rtkit 0.7
Sign up to get free protection for your applications and to get access to all the features.
- data/CHANGELOG.rdoc +10 -0
- data/COPYING +674 -0
- data/README.rdoc +107 -0
- data/lib/rtkit.rb +68 -0
- data/lib/rtkit/beam.rb +346 -0
- data/lib/rtkit/bin_image.rb +578 -0
- data/lib/rtkit/bin_matcher.rb +241 -0
- data/lib/rtkit/bin_volume.rb +263 -0
- data/lib/rtkit/collimator.rb +157 -0
- data/lib/rtkit/collimator_setup.rb +143 -0
- data/lib/rtkit/constants.rb +215 -0
- data/lib/rtkit/contour.rb +213 -0
- data/lib/rtkit/control_point.rb +371 -0
- data/lib/rtkit/coordinate.rb +83 -0
- data/lib/rtkit/data_set.rb +264 -0
- data/lib/rtkit/dose.rb +70 -0
- data/lib/rtkit/dose_distribution.rb +206 -0
- data/lib/rtkit/dose_volume.rb +280 -0
- data/lib/rtkit/frame.rb +164 -0
- data/lib/rtkit/image.rb +372 -0
- data/lib/rtkit/image_series.rb +290 -0
- data/lib/rtkit/logging.rb +158 -0
- data/lib/rtkit/methods.rb +105 -0
- data/lib/rtkit/mixins/image_parent.rb +40 -0
- data/lib/rtkit/patient.rb +229 -0
- data/lib/rtkit/pixel_data.rb +237 -0
- data/lib/rtkit/plan.rb +259 -0
- data/lib/rtkit/plane.rb +165 -0
- data/lib/rtkit/roi.rb +388 -0
- data/lib/rtkit/rt_dose.rb +237 -0
- data/lib/rtkit/rt_image.rb +179 -0
- data/lib/rtkit/ruby_extensions.rb +165 -0
- data/lib/rtkit/selection.rb +189 -0
- data/lib/rtkit/series.rb +77 -0
- data/lib/rtkit/setup.rb +198 -0
- data/lib/rtkit/slice.rb +184 -0
- data/lib/rtkit/staple.rb +305 -0
- data/lib/rtkit/structure_set.rb +442 -0
- data/lib/rtkit/study.rb +214 -0
- data/lib/rtkit/variables.rb +23 -0
- data/lib/rtkit/version.rb +6 -0
- metadata +159 -0
data/lib/rtkit/slice.rb
ADDED
@@ -0,0 +1,184 @@
|
|
1
|
+
module RTKIT
|
2
|
+
|
3
|
+
# Contains DICOM data and methods related to an Image Slice, in which a set of contours are defined.
|
4
|
+
#
|
5
|
+
# === Relations
|
6
|
+
#
|
7
|
+
# * A Slice is characterized by a SOP Instance UID, which relates it to an Image.
|
8
|
+
# * A ROI has many Slices, as derived from the Structure Set.
|
9
|
+
# * A Slice has many Contours.
|
10
|
+
#
|
11
|
+
class Slice
|
12
|
+
|
13
|
+
# An array containing the Contours defined for this Slice.
|
14
|
+
attr_reader :contours
|
15
|
+
# The Slice's Image reference.
|
16
|
+
attr_reader :image
|
17
|
+
# The ROI that the Slice belongs to.
|
18
|
+
attr_reader :roi
|
19
|
+
# The Referenced SOP Instance UID.
|
20
|
+
attr_reader :uid
|
21
|
+
|
22
|
+
# Creates a new Slice instance from an array of contour items belonging to a single slice of a particular ROI.
|
23
|
+
# This method also creates and connects any child structures as indicated in the items (e.g. Contours).
|
24
|
+
# Returns the Slice.
|
25
|
+
#
|
26
|
+
# === Parameters
|
27
|
+
#
|
28
|
+
# * <tt>sop_uid</tt> -- The SOP Instance UID reference for this slice.
|
29
|
+
# * <tt>contour_item</tt> -- An array of contour items from the Contour Sequence in ROI Contour Sequence, belonging to the same slice.
