rmega 0.1.7 → 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (58) hide show
  1. checksums.yaml +4 -4
  2. data/.travis.yml +6 -0
  3. data/CHANGELOG.md +16 -0
  4. data/README.md +1 -1
  5. data/TODO.md +3 -5
  6. data/bin/rmega-dl +47 -0
  7. data/bin/rmega-up +31 -0
  8. data/lib/rmega.rb +35 -3
  9. data/lib/rmega/api_response.rb +80 -0
  10. data/lib/rmega/cli.rb +121 -0
  11. data/lib/rmega/crypto.rb +20 -0
  12. data/lib/rmega/crypto/aes_cbc.rb +46 -0
  13. data/lib/rmega/crypto/aes_ctr.rb +15 -84
  14. data/lib/rmega/crypto/aes_ecb.rb +25 -0
  15. data/lib/rmega/crypto/rsa.rb +21 -12
  16. data/lib/rmega/errors.rb +3 -51
  17. data/lib/rmega/loggable.rb +0 -3
  18. data/lib/rmega/net.rb +56 -0
  19. data/lib/rmega/nodes/deletable.rb +0 -3
  20. data/lib/rmega/nodes/downloadable.rb +73 -30
  21. data/lib/rmega/nodes/expandable.rb +14 -10
  22. data/lib/rmega/nodes/factory.rb +30 -17
  23. data/lib/rmega/nodes/file.rb +0 -4
  24. data/lib/rmega/nodes/folder.rb +4 -14
  25. data/lib/rmega/nodes/inbox.rb +0 -2
  26. data/lib/rmega/nodes/node.rb +48 -25
  27. data/lib/rmega/nodes/node_key.rb +44 -0
  28. data/lib/rmega/nodes/root.rb +0 -4
  29. data/lib/rmega/nodes/trash.rb +0 -3
  30. data/lib/rmega/nodes/uploadable.rb +42 -33
  31. data/lib/rmega/not_inspectable.rb +10 -0
  32. data/lib/rmega/options.rb +22 -5
  33. data/lib/rmega/pool.rb +18 -7
  34. data/lib/rmega/progress.rb +53 -13
  35. data/lib/rmega/session.rb +125 -52
  36. data/lib/rmega/storage.rb +25 -21
  37. data/lib/rmega/utils.rb +23 -183
  38. data/lib/rmega/version.rb +2 -1
  39. data/rmega.gemspec +3 -5
  40. data/spec/integration/file_download_spec.rb +14 -32
  41. data/spec/integration/file_integrity_spec.rb +41 -0
  42. data/spec/integration/file_upload_spec.rb +11 -57
  43. data/spec/integration/folder_download_spec.rb +17 -0
  44. data/spec/integration/folder_operations_spec.rb +30 -30
  45. data/spec/integration/login_spec.rb +3 -3
  46. data/spec/integration/resume_download_spec.rb +53 -0
  47. data/spec/integration_spec_helper.rb +9 -4
  48. data/spec/rmega/lib/cli_spec.rb +12 -0
  49. data/spec/rmega/lib/session_spec.rb +31 -0
  50. data/spec/rmega/lib/storage_spec.rb +27 -0
  51. data/spec/rmega/lib/utils_spec.rb +16 -78
  52. data/spec/spec_helper.rb +1 -4
  53. metadata +30 -40
  54. data/lib/rmega/crypto/aes.rb +0 -35
  55. data/lib/rmega/crypto/crypto.rb +0 -107
  56. data/lib/rmega/crypto/rsa_mega.js +0 -455
  57. data/spec/rmega/lib/crypto/aes_spec.rb +0 -12
  58. data/spec/rmega/lib/crypto/crypto_spec.rb +0 -27
@@ -1,35 +0,0 @@
1
- require 'openssl'
2
-
3
- module Rmega
4
- module Crypto
5
- module Aes
6
- extend self
7
-
8
- def packing
9
- 'l>*'
10
