red25519 1.1.0-jruby
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +18 -0
- data/.rspec +4 -0
- data/.travis.yml +14 -0
- data/CHANGES.md +3 -0
- data/Gemfile +6 -0
- data/LICENSE +22 -0
- data/README.md +140 -0
- data/Rakefile +9 -0
- data/ed25519.png +0 -0
- data/ext/red25519/api.h +4 -0
- data/ext/red25519/crypto_int32.h +6 -0
- data/ext/red25519/crypto_sign.h +13 -0
- data/ext/red25519/crypto_uint32.h +6 -0
- data/ext/red25519/crypto_verify_32.h +7 -0
- data/ext/red25519/ed25519.c +136 -0
- data/ext/red25519/extconf.rb +4 -0
- data/ext/red25519/fe25519.c +326 -0
- data/ext/red25519/fe25519.h +63 -0
- data/ext/red25519/ge25519.c +311 -0
- data/ext/red25519/ge25519.h +35 -0
- data/ext/red25519/ge25519_base.data +850 -0
- data/ext/red25519/org/red25519/ed25519.java +228 -0
- data/ext/red25519/red25519_engine.c +82 -0
- data/ext/red25519/sc25519.c +298 -0
- data/ext/red25519/sc25519.h +73 -0
- data/ext/red25519/sha512-blocks.c +239 -0
- data/ext/red25519/sha512-hash.c +72 -0
- data/ext/red25519/sha512.h +4 -0
- data/ext/red25519/verify.c +40 -0
- data/lib/red25519/jruby_engine.rb +27 -0
- data/lib/red25519/keys.rb +73 -0
- data/lib/red25519/version.rb +3 -0
- data/lib/red25519.rb +41 -0
- data/lib/red25519_engine.jar +0 -0
- data/red25519.gemspec +31 -0
- data/spec/red25519/engine_spec.rb +33 -0
- data/spec/red25519/keys_spec.rb +65 -0
- data/spec/spec_helper.rb +3 -0
- data/tasks/extension.rake +12 -0
- data/tasks/rspec.rake +7 -0
- metadata +134 -0
@@ -0,0 +1,326 @@
|
|
1
|
+
#define WINDOWSIZE 1 /* Should be 1,2, or 4 */
|
2
|
+
#define WINDOWMASK ((1<<WINDOWSIZE)-1)
|
3
|
+
|
4
|
+
#include "fe25519.h"
|
5
|
+
|
6
|
+
static crypto_uint32 equal(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
|
7
|
+
{
|
8
|
+
crypto_uint32 x = a ^ b; /* 0: yes; 1..65535: no */
|
9
|
+
x -= 1; /* 4294967295: yes; 0..65534: no */
|
10
|
+
x >>= 31; /* 1: yes; 0: no */
|
11
|
+
return x;
|
12
|
+
}
|
13
|
+
|
14
|
+
static crypto_uint32 ge(crypto_uint32 a,crypto_uint32 b) /* 16-bit inputs */
|
15
|
+
{
|
16
|
+
unsigned int x = a;
|
17
|
+
x -= (unsigned int) b; /* 0..65535: yes; 4294901761..4294967295: no */
|
18
|
+
x >>= 31; /* 0: yes; 1: no */
|
19
|
+
x ^= 1; /* 1: yes; 0: no */
|
20
|
+
return x;
|
21
|
+
}
|
22
|
+
|
23
|
+
static crypto_uint32 times19(crypto_uint32 a)
|
24
|
+
{
|
25
|
+
return (a << 4) + (a << 1) + a;
|
26
|
+
}
|
27
|
+
|
28
|
+
static crypto_uint32 times38(crypto_uint32 a)
|
29
|
+
{
|
30
|
+
return (a << 5) + (a << 2) + (a << 1);
|
31
|
+
}
|
32
|
+
|
33
|
+
static void reduce_add_sub(fe25519 *r)
|
34
|
+
{
|
35
|
+
crypto_uint32 t;
|
36
|
+
int i,rep;
|
37
|
+
|
38
|
+
for(rep=0;rep<4;rep++)
|
39
|
+
{
|
40
|
+
t = r->v[31] >> 7;
|
41
|
+
r->v[31] &= 127;
|
42
|
+
t = times19(t);
|
43
|
+
r->v[0] += t;
|
44
|
+
for(i=0;i<31;i++)
|
45
|
+
{
|
46
|
+