|
30
|
+
# * <tt>roi</tt> -- The ROI instance that this Slice belongs to.
|
31
|
+
#
|
32
|
+
def self.create_from_items(sop_uid, contour_items, roi)
|
33
|
+
raise ArgumentError, "Invalid argument 'sop_uid'. Expected String, got #{sop_uid.class}." unless sop_uid.is_a?(String)
|
34
|
+
raise ArgumentError, "Invalid argument 'contour_items'. Expected Array, got #{contour_items.class}." unless contour_items.is_a?(Array)
|
35
|
+
raise ArgumentError, "Invalid argument 'roi'. Expected ROI, got #{roi.class}." unless roi.is_a?(ROI)
|
36
|
+
# Create the Slice instance:
|
37
|
+
slice = self.new(sop_uid, roi)
|
38
|
+
# Create the Contours belonging to the ROI in this Slice:
|
39
|
+
contour_items.each do |contour_item|
|
40
|
+
Contour.create_from_item(contour_item, slice)
|
41
|
+
end
|
42
|
+
return slice
|
43
|
+
end
|
44
|
+
|
45
|
+
# Creates a new Slice instance.
|
46
|
+
#
|
47
|
+
# === Parameters
|
48
|
+
#
|
49
|
+
# * <tt>sop_uid</tt> -- The SOP Instance UID reference for this slice.
|
50
|
+
# * <tt>contour_item</tt> -- An array of contour items from the Contour Sequence in ROI Contour Sequence, belonging to the same slice.
|
51
|
+
# * <tt>roi</tt> -- The ROI instance that this Slice belongs to.
|
52
|
+
#
|
53
|
+
def initialize(sop_uid, roi)
|
54
|
+
raise ArgumentError, "Invalid argument 'sop_uid'. Expected String, got #{sop_uid.class}." unless sop_uid.is_a?(String)
|
55
|
+
raise ArgumentError, "Invalid argument 'roi'. Expected ROI, got #{roi.class}." unless roi.is_a?(ROI)
|
56
|
+
# Key attributes:
|
57
|
+
@contours = Array.new
|
58
|
+
@uid = sop_uid
|
59
|
+
@roi = roi
|
60
|
+
# Set up the Image reference:
|
61
|
+
@image = roi.frame.image(@uid)
|
62
|
+
# Register ourselves with the ROI:
|
63
|
+
@roi.add_slice(self)
|
64
|
+
end
|
65
|
+
|
66
|
+
# Returns true if the argument is an instance with attributes equal to self.
|
67
|
+
#
|
68
|
+
def ==(other)
|
69
|
+
if other.respond_to?(:to_slice)
|
70
|
+
other.send(:state) == state
|
71
|
+
end
|
72
|
+
end
|
73
|
+
|
74
|
+
alias_method :eql?, :==
|
75
|
+
|
76
|
+
# Adds a Contour instance to this Slice.
|
77
|
+
#
|
78
|
+
def add_contour(contour)
|
79
|
+
raise ArgumentError, "Invalid argument 'contour'. Expected Contour, got #{contour.class}." unless contour.is_a?(Contour)
|
80
|
+
@contours << contour unless @contours.include?(contour)