- end
11
-
12
- def cipher
13
- @cipher ||= OpenSSL::Cipher::AES.new(128, :CBC)
14
- end
15
-
16
- def encrypt(key, data)
17
- cipher.reset
18
- cipher.padding = 0
19
- cipher.encrypt
20
- cipher.key = key.pack(packing)
21
- result = cipher.update data.pack(packing)
22
- result.unpack packing
23
- end
24
-
25
- def decrypt(key, data)
26
- cipher.reset
27
- cipher.padding = 0
28
- cipher.decrypt
29
- cipher.key = key.pack packing
30
- result = cipher.update data.pack(packing)
31
- result.unpack packing
32
- end
33
- end
34
- end
35
- end
@@ -1,107 +0,0 @@
1
- require 'rmega/utils'
2
- require 'rmega/crypto/aes'
3
- require 'rmega/crypto/aes_ctr'
4
- require 'rmega/crypto/rsa'
5
-
6
- module Rmega
7
- module Crypto
8
- extend self
9
-
10
- def random_key
11
- Array.new(6).map { rand(0..0xFFFFFFFF) }
12
- end
13
-
14
- def prepare_key(ary)
15
- pkey = [0x93C467E3,0x7DB0C7A4,0xD1BE3F81,0x0152CB56]
16
- 65536.times do
17
- 0.step(ary.size-1, 4) do |j|
18
- key = [0,0,0,0]
19
- 4.times do |i|
20
- key[i] = ary[i+j] if i+j < ary.size
21
- end
22
- pkey = Aes.encrypt key, pkey
23
- end
24
- end
25
- pkey
26
- end
27
-
28
- def decrypt_rsa_privk(key, privk)
29
- privk = Utils.a32_to_str decrypt_key(key, Utils.base64_to_a32(privk))
30
- rsa_privk = Array.new 4
31
-
32
- # Decompose private key
33
- 4.times do |i|
34
- l = ((privk[0].ord * 256 + privk[1].ord + 7) >> 3) + 2
35
- rsa_privk[i] = Utils.mpi2b privk[0..l-1]
36
- privk = privk[l..-1]
37
- end
38
-
39
- rsa_privk
40
- end
41
-
42
- def decrypt_sid(rsa_privk, csid)
43
- # if csid ...
44
- t = Utils.mpi2b Utils.base64urldecode(csid)
45
-
46
- # TODO - remove execjs and build the key using the ruby lib
47
- # rsa_key = Crypto::Rsa.build_rsa_key rsa_privk
48
- decrypted_t = Rsa.decrypt t, rsa_privk
49
- Utils.base64urlencode Utils.b2s(decrypted_t)[0..42]
50
- end
51
-
52
- def encrypt_attributes(key, attributes_hash)
53
- a32key = key.dup
54
- if a32key.size > 4
55
- a32key = [a32key[0] ^ a32key[4], a32key[1] ^ a32key[5], a32key[2] ^ a32key[6], a32key[3] ^ a32key[7]]
56
- end
57
- attributes_str = "MEGA#{attributes_hash.to_json}"
58
- attributes_str << ("\x00" * (16 - (attributes_str.size % 16)))
59
- Crypto::Aes.encrypt a32key, Utils.str_to_a32(attributes_str)
60
- end
61
-
62
- def decrypt_attributes(key, attributes_base64)
63
- a32key = key.dup
64
- if a32key.size > 4
65
- a32key = [a32key[0] ^ a32key[4], a32key[1] ^ a32key[5], a32key[2] ^ a32key[6], a32key[3] ^ a32key[7]]
66
- end
67
- attributes = Crypto::Aes.decrypt a32key, Utils.base64_to_a32(attributes_base64)
68
- attributes = Utils.a32_to_str attributes
69
- JSON.parse attributes.gsub(/^MEGA/, '').rstrip
70
- end
71
-
72
- def prepare_key_pw(password_str)