t = r->v[i] >> 8;
|
47
|
+
r->v[i+1] += t;
|
48
|
+
r->v[i] &= 255;
|
49
|
+
}
|
50
|
+
}
|
51
|
+
}
|
52
|
+
|
53
|
+
static void reduce_mul(fe25519 *r)
|
54
|
+
{
|
55
|
+
crypto_uint32 t;
|
56
|
+
int i,rep;
|
57
|
+
|
58
|
+
for(rep=0;rep<2;rep++)
|
59
|
+
{
|
60
|
+
t = r->v[31] >> 7;
|
61
|
+
r->v[31] &= 127;
|
62
|
+
t = times19(t);
|
63
|
+
r->v[0] += t;
|
64
|
+
for(i=0;i<31;i++)
|
65
|
+
{
|
66
|
+
t = r->v[i] >> 8;
|
67
|
+
r->v[i+1] += t;
|
68
|
+
r->v[i] &= 255;
|
69
|
+
}
|
70
|
+
}
|
71
|
+
}
|
72
|
+
|
73
|
+
/* reduction modulo 2^255-19 */
|
74
|
+
void fe25519_freeze(fe25519 *r)
|
75
|
+
{
|
76
|
+
int i;
|
77
|
+
crypto_uint32 m = equal(r->v[31],127);
|
78
|
+
for(i=30;i>0;i--)
|
79
|
+
m &= equal(r->v[i],255);
|
80
|
+
m &= ge(r->v[0],237);
|
81
|
+
|
82
|
+
m = -m;
|
83
|
+
|
84
|
+
r->v[31] -= m&127;
|
85
|
+
for(i=30;i>0;i--)
|
86
|
+
r->v[i] -= m&255;
|
87
|
+
r->v[0] -= m&237;
|
88
|
+
}
|
89
|
+
|
90
|
+
void fe25519_unpack(fe25519 *r, const unsigned char x[32])
|
91
|
+
{
|
92
|
+
int i;
|
93
|
+
for(i=0;i<32;i++) r->v[i] = x[i];
|
94
|
+
r->v[31] &= 127;
|
95
|
+
}
|
96
|
+
|
97
|
+
/* Assumes input x being reduced below 2^255 */
|
98
|
+
void fe25519_pack(unsigned char r[32], const fe25519 *x)
|
99
|
+
{
|
100
|
+
int i;
|
101
|
+
fe25519 y = *x;
|
102
|
+
fe25519_freeze(&y);
|
103
|
+
for(i=0;i<32;i++)
|
104
|
+
r[i] = y.v[i];
|
105
|
+
}
|
106
|
+
|
107
|
+
int fe25519_iszero(const fe25519 *x)
|
108
|
+
{
|
109
|
+
int i, r;
|
110
|
+
fe25519 t = *x;
|
111
|
+
fe25519_freeze(&t);
|
112
|
+
r = equal(t.v[0],0);
|
113
|
+
for(i=1;i<32;i++)
|
114
|
+
r &= equal(t.v[i],0);
|
115
|
+
return r;
|
116
|
+
}
|
117
|
+
|
118
|
+
int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y)
|
119
|
+
{
|
120
|
+
int i;
|
121
|
+
fe25519 t1 = *x;
|
122
|
+
fe25519 t2 = *y;
|
123
|
+
fe25519_freeze(&t1);
|
124
|
+
fe25519_freeze(&t2);
|
125
|
+
for(i=0;i<32;i++)
|
126
|
+
if(t1.v[i] != t2.v[i]) return 0;
|
127
|
+
return 1;
|
128
|
+
}
|
129
|
+
|
130
|
+
void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b)
|
131
|
+
{
|
132
|
+
int i;
|
133
|
+
crypto_uint32 mask = b;
|
134
|
+
mask = -mask;
|
135
|
+
for(i=0;i<32;i++) r->v[i] ^= mask & (x->v[i] ^ r->v[i]);
|
136
|
+
}
|
137
|
+
|
138
|
+
unsigned char fe25519_getparity(const fe25519 *x)
|
139
|
+
{
|
140
|
+
fe25519 t = *x;
|
141
|
+
fe25519_freeze(&t);
|
142
|
+
return t.v[0] & 1;
|
143
|
+
}
|
144
|
+
|
145
|
+
void fe25519_setone(fe25519 *r)
|
146
|
+
{
|
147
|
+
int i;
|
148
|
+
r->v[0] = 1;
|
149
|
+
for(i=1;i<32;i++) r->v[i]=0;
|
150
|
+
}
|
151
|
+
|
152
|
+
void fe25519_setzero(fe25519 *r)
|
153
|
+
{
|
154
|
+
int i;
|
155
|
+
for(i=0;i<32;i++) r->v[i]=0;
|
156
|
+
}
|
157
|
+
|
158
|
+
void fe25519_neg(fe25519 *r, const fe25519 *x)
|
159
|
+
{
|
160
|
+
fe25519 t;
|
161
|
+
int i;
|
162
|
+
