
|
2274
|
+
* than once in a quadrillion numbers.
|
2275
|
+
*
|
2276
|
+
* @param count [Integer] (optional: default 1)
|
2277
|
+
* @param skip [Integer] (optional: default 1)
|
2278
|
+
* @return [Boolean]
|
2279
|
+
* @example
|
2280
|
+
* Calc::Q(4294967291).ptest?(10) #=> true
|
2281
|
+
*/
|
2282
|
+
static VALUE
|
2283
|
+
cq_ptestp(int argc, VALUE * argv, VALUE self)
|
2284
|
+
{
|
2285
|
+
VALUE count, skip, result;
|
2286
|
+
NUMBER *qcount, *qskip;
|
2287
|
+
int n;
|
2288
|
+
setup_math_error();
|
2289
|
+
|
2290
|
+
n = rb_scan_args(argc, argv, "02", &count, &skip);
|
2291
|
+
qcount = (n >= 1) ? value_to_number(count, 0) : qlink(&_qone_);
|
2292
|
+
qskip = (n >= 2) ? value_to_number(skip, 0) : qlink(&_qone_);
|
2293
|
+
result = qprimetest(DATA_PTR(self), qcount, qskip) ? Qtrue : Qfalse;
|
2294
|
+
qfree(qcount);
|
2295
|
+
qfree(qskip);
|
2296
|
+
return result;
|
2297
|
+
}
|
2298
|
+
|
2299
|
+
/* Returns the quotient and remainder from division
|
2300
|
+
*
|
2301
|
+
* @param y [Numeric,Calc::Q] number to divide by
|
2302
|
+
* @param rnd [Integer] optional rounding mode, default Calc.config(:quomod)
|
2303
|
+
* @return [Array<Calc::Q>] Array containing quotient and remainder
|
2304
|
+
* @todo add parameter to control rounding
|
2305
|
+
* @example
|
2306
|
+
* Calc::Q(13).quomod(5) #=> [Calc::Q(2), Calc::Q(3)]
|
2307
|
+
*/
|
2308
|
+
static VALUE
|
2309
|
+
cq_quomod(int argc, VALUE * argv, VALUE self)
|
2310
|
+
{
|
2311
|
+
VALUE other, rnd;
|
2312
|
+
NUMBER *qother, *qquo, *qmod;
|
2313
|
+
long r;
|
2314
|
+
setup_math_error();
|
2315
|
+
|
2316
|
+
if (rb_scan_args(argc, argv, "11", &other, &rnd) == 2) {
|
2317
|
+
r = value_to_long(rnd);
|
2318
|
+
}
|
2319
|
+
else {
|
2320
|
+
r = conf->quomod;
|
2321
|
+
}
|
2322
|
+
qother = value_to_number(other, 0);
|
2323
|
+
if (qiszero(qother)) {
|
2324
|
+
qfree(qother);
|
2325
|
+
rb_raise(rb_eZeroDivError, "division by zero in quomod");
|
2326
|
+
}
|
2327
|
+
qquomod(DATA_PTR(self), qother, &qquo, &qmod, r);
|
2328
|
+
qfree(qother);
|
2329
|
+
return rb_assoc_new(wrap_number(qquo), wrap_number(qmod));
|
2330
|
+
}
|
2331
|
+
|
2332
|
+
/* Returns true if both values are relatively prime
|
2333
|
+
*
|
2334
|
+
* @param other [Integer]
|
2335
|
+
* @return [Boolean]
|
2336
|
+
* @raise [Calc::MathError] if either values are non-integers
|
2337
|
+
* @example
|
2338
|
+
* Calc::Q(6).rel?(5) #=> true
|
2339
|
+
* Calc::Q(6).rel?(2) #=> false
|
2340
|
+
* @see Calc::Q#isrel
|
2341
|
+
*/
|
2342
|
+
static VALUE
|
2343
|
+
cq_relp(VALUE self, VALUE other)
|
2344
|
+
{
|
2345
|
+
VALUE result;
|
2346
|
+
NUMBER *qself, *qother;
|
2347
|
+
setup_math_error();
|
2348
|
+
|
2349
|
+
qself = DATA_PTR(self);
|
2350
|
+
qother = value_to_number(other, 0);
|
2351
|
+
if (qisfrac(qself) || qisfrac(qother)) {
|
2352
|
+
qfree(qother);
|
2353
|
+
rb_raise(e_MathError, "non-integer for rel?");
|
2354
|
+
}
|
2355
|
+
result = zrelprime(qself->num, qother->num) ? Qtrue : Qfalse;
|
2356
|
+
qfree(qother);
|
2357
|
+
return result;
|
2358
|
+
}
|
2359
|
+
|
2360
|
+
/* Round to a specified number of decimal places
|
2361
|
+
*
|
2362
|
+
* Rounds self rounded to the specified number of significant binary digits.