|
81
|
+
end
|
82
|
+
|
83
|
+
# Calculates the area defined by the contours of this slice.
|
84
|
+
# Returns a float value, in units of millimeters squared.
|
85
|
+
#
|
86
|
+
def area
|
87
|
+
bin_image.area
|
88
|
+
end
|
89
|
+
|
90
|
+
# Attaches a Slice to an Image instance belonging to the specified ImageSeries,
|
91
|
+
# by setting the Image reference of the Slice to an Image instance which matches
|
92
|
+
# the coordinates of the Slice's Contour(s).
|
93
|
+
# Raises an exception if a suitable match is not found for the Slice.
|
94
|
+
#
|
95
|
+
# === Notes
|
96
|
+
#
|
97
|
+
# This method can be useful when you have multiple segmentations based on the same image series
|
98
|
+
# from multiple raters (perhaps as part of a comparison study), and the rater's software has modified
|
99
|
+
# the UIDs of the original image series, so that the references of the returned Structure Set does
|
100
|
+
# not match your original image series. This method uses coordinate information to calculate plane
|
101
|
+
# equations, which allows it to identify the corresponding image slice even in the case of
|
102
|
+
# slice geometry being non-perpendicular with respect to the patient geometry (direction cosine values != [0,1]).
|
103
|
+
#
|
104
|
+
def attach_to(series)
|
105
|
+
raise ArgumentError, "Invalid argument 'series'. Expected ImageSeries, got #{series.class}." unless series.is_a?(Series)
|
106
|
+
# Do not bother to attempt this change if we have an image reference and this image instance already belongs to the series:
|
107
|
+
if @image && !series.image(@image.uid) or !@image
|
108
|
+
# Query the ImageSeries for an Image instance that matches the Plane of this Slice:
|
109
|
+
matched_image = series.match_image(plane)
|
110
|
+
if matched_image
|
111
|
+
@image = matched_image
|
112
|
+
@uid = matched_image.uid
|
113
|
+
else
|
114
|
+
raise "No matching Image was found for this Slice."
|
115
|
+
end
|
116
|
+
end
|
117
|
+
end
|
118
|
+
|
119
|
+
# Creates a binary segmented image, from the contours defined for this slice, applied to the referenced Image instance.
|
120
|
+
# Returns an BinImage instance, containing a 2d NArray with dimensions: columns*rows
|
121
|
+
#
|
122
|
+
# === Parameters
|
123
|
+
#
|
124
|
+
# * <tt>source_image</tt> -- The image on which the binary volume will be applied (defaults to the referenced image, but may be e.g. a dose 'image').
|
125
|
+
#
|
126
|
+
def bin_image(source_image=@image)
|
127
|
+
raise "Referenced ROI Slice Image is missing from the dataset. Unable to construct image." unless @image
|
128
|
+
bin_img = BinImage.new(NArray.byte(source_image.columns, source_image.rows), source_image)
|
129
|
+
# Delineate and fill for each contour, then create the final image:
|
130
|
+
@contours.each_with_index do |contour, i|
|
131
|
+
x, y, z = contour.coords
|
132
|
+
bin_img.add(source_image.binary_image(x, y, z))
|
133
|
+
end
|
134
|
+
return bin_img
|
135
|
+
end
|
136
|
+
|
137
|
+
# Generates a Fixnum hash value for this instance.
|
138
|
+
#
|
139
|
+
def hash
|
140
|
+
state.hash
|
141
|
+
end
|
142
|
+
|
143
|
+
# Returns the Plane corresponding to this Slice.
|
144
|
+
# The plane is calculated from coordinates belonging to this instance,
|
145
|
+
# and an error is raised if not enough Coordinates are present (at least 3 required).
|
146
|
+
#
|
147
|
+
def plane
|
148
|
+
# Such a change is only possible if the Slice instance has a Contour with at least three Coordinates:
|
149
|
+
raise "This Slice does not contain a Contour. Plane determination is not possible." if @contours.length == 0
|
150
|
+
raise "This Slice does not contain a Contour with at least 3 Coordinates. Plane determination is not possible." if @contours.first.coordinates.length < 3
|
151
|
+
# Get three coordinates from our Contour:
|
152
|
+
contour = @contours.first
|
153
|
+
num_coords = contour.coordinates.length
|
154
|
+
c1 = contour.coordinates.first
|
155
|
+
c2 = contour.coordinates[num_coords / 3]
|
156
|
+
c3 = contour.coordinates[2 * num_coords / 3]
|
157
|
+
return Plane.calculate(c1, c2, c3)