for(i=0;i<32;i++) t.v[i]=x->v[i];
|
163
|
+
fe25519_setzero(r);
|
164
|
+
fe25519_sub(r, r, &t);
|
165
|
+
}
|
166
|
+
|
167
|
+
void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y)
|
168
|
+
{
|
169
|
+
int i;
|
170
|
+
for(i=0;i<32;i++) r->v[i] = x->v[i] + y->v[i];
|
171
|
+
reduce_add_sub(r);
|
172
|
+
}
|
173
|
+
|
174
|
+
void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y)
|
175
|
+
{
|
176
|
+
int i;
|
177
|
+
crypto_uint32 t[32];
|
178
|
+
t[0] = x->v[0] + 0x1da;
|
179
|
+
t[31] = x->v[31] + 0xfe;
|
180
|
+
for(i=1;i<31;i++) t[i] = x->v[i] + 0x1fe;
|
181
|
+
for(i=0;i<32;i++) r->v[i] = t[i] - y->v[i];
|
182
|
+
reduce_add_sub(r);
|
183
|
+
}
|
184
|
+
|
185
|
+
void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y)
|
186
|
+
{
|
187
|
+
int i,j;
|
188
|
+
crypto_uint32 t[63];
|
189
|
+
for(i=0;i<63;i++)t[i] = 0;
|
190
|
+
|
191
|
+
for(i=0;i<32;i++)
|
192
|
+
for(j=0;j<32;j++)
|
193
|
+
t[i+j] += x->v[i] * y->v[j];
|
194
|
+
|
195
|
+
for(i=32;i<63;i++)
|
196
|
+
r->v[i-32] = t[i-32] + times38(t[i]);
|
197
|
+
r->v[31] = t[31]; /* result now in r[0]...r[31] */
|
198
|
+
|
199
|
+
reduce_mul(r);
|
200
|
+
}
|
201
|
+
|
202
|
+
void fe25519_square(fe25519 *r, const fe25519 *x)
|
203
|
+
{
|
204
|
+
fe25519_mul(r, x, x);
|
205
|
+
}
|
206
|
+
|
207
|
+
void fe25519_invert(fe25519 *r, const fe25519 *x)
|
208
|
+
{
|
209
|
+
fe25519 z2;
|
210
|
+
fe25519 z9;
|
211
|
+
fe25519 z11;
|
212
|
+
fe25519 z2_5_0;
|
213
|
+
fe25519 z2_10_0;
|
214
|
+
fe25519 z2_20_0;
|
215
|
+
fe25519 z2_50_0;
|
216
|
+
fe25519 z2_100_0;
|
217
|
+
fe25519 t0;
|
218
|
+
fe25519 t1;
|
219
|
+
int i;
|
220
|
+
|
221
|
+
/* 2 */ fe25519_square(&z2,x);
|
222
|
+
/* 4 */ fe25519_square(&t1,&z2);
|
223
|
+
/* 8 */ fe25519_square(&t0,&t1);
|
224
|
+
/* 9 */ fe25519_mul(&z9,&t0,x);
|
225
|
+
/* 11 */ fe25519_mul(&z11,&z9,&z2);
|
226
|
+
/* 22 */ fe25519_square(&t0,&z11);
|
227
|
+
/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t0,&z9);
|
228
|
+
|
229
|
+
/* 2^6 - 2^1 */ fe25519_square(&t0,&z2_5_0);
|
230
|
+
/* 2^7 - 2^2 */ fe25519_square(&t1,&t0);
|
231
|
+
/* 2^8 - 2^3 */ fe25519_square(&t0,&t1);
|
232
|
+
/* 2^9 - 2^4 */ fe25519_square(&t1,&t0);
|
233
|
+
/* 2^10 - 2^5 */ fe25519_square(&t0,&t1);
|
234
|
+
/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t0,&z2_5_0);
|
235
|
+
|
236
|
+
/* 2^11 - 2^1 */ fe25519_square(&t0,&z2_10_0);
|
237
|
+
/* 2^12 - 2^2 */ fe25519_square(&t1,&t0);
|
238
|
+
/* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
|
239
|
+
/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t1,&z2_10_0);
|
240
|
+
|
241
|
+
/* 2^21 - 2^1 */ fe25519_square(&t0,&z2_20_0);
|
242
|
+
/* 2^22 - 2^2 */ fe25519_square(&t1,&t0);
|
243
|
+
/* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
|
244
|
+
/* 2^40 - 2^0 */ fe25519_mul(&t0,&t1,&z2_20_0);
|
245
|
+
|
246
|
+