|
2363
|
+
* For the meanings of the rounding flags, see "help round".
|
2364
|
+
*
|
2365
|
+
* @return [Calc::Q]
|
2366
|
+
* @param places [Integer] number of decimal digits to round to (default 0)
|
2367
|
+
* @param rnd [Integer] rounding flags (default Calc.config(:round))
|
2368
|
+
* @example
|
2369
|
+
* Calc::Q(7,32).round(3) #=> Calc::Q(0.219)
|
2370
|
+
*/
|
2371
|
+
static VALUE
|
2372
|
+
cq_round(int argc, VALUE * argv, VALUE self)
|
2373
|
+
{
|
2374
|
+
return rounding_function(argc, argv, self, &qround);
|
2375
|
+
}
|
2376
|
+
|
2377
|
+
/* Trigonometric secant
|
2378
|
+
*
|
2379
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
2380
|
+
* @return [Calc::Q]
|
2381
|
+
* @example
|
2382
|
+
* Calc::Q(1).sec #=> Calc::Q(1.85081571768092561791)
|
2383
|
+
*/
|
2384
|
+
static VALUE
|
2385
|
+
cq_sec(int argc, VALUE * argv, VALUE self)
|
2386
|
+
{
|
2387
|
+
return trans_function(argc, argv, self, &qsec, NULL);
|
2388
|
+
}
|
2389
|
+
|
2390
|
+
/* Hyperbolic secant
|
2391
|
+
*
|
2392
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
2393
|
+
* @return [Calc::Q]
|
2394
|
+
* @example
|
2395
|
+
* Calc::Q(1).sech #=> Calc::Q(0.64805427366388539958)
|
2396
|
+
*/
|
2397
|
+
static VALUE
|
2398
|
+
cq_sech(int argc, VALUE * argv, VALUE self)
|
2399
|
+
{
|
2400
|
+
return trans_function(argc, argv, self, &qsech, NULL);
|
2401
|
+
}
|
2402
|
+
|
2403
|
+
/* Trigonometric sine
|
2404
|
+
*
|
2405
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
2406
|
+
* @return [Calc::Q]
|
2407
|
+
* @example
|
2408
|
+
* Calc::Q(1).sin #=> Calc::Q(0.84147098480789650665)
|
2409
|
+
*/
|
2410
|
+
static VALUE
|
2411
|
+
cq_sin(int argc, VALUE * argv, VALUE self)
|
2412
|
+
{
|
2413
|
+
return trans_function(argc, argv, self, &qsin, NULL);
|
2414
|
+
}
|
2415
|
+
|
2416
|
+
/* Hyperbolic sine
|
2417
|
+
*
|
2418
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
2419
|
+
* @return [Calc::Q]
|
2420
|
+
* @example
|
2421
|
+
* Calc::Q(1).sin #=> Calc::Q(1.17520119364380145688)
|
2422
|
+
*/
|
2423
|
+
static VALUE
|
2424
|
+
cq_sinh(int argc, VALUE * argv, VALUE self)
|
2425
|
+
{
|
2426
|
+
return trans_function(argc, argv, self, &qsinh, NULL);
|
2427
|
+
}
|
2428
|
+
|
2429
|
+
/* Returns the number of bytes in the machine representation of `self`
|
2430
|
+
*
|
2431
|
+
* This method acts like ruby's Fixnum#size, except that is works on fractions
|
2432
|
+
* in which case the result is the number of bytes for both the numerator and
|
2433
|
+
* denominator. As the internal representation of numbers differs between
|
2434
|
+
* ruby and libcalc, it wil not necessary return the same values as
|
2435
|
+
* Fixnum#size.
