red_amber 0.2.1 → 0.2.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. checksums.yaml +4 -4
  2. data/.rubocop.yml +3 -0
  3. data/CHANGELOG.md +69 -2
  4. data/README.md +83 -280
  5. data/doc/DataFrame.md +279 -265
  6. data/doc/Vector.md +28 -36
  7. data/doc/image/basic_verbs.png +0 -0
  8. data/doc/image/dataframe/assign.png +0 -0
  9. data/doc/image/dataframe/assign_operation.png +0 -0
  10. data/doc/image/dataframe/drop.png +0 -0
  11. data/doc/image/dataframe/pick.png +0 -0
  12. data/doc/image/dataframe/pick_operation.png +0 -0
  13. data/doc/image/dataframe/remove.png +0 -0
  14. data/doc/image/dataframe/rename.png +0 -0
  15. data/doc/image/dataframe/rename_operation.png +0 -0
  16. data/doc/image/dataframe/reshaping_DataFrames.png +0 -0
  17. data/doc/image/dataframe/slice.png +0 -0
  18. data/doc/image/dataframe/slice_operation.png +0 -0
  19. data/doc/image/dataframe_model.png +0 -0
  20. data/doc/image/group_operation.png +0 -0
  21. data/doc/image/replace-if_then.png +0 -0
  22. data/doc/image/reshaping_dataframe.png +0 -0
  23. data/doc/image/screenshot.png +0 -0
  24. data/doc/image/vector/binary_element_wise.png +0 -0
  25. data/doc/image/vector/unary_aggregation.png +0 -0
  26. data/doc/image/vector/unary_aggregation_w_option.png +0 -0
  27. data/doc/image/vector/unary_element_wise.png +0 -0
  28. data/lib/red_amber/data_frame.rb +10 -37
  29. data/lib/red_amber/data_frame_displayable.rb +56 -3
  30. data/lib/red_amber/data_frame_loadsave.rb +36 -0
  31. data/lib/red_amber/data_frame_reshaping.rb +8 -6
  32. data/lib/red_amber/data_frame_variable_operation.rb +25 -19
  33. data/lib/red_amber/group.rb +5 -3
  34. data/lib/red_amber/helper.rb +20 -18
  35. data/lib/red_amber/vector.rb +49 -30
  36. data/lib/red_amber/vector_selectable.rb +9 -1
  37. data/lib/red_amber/vector_updatable.rb +6 -3
  38. data/lib/red_amber/version.rb +1 -1
  39. data/lib/red_amber.rb +1 -0
  40. metadata +13 -3
  41. data/doc/examples_of_red_amber.ipynb +0 -8979
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
2
  SHA256:
3
- metadata.gz: d239a3fa90e5796fb695f8d3c4995d0a2178ea7c8c2789bed157e688902585cb
4
- data.tar.gz: 968c02294d24a3dabaa6e5128be0bcfad713e131df15850ac0ceb64c2883dcd0
3
+ metadata.gz: a16699a945f41bf98790f698998126cc6b4a5e916eccb805e78448ec029f9310
4
+ data.tar.gz: 5e7fa732f64567fd85e5a74b046e80861824f13d15dc910278b6c62359db9a22
5
5
  SHA512:
6
- metadata.gz: d1c5ffd9650dd8c9e825514cd7e2ff4914690bd731ac262fca6cc17e56c1e312679689351a05fb741dccfb59377214706a8bf6ca6fe3237ca46fb623ae1b9f10
7
- data.tar.gz: f37c4aff9170cd5105737a9d2b3d827051254dcca6968b697f5ed3a70e1b2c3cb14303e88a9c342870d1447450a538e445d6f3d37de53591d3f6d13b87aebc16
6
+ metadata.gz: 6ae7a6e3a8015b6b9736fb934526d9dc96b43830f0890ccbc16e175e539a8df1053432a63dde84a31dbd3a170aa6256b681127c510117723427bce815568c981
7
+ data.tar.gz: a0e7d86a7bdc6be7ec493ef5331ced5ecf4e6b89458f4252f208435905a7e4e80a088a718098073fb0c65c86d76297c70c978cd4dec28b1eb1a0d915bb7e3608
data/.rubocop.yml CHANGED
@@ -63,6 +63,7 @@ Metrics/AbcSize:
63
63
  - 'lib/red_amber/data_frame_displayable.rb' # Max: 55
64
64
  - 'lib/red_amber/data_frame_reshaping.rb' # Max 40.91
65
65
  - 'lib/red_amber/data_frame_selectable.rb' # Max: 51
66
+ - 'lib/red_amber/data_frame_variable_operation.rb' # Max: 30.15
66
67
  - 'lib/red_amber/vector_updatable.rb' # Max: 36
67
68
  - 'lib/red_amber/vector_selectable.rb' # Max: 33
68
69
 
