rmega 0.1.7 → 0.2.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.travis.yml +6 -0
- data/CHANGELOG.md +16 -0
- data/README.md +1 -1
- data/TODO.md +3 -5
- data/bin/rmega-dl +47 -0
- data/bin/rmega-up +31 -0
- data/lib/rmega.rb +35 -3
- data/lib/rmega/api_response.rb +80 -0
- data/lib/rmega/cli.rb +121 -0
- data/lib/rmega/crypto.rb +20 -0
- data/lib/rmega/crypto/aes_cbc.rb +46 -0
- data/lib/rmega/crypto/aes_ctr.rb +15 -84
- data/lib/rmega/crypto/aes_ecb.rb +25 -0
- data/lib/rmega/crypto/rsa.rb +21 -12
- data/lib/rmega/errors.rb +3 -51
- data/lib/rmega/loggable.rb +0 -3
- data/lib/rmega/net.rb +56 -0
- data/lib/rmega/nodes/deletable.rb +0 -3
- data/lib/rmega/nodes/downloadable.rb +73 -30
- data/lib/rmega/nodes/expandable.rb +14 -10
- data/lib/rmega/nodes/factory.rb +30 -17
- data/lib/rmega/nodes/file.rb +0 -4
- data/lib/rmega/nodes/folder.rb +4 -14
- data/lib/rmega/nodes/inbox.rb +0 -2
- data/lib/rmega/nodes/node.rb +48 -25
- data/lib/rmega/nodes/node_key.rb +44 -0
- data/lib/rmega/nodes/root.rb +0 -4
- data/lib/rmega/nodes/trash.rb +0 -3
- data/lib/rmega/nodes/uploadable.rb +42 -33
- data/lib/rmega/not_inspectable.rb +10 -0
- data/lib/rmega/options.rb +22 -5
- data/lib/rmega/pool.rb +18 -7
- data/lib/rmega/progress.rb +53 -13
- data/lib/rmega/session.rb +125 -52
- data/lib/rmega/storage.rb +25 -21
- data/lib/rmega/utils.rb +23 -183
- data/lib/rmega/version.rb +2 -1
- data/rmega.gemspec +3 -5
- data/spec/integration/file_download_spec.rb +14 -32
- data/spec/integration/file_integrity_spec.rb +41 -0
- data/spec/integration/file_upload_spec.rb +11 -57
- data/spec/integration/folder_download_spec.rb +17 -0
- data/spec/integration/folder_operations_spec.rb +30 -30
- data/spec/integration/login_spec.rb +3 -3
- data/spec/integration/resume_download_spec.rb +53 -0
- data/spec/integration_spec_helper.rb +9 -4
- data/spec/rmega/lib/cli_spec.rb +12 -0
- data/spec/rmega/lib/session_spec.rb +31 -0
- data/spec/rmega/lib/storage_spec.rb +27 -0
- data/spec/rmega/lib/utils_spec.rb +16 -78
- data/spec/spec_helper.rb +1 -4
- metadata +30 -40
- data/lib/rmega/crypto/aes.rb +0 -35
- data/lib/rmega/crypto/crypto.rb +0 -107
- data/lib/rmega/crypto/rsa_mega.js +0 -455