|
2436
|
+
*
|
2437
|
+
* @return [Calc::Q]
|
2438
|
+
* @example
|
2439
|
+
* Calc::Q(1).size #=> Calc;:Q(4)
|
2440
|
+
* Calc::Q(2**32).size #=> Calc::Q(8)
|
2441
|
+
* Calc::Q("1/3").size #=> Calc::Q(8)
|
2442
|
+
*/
|
2443
|
+
static VALUE
|
2444
|
+
cq_size(VALUE self)
|
2445
|
+
{
|
2446
|
+
NUMBER *qself;
|
2447
|
+
size_t s;
|
2448
|
+
setup_math_error();
|
2449
|
+
|
2450
|
+
qself = DATA_PTR(self);
|
2451
|
+
if (qisint(qself)) {
|
2452
|
+
s = qself->num.len * sizeof(HALF);
|
2453
|
+
}
|
2454
|
+
else {
|
2455
|
+
s = (qself->num.len + qself->den.len) * sizeof(HALF);
|
2456
|
+
}
|
2457
|
+
return wrap_number(itoq(s));
|
2458
|
+
}
|
2459
|
+
|
2460
|
+
/* Return true if this value is a square
|
2461
|
+
*
|
2462
|
+
* Returns true if there exists integers, b such that:
|
2463
|
+
* self == a^2 / b^2 (b != 0)
|
2464
|
+
*
|
2465
|
+
* Note that this function works on rationals, so:
|
2466
|
+
* Calc::Q(25, 15).sq? #=> true
|
2467
|
+
*
|
2468
|
+
* If you want to test for perfect square integers, you need to exclude
|
2469
|
+
* non-integer values before you test.
|
2470
|
+
*
|
2471
|
+
* @return [Boolean]
|
2472
|
+
* @example
|
2473
|
+
* Calc::Q(25).sq? #=> true
|
2474
|
+
* Calc::Q(3).sq? #=> false
|
2475
|
+
* Calc::Q("4/25").sq? #=> true
|
2476
|
+
* @see Calc::Q#issq
|
2477
|
+
*/
|
2478
|
+
static VALUE
|
2479
|
+
cq_sqp(VALUE self)
|
2480
|
+
{
|
2481
|
+
setup_math_error();
|
2482
|
+
return qissquare(DATA_PTR(self)) ? Qtrue : Qfalse;
|
2483
|
+
}
|
2484
|
+
|
2485
|
+
/* Trigonometric tangent
|
2486
|
+
*
|
2487
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
2488
|
+
* @return [Calc::Q]
|
2489
|
+
* @example
|
2490
|
+
* Calc::Q(1).tan #=> Calc::Q(1.55740772465490223051)
|
2491
|
+
*/
|
2492
|
+
static VALUE
|
2493
|
+
cq_tan(int argc, VALUE * argv, VALUE self)
|
2494
|
+
{
|
2495
|
+
return trans_function(argc, argv, self, &qtan, NULL);
|
2496
|
+
}
|
2497
|
+
|
2498
|
+
/* Hyperbolic tangent
|
2499
|
+
*
|
2500
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
2501
|
+
* @return [Calc::Q]
|
2502
|
+
* @example
|
2503
|
+
* Calc::Q(1).tanh #=> Calc::Q(0.76159415595576488812)
|
2504
|
+
*/
|
2505
|
+
static VALUE
|
2506
|
+
cq_tanh(int argc, VALUE * argv, VALUE self)
|
2507
|
+
{
|
2508
|
+
return trans_function(argc, argv, self, &qtanh, NULL);
|
2509
|
+
}
|
2510
|
+
|
2511
|
+
/* Converts this number to a core ruby integer (Fixnum or Bignum).
|
2512
|
+
*
|
2513
|
+
* If self is a fraction, the fractional part is truncated.