@@ -86,6 +87,7 @@ Metrics/CyclomaticComplexity:
86
87
  Exclude:
87
88
  - 'lib/red_amber/data_frame_displayable.rb' # Max: 18
88
89
  - 'lib/red_amber/data_frame_selectable.rb' # Max: 14
90
+ - 'lib/red_amber/helper.rb' # Max: 15
89
91
  - 'lib/red_amber/vector_selectable.rb' # Max: 13
90
92
  - 'lib/red_amber/vector_updatable.rb' # Max: 14
91
93
 
@@ -111,6 +113,7 @@ Metrics/PerceivedComplexity:
111
113
  Max: 13
112
114
  Exclude:
113
115
  - 'lib/red_amber/data_frame_selectable.rb' # Max: 14
116
+ - 'lib/red_amber/helper.rb' # Max: 15
114
117
  - 'lib/red_amber/vector_updatable.rb' # Max: 15
115
118
  - 'lib/red_amber/data_frame_displayable.rb' # Max: 19
116
119
 
data/CHANGELOG.md CHANGED
@@ -1,6 +1,63 @@
1
+ ## [0.2.2] - 2022-10-04
2
+
3
+ - Bug fixes
4
+
5
+ - Return self when no replacement happen in Vector#replace. (#92)
6
+
7
+ - Limit n-digits in to_iruby. (#111)
8
+
9
+ - Fix displaying space in to_iruby. (#111)
10
+
11
+ - Raise error if key is duplicated. (#113)
12
+
13
+ - Fix DataFrame#pick/#drop with endless Range. (#113)
14
+
15
+ - Change type from dictionary to string in DataFrame reshaping methods. (#113)
16
+
17
+ - Fix arguments parser to accept Enumerator. (#114)
18
+
19
+ - New features and improvements
20
+
21
+ - Support to make a data frame from a to_arrow-responsible object. (#106) [Patch by Kenta Murata]
22
+
23
+ - Introduce DataFrame#auto_cast (experimental feature) (#105)
24
+
25
+ - Change default name in DataFrame#transpose, #to_long, #to_wide. (#110)
26
+
27
+ - Add Vector#dictionary? method. (#113)
28
+
29
+ - Add display mode 'Plain' and 'Minimum'. (#113)
30
+
31
+ - Refactor code
32
+
33
+ - Refine test_vector_selectable. (#92)
34
+ - Refine test_vector_updatable. (#92)
35
+ - Refine Vector.new. (#113)
36
+ - Refine DataFrame#pick, #drop. (#113)
37
+
38
+ - Documents
39
+
40
+ - Update images. (#90, #105, #113)
41
+
42
+ - Update README to use simpler examples. (#112)
43
+ - Update README with a new screenshot example. (#113)
44
+
45
+ - GitHub site
46
+
47
+ - Update Jupyter notebooks in Binder (#88, #115)
48
+ - Move binder support to heronshoes/docker-stacks repository.
49
+ - Update README notebook on binder.
50
+ - Add examples_of_RedAmber notebook on binder.
51
+
52
+ - Start to use discussions.
53
+
54
+ - Thanks
55
+
56
+ - Kenta Murata
57
+
1
58
  ## [0.2.1] - 2022-09-07
2
59
 