/* 2^41 - 2^1 */ fe25519_square(&t1,&t0);
|
247
|
+
/* 2^42 - 2^2 */ fe25519_square(&t0,&t1);
|
248
|
+
/* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
|
249
|
+
/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t0,&z2_10_0);
|
250
|
+
|
251
|
+
/* 2^51 - 2^1 */ fe25519_square(&t0,&z2_50_0);
|
252
|
+
/* 2^52 - 2^2 */ fe25519_square(&t1,&t0);
|
253
|
+
/* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
|
254
|
+
/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t1,&z2_50_0);
|
255
|
+
|
256
|
+
/* 2^101 - 2^1 */ fe25519_square(&t1,&z2_100_0);
|
257
|
+
/* 2^102 - 2^2 */ fe25519_square(&t0,&t1);
|
258
|
+
/* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { fe25519_square(&t1,&t0); fe25519_square(&t0,&t1); }
|
259
|
+
/* 2^200 - 2^0 */ fe25519_mul(&t1,&t0,&z2_100_0);
|
260
|
+
|
261
|
+
/* 2^201 - 2^1 */ fe25519_square(&t0,&t1);
|
262
|
+
/* 2^202 - 2^2 */ fe25519_square(&t1,&t0);
|
263
|
+
/* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { fe25519_square(&t0,&t1); fe25519_square(&t1,&t0); }
|
264
|
+
/* 2^250 - 2^0 */ fe25519_mul(&t0,&t1,&z2_50_0);
|
265
|
+
|
266
|
+
/* 2^251 - 2^1 */ fe25519_square(&t1,&t0);
|
267
|
+
/* 2^252 - 2^2 */ fe25519_square(&t0,&t1);
|
268
|
+
/* 2^253 - 2^3 */ fe25519_square(&t1,&t0);
|
269
|
+
/* 2^254 - 2^4 */ fe25519_square(&t0,&t1);
|
270
|
+
/* 2^255 - 2^5 */ fe25519_square(&t1,&t0);
|
271
|
+
/* 2^255 - 21 */ fe25519_mul(r,&t1,&z11);
|
272
|
+
}
|
273
|
+
|
274
|
+
void fe25519_pow2523(fe25519 *r, const fe25519 *x)
|
275
|
+
{
|
276
|
+
fe25519 z2;
|
277
|
+
fe25519 z9;
|
278
|
+
fe25519 z11;
|
279
|
+
fe25519 z2_5_0;
|
280
|
+
fe25519 z2_10_0;
|
281
|
+
fe25519 z2_20_0;
|
282
|
+
fe25519 z2_50_0;
|
283
|
+
fe25519 z2_100_0;
|
284
|
+
fe25519 t;
|
285
|
+
int i;
|
286
|
+
|
287
|
+
/* 2 */ fe25519_square(&z2,x);
|
288
|
+
/* 4 */ fe25519_square(&t,&z2);
|
289
|
+
/* 8 */ fe25519_square(&t,&t);
|
290
|
+
/* 9 */ fe25519_mul(&z9,&t,x);
|
291
|
+
/* 11 */ fe25519_mul(&z11,&z9,&z2);
|
292
|
+
/* 22 */ fe25519_square(&t,&z11);
|
293
|
+
/* 2^5 - 2^0 = 31 */ fe25519_mul(&z2_5_0,&t,&z9);
|
294
|
+
|
295
|
+
/* 2^6 - 2^1 */ fe25519_square(&t,&z2_5_0);
|
296
|
+
/* 2^10 - 2^5 */ for (i = 1;i < 5;i++) { fe25519_square(&t,&t); }
|
297
|
+
/* 2^10 - 2^0 */ fe25519_mul(&z2_10_0,&t,&z2_5_0);
|
298
|
+
|
299
|
+
/* 2^11 - 2^1 */ fe25519_square(&t,&z2_10_0);
|
300
|
+
/* 2^20 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
|
301
|
+
/* 2^20 - 2^0 */ fe25519_mul(&z2_20_0,&t,&z2_10_0);
|
302
|
+
|
303
|
+
/* 2^21 - 2^1 */ fe25519_square(&t,&z2_20_0);
|
304
|
+
/* 2^40 - 2^20 */ for (i = 1;i < 20;i++) { fe25519_square(&t,&t); }
|
305
|
+
/* 2^40 - 2^0 */ fe25519_mul(&t,&t,&z2_20_0);
|
306
|
+
|
307
|
+
/* 2^41 - 2^1 */ fe25519_square(&t,&t);
|
308
|
+
/* 2^50 - 2^10 */ for (i = 1;i < 10;i++) { fe25519_square(&t,&t); }
|
309