|
2514
|
+
*
|
2515
|
+
* Note that the return value is a ruby Fixnum or Bignum. If you want to
|
2516
|
+
* convert to an integer but have the result be a `Calc::Q` object, use
|
2517
|
+
* `trunc` or `round`.
|
2518
|
+
*
|
2519
|
+
* @return [Fixnum,Bignum]
|
2520
|
+
* @example
|
2521
|
+
* Calc::Q(42).to_i #=> 42
|
2522
|
+
* Calc::Q("1e19").to_i #=> 10000000000000000000
|
2523
|
+
* Calc::Q(1,2).to_i #=> 0
|
2524
|
+
*/
|
2525
|
+
static VALUE
|
2526
|
+
cq_to_i(VALUE self)
|
2527
|
+
{
|
2528
|
+
NUMBER *qself;
|
2529
|
+
ZVALUE ztmp;
|
2530
|
+
VALUE string, result;
|
2531
|
+
char *s;
|
2532
|
+
setup_math_error();
|
2533
|
+
|
2534
|
+
qself = DATA_PTR(self);
|
2535
|
+
if (qisint(qself)) {
|
2536
|
+
zcopy(qself->num, &ztmp);
|
2537
|
+
}
|
2538
|
+
else {
|
2539
|
+
zquo(qself->num, qself->den, &ztmp, 0);
|
2540
|
+
}
|
2541
|
+
if (zgtmaxlong(ztmp)) {
|
2542
|
+
/* too big to fit in a long, ztoi would return MAXLONG. use a string
|
2543
|
+
* intermediary */
|
2544
|
+
math_divertio();
|
2545
|
+
zprintval(ztmp, 0, 0);
|
2546
|
+
s = math_getdivertedio();
|
2547
|
+
string = rb_str_new2(s);
|
2548
|
+
free(s);
|
2549
|
+
result = rb_funcall(string, rb_intern("to_i"), 0);
|
2550
|
+
}
|
2551
|
+
else {
|
2552
|
+
result = LONG2NUM(ztoi(ztmp));
|
2553
|
+
}
|
2554
|
+
zfree(ztmp);
|
2555
|
+
return result;
|
2556
|
+
}
|
2557
|
+
|
2558
|
+
/* Converts this number to a string.
|
2559
|
+
*
|
2560
|
+
* Format depends on the configuration parameters "mode" and "display. The
|
2561
|
+
* mode can be overridden for individual calls.
|
2562
|
+
*
|
2563
|
+
* @param mode [String,Symbol] (optional) output mode, see [Calc::Config]
|
2564
|
+
* @return [String]
|
2565
|
+
* @example
|
2566
|
+
* Calc::Q(1,2).to_s #=> "0.5"
|
2567
|
+
* Calc::Q(1,2).to_s(:frac) #=> "1/2"
|
2568
|
+
* Calc::Q(42).to_s(:hex) #=> "0x2a"
|
2569
|
+
*/
|
2570
|
+
static VALUE
|
2571
|
+
cq_to_s(int argc, VALUE * argv, VALUE self)
|
2572
|
+
{
|
2573
|
+
NUMBER *qself = DATA_PTR(self);
|
2574
|
+
char *s;
|
2575
|
+
int args;
|
2576
|
+
VALUE rs, mode;
|
2577
|
+
setup_math_error();
|
2578
|
+
|
2579
|
+
args = rb_scan_args(argc, argv, "01", &mode);
|
2580
|
+
math_divertio();
|
2581
|
+
if (args == 0) {
|
2582
|
+
qprintnum(qself, MODE_DEFAULT);
|
2583
|
+
}
|
2584
|
+
else {
|
2585
|
+
qprintnum(qself, (int) value_to_mode(mode));
|
2586
|
+
}
|
2587
|
+
s = math_getdivertedio();
|
2588
|
+
rs = rb_str_new2(s);
|
2589
|
+
free(s);
|
2590
|
+
|
2591
|
+
return rs;
|
2592
|
+
}
|
2593
|
+
|
2594
|
+
/* Truncate to a number of decimal places
|
2595
|
+
*
|
2596
|
+
* Truncates to j decimal places. If j is omitted, 0 places is assumed.