3
- -Bug fixes
60
+ - Bug fixes
4
61
 
5
62
  - Fix `Vector#each` with block (#66)
6
63
  `Vector#each` will return value of each element with block.
@@ -49,12 +106,15 @@
49
106
 
50
107
  - Add binary function `Vector#logb`
51
108
 
52
- - Docker image and Jupyter Notebook (Thanks to @mrkn)
109
+ - Docker image and Jupyter Notebook [Thanks to Kenta Murata]
53
110
  - Add link to RubyData in README
54
111
  - Add link to interactive README by Binder
55
112
 
56
113
  - Update Jupyter Notebook `71 examples of RedAmber`
57
114
 
115
+ - Thanks
116
+
117
+ - Kenta Murata
58
118
 
59
119
  ## [0.2.0] - 2022-08-15
60
120
 
@@ -294,6 +354,13 @@
294
354
  - Documentation
295
355
  - Fix typo in DataFrame.md
296
356
 
357
+ - Github site
358
+ - Add gem and status badges in README. (#42) [Patch by kojix2]
359
+
360
+ - Thanks
361
+
362
+ - kojix2
363
+
297
364
  ## [0.1.5] - 2022-06-12 (experimental)
298
365
 
299
366
  - Bug fixes
data/README.md CHANGED
@@ -2,12 +2,15 @@
2
2
 
3
3
  [![Gem Version](https://badge.fury.io/rb/red_amber.svg)](https://badge.fury.io/rb/red_amber)
4
4
  [![Ruby](https://github.com/heronshoes/red_amber/actions/workflows/test.yml/badge.svg)](https://github.com/heronshoes/red_amber/actions/workflows/test.yml)
5
+ [![Discussions](https://img.shields.io/github/discussions/heronshoes/red_amber)](https://github.com/heronshoes/red_amber/discussions)
5
6
 
6
7
  A simple dataframe library for Ruby.
7
8
 
8
9
  - Powered by [Red Arrow](https://github.com/apache/arrow/tree/master/ruby/red-arrow) [![Gitter Chat](https://badges.gitter.im/red-data-tools/en.svg)](https://gitter.im/red-data-tools/en)
9
10
  - Inspired by the dataframe library [Rover-df](https://github.com/ankane/rover)
10
11
 
12
+ ![screenshot from jupyterlab](doc/image/screenshot.png)
13
+
11
14
  ## Requirements
12
15
 
13
16
  Supported Ruby version is >= 2.7.
@@ -57,338 +60,132 @@ gem install red_amber
57
60
 
58
61
  [RubyData Docker Stacks](https://github.com/RubyData/docker-stacks) is available as a ready-to-run Docker image containing Jupyter and useful data tools as well as RedAmber (Thanks to @mrkn).
59
62
 
60
- Also you can try the contents of this README interactively by [Binder](https://mybinder.org/v2/gh/RubyData/docker-stacks/master?filepath=red-amber.ipynb).
61
- [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/RubyData/docker-stacks/master?filepath=red-amber.ipynb)
62
-
63
+ Also you can try the contents of this README interactively by [Binder](https://mybinder.org/v2/gh/heronshoes/docker-stacks/RedAmber-binder?filepath=README.ipynb).
64
+ [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/heronshoes/docker-stacks/RedAmber-binder?filepath=red-amber.ipynb)
63
65
 
64
66
 
65
- ## `RedAmber::DataFrame`
67
+ ## Data frame in `RedAmber`
66
68
 
67
- It represents a set of data in 2D-shape. The entity is a Red Arrow's Table object.
69
+ Class `RedAmber::DataFrame` represents a set of data in 2D-shape.
70
+ The entity is a Red Arrow's Table object.
68
71
 