|
+
/* 2^50 - 2^0 */ fe25519_mul(&z2_50_0,&t,&z2_10_0);
|
310
|
+
|
311
|
+
/* 2^51 - 2^1 */ fe25519_square(&t,&z2_50_0);
|
312
|
+
/* 2^100 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
|
313
|
+
/* 2^100 - 2^0 */ fe25519_mul(&z2_100_0,&t,&z2_50_0);
|
314
|
+
|
315
|
+
/* 2^101 - 2^1 */ fe25519_square(&t,&z2_100_0);
|
316
|
+
/* 2^200 - 2^100 */ for (i = 1;i < 100;i++) { fe25519_square(&t,&t); }
|
317
|
+
/* 2^200 - 2^0 */ fe25519_mul(&t,&t,&z2_100_0);
|
318
|
+
|
319
|
+
/* 2^201 - 2^1 */ fe25519_square(&t,&t);
|
320
|
+
/* 2^250 - 2^50 */ for (i = 1;i < 50;i++) { fe25519_square(&t,&t); }
|
321
|
+
/* 2^250 - 2^0 */ fe25519_mul(&t,&t,&z2_50_0);
|
322
|
+
|
323
|
+
/* 2^251 - 2^1 */ fe25519_square(&t,&t);
|
324
|
+
/* 2^252 - 2^2 */ fe25519_square(&t,&t);
|
325
|
+
/* 2^252 - 3 */ fe25519_mul(r,&t,x);
|
326
|
+
}
|
@@ -0,0 +1,63 @@
|
|
1
|
+
#ifndef FE25519_H
|
2
|
+
#define FE25519_H
|
3
|
+
|
4
|
+
#include "crypto_int32.h"
|
5
|
+
#include "crypto_uint32.h"
|
6
|
+
|
7
|
+
#define fe25519 crypto_sign_ed25519_ref_fe25519
|
8
|
+
#define fe25519_freeze crypto_sign_ed25519_ref_fe25519_freeze
|
9
|
+
#define fe25519_unpack crypto_sign_ed25519_ref_fe25519_unpack
|
10
|
+
#define fe25519_pack crypto_sign_ed25519_ref_fe25519_pack
|
11
|
+
#define fe25519_iszero crypto_sign_ed25519_ref_fe25519_iszero
|
12
|
+
#define fe25519_iseq_vartime crypto_sign_ed25519_ref_fe25519_iseq_vartime
|
13
|
+
#define fe25519_cmov crypto_sign_ed25519_ref_fe25519_cmov
|
14
|
+
#define fe25519_setone crypto_sign_ed25519_ref_fe25519_setone
|
15
|
+
#define fe25519_setzero crypto_sign_ed25519_ref_fe25519_setzero
|
16
|
+
#define fe25519_neg crypto_sign_ed25519_ref_fe25519_neg
|
17
|
+
#define fe25519_getparity crypto_sign_ed25519_ref_fe25519_getparity
|
18
|
+
#define fe25519_add crypto_sign_ed25519_ref_fe25519_add
|
19
|
+
#define fe25519_sub crypto_sign_ed25519_ref_fe25519_sub
|
20
|
+
#define fe25519_mul crypto_sign_ed25519_ref_fe25519_mul
|
21
|
+
#define fe25519_square crypto_sign_ed25519_ref_fe25519_square
|
22
|
+
#define fe25519_invert crypto_sign_ed25519_ref_fe25519_invert
|
23
|
+
#define fe25519_pow2523 crypto_sign_ed25519_ref_fe25519_pow2523
|
24
|
+
|
25
|
+
typedef struct
|
26
|
+
{
|
27
|
+
crypto_uint32 v[32];
|
28
|
+
}
|
29
|
+
fe25519;
|
30
|
+
|
31
|
+
void fe25519_freeze(fe25519 *r);
|
32
|
+
|
33
|
+
void fe25519_unpack(fe25519 *r, const unsigned char x[32]);
|
34
|
+
|
35
|
+
void fe25519_pack(unsigned char r[32], const fe25519 *x);
|
36
|
+
|
37
|
+
int fe25519_iszero(const fe25519 *x);
|
38
|
+
|
39
|
+
int fe25519_iseq_vartime(const fe25519 *x, const fe25519 *y);
|
40
|
+
|
41
|
+
void fe25519_cmov(fe25519 *r, const fe25519 *x, unsigned char b);
|
42
|
+
|
43
|
+
void fe25519_setone(fe25519 *r);
|
44
|
+
|
45
|
+
void fe25519_setzero(fe25519 *r);
|
46
|
+
|
47
|
+