- data/spec/rmega/lib/crypto/aes_spec.rb +0 -12
- data/spec/rmega/lib/crypto/crypto_spec.rb +0 -27
data/lib/rmega/crypto/aes.rb
DELETED
@@ -1,35 +0,0 @@
|
|
1
|
-
require 'openssl'
|
2
|
-
|
3
|
-
module Rmega
|
4
|
-
module Crypto
|
5
|
-
module Aes
|
6
|
-
extend self
|
7
|
-
|
8
|
-
def packing
|
9
|
-
'l>*'
|
10
|
-
end
|
11
|
-
|
12
|
-
def cipher
|
13
|
-
@cipher ||= OpenSSL::Cipher::AES.new(128, :CBC)
|
14
|
-
end
|
15
|
-
|
16
|
-
def encrypt(key, data)
|
17
|
-
cipher.reset
|
18
|
-
cipher.padding = 0
|
19
|
-
cipher.encrypt
|
20
|
-
cipher.key = key.pack(packing)
|
21
|
-
result = cipher.update data.pack(packing)
|
22
|
-
result.unpack packing
|
23
|
-
end
|
24
|
-
|
25
|
-
def decrypt(key, data)
|
26
|
-
cipher.reset
|
27
|
-
cipher.padding = 0
|
28
|
-
cipher.decrypt
|
29
|
-
cipher.key = key.pack packing
|
30
|
-
result = cipher.update data.pack(packing)
|
31
|
-
result.unpack packing
|
32
|
-
end
|
33
|
-
end
|
34
|
-
end
|
35
|
-
end
|
data/lib/rmega/crypto/crypto.rb
DELETED
@@ -1,107 +0,0 @@
|
|
1
|
-
require 'rmega/utils'
|
2
|
-
require 'rmega/crypto/aes'
|
3
|
-
require 'rmega/crypto/aes_ctr'
|
4
|
-
require 'rmega/crypto/rsa'
|
5
|
-
|
6
|
-
module Rmega
|
7
|
-
module Crypto
|
8
|
-
extend self
|
9
|
-
|
10
|
-
def random_key
|
11
|
-
Array.new(6).map { rand(0..0xFFFFFFFF) }
|
12
|
-
end
|
13
|
-
|
14
|
-
def prepare_key(ary)
|
15
|
-
pkey = [0x93C467E3,0x7DB0C7A4,0xD1BE3F81,0x0152CB56]
|
16
|
-
65536.times do
|
17
|
-
0.step(ary.size-1, 4) do |j|
|
18
|
-
key = [0,0,0,0]
|
19
|
-
4.times do |i|
|
20
|
-
key[i] = ary[i+j] if i+j < ary.size
|
21
|
-
end
|
22
|
-
pkey = Aes.encrypt key, pkey
|
23
|
-
end
|
24
|
-
end
|
25
|
-
pkey
|
26
|
-
end
|
27
|
-
|
28
|
-
def decrypt_rsa_privk(key, privk)
|
29
|
-
privk = Utils.a32_to_str decrypt_key(key, Utils.base64_to_a32(privk))
|
30
|
-
rsa_privk = Array.new 4
|
31
|
-
|
32
|
-
# Decompose private key
|
33
|
-
4.times do |i|
|
34
|
-
l = ((privk[0].ord * 256 + privk[1].ord + 7) >> 3) + 2
|
35
|
-
rsa_privk[i] = Utils.mpi2b privk[0..l-1]
|
36
|
-
privk = privk[l..-1]
|
37
|
-
end
|
38
|
-
|
39
|
-
rsa_privk
|
40
|
-
end
|
41
|
-
|
42
|
-
def decrypt_sid(rsa_privk, csid)