69
72
  ![dataframe model of RedAmber](doc/image/dataframe_model.png)
70
73
 
71
- ```ruby
72
- require 'red_amber' # require 'red-amber' is also OK.
73
- require 'datasets-arrow'
74
-
75
- arrow = Datasets::Penguins.new.to_arrow
76
- penguins = RedAmber::DataFrame.new(arrow)
77
-
78
- # =>
79
- #<RedAmber::DataFrame : 344 x 8 Vectors, 0x0000000000013790>
80
- species island bill_length_mm bill_depth_mm flipper_length_mm ... year
81
- <string> <string> <double> <double> <uint8> ... <uint16>
82
- 1 Adelie Torgersen 39.1 18.7 181 ... 2007
83
- 2 Adelie Torgersen 39.5 17.4 186 ... 2007
84
- 3 Adelie Torgersen 40.3 18.0 195 ... 2007
85
- 4 Adelie Torgersen (nil) (nil) (nil) ... 2007
86
- 5 Adelie Torgersen 36.7 19.3 193 ... 2007
87
- : : : : : : ... :
88
- 342 Gentoo Biscoe 50.4 15.7 222 ... 2009
89
- 343 Gentoo Biscoe 45.2 14.8 212 ... 2009
90
- 344 Gentoo Biscoe 49.9 16.1 213 ... 2009
91
- ```
92
-
93
- For example, `DataFrame#pick` accepts keys as arguments and returns a sub DataFrame.
94
-
95
- ![pick method image](doc/image/dataframe/pick.png)
96
-
97
- ```ruby
98
- penguins.keys
99
- # =>
100
- [:species,
101
- :island,
102
- :bill_length_mm,
103
- :bill_depth_mm,
104
- :flipper_length_mm,
105
- :body_mass_g,
106
- :sex,
107
- :year]
108
-
109
- df = penguins.pick(:species, :island, :body_mass_g)
110
- df
111
-
112
- # =>
113
- #<RedAmber::DataFrame : 344 x 3 Vectors, 0x000000000003cc1c>
114
- species island body_mass_g
115
- <string> <string> <uint16>
116
- 1 Adelie Torgersen 3750
117
- 2 Adelie Torgersen 3800
118
- 3 Adelie Torgersen 3250
119
- 4 Adelie Torgersen (nil)
120
- 5 Adelie Torgersen 3450
121
- : : : :
122
- 342 Gentoo Biscoe 5750
123
- 343 Gentoo Biscoe 5200
124
- 344 Gentoo Biscoe 5400
125
- ```
126
-
127
- `DataFrame#drop` drops some columns to create a remainer DataFrame.
128
-
129
- ![drop method image](doc/image/dataframe/drop.png)
130
-
131
- You can specify by keys or a boolean array of same size as n_keys.
74
+ Load the library.
132
75
 
133
76
  ```ruby
134
- # Same as df.drop(:species, :island)
135
- df = df.drop(true, true, false)
136
-
137
- # =>
138
- #<RedAmber::DataFrame : 344 x 1 Vector, 0x0000000000048760>
139
- body_mass_g
140
- <uint16>
141
- 1 3750
142
- 2 3800
143
- 3 3250
144
- 4 (nil)
145
- 5 3450
146
- : :
147
- 342 5750
148
- 343 5200
149
- 344 5400
77
+ require 'red_amber' # require 'red-amber' is also OK.
78
+ include RedAmber
150
79
  ```
151
80
 
152
- Arrow data is immutable, so these methods always return an new object.
153
-
154
- `DataFrame#assign` creates new columns or update existing columns.
155
-
156
- ![assign method image](doc/image/dataframe/assign.png)
81
+ ### Example: diamonds dataset
157
82
 
158
83
  ```ruby
159
- # New column is created because ':body_mass_kg' is a new key.
160
- df.assign(:body_mass_kg => df[:body_mass_g] / 1000.0)
161
-
162
- # =>
163
- #<RedAmber::DataFrame : 344 x 2 Vectors, 0x00000000000212f0>
164
- body_mass_g body_mass_kg
165
- <uint16> <double>
166
- 1 3750 3.8
167
- 2 3800 3.8
168
- 3 3250 3.3
169
- 4 (nil) (nil)
170
- 5 3450 3.5
171
- : : :
172
- 342 5750 5.8
173
- 343 5200 5.2
174
- 344 5400 5.4
175
- ```
176
-
177
- `DataFrame#slice` selects rows (observations) to create a sub DataFrame.
84
+ require 'datasets-arrow' # to load sample data
178
85
 