void fe25519_neg(fe25519 *r, const fe25519 *x);
|
48
|
+
|
49
|
+
unsigned char fe25519_getparity(const fe25519 *x);
|
50
|
+
|
51
|
+
void fe25519_add(fe25519 *r, const fe25519 *x, const fe25519 *y);
|
52
|
+
|
53
|
+
void fe25519_sub(fe25519 *r, const fe25519 *x, const fe25519 *y);
|
54
|
+
|
55
|
+
void fe25519_mul(fe25519 *r, const fe25519 *x, const fe25519 *y);
|
56
|
+
|
57
|
+
void fe25519_square(fe25519 *r, const fe25519 *x);
|
58
|
+
|
59
|
+
void fe25519_invert(fe25519 *r, const fe25519 *x);
|
60
|
+
|
61
|
+
void fe25519_pow2523(fe25519 *r, const fe25519 *x);
|
62
|
+
|
63
|
+
#endif
|
@@ -0,0 +1,311 @@
|
|
1
|
+
#include "fe25519.h"
|
2
|
+
#include "sc25519.h"
|
3
|
+
#include "ge25519.h"
|
4
|
+
|
5
|
+
/*
|
6
|
+
* Arithmetic on the twisted Edwards curve -x^2 + y^2 = 1 + dx^2y^2
|
7
|
+
* with d = -(121665/121666) = 37095705934669439343138083508754565189542113879843219016388785533085940283555
|
8
|
+
* Base point: (15112221349535400772501151409588531511454012693041857206046113283949847762202,46316835694926478169428394003475163141307993866256225615783033603165251855960);
|
9
|
+
*/
|
10
|
+
|
11
|
+
/* d */
|
12
|
+
static const fe25519 ge25519_ecd = {{0xA3, 0x78, 0x59, 0x13, 0xCA, 0x4D, 0xEB, 0x75, 0xAB, 0xD8, 0x41, 0x41, 0x4D, 0x0A, 0x70, 0x00,
|
13
|
+
0x98, 0xE8, 0x79, 0x77, 0x79, 0x40, 0xC7, 0x8C, 0x73, 0xFE, 0x6F, 0x2B, 0xEE, 0x6C, 0x03, 0x52}};
|
14
|
+
/* 2*d */
|
15
|
+
static const fe25519 ge25519_ec2d = {{0x59, 0xF1, 0xB2, 0x26, 0x94, 0x9B, 0xD6, 0xEB, 0x56, 0xB1, 0x83, 0x82, 0x9A, 0x14, 0xE0, 0x00,
|
16
|
+
0x30, 0xD1, 0xF3, 0xEE, 0xF2, 0x80, 0x8E, 0x19, 0xE7, 0xFC, 0xDF, 0x56, 0xDC, 0xD9, 0x06, 0x24}};
|
17
|
+
/* sqrt(-1) */
|
18
|
+
static const fe25519 ge25519_sqrtm1 = {{0xB0, 0xA0, 0x0E, 0x4A, 0x27, 0x1B, 0xEE, 0xC4, 0x78, 0xE4, 0x2F, 0xAD, 0x06, 0x18, 0x43, 0x2F,
|
19
|
+
0xA7, 0xD7, 0xFB, 0x3D, 0x99, 0x00, 0x4D, 0x2B, 0x0B, 0xDF, 0xC1, 0x4F, 0x80, 0x24, 0x83, 0x2B}};
|
20
|
+
|
21
|
+
#define ge25519_p3 ge25519
|
22
|
+
|
23
|
+
typedef struct
|
24
|
+
{
|
25
|
+
fe25519 x;
|
26
|
+
fe25519 z;
|
27
|
+
fe25519 y;
|
28
|
+
fe25519 t;
|
29
|
+
} ge25519_p1p1;
|
30
|
+
|
31
|
+
typedef struct
|
32
|
+
{
|
33
|
+
fe25519 x;
|
34
|
+
fe25519 y;
|
35
|
+
fe25519 z;
|
36
|
+
} ge25519_p2;
|
37
|
+
|
38
|
+
typedef struct
|
39
|
+
{
|
40
|
+
fe25519 x;
|
41
|
+
fe25519 y;
|
42
|
+
} ge25519_aff;
|
43
|
+
|
44
|
+
|
45
|
+
/* Packed coordinates of the base point */
|
46
|
+
const ge25519 ge25519_base = {{{0x1A, 0xD5, 0x25, 0x8F, 0x60, 0x2D, 0x56, 0xC9, 0xB2, 0xA7, 0x25, 0x95, 0x60, 0xC7, 0x2C, 0x69,
|
47
|
+
0x5C, 0xDC, 0xD6, 0xFD, 0x31, 0xE2, 0xA4, 0xC0, 0xFE, 0x53, 0x6E, 0xCD, 0xD3, 0x36, 0x69, 0x21}},
|
48
|
+
{{0x58, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66,
|
49
|
+
0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66, 0x66}},
|
50
|
+