|
43
|
-
# if csid ...
|
44
|
-
t = Utils.mpi2b Utils.base64urldecode(csid)
|
45
|
-
|
46
|
-
# TODO - remove execjs and build the key using the ruby lib
|
47
|
-
# rsa_key = Crypto::Rsa.build_rsa_key rsa_privk
|
48
|
-
decrypted_t = Rsa.decrypt t, rsa_privk
|
49
|
-
Utils.base64urlencode Utils.b2s(decrypted_t)[0..42]
|
50
|
-
end
|
51
|
-
|
52
|
-
def encrypt_attributes(key, attributes_hash)
|
53
|
-
a32key = key.dup
|
54
|
-
if a32key.size > 4
|
55
|
-
a32key = [a32key[0] ^ a32key[4], a32key[1] ^ a32key[5], a32key[2] ^ a32key[6], a32key[3] ^ a32key[7]]
|
56
|
-
end
|
57
|
-
attributes_str = "MEGA#{attributes_hash.to_json}"
|
58
|
-
attributes_str << ("\x00" * (16 - (attributes_str.size % 16)))
|
59
|
-
Crypto::Aes.encrypt a32key, Utils.str_to_a32(attributes_str)
|
60
|
-
end
|
61
|
-
|
62
|
-
def decrypt_attributes(key, attributes_base64)
|
63
|
-
a32key = key.dup
|
64
|
-
if a32key.size > 4
|
65
|
-
a32key = [a32key[0] ^ a32key[4], a32key[1] ^ a32key[5], a32key[2] ^ a32key[6], a32key[3] ^ a32key[7]]
|
66
|
-
end
|
67
|
-
attributes = Crypto::Aes.decrypt a32key, Utils.base64_to_a32(attributes_base64)
|
68
|
-
attributes = Utils.a32_to_str attributes
|
69
|
-
JSON.parse attributes.gsub(/^MEGA/, '').rstrip
|
70
|
-
end
|
71
|
-
|
72
|
-
def prepare_key_pw(password_str)
|
73
|
-
prepare_key Utils.str_to_a32(password_str)
|
74
|
-
end
|
75
|
-
|
76
|
-
def stringhash(aes_key, string)
|
77
|
-
s32 = Utils::str_to_a32 string
|
78
|
-
h32 = [0,0,0,0]
|
79
|
-
|
80
|
-
s32.size.times { |i| h32[i & 3] ^= s32[i] }
|
81
|
-
16384.times { h32 = Aes.encrypt aes_key, h32 }
|
82
|
-
|
83
|
-
Utils::a32_to_base64 [h32[0],h32[2]]
|
84
|
-
end
|
85
|
-
|
86
|
-
def encrypt_key(key, data)
|
87
|
-
return Aes.encrypt(key, data) if data.size == 4
|
88
|
-
x = []
|
89
|
-
(0..data.size).step(4) do |i|
|
90
|
-
# cdata = [data[i] || 0, data[i+1] || 0, data[i+2] || 0, data[i+3] || 0]
|
91
|
-
cdata = [data[i] || 0, data[i+1] || 0, data[i+2], data[i+3]].compact
|
92
|
-
x.concat Crypto::Aes.encrypt(key, cdata)
|
93
|
-
end
|
94
|
-
x
|
95
|
-
end
|
96
|
-
|
97
|
-
def decrypt_key(key, data)
|
98
|
-
return Aes.decrypt(key, data) if data.size == 4
|
99
|
-
x = []
|
100
|
-
(0..data.size).step(4) do |i|
|
101
|
-
cdata = [data[i] || 0, data[i+1] || 0, data[i+2] || 0, data[i+3] || 0]
|
102
|
-
x.concat Crypto::Aes.decrypt(key, cdata)
|
103
|
-
end
|
104
|
-
x
|
105
|
-
end
|
106
|
-
end
|
107
|
-
end
|
@@ -1,455 +0,0 @@
|
|
1
|
-
|
2
|
-
/* RSA public key encryption/decryption
|
3
|
-
* The following functions are (c) 2000 by John M Hanna and are
|
4
|
-
* released under the terms of the Gnu Public License.
|
5
|
-
* You must freely redistribute them with their source -- see the
|
6
|
-
* GPL for details.