179
- ![slice method image](doc/image/dataframe/slice.png)
180
-
181
- ```ruby
182
- # returns 5 rows at the start and 5 rows from the end
183
- penguins.slice(0...5, -5..-1)
86
+ dataset = Datasets::Diamonds.new
87
+ diamonds = DataFrame.new(dataset) # from v0.2.2, should be `dataset.to_arrow` if older.
184
88
 
185
89
  # =>
186
- #<RedAmber::DataFrame : 10 x 8 Vectors, 0x0000000000042be4>
187
- species island bill_length_mm bill_depth_mm flipper_length_mm ... year
188
- <string> <string> <double> <double> <uint8> ... <uint16>
189
- 1 Adelie Torgersen 39.1 18.7 181 ... 2007
190
- 2 Adelie Torgersen 39.5 17.4 186 ... 2007
191
- 3 Adelie Torgersen 40.3 18.0 195 ... 2007
192
- 4 Adelie Torgersen (nil) (nil) (nil) ... 2007
193
- 5 Adelie Torgersen 36.7 19.3 193 ... 2007
194
- : : : : : : ... :
195
- 8 Gentoo Biscoe 50.4 15.7 222 ... 2009
196
- 9 Gentoo Biscoe 45.2 14.8 212 ... 2009
197
- 10 Gentoo Biscoe 49.9 16.1 213 ... 2009
90
+ #<RedAmber::DataFrame : 53940 x 10 Vectors, 0x000000000000f668>
91
+ carat cut color clarity depth table price x ... z
92
+ <double> <string> <string> <string> <double> <double> <uint16> <double> ... <double>
93
+ 0 0.23 Ideal E SI2 61.5 55.0 326 3.95 ... 2.43
94
+ 1 0.21 Premium E SI1 59.8 61.0 326 3.89 ... 2.31
95
+ 2 0.23 Good E VS1 56.9 65.0 327 4.05 ... 2.31
96
+ 3 0.29 Premium I VS2 62.4 58.0 334 4.2 ... 2.63
97
+ 4 0.31 Good J SI2 63.3 58.0 335 4.34 ... 2.75
98
+ : : : : : : : : : ... :
99
+ 53937 0.7 Very Good D SI1 62.8 60.0 2757 5.66 ... 3.56
100
+ 53938 0.86 Premium H SI2 61.0 58.0 2757 6.15 ... 3.74
101
+ 53939 0.75 Ideal D SI2 62.2 55.0 2757 5.83 ... 3.64
198
102
  ```
199
103
 
200
- `DataFrame#remove` rejects rows (observations) to create a remainer DataFrame.
201
-
202
- ![remove method image](doc/image/dataframe/remove.png)
104
+ For example, we can compute mean prices per 'cut' for the data larger than 1 carat.
203
105
 
204
106
  ```ruby
205
- # penguins[:bill_length_mm] < 40 returns a boolean Vector
206
- penguins.remove(penguins[:bill_length_mm] < 40)
107
+ df = diamonds
108
+ .slice { carat > 1 }
109
+ .group(:cut)
110
+ .mean(:price) # `pick` prior to `group` is not required if `:price` is specified here.
111
+ .sort('-mean(price)')
207
112
 
208
113
  # =>
209
- #<RedAmber::DataFrame : 244 x 8 Vectors, 0x000000000007d6f4>
210
- species island bill_length_mm bill_depth_mm flipper_length_mm ... year
211
- <string> <string> <double> <double> <uint8> ... <uint16>
212
- 1 Adelie Torgersen 40.3 18.0 195 ... 2007
213
- 2 Adelie Torgersen (nil) (nil) (nil) ... 2007
214
- 3 Adelie Torgersen 42.0 20.2 190 ... 2007
215
- 4 Adelie Torgersen 41.1 17.6 182 ... 2007
216
- 5 Adelie Torgersen 42.5 20.7 197 ... 2007
217
- : : : : : : ... :
218
- 242 Gentoo Biscoe 50.4 15.7 222 ... 2009
219
- 243 Gentoo Biscoe 45.2 14.8 212 ... 2009
220
- 244 Gentoo Biscoe 49.9 16.1 213 ... 2009
114
+ #<RedAmber::DataFrame : 5 x 2 Vectors, 0x000000000000f67c>
115
+ cut mean(price)
116
+ <string> <double>
117
+ 0 Ideal 8674.23
118
+ 1 Premium 8487.25
119
+ 2 Very Good 8340.55
120
+ 3 Good 7753.6
121
+ 4 Fair 7177.86
221
122
  ```
222
123
 
