rsa 0.1.2 → 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- data/VERSION +1 -1
- data/lib/rsa.rb +2 -1
- data/lib/rsa/math.rb +102 -23
- data/lib/rsa/version.rb +1 -1
- metadata +3 -3
data/VERSION
CHANGED
@@ -1 +1 @@
|
|
1
|
-
0.1.
|
1
|
+
0.1.3
|
data/lib/rsa.rb
CHANGED
data/lib/rsa/math.rb
CHANGED
@@ -6,6 +6,62 @@ module RSA
|
|
6
6
|
|
7
7
|
class ArithmeticError < ArgumentError; end
|
8
8
|
|
9
|
+
##
|
10
|
+
# Yields an infinite pseudo-prime number sequence.
|
11
|
+
#
|
12
|
+
# This is a pseudo-prime generator that simply yields the initial values
|
13
|
+
# 2 and 3, followed by all positive integers that are not divisible by 2
|
14
|
+
# or 3.
|
15
|
+
#
|
16
|
+
# It works identically to `Prime::Generator23`, the Ruby 1.9 standard
|
17
|
+
# library's default pseudo-prime generator implementation.
|
18
|
+
#
|
19
|
+
# @example
|
20
|
+
# RSA::Math.primes.take(5) #=> [2, 3, 5, 7, 11]
|
21
|
+
#
|
22
|
+
# @yield [p] each pseudo-prime number
|
23
|
+
# @yieldparam [Integer] p a pseudo-prime number
|
24
|
+
# @return [Enumerator] yielding pseudo-primes
|
25
|
+
# @see http://ruby-doc.org/core-1.9/classes/Prime.html
|
26
|
+
def self.primes(&block)
|
27
|
+
if block_given?
|
28
|
+
yield 2; yield 3; yield 5
|
29
|
+
prime, step = 5, 4
|
30
|
+
loop { yield prime += (step = 6 - step) }
|
31
|
+
end
|
32
|
+
enum_for(:primes)
|
33
|
+
end
|
34
|
+
|
35
|
+
##
|
36
|
+
# Yields the prime factorization of the nonzero integer `n`.
|
37
|
+
#
|
38
|
+
# @example
|
39
|
+
# RSA::Math.factorize(12).to_a #=> [[2, 2], [3, 1]]
|
40
|
+
#
|
41
|
+
# @param [Integer] n a nonzero integer
|
42
|
+
# @yield [p, e] each prime factor
|
43
|
+
# @yieldparam [Integer] p the prime factor base
|
44
|
+
# @yieldparam [Integer] e the prime factor exponent
|
45
|
+
# @return [Enumerator]
|
46
|
+
# @raise [ZeroDivisionError] if `n` is zero
|
47
|
+
# @see http://ruby-doc.org/core-1.9/classes/Prime.html
|
48
|
+
def self.factorize(n, &block)
|
49
|
+
raise ZeroDivisionError if n.zero?
|
50
|
+
if block_given?
|
51
|
+
n = n.abs if n < 0
|
52
|
+
primes.find do |p|
|
53
|
+
e = 0
|
54
|
+
while (q, r = n.divmod(p); r.zero?)
|
55
|
+
n, e = q, e + 1
|
56
|
+
end
|
57
|
+
yield p, e unless e.zero?
|
58
|
+
n <= p
|
59
|
+
end
|
60
|
+
yield n, 1 if n > 1
|
61
|
+
end
|
62
|
+
enum_for(:factorize, n)
|
63
|
+
end
|
64
|
+
|
9
65
|
##
|
10
66
|
# Performs a primality test on the integer `n`, returning `true` if it
|
11
67
|
# is a prime.
|
@@ -13,16 +69,19 @@ module RSA
|
|
13
69
|
# @example
|
14
70
|
# 1.upto(10).select { |n| RSA::Math.prime?(n) } #=> [2, 3, 5, 7]
|
15
71
|
#
|
16
|
-
# @param [Integer] n
|
72
|
+
# @param [Integer] n an integer
|
17
73
|
# @return [Boolean] `true` if `n` is a prime number, `false` otherwise
|
18
74
|
# @see http://en.wikipedia.org/wiki/Primality_test
|
19
75
|
# @see http://ruby-doc.org/core-1.9/classes/Prime.html
|
20
76
|
def self.prime?(n)
|
21
|
-
|
22
|
-
n
|
23
|
-
|
24
|
-
|
25
|
-
|
77
|
+
case
|
78
|
+
when n < 0 then prime?(n.abs)
|
79
|
+
when n < 2 then false
|
80
|
+
else primes do |p|
|
81
|
+
q, r = n.divmod(p)
|
82
|
+
return true if q < p
|
83
|
+
return false if r.zero?