|
7
|
-
* -- Latest version found at http://sourceforge.net/projects/shop-js
|
8
|
-
*
|
9
|
-
* Modifications and GnuPG multi precision integer (mpi) conversion added
|
10
|
-
* 2004 by Herbert Hanewinkel, www.haneWIN.de
|
11
|
-
*/
|
12
|
-
|
13
|
-
// --- Arbitrary Precision Math ---
|
14
|
-
// badd(a,b), bsub(a,b), bsqr(a), bmul(a,b)
|
15
|
-
// bdiv(a,b), bmod(a,b), bexpmod(g,e,m), bmodexp(g,e,m)
|
16
|
-
|
17
|
-
// bs is the shift, bm is the mask
|
18
|
-
// set single precision bits to 28
|
19
|
-
var bs=28;
|
20
|
-
var bx2=1<<bs, bm=bx2-1, bx=bx2>>1, bd=bs>>1, bdm=(1<<bd)-1;
|
21
|
-
|
22
|
-
var log2=Math.log(2);
|
23
|
-
|
24
|
-
function zeros(n)
|
25
|
-
{
|
26
|
-
var r=new Array(n);
|
27
|
-
|
28
|
-
while(n-->0) r[n]=0;
|
29
|
-
return r;
|
30
|
-
}
|
31
|
-
|
32
|
-
function zclip(r)
|
33
|
-
{
|
34
|
-
var n = r.length;
|
35
|
-
if(r[n-1]) return r;
|
36
|
-
while(n>1 && r[n-1]==0) n--;
|
37
|
-
return r.slice(0,n);
|
38
|
-
}
|
39
|
-
|
40
|
-
// returns bit length of integer x
|
41
|
-
function nbits(x)
|
42
|
-
{
|
43
|
-
var n = 1, t;
|
44
|
-
if((t=x>>>16) != 0) { x = t; n += 16; }
|
45
|
-
if((t=x>>8) != 0) { x = t; n += 8; }
|
46
|
-
if((t=x>>4) != 0) { x = t; n += 4; }
|
47
|
-
if((t=x>>2) != 0) { x = t; n += 2; }
|
48
|
-
if((t=x>>1) != 0) { x = t; n += 1; }
|
49
|
-
return n;
|
50
|
-
}
|
51
|
-
|
52
|
-
function badd(a,b)
|
53
|
-
{
|
54
|
-
var al=a.length;
|
55
|
-
var bl=b.length;
|
56
|
-
|
57
|
-
if(al < bl) return badd(b,a);
|
58
|
-
|
59
|
-
var r=new Array(al);
|
60
|
-
var c=0, n=0;
|
61
|
-
|
62
|
-
for(; n<bl; n++)
|
63
|
-
{
|
64
|
-
c+=a[n]+b[n];
|
65
|
-
r[n]=c & bm;
|
66
|
-
c>>>=bs;
|
67
|
-
}
|
68
|
-
for(; n<al; n++)
|
69
|
-
{
|
70
|
-
c+=a[n];
|
71
|
-
r[n]=c & bm;
|
72
|
-
c>>>=bs;
|
73
|
-
}
|
74
|
-
if(c) r[n]=c;
|
75
|
-
return r;
|
76
|
-
}
|
77
|
-
|
78
|
-
function bsub(a,b)
|
79
|
-
{
|
80
|
-
var al=a.length;
|
81
|
-
var bl=b.length;
|
82
|
-
|
83
|
-
if(bl > al) return [];
|
84
|
-
if(bl == al)
|
85
|
-
{
|
86
|
-
if(b[bl-1] > a[bl-1]) return [];
|
87
|
-
if(bl==1) return [a[0]-b[0]];
|
88
|
-
}
|
89
|
-
|
90
|
-
var r=new Array(al);
|
91
|
-
var c=0;
|
92
|
-
|
93
|
-
for(var n=0; n<bl; n++)
|
94
|
-
{
|
95
|
-
c+=a[n]-b[n];
|
96
|
-
r[n]=c & bm;
|
97
|
-
c>>=bs;
|
98
|
-
}
|
99
|
-
for(;n<al; n++)