|
2597
|
+
* Truncation of a non-integer prouces values nearer to zero.
|
2598
|
+
*
|
2599
|
+
* @param j [Integer]
|
2600
|
+
* @return [Calc::Q]
|
2601
|
+
* @example
|
2602
|
+
* Calc.pi.trunc #=> Calc::Q(3)
|
2603
|
+
* Calc.pi.trunc(5) #=> Calc::Q(3.14159)
|
2604
|
+
*/
|
2605
|
+
static VALUE
|
2606
|
+
cq_trunc(int argc, VALUE * argv, VALUE self)
|
2607
|
+
{
|
2608
|
+
return trunc_function(argc, argv, self, &qtrunc);
|
2609
|
+
}
|
2610
|
+
|
2611
|
+
/* Returns true if self is zero
|
2612
|
+
*
|
2613
|
+
* @param eps [Numeric,Calc::Q] (optional) calculation accuracy
|
2614
|
+
* @return [Calc::Q]
|
2615
|
+
* @example
|
2616
|
+
* Calc::Q(0).zero? #=> true
|
2617
|
+
* Calc::Q(1).zero? #=> false
|
2618
|
+
*/
|
2619
|
+
static VALUE
|
2620
|
+
cq_zerop(VALUE self)
|
2621
|
+
{
|
2622
|
+
return qiszero((NUMBER *) DATA_PTR(self)) ? Qtrue : Qfalse;
|
2623
|
+
}
|
2624
|
+
|
2625
|
+
/*****************************************************************************
|
2626
|
+
* class definition, called once from Init_calc when library is loaded *
|
2627
|
+
*****************************************************************************/
|
2628
|
+
void
|
2629
|
+
define_calc_q(VALUE m)
|
2630
|
+
{
|
2631
|
+
cQ = rb_define_class_under(m, "Q", cNumeric);
|
2632
|
+
rb_define_alloc_func(cQ, cq_alloc);
|
2633
|
+
rb_define_method(cQ, "initialize", cq_initialize, -1);
|
2634
|
+
rb_define_method(cQ, "initialize_copy", cq_initialize_copy, 1);
|
2635
|
+
|
2636
|
+
rb_define_method(cQ, "&", cq_and, 1);
|
2637
|
+
rb_define_method(cQ, "*", cq_multiply, 1);
|
2638
|
+
rb_define_method(cQ, "+", cq_add, 1);
|
2639
|
+
rb_define_method(cQ, "-", cq_subtract, 1);
|
2640
|
+
rb_define_method(cQ, "-@", cq_uminus, 0);
|
2641
|
+
rb_define_method(cQ, "/", cq_divide, 1);
|
2642
|
+
rb_define_method(cQ, "<=>", cq_spaceship, 1);
|
2643
|
+
rb_define_method(cQ, "^", cq_xor, 1);
|
2644
|
+
rb_define_method(cQ, "|", cq_or, 1);
|
2645
|
+
rb_define_method(cQ, "~", cq_comp, 0);
|
2646
|
+
rb_define_method(cQ, "abs", cq_abs, 0);
|
2647
|
+
rb_define_method(cQ, "acos", cq_acos, -1);
|
2648
|
+
rb_define_method(cQ, "acosh", cq_acosh, -1);
|
2649
|
+
rb_define_method(cQ, "acot", cq_acot, -1);
|
2650
|
+
rb_define_method(cQ, "acoth", cq_acoth, -1);
|
2651
|
+
rb_define_method(cQ, "acsc", cq_acsc, -1);
|
2652
|
+
rb_define_method(cQ, "acsch", cq_acsch, -1);
|
2653
|
+
rb_define_method(cQ, "appr", cq_appr, -1);
|
2654
|
+
rb_define_method(cQ, "asec", cq_asec, -1);
|
2655
|
+
rb_define_method(cQ, "asech", cq_asech, -1);
|
2656
|
+
