rgl 0.2.2 → 0.2.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/ChangeLog +75 -2
- data/README +52 -28
- data/Rakefile +3 -3
- data/TAGS +242 -198
- data/examples/debgraph.rb +118 -0
- data/examples/examples.rb +5 -3
- data/examples/graph.dot +731 -17
- data/examples/insel.rb +141 -0
- data/lib/rgl/adjacency.rb +172 -139
- data/lib/rgl/base.rb +247 -251
- data/lib/rgl/connected_components.rb +125 -112
- data/lib/rgl/dot.rb +54 -46
- data/lib/rgl/graphxml.rb +48 -37
- data/lib/rgl/implicit.rb +159 -136
- data/lib/rgl/mutable.rb +69 -48
- data/lib/rgl/rdot.rb +268 -205
- data/lib/rgl/topsort.rb +63 -52
- data/lib/rgl/transitiv_closure.rb +40 -28
- data/lib/rgl/traversal.rb +300 -247
- data/tests/TestDirectedGraph.rb +22 -2
- data/tests/TestUnDirectedGraph.rb +4 -0
- metadata +7 -7
- data/Makefile +0 -72
- data/examples/graph.png +0 -0
    
        data/examples/insel.rb
    ADDED
    
    | @@ -0,0 +1,141 @@ | |
| 1 | 
            +
            # Some graph examples
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            require 'rubygems' rescue nil
         | 
| 4 | 
            +
            require 'rgl/adjacency'
         | 
| 5 | 
            +
            require 'rgl/implicit'
         | 
| 6 | 
            +
            require 'rgl/dot'
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            g = RGL::DirectedAdjacencyGraph[
         | 
| 9 | 
            +
              8, 9,
         | 
| 10 | 
            +
              8, 10,
         | 
| 11 | 
            +
             | 
| 12 | 
            +
              9, 11,
         | 
| 13 | 
            +
              9, 12,
         | 
| 14 | 
            +
             | 
| 15 | 
            +
              10, 13,
         | 
| 16 | 
            +
              10, 14,
         | 
| 17 | 
            +
             | 
| 18 | 
            +
              11, 15,
         | 
| 19 | 
            +
              11, 16,
         | 
| 20 | 
            +
             
         | 
| 21 | 
            +
              12, 17,
         | 
| 22 | 
            +
              12, 18, 
         | 
| 23 | 
            +
             | 
| 24 | 
            +
              13, 19, 
         | 
| 25 | 
            +
              13, 20,
         | 
| 26 | 
            +
             | 
| 27 | 
            +
              14, 21,
         | 
| 28 | 
            +
              14, 22,
         | 
| 29 | 
            +
             
         | 
| 30 | 
            +
              15, 23,
         | 
| 31 | 
            +
              15, 24,
         | 
| 32 | 
            +
             | 
| 33 | 
            +
              16, 25,
         | 
| 34 | 
            +
              16, 26,
         | 
| 35 | 
            +
             | 
| 36 | 
            +
              17, 27,
         | 
| 37 | 
            +
              17, 28,
         | 
| 38 | 
            +
             | 
| 39 | 
            +
              18, 29,
         | 
| 40 | 
            +
              18, 30, 
         | 
| 41 | 
            +
             | 
| 42 | 
            +
              18, 31,
         | 
| 43 | 
            +
              18, 32,
         | 
| 44 | 
            +
             | 
| 45 | 
            +
              19, 31, 
         | 
| 46 | 
            +
              19, 32,
         | 
| 47 | 
            +
             | 
| 48 | 
            +
              20, 33,
         | 
| 49 | 
            +
              20, 34,
         | 
| 50 | 
            +
             | 
| 51 | 
            +
              21, 35,
         | 
| 52 | 
            +
              21, 36,
         | 
| 53 | 
            +
             | 
| 54 | 
            +
              22, 37,
         | 
| 55 | 
            +
              22, 38,
         | 
| 56 | 
            +
             | 
| 57 | 
            +
              23, 39,
         | 
| 58 | 
            +
              23, 40,
         | 
| 59 | 
            +
             | 
| 60 | 
            +
              24, 41, 
         | 
| 61 | 
            +
              24, 42,
         | 
| 62 | 
            +
             | 
| 63 | 
            +
              25, 43,
         | 
| 64 | 
            +
              25, 44,
         | 
| 65 | 
            +
             | 
| 66 | 
            +
              26, 45,
         | 
| 67 | 
            +
              26, 46,
         | 
| 68 | 
            +
             | 
| 69 | 
            +
              27, 47,
         | 
| 70 | 
            +
              27, 48,
         | 
| 71 | 
            +
             | 
| 72 | 
            +
              28, 49,
         | 
| 73 | 
            +
              28, 50, 
         | 
| 74 | 
            +
             | 
| 75 | 
            +
              29, 51,
         | 
| 76 | 
            +
              29, 52,  
         | 
| 77 | 
            +
             | 
| 78 | 
            +
              30, 53,
         | 
| 79 | 
            +
              30, 54,
         | 
| 80 | 
            +
              