|
158
|
+
end
|
159
|
+
|
160
|
+
# Returns the position of this slice, which in effect
|
161
|
+
# is the pos_slice attribute of the referenced image.
|
162
|
+
#
|
163
|
+
def pos
|
164
|
+
return @image ? @image.pos_slice : nil
|
165
|
+
end
|
166
|
+
|
167
|
+
# Returns self.
|
168
|
+
#
|
169
|
+
def to_slice
|
170
|
+
self
|
171
|
+
end
|
172
|
+
|
173
|
+
|
174
|
+
private
|
175
|
+
|
176
|
+
|
177
|
+
# Returns the attributes of this instance in an array (for comparison purposes).
|
178
|
+
#
|
179
|
+
def state
|
180
|
+
[@contours, @image, @uid]
|
181
|
+
end
|
182
|
+
|
183
|
+
end
|
184
|
+
end
|
data/lib/rtkit/staple.rb
ADDED
@@ -0,0 +1,305 @@
|
|
1
|
+
module RTKIT
|
2
|
+
|
3
|
+
# The Staple class is used for simultaneously evaluating the performance of multiple volume segmentations
|
4
|
+
# (typically derived from a RT Structure Set) as well as establishing the hidden true segmentation based
|
5
|
+
# on probabilistic analysis of the supplied rater decisions. The determined true segmentation can easily
|
6
|
+
# be exported to a RT Structure Set for external use.
|
7
|
+
#
|
8
|
+
# === THEORY
|
9
|
+
#
|
10
|
+
# Complete data:
|
11
|
+
# (D, T)
|
12
|
+
# Probability mass function of the complete data:
|
13
|
+
# f(D,T | p,q)
|
14
|
+
# Task:
|
15
|
+
# Which performance level parameters (p,q) will maximize the complete data log likelihood function:
|
16
|
+
# (p',q') = arg max_pq ln f(D,T | p,q)
|
17
|
+
#
|
18
|
+
# Indices: D[i,j]
|
19
|
+
# Voxel nr: i
|
20
|
+
# Segmentation nr: j
|
21
|
+
# Iteration nr: k
|
22
|
+
#
|
23
|
+
# The Expectation-Maximization algorithm approaches the problem of maximizing the incomplete data log likelihood
|
24
|
+
# equation by proceeding iteratively with estimation and maximization of the complete data log likelihood function.
|
25
|
+
#
|
26
|
+
class Staple
|
27
|
+
|
28
|
+
# An NArray containing all rater decisions (dimensions n*r).
|
29
|
+
attr_reader :decisions
|
30
|
+
# The maximum number of iterations to use in the STAPLE algorithm.
|
31
|
+
attr_accessor :max_iterations
|
32
|
+
# Number of voxels in the volume to be evaluated.
|
33
|
+
attr_reader :n
|
34
|
+
# Sensitivity float vector (length r). Each index contains a score from 0 (worst) to 1 (all true voxels segmented by the rater).
|
35
|
+
attr_reader :p
|
36
|
+
# An NArray containing the results of the Staple analysis (dimensions 2*r).
|
37
|
+
attr_reader :phi
|
38
|
+
# Specificity float vector (length r). Each index contains a score from 0 (worst) to 1 (none of the true remaining voxels are segmented by the rater).
|
39
|
+
attr_reader :q
|
40
|
+
# Number of raters to be evaluated.
|
41
|
+
attr_reader :r
|
42
|
+
# An NArray containing the determined true segmentation (dimensions equal to that of the input volumes).
|
43
|
+
attr_reader :true_segmentation
|
44
|
+
# The decision vectors used (derived from the supplied volumes).
|
45
|
+
attr_reader :vectors
|
46
|
+
# A float vector containing the weights assigned to each voxel (when rounded becomes the true segmentation) (length n).
|
47
|
+
attr_reader :weights
|
48
|
+
|
49
|
+
# Creates a Staple instance for the provided segmented volumes.
|
50
|
+
#
|
51
|
+
# === Parameters
|
52
|
+
#
|
53
|
+
# * <tt>bin_matcher</tt> -- An BinMatcher instance containing at least two volumes.
|
54
|
+
# * <tt>options</tt> -- A hash of parameters.
|
55
|
+
#
|
56
|
+
# === Options
|
57
|
+
#
|
58
|
+
# * <tt>:max_iterations</tt> -- Integer. The maximum number of iterations to use in the STAPLE algorithm. Defaults to 25.