|
100
|
-
{
|
101
|
-
c+=a[n];
|
102
|
-
r[n]=c & bm;
|
103
|
-
c>>=bs;
|
104
|
-
}
|
105
|
-
if(c) return [];
|
106
|
-
|
107
|
-
return zclip(r);
|
108
|
-
}
|
109
|
-
|
110
|
-
function ip(w, n, x, y, c)
|
111
|
-
{
|
112
|
-
var xl = x&bdm;
|
113
|
-
var xh = x>>bd;
|
114
|
-
|
115
|
-
var yl = y&bdm;
|
116
|
-
var yh = y>>bd;
|
117
|
-
|
118
|
-
var m = xh*yl+yh*xl;
|
119
|
-
var l = xl*yl+((m&bdm)<<bd)+w[n]+c;
|
120
|
-
w[n] = l&bm;
|
121
|
-
c = xh*yh+(m>>bd)+(l>>bs);
|
122
|
-
return c;
|
123
|
-
}
|
124
|
-
|
125
|
-
// Multiple-precision squaring, HAC Algorithm 14.16
|
126
|
-
|
127
|
-
function bsqr(x)
|
128
|
-
{
|
129
|
-
var t = x.length;
|
130
|
-
var n = 2*t;
|
131
|
-
var r = zeros(n);
|
132
|
-
var c = 0;
|
133
|
-
var i, j;
|
134
|
-
|
135
|
-
for(i = 0; i < t; i++)
|
136
|
-
{
|
137
|
-
c = ip(r,2*i,x[i],x[i],0);
|
138
|
-
for(j = i+1; j < t; j++)
|
139
|
-
{
|
140
|
-
c = ip(r,i+j,2*x[j],x[i],c);
|
141
|
-
}
|
142
|
-
r[i+t] = c;
|
143
|
-
}
|
144
|
-
|
145
|
-
return zclip(r);
|
146
|
-
}
|
147
|
-
|
148
|
-
// Multiple-precision multiplication, HAC Algorithm 14.12
|
149
|
-
|
150
|
-
function bmul(x,y)
|
151
|
-
{
|
152
|
-
var n = x.length;
|
153
|
-
var t = y.length;
|
154
|
-
var r = zeros(n+t-1);
|
155
|
-
var c, i, j;
|
156
|
-
|
157
|
-
for(i = 0; i < t; i++)
|
158
|
-
{
|
159
|
-
c = 0;
|
160
|
-
for(j = 0; j < n; j++)
|
161
|
-
{
|
162
|
-
c = ip(r,i+j,x[j],y[i],c);
|
163
|
-
}
|
164
|
-
r[i+n] = c;
|
165
|
-
}
|
166
|
-
|
167
|
-
return zclip(r);
|
168
|
-
}
|
169
|
-
|
170
|
-
function toppart(x,start,len)
|
171
|
-
{
|
172
|
-
var n=0;
|
173
|
-
while(start >= 0 && len-->0) n=n*bx2+x[start--];
|
174
|
-
return n;
|
175
|
-
}
|
176
|
-
|
177
|
-
// Multiple-precision division, HAC Algorithm 14.20
|
178
|
-
|
179
|
-
function bdiv(a,b)
|
180
|
-
{
|
181
|
-
var n=a.length-1;
|
182
|
-
var t=b.length-1;
|
183
|
-
var nmt=n-t;
|
184
|
-
|
185
|
-
// trivial cases; a < b
|
186
|
-
if(n < t || n==t && (a[n]<b[n] || n>0 && a[n]==b[n] && a[n-1]<b[n-1]))
|
187
|
-
{
|
188
|
-
this.q=[0]; this.mod=a;
|
189
|
-
return this;
|
190
|
-
}
|
191
|
-
|
192
|
-
// trivial cases; q < 4
|
193
|
-
if(n==t && toppart(a,t,2)/toppart(b,t,2) <4)
|
194
|
-
{
|
195
|
-
var x=a.concat();
|
196
|
-
var qq=0;
|
197
|
-
var xx;
|
198
|
-
for(;;)