223
- DataFrame manipulating methods like `pick`, `drop`, `slice`, `remove`, `rename` and `assign` accept a block.
224
-
225
- Previous example is also OK with a block.
124
+ Arrow data is immutable, so these methods always return new objects.
125
+ Next example will rename a column and create a new column by simple calcuration.
226
126
 
227
127
  ```ruby
228
- penguins.remove { bill_length_mm < 40 }
229
- ```
230
-
231
- Next example is an usage of block to update a column.
232
-
233
- ```ruby
234
- df = RedAmber::DataFrame.new(
235
- integer: [0, 1, 2, 3, nil],
236
- float: [0.0, 1.1, 2.2, Float::NAN, nil],
237
- string: ['A', 'B', 'C', 'D', nil],
238
- boolean: [true, false, true, false, nil])
239
- df
240
-
241
- # =>
242
- #<RedAmber::DataFrame : 5 x 4 Vectors, 0x000000000003131c>
243
- integer float string boolean
244
- <uint8> <double> <string> <boolean>
245
- 1 0 0.0 A true
246
- 2 1 1.1 B false
247
- 3 2 2.2 C true
248
- 4 3 NaN D false
249
- 5 (nil) (nil) (nil) (nil)
250
-
251
- df.assign do
252
- vectors.select(&:float?).map { |v| [v.key, -v] }
253
- # => returns [[:float], [-0.0, -1.1, -2.2, NAN, nil]]
254
- end
255
-
256
- # =>
257
- #<RedAmber::DataFrame : 5 x 3 Vectors, 0x00000000000e270c>
258
- index float string
259
- <uint8> <double> <string>
260
- 1 0 -0.0 A
261
- 2 1 -1.1 B
262
- 3 2 -2.2 C
263
- 4 3 NaN D
264
- 5 (nil) (nil) (nil)
265
- ```
266
-
267
- Next example is to eliminate rows containing nil.
128
+ usdjpy = 110.0
268
129
 
269
- ```ruby
270
- # remove all observations containing nil
271
- nil_removed = penguins.remove { vectors.map(&:is_nil).reduce(&:|) }
272
- nil_removed.tdr
130
+ df.rename('mean(price)': :mean_price_USD)
131
+ .assign(:mean_price_JPY) { mean_price_USD * usdjpy }
273
132
 
274
133
  # =>
275
- RedAmber::DataFrame : 342 x 8 Vectors
276
- Vectors : 5 numeric, 3 strings
277
- # key type level data_preview
278
- 1 :species string 3 {"Adelie"=>151, "Chinstrap"=>68, "Gentoo"=>123}
279
- 2 :island string 3 {"Torgersen"=>51, "Biscoe"=>167, "Dream"=>124}
280
- 3 :bill_length_mm double 164 [39.1, 39.5, 40.3, 36.7, 39.3, ... ]
281
- 4 :bill_depth_mm double 80 [18.7, 17.4, 18.0, 19.3, 20.6, ... ]
282
- 5 :flipper_length_mm int64 55 [181, 186, 195, 193, 190, ... ]
283
- 6 :body_mass_g int64 94 [3750, 3800, 3250, 3450, 3650, ... ]
284
- 7 :sex string 3 {"male"=>168, "female"=>165, ""=>9}
285
- 8 :year int64 3 {2007=>109, 2008=>114, 2009=>119}
134
+ #<RedAmber::DataFrame : 5 x 3 Vectors, 0x000000000000f71c>
135
+ cut mean_price_USD mean_price_JPY
136
+ <string> <double> <double>
137
+ 0 Ideal 8674.23 954164.93
138
+ 1 Premium 8487.25 933597.34
139
+ 2 Very Good 8340.55 917460.37
140
+ 3 Good 7753.6 852896.11
141
+ 4 Fair 7177.86 789564.12
286
142
  ```
287
143
 