|
59
|
+
#
|
60
|
+
def initialize(bin_matcher, options={})
|
61
|
+
raise ArgumentError, "Invalid argument 'bin_matcher'. Expected BinMatcher, got #{bin_matcher.class}." unless bin_matcher.is_a?(BinMatcher)
|
62
|
+
raise ArgumentError, "Invalid argument 'bin_matcher'. Expected BinMatcher with at least 2 volumes, got #{bin_matcher.volumes.length}." unless bin_matcher.volumes.length > 1
|
63
|
+
# Verify that the volumes have equal dimensions (columns and rows):
|
64
|
+
volumes = bin_matcher.narrays(sort=false)
|
65
|
+
raise ArgumentError, "Invalid argument 'bin_matcher'. Expected BinMatcher with volumes having the same number of columns, got #{volumes.collect{|v| v.shape[1]}.uniq}." unless volumes.collect{|v| v.shape[1]}.uniq.length == 1
|
66
|
+
raise ArgumentError, "Invalid argument 'bin_matcher'. Expected BinMatcher with volumes having the same number of rows, got #{volumes.collect{|v| v.shape[2]}.uniq}." unless volumes.collect{|v| v.shape[2]}.uniq.length == 1
|
67
|
+
# Make sure the volumes of the BinMatcher instance are comparable:
|
68
|
+
bin_matcher.fill_blanks
|
69
|
+
bin_matcher.sort_volumes
|
70
|
+
@volumes = bin_matcher.narrays(sort=false)
|
71
|
+
@original_volumes = @volumes.dup
|
72
|
+
# Verify that the volumes have the same number of frames:
|
73
|
+
raise ArgumentError, "Invalid argument 'bin_matcher'. Expected BinMatcher with volumes having the same number of frames, got #{@volumes.collect{|v| v.shape[0]}.uniq}." unless @volumes.collect{|v| v.shape[0]}.uniq.length == 1
|
74
|
+
@bm = bin_matcher
|
75
|
+
# Options:
|
76
|
+
@max_iterations = options[:max_iterations] || 25
|
77
|
+
end
|
78
|
+
|
79
|
+
# Returns true if the argument is an instance with attributes equal to self.
|
80
|
+
#
|
81
|
+
def ==(other)
|
82
|
+
if other.respond_to?(:to_staple)