|
199
|
-
{
|
200
|
-
xx=bsub(x,b);
|
201
|
-
if(xx.length==0) break;
|
202
|
-
x=xx; qq++;
|
203
|
-
}
|
204
|
-
this.q=[qq]; this.mod=x;
|
205
|
-
return this;
|
206
|
-
}
|
207
|
-
|
208
|
-
// normalize
|
209
|
-
var shift2=Math.floor(Math.log(b[t])/log2)+1;
|
210
|
-
var shift=bs-shift2;
|
211
|
-
|
212
|
-
var x=a.concat();
|
213
|
-
var y=b.concat();
|
214
|
-
|
215
|
-
if(shift)
|
216
|
-
{
|
217
|
-
for(i=t; i>0; i--) y[i]=((y[i]<<shift) & bm) | (y[i-1] >> shift2);
|
218
|
-
y[0]=(y[0]<<shift) & bm;
|
219
|
-
if(x[n] & ((bm <<shift2) & bm))
|
220
|
-
{
|
221
|
-
x[++n]=0; nmt++;
|
222
|
-
}
|
223
|
-
for(i=n; i>0; i--) x[i]=((x[i]<<shift) & bm) | (x[i-1] >> shift2);
|
224
|
-
x[0]=(x[0]<<shift) & bm;
|
225
|
-
}
|
226
|
-
|
227
|
-
var i, j, x2;
|
228
|
-
var q=zeros(nmt+1);
|
229
|
-
var y2=zeros(nmt).concat(y);
|
230
|
-
for(;;)
|
231
|
-
{
|
232
|
-
x2=bsub(x,y2);
|
233
|
-
if(x2.length==0) break;
|
234
|
-
q[nmt]++;
|
235
|
-
x=x2;
|
236
|
-
}
|
237
|
-
|
238
|
-
var yt=y[t], top=toppart(y,t,2)
|
239
|
-
for(i=n; i>t; i--)
|
240
|
-
{
|
241
|
-
var m=i-t-1;
|
242
|
-
if(i >= x.length) q[m]=1;
|
243
|
-
else if(x[i] == yt) q[m]=bm;
|
244
|
-
else q[m]=Math.floor(toppart(x,i,2)/yt);
|
245
|
-
|
246
|
-
var topx=toppart(x,i,3);
|
247
|
-
while(q[m] * top > topx) q[m]--;
|
248
|
-
|
249
|
-
//x-=q[m]*y*b^m
|
250
|
-
y2=y2.slice(1);
|
251
|
-
x2=bsub(x,bmul([q[m]],y2));
|
252
|
-
if(x2.length==0)
|
253
|
-
{
|
254
|
-
q[m]--;
|
255
|
-
x2=bsub(x,bmul([q[m]],y2));
|
256
|
-
}
|
257
|
-
x=x2;
|
258
|
-
}
|
259
|
-
// de-normalize
|
260
|
-
if(shift)
|
261
|
-
{
|
262
|
-
for(i=0; i<x.length-1; i++) x[i]=(x[i]>>shift) | ((x[i+1] << shift2) & bm);
|
263
|
-
x[x.length-1]>>=shift;
|
264
|
-
}
|
265
|
-
|
266
|
-
this.q = zclip(q);
|
267
|
-
this.mod = zclip(x);
|
268
|
-
return this;
|
269
|
-
}
|
270
|
-
|
271
|
-
function simplemod(i,m) // returns the mod where m < 2^bd
|
272
|
-
{
|
273
|
-
var c=0, v;
|
274
|
-
for(var n=i.length-1; n>=0; n--)
|
275
|
-
{
|
276
|
-
v=i[n];
|
277
|
-
c=((v >> bd) + (c<<bd)) % m;
|
278
|
-
c=((v & bdm) + (c<<bd)) % m;
|
279
|
-
}
|
280
|
-
return c;
|
281
|
-
}
|
282
|
-
|
283
|
-
function bmod(p,m)
|
284
|
-
{
|
285
|
-
if(m.length==1)
|
286
|
-
{
|
287
|
-
if(p.length==1) return [p[0] % m[0]];
|
288
|
-