288
- For this frequently needed task, we can do it much simpler.
144
+ ### Example: starwars dataset
289
145
 
290
- ```ruby
291
- penguins.remove_nil # => same result as above
292
- ```
293
-
294
- `DataFrame#summary` shows summary statistics in a DataFrame.
146
+ Next example is `starwars` dataset reading from the downloaded CSV file. Followed by minimum data cleansing.
295
147
 
296
148
  ```ruby
297
- puts penguins.summary.to_s(width: 82)
149
+ uri = URI('https://vincentarelbundock.github.io/Rdatasets/csv/dplyr/starwars.csv')
298
150
 
299
- # =>
300
- variables count mean std min 25% median 75% max
301
- <dictionary> <uint16> <double> <double> <double> <double> <double> <double> <double>
302
- 1 bill_length_mm 342 43.92 5.46 32.1 39.23 44.38 48.5 59.6
303
- 2 bill_depth_mm 342 17.15 1.97 13.1 15.6 17.32 18.7 21.5
304
- 3 flipper_length_mm 342 200.92 14.06 172.0 190.0 197.0 213.0 231.0
305
- 4 body_mass_g 342 4201.75 801.95 2700.0 3550.0 4031.5 4750.0 6300.0
306
- 5 year 344 2008.03 0.82 2007.0 2007.0 2008.0 2009.0 2009.0
307
- ```
308
-
309
- `DataFrame#group` method can be used for the grouping tasks.
151
+ starwars = DataFrame.load(uri)
310
152
 
311
- ```ruby
312
- starwars = RedAmber::DataFrame.load(URI("https://vincentarelbundock.github.io/Rdatasets/csv/dplyr/starwars.csv"))
313
153
  starwars
154
+ .drop(0) # delete unnecessary index column
155
+ .remove { species == "NA" } # delete unnecessary rows
156
+ .group(:species) { [count(:species), mean(:height, :mass)] }
157
+ .slice { count > 1 }
314
158
 
315
159
  # =>
316
- #<RedAmber::DataFrame : 87 x 12 Vectors, 0x000000000000607c>
317
- unnamed1 name height mass hair_color skin_color eye_color ... species
318
- <int64> <string> <int64> <double> <string> <string> <string> ... <string>
319
- 1 1 Luke Skywalker 172 77.0 blond fair blue ... Human
320
- 2 2 C-3PO 167 75.0 NA gold yellow ... Droid
321
- 3 3 R2-D2 96 32.0 NA white, blue red ... Droid
322
- 4 4 Darth Vader 202 136.0 none white yellow ... Human
323
- 5 5 Leia Organa 150 49.0 brown light brown ... Human
324
- : : : : : : : : ... :
325
- 85 85 BB8 (nil) (nil) none none black ... Droid
326
- 86 86 Captain Phasma (nil) (nil) unknown unknown unknown ... NA
327
- 87 87 Padmé Amidala 165 45.0 brown light brown ... Human
328
-
329
- starwars.group(:species) { [count(:species), mean(:height, :mass)] }
330
- .slice { count > 1 }
331
-
332
- # =>
333
- #<RedAmber::DataFrame : 9 x 4 Vectors, 0x000000000006e848>
160
+ #<RedAmber::DataFrame : 8 x 4 Vectors, 0x000000000000f848>
334
161
  species count mean(height) mean(mass)
335
162
  <string> <int64> <double> <double>
336
- 1 Human 35 176.6 82.8
337
- 2 Droid 6 131.2 69.8
338
- 3 Wookiee 2 231.0 124.0
339
- 4 Gungan 3 208.7 74.0
340
- 5 NA 4 181.3 48.0
341
- 6 Zabrak 2 173.0 80.0
342
- 7 Twi'lek 2 179.0 55.0
343
- 8 Mirialan 2 168.0 53.1
344
- 9 Kaminoan 2 221.0 88.0
163
+ 0 Human 35 176.65 82.78
164
+ 1 Droid 6 131.2 69.75
165
+ 2 Wookiee 2 231.0 124.0
166
+ 3 Gungan 3 208.67 74.0
167
+ 4 Zabrak 2 173.0 80.0
168
+ 5 Twi'lek 2 179.0 55.0
169
+ 6 Mirialan 2 168.0 53.1
170
+ 7 Kaminoan 2 221.0 88.0
345
171
  ```
346
172
 