|
83
|
+
other.send(:state) == state
|
84
|
+
end
|
85
|
+
end
|
86
|
+
|
87
|
+
alias_method :eql?, :==
|
88
|
+
|
89
|
+
# Generates a Fixnum hash value for this instance.
|
90
|
+
#
|
91
|
+
def hash
|
92
|
+
state.hash
|
93
|
+
end
|
94
|
+
|
95
|
+
# Along each dimension of the input volume, removes any index (slice, column or row) which is empty in all volumes.
|
96
|
+
# The result is a reduced volume used for the analysis, yielding scores with better contrast on specificity.
|
97
|
+
# This implementation aims to be independent of the number of dimensions in the input segmentation.
|
98
|
+
#
|
99
|
+
def remove_empty_indices
|
100
|
+
# It only makes sense to run this volume reduction if the number of dimensions are 2 or more:
|
101
|
+
if @original_volumes.first.dim > 1
|
102
|
+
# To be able to reconstruct the volume later on, we need to keep track of the original indices
|
103
|
+
# of the indices that remain in the new, reduced volume:
|
104
|
+
@original_indices = Array.new(@original_volumes.first.dim)
|
105
|
+
# For a volume the typical meaning of the dimensions will be: slice, column, row
|
106
|
+
@original_volumes.first.shape.each_with_index do |size, dim_index|
|
107
|
+
extract = Array.new(@original_volumes.first.dim, true)
|
108
|
+
segmented_indices = Array.new
|
109
|
+
size.times do |i|
|
110
|
+
extract[dim_index] = i
|
111
|
+
segmented = false
|
112
|
+
@volumes.each do |volume|
|
113
|
+
segmented = true if volume[*extract].max > 0
|
114
|
+
end
|
115
|
+
segmented_indices << i if segmented
|
116
|
+
end
|
117
|
+
@original_indices[dim_index] = segmented_indices
|
118
|
+
extract[dim_index] = segmented_indices
|
119
|
+
# Iterate each volume and pull out segmented indices:
|
120
|
+
if segmented_indices.length < size
|
121
|
+
@volumes.collect!{|volume| volume = volume[*extract]}
|
122
|
+
end
|
123
|
+
end
|
124
|
+
end
|
125
|
+
end
|
126
|
+
|
127
|
+
# Applies the STAPLE algorithm to the dataset to determine the true hidden segmentation
|
128
|
+
# as well as scoring the various segmentations.
|
129
|
+
#
|
130
|
+
def solve
|
131
|
+
set_parameters
|
132
|
+
# Vectors holding the values used for calculating the weights:
|
133
|
+
a = NArray.float(@n)
|
134
|
+
b = NArray.float(@n)
|
135
|
+
# Set an initial estimate for the probabilities of true segmentation:
|
136
|
+
@n.times do |i|
|
137
|
+
@weights_current[i] = @decisions[i, true].mean
|
138
|
+
end
|
139
|
+
# Proceed iteratively until we have converged to a local optimum:
|
140
|
+
k = 0
|
141
|
+
while k < max_iterations do
|
142
|
+
# Copy weights:
|
143
|
+
@weights_previous = @weights_current.dup
|
144
|
+
# E-step: Estimation of the conditional expectation of the complete data log likelihood function.
|
145
|
+
# Deriving the estimator for the unobserved true segmentation (T).
|
146
|
+
@n.times do |i|
|
147
|
+
voxel_decisions = @decisions[i, true]
|
148
|
+
# Find the rater-indices for this voxel where the raters' decisions equals 1 and 0:
|
149
|
+
positive_indices, negative_indices = (voxel_decisions.eq 1).where2
|
150
|
+
# Determine ai:
|
151
|
+
# Multiply by corresponding sensitivity (or 1 - sensitivity):
|
152
|
+
a_decision1_factor = (positive_indices.length == 0 ? 1 : @p[positive_indices].prod)
|
153
|
+
a_decision0_factor = (negative_indices.length == 0 ? 1 : (1 - @p[negative_indices]).prod)
|
154
|
+
a[i] = @weights_previous[i] * a_decision1_factor * a_decision0_factor
|
155
|
+
# Determine bi:
|
156
|
+
# Multiply by corresponding specificity (or 1 - specificity):
|
157
|
+
b_decision0_factor = (negative_indices.length == 0 ? 1 : @q[negative_indices].prod)
|
158
|
+
b_decision1_factor = (positive_indices.length == 0 ? 1 : (1 - @q[positive_indices]).prod)
|
159
|
+
b[i] = @weights_previous[i] * b_decision0_factor * b_decision1_factor
|
160
|
+
# Determine Wi: (take care not to divide by zero)
|
161
|
+
if a[i] > 0 or b[i] > 0
|
162
|
+
@weights_current[i] = a[i] / (a[i] + b[i])