73
- prepare_key Utils.str_to_a32(password_str)
74
- end
75
-
76
- def stringhash(aes_key, string)
77
- s32 = Utils::str_to_a32 string
78
- h32 = [0,0,0,0]
79
-
80
- s32.size.times { |i| h32[i & 3] ^= s32[i] }
81
- 16384.times { h32 = Aes.encrypt aes_key, h32 }
82
-
83
- Utils::a32_to_base64 [h32[0],h32[2]]
84
- end
85
-
86
- def encrypt_key(key, data)
87
- return Aes.encrypt(key, data) if data.size == 4
88
- x = []
89
- (0..data.size).step(4) do |i|
90
- # cdata = [data[i] || 0, data[i+1] || 0, data[i+2] || 0, data[i+3] || 0]
91
- cdata = [data[i] || 0, data[i+1] || 0, data[i+2], data[i+3]].compact
92
- x.concat Crypto::Aes.encrypt(key, cdata)
93
- end
94
- x
95
- end
96
-
97
- def decrypt_key(key, data)
98
- return Aes.decrypt(key, data) if data.size == 4
99
- x = []
100
- (0..data.size).step(4) do |i|
101
- cdata = [data[i] || 0, data[i+1] || 0, data[i+2] || 0, data[i+3] || 0]
102
- x.concat Crypto::Aes.decrypt(key, cdata)
103
- end
104
- x
105
- end
106
- end
107
- end
@@ -1,455 +0,0 @@
1
-
2
- /* RSA public key encryption/decryption
3
- * The following functions are (c) 2000 by John M Hanna and are
4
- * released under the terms of the Gnu Public License.
5
- * You must freely redistribute them with their source -- see the
6
- * GPL for details.
7
- * -- Latest version found at http://sourceforge.net/projects/shop-js
8
- *
9
- * Modifications and GnuPG multi precision integer (mpi) conversion added
10
- * 2004 by Herbert Hanewinkel, www.haneWIN.de
11
- */
12
-
13
- // --- Arbitrary Precision Math ---
14
- // badd(a,b), bsub(a,b), bsqr(a), bmul(a,b)
15
- // bdiv(a,b), bmod(a,b), bexpmod(g,e,m), bmodexp(g,e,m)
16
-
17
- // bs is the shift, bm is the mask
18
- // set single precision bits to 28
19
- var bs=28;
20
- var bx2=1<<bs, bm=bx2-1, bx=bx2>>1, bd=bs>>1, bdm=(1<<bd)-1;
21
-
22
- var log2=Math.log(2);
23
-
24
- function zeros(n)
25
- {
26
- var r=new Array(n);
27
-
28
- while(n-->0) r[n]=0;
29
- return r;
30
- }
31
-
32
- function zclip(r)
33
- {
34
- var n = r.length;
35
- if(r[n-1]) return r;
36
- while(n>1 && r[n-1]==0) n--;
37
- return r.slice(0,n);
38
- }
39
-
40
- // returns bit length of integer x
41
- function nbits(x)
42
- {
43
- var n = 1, t;
44
- if((t=x>>>16) != 0) { x = t; n += 16; }
45
- if((t=x>>8) != 0) { x = t; n += 8; }
46
- if((t=x>>4) != 0) { x = t; n += 4; }
47
- if((t=x>>2) != 0) { x = t; n += 2; }
48
- if((t=x>>1) != 0) { x = t; n += 1; }
49
- return n;
50
- }
51
-
52
- function badd(a,b)
53
- {
54
- var al=a.length;
55
- var bl=b.length;
56
-
57
- if(al < bl) return badd(b,a);
58
-
59
- var r=new Array(al);
60
- var c=0, n=0;
61
-
62
- for(; n<bl; n++)
63
- {
64
- c+=a[n]+b[n];
65
- r[n]=c & bm;
66