         | 
| 81 | 
            +
              31, 55,
         | 
| 82 | 
            +
              31, 56, 
         | 
| 83 | 
            +
              
         | 
| 84 | 
            +
              32, 57,
         | 
| 85 | 
            +
              32, 58,
         | 
| 86 | 
            +
             | 
| 87 | 
            +
              33, 59,
         | 
| 88 | 
            +
              33, 60,
         | 
| 89 | 
            +
             
         | 
| 90 | 
            +
              34, 61,
         | 
| 91 | 
            +
              34, 62,
         | 
| 92 | 
            +
             | 
| 93 | 
            +
              35, 63,
         | 
| 94 | 
            +
              35, 64,
         | 
| 95 | 
            +
            #
         | 
| 96 | 
            +
              36, 65,
         | 
| 97 | 
            +
              36, 66,
         | 
| 98 | 
            +
             | 
| 99 | 
            +
              37, 67,
         | 
| 100 | 
            +
             | 
| 101 | 
            +
              38, 13,
         | 
| 102 | 
            +
             | 
| 103 | 
            +
              39, 68,
         | 
| 104 | 
            +
              39, 69,
         | 
| 105 | 
            +
             | 
| 106 | 
            +
              40, 70,
         | 
| 107 | 
            +
              40, 71,
         | 
| 108 | 
            +
             | 
| 109 | 
            +
              42, 72,
         | 
| 110 | 
            +
              42, 73,
         | 
| 111 | 
            +
             | 
| 112 | 
            +
              43, 74,
         | 
| 113 | 
            +
              43, 75,
         | 
| 114 | 
            +
             | 
| 115 | 
            +
              44, 76,
         | 
| 116 | 
            +
              44, 77,
         | 
| 117 | 
            +
             | 
| 118 | 
            +
              46, 78,
         | 
| 119 | 
            +
              46, 79,
         | 
| 120 | 
            +
             | 
| 121 | 
            +
              47, 80,
         | 
| 122 | 
            +
              47, 81,
         | 
| 123 | 
            +
             | 
| 124 | 
            +
              48, 82,
         | 
| 125 | 
            +
              48, 83,
         | 
| 126 | 
            +
             | 
| 127 | 
            +
              50, 84,
         | 
| 128 | 
            +
              50, 85,
         | 
| 129 | 
            +
             | 
| 130 | 
            +
              51, 86,
         | 
| 131 | 
            +
              51, 87,
         | 
| 132 | 
            +
             | 
| 133 | 
            +
              53, 90,
         | 
| 134 | 
            +
              53, 91,
         | 
| 135 | 
            +
             | 
| 136 | 
            +
              55, 93,
         | 
| 137 | 
            +
              55, 94
         | 
| 138 | 
            +
             | 
| 139 | 
            +
            ]
         | 
| 140 | 
            +
            g.dotty
         | 
| 141 | 
            +
             | 
    
        data/lib/rgl/adjacency.rb
    CHANGED
    
    | @@ -1,151 +1,184 @@ | |
| 1 | 
            +
            # adjacency.rb
         | 
| 1 2 | 
             
            # 
         | 
| 2 | 
            -
            # $Id: adjacency.rb,v 1. | 
| 3 | 
            +
            # $Id: adjacency.rb,v 1.7 2005/03/30 21:25:34 monora Exp $
         | 
| 3 4 | 
             
            # 
         | 
| 4 5 | 
             
            # The DirectedAdjacencyGraph class implements a generalized adjacency list
         | 
| 5 | 
            -
            # graph structure. | 
| 6 | 
            -
            #  | 
| 7 | 
            -
            # the vertices contains a one-dimensional structure that is | 
| 8 | 
            -
            # adjacent vertices.
         | 
| 6 | 
            +
            # graph structure.  An AdjacencyGraph is basically a two-dimensional structure
         | 
| 7 | 
            +
            # (ie, a list of lists).  Each element of the first dimension represents a
         | 
| 8 | 
            +
            # vertex.  Each of the vertices contains a one-dimensional structure that is
         | 
| 9 | 
            +
            # the list of all adjacent vertices.
         | 
| 9 10 | 
             