|
163
|
+
else
|
164
|
+
@weights_current[i] = 0
|
165
|
+
end
|
166
|
+
end
|
167
|
+
# M-step: Estimation of the performance parameters by maximization.
|
168
|
+
# Finding the values of the expert performance level parameters that maximize the conditional expectation
|
169
|
+
# of the complete data log likelihood function (phi - p,q).
|
170
|
+
@r.times do |j|
|
171
|
+
voxel_decisions = @decisions[true, j]
|
172
|
+
# Find the voxel-indices for this rater where the rater's decisions equals 1 and 0:
|
173
|
+
positive_indices, negative_indices = (voxel_decisions.eq 1).where2
|
174
|
+
# Determine sensitivity:
|
175
|
+
# Sum the weights for the indices where the rater's decision equals 1:
|
176
|
+
sum_positive = (positive_indices.length == 0 ? 0 : @weights_current[positive_indices].sum)
|
177
|
+
@p[j] = sum_positive / @weights_current.sum
|
178
|
+
# Determine specificity:
|
179
|
+
# Sum the weights for the indices where the rater's decision equals 0:
|
180
|
+
sum_negative = (negative_indices.length == 0 ? 0 : (1 - @weights_current[negative_indices]).sum)
|
181
|
+
@q[j] = sum_negative / (1 - @weights_current).sum
|
182
|
+
end
|
183
|
+
# Bump our iteration index:
|
184
|
+
k += 1
|
185
|
+
# Abort if we have reached the local optimum: (there is no change in the sum of weights)
|
186
|
+
if @weights_current.sum - @weights_previous.sum == 0
|
187
|
+
#puts "Iteration aborted as optimum solution was found!" if @verbose
|
188
|
+
#logger.info("Iteration aborted as optimum solution was found!")
|
189
|
+
break
|
190
|
+
end
|
191
|
+
end
|
192
|
+
# Set the true segmentation:
|
193
|
+
@true_segmentation_vector = @weights_current.round
|
194
|
+
# Set the weights attribute:
|
195
|
+
@weights = @weights_current
|
196
|
+
# As this vector doesn't make much sense to the user, it must be converted to a volume. If volume reduction has
|
197
|
+
# previously been performed, this must be taken into account when transforming it to a volume:
|
198
|
+
construct_segmentation_volume
|
199
|
+
# Construct a BinVolume instance for the true segmentation and add it as a master volume to the BinMatcher instance.
|
200
|
+
update_bin_matcher
|
201
|
+
# Set the phi variable:
|
202
|
+
@phi[0, true] = @p
|
203
|
+
@phi[1, true] = @q
|
204
|
+
end
|
205
|
+
|
206
|
+
# Returns self.
|
207
|
+
#
|
208
|
+
def to_staple
|
209
|
+
self
|
210
|
+
end
|
211
|
+
|
212
|
+
|
213
|
+
private
|
214
|
+
|
215
|
+
|
216
|
+
# Reshapes the true segmentation vector to a volume which is comparable with the input volumes for the
|
217
|
+
# Staple instance. If volume reduction has been peformed, this must be taken into account.
|
218
|
+
#
|
219
|
+
def construct_segmentation_volume
|
220
|
+
if @volumes.first.shape == @original_volumes.first.shape
|
221
|
+
# Just reshape the vector (and ensure that it remains byte type):
|
222
|
+
@true_segmentation = @true_segmentation_vector.reshape(*@original_volumes.first.shape).to_type(1)
|
223
|
+
else
|
224
|
+
# Need to take into account exactly which indices (slices, columns, rows) have been removed.
|
225
|
+
# To achieve a correct reconstruction, we will use the information on the original volume indices of our
|
226
|
+
# current volume, and apply it for each dimension.
|
227
|
+
@true_segmentation = NArray.byte(*@original_volumes.first.shape)
|
228
|
+
true_segmentation_in_reduced_volume = @true_segmentation_vector.reshape(*@volumes.first.shape)