if(m[0] < bdm) return [simplemod(p,m[0])];
|
289
|
-
}
|
290
|
-
|
291
|
-
var r=bdiv(p,m);
|
292
|
-
return r.mod;
|
293
|
-
}
|
294
|
-
|
295
|
-
// Barrett's modular reduction, HAC Algorithm 14.42
|
296
|
-
|
297
|
-
function bmod2(x,m,mu)
|
298
|
-
{
|
299
|
-
var xl=x.length - (m.length << 1);
|
300
|
-
if(xl > 0) return bmod2(x.slice(0,xl).concat(bmod2(x.slice(xl),m,mu)),m,mu);
|
301
|
-
|
302
|
-
var ml1=m.length+1, ml2=m.length-1,rr;
|
303
|
-
//var q1=x.slice(ml2)
|
304
|
-
//var q2=bmul(q1,mu)
|
305
|
-
var q3=bmul(x.slice(ml2),mu).slice(ml1);
|
306
|
-
var r1=x.slice(0,ml1);
|
307
|
-
var r2=bmul(q3,m).slice(0,ml1);
|
308
|
-
var r=bsub(r1,r2);
|
309
|
-
|
310
|
-
if(r.length==0)
|
311
|
-
{
|
312
|
-
r1[ml1]=1;
|
313
|
-
r=bsub(r1,r2);
|
314
|
-
}
|
315
|
-
for(var n=0;;n++)
|
316
|
-
{
|
317
|
-
rr=bsub(r,m);
|
318
|
-
if(rr.length==0) break;
|
319
|
-
r=rr;
|
320
|
-
if(n>=3) return bmod2(r,m,mu);
|
321
|
-
}
|
322
|
-
return r;
|
323
|
-
}
|
324
|
-
|
325
|
-
// Modular exponentiation, HAC Algorithm 14.79
|
326
|
-
|
327
|
-
function bexpmod(g,e,m)
|
328
|
-
{
|
329
|
-
var a = g.concat();
|
330
|
-
var l = e.length-1;
|
331
|
-
var n = nbits(e[l])-2;
|
332
|
-
|
333
|
-
for(; l >= 0; l--)
|
334
|
-
{
|
335
|
-
for(; n >= 0; n-=1)
|
336
|
-
{
|
337
|
-
a=bmod(bsqr(a),m);
|
338
|
-
if(e[l] & (1<<n)) a=bmod(bmul(a,g),m);
|
339
|
-
}
|
340
|
-
n = bs-1;
|
341
|
-
}
|
342
|
-
return a;
|
343
|
-
}
|
344
|
-
|
345
|
-
// Modular exponentiation using Barrett reduction
|
346
|
-
|
347
|
-
function bmodexp(g,e,m)
|
348
|
-
{
|
349
|
-
var a=g.concat();
|
350
|
-
var l=e.length-1;
|
351
|
-
var n=m.length*2;
|
352
|
-
var mu=zeros(n+1);
|
353
|
-
mu[n]=1;
|
354
|
-
mu=bdiv(mu,m).q;
|
355
|
-
|
356
|
-
n = nbits(e[l])-2;
|
357
|
-
|
358
|
-
for(; l >= 0; l--)
|
359
|
-
{
|
360
|
-
for(; n >= 0; n-=1)
|
361
|
-
{
|
362
|
-
a=bmod2(bsqr(a),m, mu);
|
363
|
-
if(e[l] & (1<<n)) a=bmod2(bmul(a,g),m, mu);
|
364
|
-
}
|
365
|
-
n = bs-1;
|
366
|
-
}
|
367
|
-
return a;
|
368
|
-
}
|
369
|
-
|
370
|
-
// -----------------------------------------------------
|
371
|
-
// Compute s**e mod m for RSA public key operation
|
372
|
-
|
373
|
-
function RSAencrypt(s, e, m) { return bexpmod(s,e,m); }
|
374
|
-
|
375
|
-
// Compute m**d mod p*q for RSA private key operations.