            #
         | 
| 10 | 
            -
            # The class for representing the adjacency list of a vertex is by default a
         | 
| 11 | 
            -
            # Set | 
| 11 | 
            +
            # The class for representing the adjacency list of a vertex is, by default, a
         | 
| 12 | 
            +
            # Set.  This can be configured by the client, however, when an AdjacencyGraph
         | 
| 13 | 
            +
            # is created.
         | 
| 12 14 |  | 
| 13 15 | 
             
            require 'rgl/mutable'
         | 
| 14 16 | 
             
            require 'set'
         | 
| 15 17 |  | 
| 16 18 | 
             
            module RGL
         | 
| 19 | 
            +
             | 
| 17 20 | 
             
              class DirectedAdjacencyGraph
         | 
| 18 | 
            -
             | 
| 19 | 
            -
             | 
| 20 | 
            -
             | 
| 21 | 
            -
             | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
| 26 | 
            -
             | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
             | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
             | 
| 35 | 
            -
             | 
| 36 | 
            -
             | 
| 37 | 
            -
             | 
| 38 | 
            -
             | 
| 39 | 
            -
             | 
| 40 | 
            -
             | 
| 41 | 
            -
             | 
| 42 | 
            -
             | 
| 43 | 
            -
             | 
| 44 | 
            -
             | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
| 49 | 
            -
             | 
| 50 | 
            -
             | 
| 51 | 
            -
             | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
| 54 | 
            -
             | 
| 55 | 
            -
             | 
| 56 | 
            -
             | 
| 57 | 
            -
             | 
| 58 | 
            -
             | 
| 59 | 
            -
             | 
| 60 | 
            -
             | 
| 61 | 
            -
             | 
| 62 | 
            -
             | 
| 63 | 
            -
             | 
| 64 | 
            -
             | 
| 65 | 
            -
             | 
| 66 | 
            -
             | 
| 67 | 
            -
             | 
| 68 | 
            -
             | 
| 69 | 
            -
             | 
| 70 | 
            -
             | 
| 71 | 
            -
             | 
| 72 | 
            -
             | 
| 73 | 
            -
             | 
| 74 | 
            -
             | 
| 75 | 
            -
             | 
| 76 | 
            -
             | 
| 77 | 
            -
             | 
| 78 | 
            -
             | 
| 79 | 
            -
             | 
| 80 | 
            -
             | 
| 81 | 
            -
             | 
| 82 | 
            -
             | 
| 83 | 
            -
             | 
| 84 | 
            -
             | 
| 85 | 
            -
             | 
| 86 | 
            -
             | 
| 87 | 
            -
             | 
| 88 | 
            -
             | 
| 89 | 
            -
             | 
| 90 | 
            -
             | 
| 91 | 
            -
             | 
| 92 | 
            -
             | 
| 93 | 
            -
             | 
| 94 | 
            -
             | 
| 95 | 
            -
             | 
| 96 | 
            -
             | 
| 97 | 
            -
             | 
| 98 | 
            -
             | 
| 99 | 
            -
             | 
| 100 | 
            -
             | 
| 101 | 
            -
             | 
| 102 | 
            -
             | 
| 103 | 
            -
             | 
| 104 | 
            -
             | 
| 105 | 
            -
             | 
| 106 | 
            -
             | 
| 107 | 
            -
             | 
| 108 | 
            -
             | 
| 109 | 
            -
             | 
| 110 | 
            -
             | 
| 111 | 
            -
             | 
| 112 | 
            -
             | 
| 113 | 
            -
             | 
| 114 | 
            -
             | 
| 115 | 
            -
             | 
| 116 | 
            -
             | 
| 117 | 
            -
               | 
| 21 | 
            +
             | 
| 22 | 
            +
                include MutableGraph
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                # Shortcut for creating a DirectedAdjacencyGraph:
         | 
| 25 | 
            +
                #
         | 
| 26 | 
            +
                #  RGL::DirectedAdjacencyGraph[1,2, 2,3, 2,4, 4,5].edges.to_a.to_s =>
         | 
| 27 | 
            +
                #    "(1-2)(2-3)(2-4)(4-5)"
         | 
| 28 | 
            +
             | 
| 29 | 
            +
                def self.[] (*a)
         | 
| 30 | 
            +
                  result = new
         | 
| 31 | 
            +
                  0.step(a.size-1, 2) { |i| result.add_edge(a[i], a[i+1]) }
         | 
| 32 | 
            +
                  result
         | 
| 33 | 
            +
                end
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                # Returns a new empty DirectedAdjacencyGraph which has as its edgelist
         | 
| 36 | 
            +
                # class the given class.  The default edgelist class is Set, to ensure
         | 
| 37 | 
            +
                # set semantics for edges and vertices.
         | 
| 38 | 
            +
             | 
| 39 | 
            +
                def initialize (edgelist_class = Set)
         | 
| 40 | 
            +
                  @edgelist_class = edgelist_class
         | 
| 41 | 
            +
                  @vertice_dict   = Hash.new
         | 
| 42 | 
            +
                end
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                # Iterator for the keys of the vertice list hash.
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                def each_vertex (&b)
         | 
| 47 | 
            +
                  @vertice_dict.each_key(&b)
         | 
| 48 | 
            +
                end
         | 
| 49 | 
            +
             | 
| 50 | 
            +
                def each_adjacent (v, &b)			# :nodoc:
         | 
| 51 | 
            +
                  adjacency_list = @vertice_dict[v] or
         | 
| 52 | 
            +
                    raise NoVertexError, "No vertex #{v}."
         | 
| 53 | 
            +
                  adjacency_list.each(&b)
         | 
| 54 | 
            +
                end
         | 
| 55 | 
            +
             | 
| 56 | 
            +
                # Returns true.
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                def directed?
         | 
| 59 | 
            +
                  true
         | 
| 60 | 
            +
                end
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                # Complexity is O(1), because the vertices are kept in a Hash containing
         | 
| 63 | 
            +
                # as values the lists of adjacent vertices of _v_.
         | 
| 64 | 
            +
             | 
| 65 | 
            +
                def has_vertex? (v)
         | 
| 66 | 
            +
                  @vertice_dict.has_key?(v)
         | 
| 67 | 
            +
                end
         | 
| 68 | 
            +
             | 
| 69 | 
            +
                # Complexity is O(1), if a Set is used as adjacency list.  Otherwise,
         | 
| 70 | 
            +
                # complexity is O(out_degree(v)).
         | 
| 71 | 
            +
                #
         | 
| 72 | 
            +
                # ---
         | 
| 73 | 
            +
                # MutableGraph interface.
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                def has_edge? (u, v)
         | 
| 76 | 
            +
                  has_vertex?(u) and @vertice_dict[u].include?(v)
         | 
| 77 | 
            +
                end
         | 
| 78 | 
            +
             | 
| 79 | 
            +
                # See MutableGraph#add_vertex.
         | 
| 80 | 
            +
                #
         | 
| 81 | 
            +
                # If the vertex is already in the graph (using eql?), the method does
         | 
| 82 | 
            +
                # nothing.
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                def add_vertex (v)
         | 
| 85 | 
            +
                  @vertice_dict[v] ||= @edgelist_class.new
         | 
| 86 | 
            +
                end
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                # See MutableGraph#add_edge.
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                def add_edge (u, v)
         | 
| 91 | 
            +
                  add_vertex(u)                         # ensure key
         | 
| 92 | 
            +
                  add_vertex(v)                         # ensure key
         | 
| 93 | 
            +
                  basic_add_edge(u, v)
         | 
| 94 | 
            +
                end
         | 
| 95 | 
            +
             | 
| 96 | 
            +
                # See MutableGraph#remove_vertex.
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def remove_vertex (v)
         | 
| 99 | 
            +
                  @vertice_dict.delete(v)
         | 
| 100 | 
            +
                      