|
229
|
+
@true_segmentation[*@original_indices] = true_segmentation_in_reduced_volume
|
230
|
+
end
|
231
|
+
end
|
232
|
+
|
233
|
+
# Sets the instance variables used by the STAPLE algorithm.
|
234
|
+
#
|
235
|
+
def set_parameters
|
236
|
+
# Convert the volumes to vectors:
|
237
|
+
@vectors = Array.new
|
238
|
+
@volumes.each {|volume| @vectors << volume.flatten}
|
239
|
+
verify_equal_vector_lengths
|
240
|
+
# Number of voxels:
|
241
|
+
@n = @vectors.first.length
|
242
|
+
# Number of raters:
|
243
|
+
@r = @vectors.length
|
244
|
+
# Decisions array:
|
245
|
+
@decisions = NArray.int(@n, @r)
|
246
|
+
# Sensitivity vector: (Def: true positive fraction, or relative frequency of Dij = 1 when Ti = 1)
|
247
|
+
# (If a rater includes all the voxels that are included in the true segmentation, his score is 1.0 on this parameter)
|
248
|
+
@p = NArray.float(@r)
|
249
|
+
# Specificity vector: (Def: true negative fraction, or relative frequency of Dij = 0 when Ti = 0)
|
250
|
+
# (If a rater has avoided to specify any voxels that are not specified in the true segmentation, his score is 1.0 on this parameter)
|
251
|
+
@q = NArray.float(@r)
|
252
|
+
# Set initial parameter values: (p0, q0) - when combined, called: phi0
|
253
|
+
@p.fill!(0.99999)
|
254
|
+
@q.fill!(0.99999)
|
255
|
+
# Combined scoring parameter:
|
256
|
+
@phi = NArray.float(2, @r)
|
257
|
+
# Fill the decisions matrix:
|
258
|
+
@vectors.each_with_index do |decision, j|
|
259
|
+
@decisions[true, j] = decision
|
260
|
+
end
|
261
|
+
# Indicator vector of the true (hidden) segmentation:
|
262
|
+
@true_segmentation = NArray.byte(@n)
|
263
|
+
# The estimate of the probability that the true segmentation at each voxel is Ti = 1: f(Ti=1)
|
264
|
+
@weights_previous = NArray.float(@n)
|
265
|
+
# Using the notation commom for EM algorithms and refering to this as the weight variable:
|
266
|
+
@weights_current = NArray.float(@n)
|
267
|
+
end
|
268
|
+
|
269
|
+
# Returns the attributes of this instance in an array (for comparison purposes).
|
270
|
+
#
|
271
|
+
def state
|
272
|
+
[@volumes.collect{|narr| narr.to_a}, @max_iterations]
|
273
|
+
end
|
274
|
+
|
275
|
+
# Updates the BinMatcher instance with information following the completion of the Staple analysis.
|
276
|
+
# * Creates a BinVolume instance for the true segmentation and inserts it as a master volume.
|
277
|
+
# * Updates the various volumes of the BinMatcher instance with their determined sensitivity and specificity scores.
|
278
|
+
#
|
279
|
+
def update_bin_matcher
|
280
|
+
# Create an empty BinVolume with no ROI reference:
|
281
|
+
staple = BinVolume.new(@bm.volumes.first.series)
|
282
|
+
# Add BinImages to the staple volume:
|
283
|
+
@true_segmentation.shape[0].times do |i|
|
284
|
+
image_ref = @bm.volumes.first.bin_images[i].image
|
285
|
+
staple.add(BinImage.new(@true_segmentation[i, true, true], image_ref))
|
286
|
+
end
|
287
|
+
# Set the staple volume as master volume:
|
288
|
+
@bm.master = staple
|
289
|
+
# Apply sensitivity & specificity score to the various volumes of the BinMatcher instance:
|
290
|
+
@bm.volumes.each_with_index do |bin_vol, i|
|
291
|
+
bin_vol.sensitivity = @p[i]
|
292
|
+
bin_vol.specificity = @q[i]
|
293
|
+
end
|
294
|
+
end
|
295
|
+
|
296
|
+
# The number of voxels must be the same for all segmentation vectors going into the STAPLE analysis.
|
297
|
+
# If it is not, an error is raised.
|
298
|
+
#
|
299
|
+
def verify_equal_vector_lengths
|
300
|
+
vector_lengths = @vectors.collect{|vector| vector.length}
|
301
|
+
raise IndexError, "Unexpected behaviour: The vectors going into the STAPLE analysis have different lengths." unless vector_lengths.uniq.length == 1
|
302
|
+
end
|
303
|
+
|
304
|
+
end
|
305
|
+
end
|