|
84
|
+
end
|
26
85
|
end
|
27
86
|
end
|
28
87
|
|
@@ -130,10 +189,10 @@ module RSA
|
|
130
189
|
# RSA::Math.modpow(5, 3, 13) #=> 8
|
131
190
|
# RSA::Math.modpow(4, 13, 497) #=> 445
|
132
191
|
#
|
133
|
-
# @param [Integer] base
|
134
|
-
# @param [Integer] exponent
|
135
|
-
# @param [Integer] modulus
|
136
|
-
# @return [Integer]
|
192
|
+
# @param [Integer] base the base
|
193
|
+
# @param [Integer] exponent the exponent
|
194
|
+
# @param [Integer] modulus the modulus
|
195
|
+
# @return [Integer] the result
|
137
196
|
# @see http://en.wikipedia.org/wiki/Modular_exponentiation
|
138
197
|
def self.modpow(base, exponent, modulus)
|
139
198
|
result = 1
|
@@ -145,28 +204,38 @@ module RSA
|
|
145
204
|
result
|
146
205
|
end
|
147
206
|
|
207
|
+
ONE = BigDecimal('1')
|
208
|
+
|
148
209
|
##
|
149
210
|
# Returns the Euler totient for the positive integer `n`.
|
150
211
|
#
|
151
|
-
# This is presently a very naive implementation. Don't rely on it for
|
152
|
-
# anything but very small values of `n`.
|
153
|
-
#
|
154
212
|
# @example
|
155
213
|
# (1..5).map { |n| RSA::Math.phi(n) } #=> [1, 1, 2, 2, 4]
|
156
214
|
#
|
157
|
-
# @param [Integer] n
|
158
|
-
# @return [Integer]
|
215
|
+
# @param [Integer] n a positive integer, or zero
|
216
|
+
# @return [Integer] the Euler totient of `n`
|
217
|
+
# @raise [ArgumentError] if `n` < 0
|
159
218
|
# @see http://en.wikipedia.org/wiki/Euler's_totient_function
|
160
219
|
# @see http://mathworld.wolfram.com/TotientFunction.html
|
161
220
|
def self.phi(n)
|
162
|
-
|
221
|
+
case
|
222
|
+
when n < 0 then raise ArgumentError, "expected a positive integer, but got #{n}"
|
223
|
+
when n < 2 then 1 # by convention
|
224
|
+
when prime?(n) then n - 1
|
225
|
+
else factorize(n).inject(n) { |product, (p, e)| product * (ONE - (ONE / BigDecimal(p.to_s))) }.round.to_i
|
226
|
+
end
|
163
227
|
end
|
164
228
|
|
165
229
|
##
|
166
230
|
# Returns the binary logarithm of `n`.
|
167
231
|
#
|
168
|
-
# @
|
169
|
-
#
|
232
|
+
# @example
|
233
|
+
# RSA::Math.log2(16) #=> 4.0
|
234
|
+
# RSA::Math.log2(1024) #=> 10.0
|
235
|
+
#
|
236
|
+
# @param [Integer] n a positive integer
|
237
|
+
# @return [Float] the logarithm
|
238
|
+
# @raise [Errno::EDOM] if `n` < 1
|
170
239
|
# @see http://en.wikipedia.org/wiki/Binary_logarithm
|
171
240
|
def self.log2(n)
|
172
241
|
::Math.log2(n)
|
@@ -175,8 +244,13 @@ module RSA
|
|
175
244
|
##
|
176
245
|
# Returns the base-256 logarithm of `n`.
|
177
246
|
#
|
178
|
-
# @
|
179
|
-
#
|
247
|
+
# @example
|
248
|
+
# RSA::Math.log256(16) #=> 0.5
|
249
|
+
# RSA::Math.log256(1024) #=> 1.25
|
250
|
+
#
|
251
|
+
# @param [Integer] n a positive integer
|
252
|
+
# @return [Float] the logarithm
|
253
|
+
# @raise [Errno::EDOM] if `n` < 1
|
180
254
|
# @see http://en.wikipedia.org/wiki/Logarithm
|
181
255
|
def self.log256(n)
|
182
256
|
::Math.log(n, 256)
|
@@ -186,9 +260,14 @@ module RSA
|
|
186
260
|
# Returns the natural logarithm of `n`. If the optional argument `b` is
|
187
261
|
# given, it will be used as the base of the logarithm.
|
188
262
|
#
|
189
|
-
# @
|
190
|
-
#
|
191
|
-
#
|
263
|
+
# @example
|
264
|
+
# RSA::Math.log(16, 2) #=> 4.0
|
265
|
+
# RSA::Math.log(16, 256) #=> 0.5
|
266
|
+
#
|
267
|
+
# @param [Integer] n a positive integer
|
268
|
+
# @param [Integer] b a positive integer >= 2, or `nil`
|
269
|
+
# @return [Float] the logarithm
|
270
|
+
# @raise [Errno::EDOM] if `n` < 1, or if `b` < 2
|
192
271
|
# @see http://en.wikipedia.org/wiki/Natural_logarithm
|
193
272
|
def self.log(n, b = nil)
|
194
273
|
b ? ::Math.log(n, b) : ::Math.log(n)
|
data/lib/rsa/version.rb
CHANGED
metadata
CHANGED
@@ -5,8 +5,8 @@ version: !ruby/object:Gem::Version
|
|
5
5
|
segments:
|
6
6
|
- 0
|
7
7
|
- 1
|
8
|
-
-
|
9
|
-
version: 0.1.
|
8
|
+
- 3
|
9
|
+
version: 0.1.3
|
10
10
|
platform: ruby
|
11
11
|
authors:
|
12
12
|
- Arto Bendiken
|
@@ -14,7 +14,7 @@ autorequire:
|
|
14
14
|
bindir: bin
|
15
15
|
cert_chain: []
|
16
16
|
|
17
|
-
date: 2010-09-
|
17
|
+
date: 2010-09-10 00:00:00 +02:00
|
18
18
|
default_executable:
|
19
19
|
dependencies:
|
20
20
|
- !ruby/object:Gem::Dependency
|