- c>>>=bs;
67
- }
68
- for(; n<al; n++)
69
- {
70
- c+=a[n];
71
- r[n]=c & bm;
72
- c>>>=bs;
73
- }
74
- if(c) r[n]=c;
75
- return r;
76
- }
77
-
78
- function bsub(a,b)
79
- {
80
- var al=a.length;
81
- var bl=b.length;
82
-
83
- if(bl > al) return [];
84
- if(bl == al)
85
- {
86
- if(b[bl-1] > a[bl-1]) return [];
87
- if(bl==1) return [a[0]-b[0]];
88
- }
89
-
90
- var r=new Array(al);
91
- var c=0;
92
-
93
- for(var n=0; n<bl; n++)
94
- {
95
- c+=a[n]-b[n];
96
- r[n]=c & bm;
97
- c>>=bs;
98
- }
99
- for(;n<al; n++)
100
- {
101
- c+=a[n];
102
- r[n]=c & bm;
103
- c>>=bs;
104
- }
105
- if(c) return [];
106
-
107
- return zclip(r);
108
- }
109
-
110
- function ip(w, n, x, y, c)
111
- {
112
- var xl = x&bdm;
113
- var xh = x>>bd;
114
-
115
- var yl = y&bdm;
116
- var yh = y>>bd;
117
-
118
- var m = xh*yl+yh*xl;
119
- var l = xl*yl+((m&bdm)<<bd)+w[n]+c;
120
- w[n] = l&bm;
121
- c = xh*yh+(m>>bd)+(l>>bs);
122
- return c;
123
- }
124
-
125
- // Multiple-precision squaring, HAC Algorithm 14.16
126
-
127
- function bsqr(x)
128
- {
129
- var t = x.length;
130
- var n = 2*t;
131
- var r = zeros(n);
132
- var c = 0;
133
- var i, j;
134
-
135
- for(i = 0; i < t; i++)
136
- {
137
- c = ip(r,2*i,x[i],x[i],0);
138
- for(j = i+1; j < t; j++)
139
- {
140
- c = ip(r,i+j,2*x[j],x[i],c);
141
- }
142
- r[i+t] = c;
143
- }
144
-
145
- return zclip(r);
146
- }
147
-
148
- // Multiple-precision multiplication, HAC Algorithm 14.12
149
-
150
- function bmul(x,y)
151
- {
152
- var n = x.length;
153
- var t = y.length;
154
- var r = zeros(n+t-1);
155
- var c, i, j;
156
-
157
- for(i = 0; i < t; i++)
158
- {
159
- c = 0;
160
- for(j = 0; j < n; j++)
161
- {
162
- c = ip(r,i+j,x[j],y[i],c);
163
- }
164
- r[i+n] = c;
165
- }
166
-
167
- return zclip(r);
168
- }
169
-
170
- function toppart(x,start,len)
171
- {
172
- var n=0;
173
- while(start >= 0 && len-->0) n=n*bx2+x[start--];
174
- return n;
175
- }
176
-
177
- // Multiple-precision division, HAC Algorithm 14.20
178
-
179
- function bdiv(a,b)
180
- {
181
- var n=a.length-1;
182
- var t=b.length-1;
183
- var nmt=n-t;
184
-
185
- // trivial cases; a < b
186
- if(n < t || n==t && (a[n]<b[n] || n>0 && a[n]==b[n] && a[n-1]<b[n-1]))
187
- {
188
- this.q=[0]; this.mod=a;
189
- return this;
190
- }
191
-
192
- // trivial cases; q < 4
193
- if(n==t && toppart(a,t,2)/toppart(b,t,2) <4)
194
- {
195
- var x=a.concat();
196
- var qq=0;
197
- var xx;
198
- for(;;)
199
- {
200
- xx=bsub(x,b);
201
- if(xx.length==0) break;
202
- x=xx; qq++;
203
- }
204
- this.q=[qq]; this.mod=x;
205
- return this;
206
- }
207
-
208
- // normalize
209
- var shift2=Math.floor(Math.log(b[t])/log2)+1;
210
- var shift=bs-shift2;
211
-
212
- var x=a.concat();
213