{{0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
51
|
+
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}},
|
52
|
+
{{0xA3, 0xDD, 0xB7, 0xA5, 0xB3, 0x8A, 0xDE, 0x6D, 0xF5, 0x52, 0x51, 0x77, 0x80, 0x9F, 0xF0, 0x20,
|
53
|
+
0x7D, 0xE3, 0xAB, 0x64, 0x8E, 0x4E, 0xEA, 0x66, 0x65, 0x76, 0x8B, 0xD7, 0x0F, 0x5F, 0x87, 0x67}}};
|
54
|
+
|
55
|
+
/* Multiples of the base point in affine representation */
|
56
|
+
static const ge25519_aff ge25519_base_multiples_affine[425] = {
|
57
|
+
#include "ge25519_base.data"
|
58
|
+
};
|
59
|
+
|
60
|
+
static void p1p1_to_p2(ge25519_p2 *r, const ge25519_p1p1 *p)
|
61
|
+
{
|
62
|
+
fe25519_mul(&r->x, &p->x, &p->t);
|
63
|
+
fe25519_mul(&r->y, &p->y, &p->z);
|
64
|
+
fe25519_mul(&r->z, &p->z, &p->t);
|
65
|
+
}
|
66
|
+
|
67
|
+
static void p1p1_to_p3(ge25519_p3 *r, const ge25519_p1p1 *p)
|
68
|
+
{
|
69
|
+
p1p1_to_p2((ge25519_p2 *)r, p);
|
70
|
+
fe25519_mul(&r->t, &p->x, &p->y);
|
71
|
+
}
|
72
|
+
|
73
|
+
static void ge25519_mixadd2(ge25519_p3 *r, const ge25519_aff *q)
|
74
|
+
{
|
75
|
+
fe25519 a,b,t1,t2,c,d,e,f,g,h,qt;
|
76
|
+
fe25519_mul(&qt, &q->x, &q->y);
|
77
|
+
fe25519_sub(&a, &r->y, &r->x); /* A = (Y1-X1)*(Y2-X2) */
|
78
|
+
fe25519_add(&b, &r->y, &r->x); /* B = (Y1+X1)*(Y2+X2) */
|
79
|
+
fe25519_sub(&t1, &q->y, &q->x);
|
80
|
+
fe25519_add(&t2, &q->y, &q->x);
|
81
|
+
fe25519_mul(&a, &a, &t1);
|
82
|
+
fe25519_mul(&b, &b, &t2);
|
83
|
+
fe25519_sub(&e, &b, &a); /* E = B-A */
|
84
|
+
fe25519_add(&h, &b, &a); /* H = B+A */
|
85
|
+
fe25519_mul(&c, &r->t, &qt); /* C = T1*k*T2 */
|
86
|
+
fe25519_mul(&c, &c, &ge25519_ec2d);
|
87
|
+
fe25519_add(&d, &r->z, &r->z); /* D = Z1*2 */
|
88
|
+
fe25519_sub(&f, &d, &c); /* F = D-C */
|
89
|
+
fe25519_add(&g, &d, &c); /* G = D+C */
|
90
|
+
fe25519_mul(&r->x, &e, &f);
|
91
|
+
fe25519_mul(&r->y, &h, &g);
|
92
|
+
fe25519_mul(&r->z, &g, &f);
|
93
|
+
fe25519_mul(&r->t, &e, &h);
|
94
|
+
}
|
95
|
+
|
96
|
+
static void add_p1p1(ge25519_p1p1 *r, const ge25519_p3 *p, const ge25519_p3 *q)
|
97
|
+
{
|
98
|
+
fe25519 a, b, c, d, t;
|
99
|
+
|
100
|
+
fe25519_sub(&a, &p->y, &p->x); /* A = (Y1-X1)*(Y2-X2) */
|
101
|
+
fe25519_sub(&t, &q->y, &q->x);
|
102
|
+
fe25519_mul(&a, &a, &t);
|
103
|
+
fe25519_add(&b, &p->x, &p->y); /* B = (Y1+X1)*(Y2+X2) */
|
104
|
+
fe25519_add(&t, &q->x, &q->y);
|
105
|
+
fe25519_mul(&b, &b, &t);
|
106
|
+
fe25519_mul(&c, &p->t, &q->t); /* C = T1*k*T2 */
|
107
|
+
fe25519_mul(&c, &c, &ge25519_ec2d);
|
108
|
+
fe25519_mul(&d, &p->z, &q->z); /* D = Z1*2*Z2 */
|
109
|
+
fe25519_add(&d, &d, &d);
|
110
|
+
fe25519_sub(&r->x, &b, &a); /* E = B-A */
|
111
|
+
fe25519_sub(&r->t, &d, &c); /* F = D-C */
|
112
|
+
fe25519_add(&r->z, &d, &c); /* G = D+C */
|
113
|
+
fe25519_add(&r->y, &b, &a); /* H = B+A */
|
114
|
+
}
|
115
|
+
|
116
|
+