         | 
| 101 | 
            +
                  # remove v from all adjacency lists
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                  @vertice_dict.each_value { |adjList| adjList.delete(v) }
         | 
| 104 | 
            +
                end
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                # See MutableGraph::remove_edge.
         | 
| 107 | 
            +
             | 
| 108 | 
            +
                def remove_edge (u, v)
         | 
| 109 | 
            +
                  @vertice_dict[u].delete(v) unless @vertice_dict[u].nil?
         | 
| 110 | 
            +
                end
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                protected
         | 
| 113 | 
            +
             | 
| 114 | 
            +
                def basic_add_edge (u, v)
         | 
| 115 | 
            +
                  @vertice_dict[u].add(v)
         | 
| 116 | 
            +
                end
         | 
| 117 | 
            +
             | 
| 118 | 
            +
              end		# class DirectedAdjacencyGraph
         | 
| 119 | 
            +
             | 
| 120 | 
            +
              # AdjacencyGraph is an undirected Graph.  The methods add_edge and
         | 
| 121 | 
            +
              # remove_edge are reimplemented:  If an edge (u,v) is added or removed,
         | 
| 122 | 
            +
              # then the reverse edge (v,u) is also added or removed.
         | 
| 123 | 
            +
             | 
| 124 | 
            +
              class AdjacencyGraph < DirectedAdjacencyGraph 
         | 
| 125 | 
            +
             | 
| 126 | 
            +
                def directed?				# Always returns false.
         | 
| 127 | 
            +
                  false
         | 
| 128 | 
            +
                end
         | 
| 129 | 
            +
                    