- var y=b.concat();
214
-
215
- if(shift)
216
- {
217
- for(i=t; i>0; i--) y[i]=((y[i]<<shift) & bm) | (y[i-1] >> shift2);
218
- y[0]=(y[0]<<shift) & bm;
219
- if(x[n] & ((bm <<shift2) & bm))
220
- {
221
- x[++n]=0; nmt++;
222
- }
223
- for(i=n; i>0; i--) x[i]=((x[i]<<shift) & bm) | (x[i-1] >> shift2);
224
- x[0]=(x[0]<<shift) & bm;
225
- }
226
-
227
- var i, j, x2;
228
- var q=zeros(nmt+1);
229
- var y2=zeros(nmt).concat(y);
230
- for(;;)
231
- {
232
- x2=bsub(x,y2);
233
- if(x2.length==0) break;
234
- q[nmt]++;
235
- x=x2;
236
- }
237
-
238
- var yt=y[t], top=toppart(y,t,2)
239
- for(i=n; i>t; i--)
240
- {
241
- var m=i-t-1;
242
- if(i >= x.length) q[m]=1;
243
- else if(x[i] == yt) q[m]=bm;
244
- else q[m]=Math.floor(toppart(x,i,2)/yt);
245
-
246
- var topx=toppart(x,i,3);
247
- while(q[m] * top > topx) q[m]--;
248
-
249
- //x-=q[m]*y*b^m
250
- y2=y2.slice(1);
251
- x2=bsub(x,bmul([q[m]],y2));
252
- if(x2.length==0)
253
- {
254
- q[m]--;
255
- x2=bsub(x,bmul([q[m]],y2));
256
- }
257
- x=x2;
258
- }
259
- // de-normalize
260
- if(shift)
261
- {
262
- for(i=0; i<x.length-1; i++) x[i]=(x[i]>>shift) | ((x[i+1] << shift2) & bm);
263
- x[x.length-1]>>=shift;
264
- }
265
-
266
- this.q = zclip(q);
267
- this.mod = zclip(x);
268
- return this;
269
- }
270
-
271
- function simplemod(i,m) // returns the mod where m < 2^bd
272
- {
273
- var c=0, v;
274
- for(var n=i.length-1; n>=0; n--)
275
- {
276
- v=i[n];
277
- c=((v >> bd) + (c<<bd)) % m;
278
- c=((v & bdm) + (c<<bd)) % m;
279
- }
280
- return c;
281
- }
282
-
283
- function bmod(p,m)
284
- {
285
- if(m.length==1)
286
- {
287
- if(p.length==1) return [p[0] % m[0]];
288
- if(m[0] < bdm) return [simplemod(p,m[0])];
289
- }
290
-
291
- var r=bdiv(p,m);
292
- return r.mod;
293
- }
294
-
295
- // Barrett's modular reduction, HAC Algorithm 14.42
296
-
297
- function bmod2(x,m,mu)
298
- {
299
- var xl=x.length - (m.length << 1);
300
- if(xl > 0) return bmod2(x.slice(0,xl).concat(bmod2(x.slice(xl),m,mu)),m,mu);
301
-
302
- var ml1=m.length+1, ml2=m.length-1,rr;
303
- //var q1=x.slice(ml2)
304
- //var q2=bmul(q1,mu)
305
- var q3=bmul(x.slice(ml2),mu).slice(ml1);
306
- var r1=x.slice(0,ml1);
307
- var r2=bmul(q3,m).slice(0,ml1);
308
- var r=bsub(r1,r2);
309
-
310
- if(r.length==0)
311
- {
312
- r1[ml1]=1;
313
- r=bsub(r1,r2);
314
- }
315
- for(var n=0;;n++)
316
- {
317
- rr=bsub(r,m);
318
- if(rr.length==0) break;
319
- r=rr;
320
- if(n>=3) return bmod2(r,m,mu);
321
- }
322
- return r;
323
- }
324
-
325
- // Modular exponentiation, HAC Algorithm 14.79
326
-
327
- function bexpmod(g,e,m)
328
- {
329
- var a = g.concat();
330
- var l = e.length-1;
331
- var n = nbits(e[l])-2;
332
-
333
- for(; l >= 0; l--)
334
- {