347
173
  See [DataFrame.md](doc/DataFrame.md) for other examples and details.
348
174
 
349
175
 
350
- ## `RedAmber::Vector`
176
+ ### `Vector` for 1D data object in column
351
177
 
352
178
  Class `RedAmber::Vector` represents a series of data in the DataFrame.
353
- Method `RedAmber::DataFrame#[key]` returns a Vector with the key `key`.
354
-
355
- ```ruby
356
- penguins[:bill_length_mm]
357
- # =>
358
- #<RedAmber::Vector(:double, size=344):0x000000000000f8fc>
359
- [39.1, 39.5, 40.3, nil, 36.7, 39.3, 38.9, 39.2, 34.1, 42.0, 37.8, 37.8, 41.1, ... ]
360
- ```
361
-
362
- Vectors accepts some [functional methods from Arrow](https://arrow.apache.org/docs/cpp/compute.html).
363
-
364
- This is an element-wise comparison and returns a boolean Vector of same size.
365
-
366
- ![unary element-wise](doc/image/vector/unary_element_wise.png)
367
-
368
- ```ruby
369
- penguins[:bill_length_mm] < 40
370
-
371
- # =>
372
- #<RedAmber::Vector(:boolean, size=344):0x000000000007e7ac>
373
- [true, true, false, nil, true, true, true, true, true, false, true, true, false, ... ]
374
- ```
375
-
376
- Next example returns aggregated result.
377
-
378
- ![unary aggregation](doc/image/vector/unary_aggregation.png)
379
-
380
- ```ruby
381
- penguins[:bill_length_mm].mean
382
- 43.92192982456141
383
- # =>
384
-
385
- ```
386
179
 
387
180
  See [Vector.md](doc/Vector.md) for details.
388
181
 
389
182
  ## Jupyter notebook
390
183
 
391
- [71 Examples of Red Amber](doc/examples_of_red_amber.ipynb) shows more examples in jupyter notebook.
184
+ [73 Examples of Red Amber](binder/examples_of_red_amber.ipynb) shows more examples in jupyter notebook.
185
+
186
+ You can try this notebook on [Binder](https://mybinder.org/v2/gh/heronshoes/docker-stacks/RedAmber-binder?filepath=examples_of_red_amber.ipynb).
187
+ [![Binder](https://mybinder.org/badge_logo.svg)](https://mybinder.org/v2/gh/heronshoes/docker-stacks/RedAmber-binder?filepath=examples_of_red_amber.ipynb)
188
+
392
189
 
393
190
  ## Development
394
191
 
@@ -399,8 +196,14 @@ bundle install
399
196
  bundle exec rake test
400
197
  ```
401
198
 
199
+ ## Community
200
+
402
201
  I will appreciate if you could help to improve this project. Here are a few ways you can help:
403
202
 
203
+ - Let's talk in the [discussions](https://github.com/heronshoes/red_amber/discussions). [![Discussions](https://img.shields.io/github/discussions/heronshoes/red_amber)](https://github.com/heronshoes/red_amber/discussions)
204
+ - Browse Q and A, how to use, tips, etc.
205
+ - Ask questions you’re wondering about.
206
+ - Share ideas. The idea may be promoted to issues or pull requests.
404
207
  - [Report bugs or suggest new features](https://github.com/heronshoes/red_amber/issues)
405
208
  - Fix bugs and [submit pull requests](https://github.com/heronshoes/red_amber/pulls)
406
209
  - Write, clarify, or fix documentation