rb_define_method(cQ, "asin", cq_asin, -1);
|
2657
|
+
rb_define_method(cQ, "asinh", cq_asinh, -1);
|
2658
|
+
rb_define_method(cQ, "atan", cq_atan, -1);
|
2659
|
+
rb_define_method(cQ, "atan2", cq_atan2, -1);
|
2660
|
+
rb_define_method(cQ, "atanh", cq_atanh, -1);
|
2661
|
+
rb_define_method(cQ, "bernoulli", cq_bernoulli, 0);
|
2662
|
+
rb_define_method(cQ, "bit?", cq_bitp, 1);
|
2663
|
+
rb_define_method(cQ, "bround", cq_bround, -1);
|
2664
|
+
rb_define_method(cQ, "btrunc", cq_btrunc, -1);
|
2665
|
+
rb_define_method(cQ, "catalan", cq_catalan, 0);
|
2666
|
+
rb_define_method(cQ, "cfappr", cq_cfappr, -1);
|
2667
|
+
rb_define_method(cQ, "cfsim", cq_cfsim, -1);
|
2668
|
+
rb_define_method(cQ, "cos", cq_cos, -1);
|
2669
|
+
rb_define_method(cQ, "cosh", cq_cosh, -1);
|
2670
|
+
rb_define_method(cQ, "cot", cq_cot, -1);
|
2671
|
+
rb_define_method(cQ, "coth", cq_coth, -1);
|
2672
|
+
rb_define_method(cQ, "csc", cq_csc, -1);
|
2673
|
+
rb_define_method(cQ, "csch", cq_csch, -1);
|
2674
|
+
rb_define_method(cQ, "den", cq_den, 0);
|
2675
|
+
rb_define_method(cQ, "digit", cq_digit, -1);
|
2676
|
+
rb_define_method(cQ, "digits", cq_digits, -1);
|
2677
|
+
rb_define_method(cQ, "euler", cq_euler, 0);
|
2678
|
+
rb_define_method(cQ, "even?", cq_evenp, 0);
|
2679
|
+
rb_define_method(cQ, "exp", cq_exp, -1);
|
2680
|
+
rb_define_method(cQ, "fact", cq_fact, 0);
|
2681
|
+
rb_define_method(cQ, "factor", cq_factor, -1);
|
2682
|
+
rb_define_method(cQ, "fcnt", cq_fcnt, 1);
|
2683
|
+
rb_define_method(cQ, "frac", cq_frac, 0);
|
2684
|
+
rb_define_method(cQ, "frem", cq_frem, 1);
|
2685
|
+
rb_define_method(cQ, "fib", cq_fib, 0);
|
2686
|
+
rb_define_method(cQ, "gcd", cq_gcd, -1);
|
2687
|
+
rb_define_method(cQ, "gcdrem", cq_gcdrem, 1);
|
2688
|
+
rb_define_method(cQ, "highbit", cq_highbit, 0);
|
2689
|
+
rb_define_method(cQ, "hypot", cq_hypot, -1);
|
2690
|
+
rb_define_method(cQ, "int", cq_int, 0);
|
2691
|
+
rb_define_method(cQ, "int?", cq_intp, 0);
|
2692
|
+
rb_define_method(cQ, "inverse", cq_inverse, 0);
|
2693
|
+
rb_define_method(cQ, "iroot", cq_iroot, 1);
|
2694
|
+
rb_define_method(cQ, "isqrt", cq_isqrt, 0);
|
2695
|
+
rb_define_method(cQ, "jacobi", cq_jacobi, 1);
|
2696
|
+
rb_define_method(cQ, "lcm", cq_lcm, -1);
|
2697
|
+
rb_define_method(cQ, "lcmfact", cq_lcmfact, 0);
|
2698
|
+
rb_define_method(cQ, "lfactor", cq_lfactor, 1);
|
2699
|
+
rb_define_method(cQ, "lowbit", cq_lowbit, 0);
|
2700
|
+
rb_define_method(cQ, "ltol", cq_ltol, -1);
|
2701
|
+
rb_define_method(cQ, "meq?", cq_meqp, 2);
|
2702
|
+
rb_define_method(cQ, "minv", cq_minv, 1);