|
376
|
-
|
377
|
-
function RSAdecrypt(m, d, p, q, u)
|
378
|
-
{
|
379
|
-
var xp = bmodexp(bmod(m,p), bmod(d,bsub(p,[1])), p);
|
380
|
-
var xq = bmodexp(bmod(m,q), bmod(d,bsub(q,[1])), q);
|
381
|
-
|
382
|
-
var t=bsub(xq,xp);
|
383
|
-
if(t.length==0)
|
384
|
-
{
|
385
|
-
t=bsub(xp,xq);
|
386
|
-
t=bmod(bmul(t, u), q);
|
387
|
-
t=bsub(q,t);
|
388
|
-
}
|
389
|
-
else
|
390
|
-
{
|
391
|
-
t=bmod(bmul(t, u), q);
|
392
|
-
}
|
393
|
-
return badd(bmul(t,p), xp);
|
394
|
-
}
|
395
|
-
|
396
|
-
// -----------------------------------------------------------------
|
397
|
-
// conversion functions: num array <-> multi precision integer (mpi)
|
398
|
-
// mpi: 2 octets with length in bits + octets in big endian order
|
399
|
-
|
400
|
-
function mpi2b(s)
|
401
|
-
{
|
402
|
-
var bn=1, r=[0], rn=0, sb=256;
|
403
|
-
var c, sn=s.length;
|
404
|
-
if(sn < 2) return 0;
|
405
|
-
|
406
|
-
var len=(sn-2)*8;
|
407
|
-
var bits=s.charCodeAt(0)*256+s.charCodeAt(1);
|
408
|
-
if(bits > len || bits < len-8) return 0;
|
409
|
-
|
410
|
-
for(var n=0; n<len; n++)
|
411
|
-
{
|
412
|
-
if((sb<<=1) > 255)
|
413
|
-
{
|
414
|
-
sb=1; c=s.charCodeAt(--sn);
|
415
|
-
}
|
416
|
-
if(bn > bm)
|
417
|
-
{
|
418
|
-
bn=1;
|
419
|
-
r[++rn]=0;
|
420
|
-
}
|
421
|
-
if(c & sb) r[rn]|=bn;
|
422
|
-
bn<<=1;
|
423
|
-
}
|
424
|
-
return r;
|
425
|
-
}
|
426
|
-
|
427
|
-
function b2mpi(b)
|
428
|
-
{
|
429
|
-
var bn=1, bc=0, r=[0], rb=1, rn=0;
|
430
|
-
var bits=b.length*bs;
|
431
|
-
var n, rr='';
|
432
|
-
|
433
|
-
for(n=0; n<bits; n++)
|
434
|
-
{
|
435
|
-
if(b[bc] & bn) r[rn]|=rb;
|
436
|
-
if((rb<<=1) > 255)
|
437
|
-
{
|
438
|
-
rb=1; r[++rn]=0;
|
439
|
-
}
|
440
|
-
if((bn<<=1) > bm)
|
441
|
-
{
|
442
|
-
bn=1; bc++;
|
443
|
-
}
|
444
|
-
}
|
445
|
-
|
446
|
-
while(rn && r[rn]==0) rn--;
|
447
|
-
|
448
|
-
bn=256;
|
449
|
-
for(bits=8; bits>0; bits--) if(r[rn] & (bn>>=1)) break;
|
450
|
-
bits+=rn*8;
|
451
|
-
|
452
|
-
rr+=String.fromCharCode(bits/256)+String.fromCharCode(bits%256);
|
453
|
-
if(bits) for(n=rn; n>=0; n--) rr+=String.fromCharCode(r[n]);
|
454
|
-
return rr;
|
455
|
-
}
|