         | 
| 130 | 
            +
                # Also removes (v,u)
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                def remove_edge (u, v)
         | 
| 133 | 
            +
                  super
         | 
| 134 | 
            +
                  @vertice_dict[v].delete(u) unless @vertice_dict[v].nil?
         | 
| 135 | 
            +
                end
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                protected
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                def basic_add_edge (u,v)
         | 
| 140 | 
            +
                  super
         | 
| 141 | 
            +
                  @vertice_dict[v].add(u)			# Insert backwards edge
         | 
| 142 | 
            +
                end
         | 
| 143 | 
            +
             | 
| 144 | 
            +
              end		# class AdjacencyGraph
         | 
| 118 145 |  | 
| 119 146 | 
             
              module Graph
         | 
| 120 | 
            -
             | 
| 121 | 
            -
             | 
| 122 | 
            -
             | 
| 123 | 
            -
             | 
| 124 | 
            -
             | 
| 125 | 
            -
             | 
| 126 | 
            -
             | 
| 127 | 
            -
             | 
| 128 | 
            -
             | 
| 129 | 
            -
             | 
| 130 | 
            -
             | 
| 131 | 
            -
             | 
| 132 | 
            -
             | 
| 133 | 
            -
             | 
| 134 | 
            -
             | 
| 135 | 
            -
             | 
| 136 | 
            -
             | 
| 137 | 
            -
             | 
| 138 | 
            -
             | 
| 139 | 
            -
             | 
| 140 | 
            -
             | 
| 141 | 
            -
             | 
| 142 | 
            -
             | 
| 143 | 
            -
             | 
| 144 | 
            -
             | 
| 145 | 
            -
             | 
| 146 | 
            -
             | 
| 147 | 
            -
             | 
| 148 | 
            -
             | 
| 149 | 
            -
             | 
| 150 | 
            -
             | 
| 151 | 
            -
             | 
| 147 | 
            +
             | 
| 148 | 
            +
                # Convert a general graph to an AdjacencyGraph.  If the graph is directed,
         | 
| 149 | 
            +
                # returns a DirectedAdjacencyGraph; otherwise, returns an AdjacencyGraph.
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                def to_adjacency
         | 
| 152 | 
            +
                  result = (directed? ? DirectedAdjacencyGraph : AdjacencyGraph).new
         | 
| 153 | 
            +
                  each_edge { |u,v| result.add_edge(u, v) }
         | 
| 154 | 
            +
                  result
         | 
| 155 | 
            +
                end
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                # Return a new DirectedAdjacencyGraph which has the same set of vertices.
         | 
| 158 | 
            +
                # If (u,v) is an edge of the graph, then (v,u) is an edge of the result.
         | 
| 159 | 
            +
                #
         | 
| 160 | 
            +
                # If the graph is undirected, the result is self.
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                def reverse
         | 
| 163 | 
            +
                  return self unless directed?
         | 
| 164 | 
            +
                  result = DirectedAdjacencyGraph.new
         | 
| 165 | 
            +
                  each_vertex { |v| result.add_vertex v }
         | 
| 166 | 
            +
                  each_edge { |u,v| result.add_edge(v, u) }
         | 
| 167 | 
            +
                  result
         | 
| 168 | 
            +
                end
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                # Return a new AdjacencyGraph which has the same set of vertices.  If (u,v)
         | 
| 171 | 
            +
                # is an edge of the graph, then (u,v) and (v,u) (which are the same edges)
         | 
| 172 | 
            +
                # are edges of the result.
         | 
| 173 | 
            +
                #
         | 
| 174 | 
            +
                # If the graph is undirected, the result is self.
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                def to_undirected
         | 
| 177 | 
            +
                  return self unless directed?
         | 
| 178 | 
            +
                  result = AdjacencyGraph.new
         | 
| 179 | 
            +
                  each_edge { |u,v| result.add_edge(u, v) }
         | 
| 180 | 
            +
                  result
         | 
| 181 | 
            +
                end
         | 
| 182 | 
            +
             | 
| 183 | 
            +
              end		# module Graph
         | 
| 184 | 
            +
            end		# module RGL
         |