|
2703
|
+
rb_define_method(cQ, "mod", cq_mod, -1);
|
2704
|
+
rb_define_method(cQ, "mult?", cq_multp, 1);
|
2705
|
+
rb_define_method(cQ, "near", cq_near, -1);
|
2706
|
+
rb_define_method(cQ, "nextcand", cq_nextcand, -1);
|
2707
|
+
rb_define_method(cQ, "nextprime", cq_nextprime, 0);
|
2708
|
+
rb_define_method(cQ, "norm", cq_norm, 0);
|
2709
|
+
rb_define_method(cQ, "num", cq_num, 0);
|
2710
|
+
rb_define_method(cQ, "odd?", cq_oddp, 0);
|
2711
|
+
rb_define_method(cQ, "perm", cq_perm, 1);
|
2712
|
+
rb_define_method(cQ, "pfact", cq_pfact, 0);
|
2713
|
+
rb_define_method(cQ, "pix", cq_pix, 0);
|
2714
|
+
rb_define_method(cQ, "places", cq_places, -1);
|
2715
|
+
rb_define_method(cQ, "pmod", cq_pmod, 2);
|
2716
|
+
rb_define_method(cQ, "popcnt", cq_popcnt, -1);
|
2717
|
+
rb_define_method(cQ, "power", cq_power, -1);
|
2718
|
+
rb_define_method(cQ, "prevcand", cq_prevcand, -1);
|
2719
|
+
rb_define_method(cQ, "prevprime", cq_prevprime, 0);
|
2720
|
+
rb_define_method(cQ, "prime?", cq_primep, 0);
|
2721
|
+
rb_define_method(cQ, "ptest?", cq_ptestp, -1);
|
2722
|
+
rb_define_method(cQ, "quomod", cq_quomod, -1);
|
2723
|
+
rb_define_method(cQ, "rel?", cq_relp, 1);
|
2724
|
+
rb_define_method(cQ, "round", cq_round, -1);
|
2725
|
+
rb_define_method(cQ, "sec", cq_sec, -1);
|
2726
|
+
rb_define_method(cQ, "sech", cq_sech, -1);
|
2727
|
+
rb_define_method(cQ, "sin", cq_sin, -1);
|
2728
|
+
rb_define_method(cQ, "sinh", cq_sinh, -1);
|
2729
|
+
rb_define_method(cQ, "size", cq_size, 0);
|
2730
|
+
rb_define_method(cQ, "sq?", cq_sqp, 0);
|
2731
|
+
rb_define_method(cQ, "tan", cq_tan, -1);
|
2732
|
+
rb_define_method(cQ, "tanh", cq_tanh, -1);
|
2733
|
+
rb_define_method(cQ, "to_i", cq_to_i, 0);
|
2734
|
+
rb_define_method(cQ, "to_s", cq_to_s, -1);
|
2735
|
+
rb_define_method(cQ, "trunc", cq_trunc, -1);
|
2736
|
+
rb_define_method(cQ, "zero?", cq_zerop, 0);
|
2737
|
+
|
2738
|
+
/* include Comparable */
|
2739
|
+
rb_include_module(cQ, rb_mComparable);
|
2740
|
+
|
2741
|
+
rb_define_alias(cQ, "denominator", "den");
|
2742
|
+
rb_define_alias(cQ, "magnitude", "abs");
|
2743
|
+
rb_define_alias(cQ, "numerator", "num");
|
2744
|
+
|
2745
|
+
id_add = rb_intern("+");
|
2746
|
+
id_and = rb_intern("&");
|
2747
|
+
id_coerce = rb_intern("coerce");
|
2748
|
+
id_divide = rb_intern("/");
|
2749
|
+
id_multiply = rb_intern("*");
|
2750
|
+
id_new = rb_intern("new");
|
2751
|
+
id_or = rb_intern("|");
|
2752
|
+
id_spaceship = rb_intern("<=>");
|
2753
|
+
id_subtract = rb_intern("-");
|
2754
|
+
id_xor = rb_intern("^");
|
2755
|
+
}
|