335
- for(; n >= 0; n-=1)
336
- {
337
- a=bmod(bsqr(a),m);
338
- if(e[l] & (1<<n)) a=bmod(bmul(a,g),m);
339
- }
340
- n = bs-1;
341
- }
342
- return a;
343
- }
344
-
345
- // Modular exponentiation using Barrett reduction
346
-
347
- function bmodexp(g,e,m)
348
- {
349
- var a=g.concat();
350
- var l=e.length-1;
351
- var n=m.length*2;
352
- var mu=zeros(n+1);
353
- mu[n]=1;
354
- mu=bdiv(mu,m).q;
355
-
356
- n = nbits(e[l])-2;
357
-
358
- for(; l >= 0; l--)
359
- {
360
- for(; n >= 0; n-=1)
361
- {
362
- a=bmod2(bsqr(a),m, mu);
363
- if(e[l] & (1<<n)) a=bmod2(bmul(a,g),m, mu);
364
- }
365
- n = bs-1;
366
- }
367
- return a;
368
- }
369
-
370
- // -----------------------------------------------------
371
- // Compute s**e mod m for RSA public key operation
372
-
373
- function RSAencrypt(s, e, m) { return bexpmod(s,e,m); }
374
-
375
- // Compute m**d mod p*q for RSA private key operations.
376
-
377
- function RSAdecrypt(m, d, p, q, u)
378
- {
379
- var xp = bmodexp(bmod(m,p), bmod(d,bsub(p,[1])), p);
380
- var xq = bmodexp(bmod(m,q), bmod(d,bsub(q,[1])), q);
381
-
382
- var t=bsub(xq,xp);
383
- if(t.length==0)
384
- {
385
- t=bsub(xp,xq);
386
- t=bmod(bmul(t, u), q);
387
- t=bsub(q,t);
388
- }
389
- else
390
- {
391
- t=bmod(bmul(t, u), q);
392
- }
393
- return badd(bmul(t,p), xp);
394
- }
395
-
396
- // -----------------------------------------------------------------
397
- // conversion functions: num array <-> multi precision integer (mpi)
398
- // mpi: 2 octets with length in bits + octets in big endian order
399
-
400
- function mpi2b(s)
401
- {
402
- var bn=1, r=[0], rn=0, sb=256;
403
- var c, sn=s.length;
404
- if(sn < 2) return 0;
405
-
406
- var len=(sn-2)*8;
407
- var bits=s.charCodeAt(0)*256+s.charCodeAt(1);
408
- if(bits > len || bits < len-8) return 0;
409
-
410
- for(var n=0; n<len; n++)
411
- {
412
- if((sb<<=1) > 255)
413
- {
414
- sb=1; c=s.charCodeAt(--sn);
415
- }
416
- if(bn > bm)
417
- {
418
- bn=1;
419
- r[++rn]=0;
420
- }
421
- if(c & sb) r[rn]|=bn;
422
- bn<<=1;
423
- }
424
- return r;
425
- }
426
-
427
- function b2mpi(b)
428
- {
429
- var bn=1, bc=0, r=[0], rb=1, rn=0;
430
- var bits=b.length*bs;
431
- var n, rr='';
432
-
433
- for(n=0; n<bits; n++)
434
- {
435
- if(b[bc] & bn) r[rn]|=rb;
436
- if((rb<<=1) > 255)
437
- {
438
- rb=1; r[++rn]=0;
439
- }
440
- if((bn<<=1) > bm)
441
- {
442
- bn=1; bc++;
443
- }
444
- }
445
-
446
- while(rn && r[rn]==0) rn--;
447
-
448
- bn=256;
449
- for(bits=8; bits>0; bits--) if(r[rn] & (bn>>=1)) break;
450
- bits+=rn*8;
451
-
452
- rr+=String.fromCharCode(bits/256)+String.fromCharCode(bits%256);
453
- if(bits) for(n=rn; n>=0; n--) rr+=String.fromCharCode(r[n]);
454
- return rr;
455
- }