/* See http://www.hyperelliptic.org/EFD/g1p/auto-twisted-extended-1.html#doubling-dbl-2008-hwcd */
|
117
|
+
static void dbl_p1p1(ge25519_p1p1 *r, const ge25519_p2 *p)
|
118
|
+
{
|
119
|
+
fe25519 a,b,c,d;
|
120
|
+
fe25519_square(&a, &p->x);
|
121
|
+
fe25519_square(&b, &p->y);
|
122
|
+
fe25519_square(&c, &p->z);
|
123
|
+
fe25519_add(&c, &c, &c);
|
124
|
+
fe25519_neg(&d, &a);
|
125
|
+
|
126
|
+
fe25519_add(&r->x, &p->x, &p->y);
|
127
|
+
fe25519_square(&r->x, &r->x);
|
128
|
+
fe25519_sub(&r->x, &r->x, &a);
|
129
|
+
fe25519_sub(&r->x, &r->x, &b);
|
130
|
+
fe25519_add(&r->z, &d, &b);
|
131
|
+
fe25519_sub(&r->t, &r->z, &c);
|
132
|
+
fe25519_sub(&r->y, &d, &b);
|
133
|
+
}
|
134
|
+
|
135
|
+
/* Constant-time version of: if(b) r = p */
|
136
|
+
static void cmov_aff(ge25519_aff *r, const ge25519_aff *p, unsigned char b)
|
137
|
+
{
|
138
|
+
fe25519_cmov(&r->x, &p->x, b);
|
139
|
+
fe25519_cmov(&r->y, &p->y, b);
|
140
|
+
}
|
141
|
+
|
142
|
+
static unsigned char equal(signed char b,signed char c)
|
143
|
+
{
|
144
|
+
unsigned char ub = b;
|
145
|
+
unsigned char uc = c;
|
146
|
+
unsigned char x = ub ^ uc; /* 0: yes; 1..255: no */
|
147
|
+
crypto_uint32 y = x; /* 0: yes; 1..255: no */
|
148
|
+
y -= 1; /* 4294967295: yes; 0..254: no */
|
149
|
+
y >>= 31; /* 1: yes; 0: no */
|
150
|
+
return y;
|
151
|
+
}
|
152
|
+
|
153
|
+
static unsigned char negative(signed char b)
|
154
|
+
{
|
155
|
+
unsigned long long x = b; /* 18446744073709551361..18446744073709551615: yes; 0..255: no */
|
156
|
+
x >>= 63; /* 1: yes; 0: no */
|
157
|
+
return x;
|
158
|
+
}
|
159
|
+
|
160
|
+
static void choose_t(ge25519_aff *t, unsigned long long pos, signed char b)
|
161
|
+
{
|
162
|
+
/* constant time */
|
163
|
+
fe25519 v;
|
164
|
+
*t = ge25519_base_multiples_affine[5*pos+0];
|
165
|
+
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+1],equal(b,1) | equal(b,-1));
|
166
|
+
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+2],equal(b,2) | equal(b,-2));
|
167
|
+
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+3],equal(b,3) | equal(b,-3));
|
168
|
+
cmov_aff(t, &ge25519_base_multiples_affine[5*pos+4],equal(b,-4));
|
169
|
+
fe25519_neg(&v, &t->x);
|
170
|
+
fe25519_cmov(&t->x, &v, negative(b));
|
171
|
+
}
|
172
|
+
|
173
|
+
static void setneutral(ge25519 *r)
|
174
|
+
{
|
175
|
+
fe25519_setzero(&r->x);
|
176
|
+
fe25519_setone(&r->y);
|
177
|
+
fe25519_setone(&r->z);
|
178
|
+
fe25519_setzero(&r->t);
|
179
|
+
}
|
180
|
+
|
181
|
+
/* ********************************************************************
|
182
|
+
* EXPORTED FUNCTIONS
|
183
|
+
******************************************************************** */
|
184
|
+
|
185
|
+
/* return 0 on success, -1 otherwise */
|
186
|
+
int ge25519_unpackneg_vartime(ge25519_p3 *r, const unsigned char p[32])
|
187
|
+
{
|
188
|
+
unsigned char par;
|
189
|
+
fe25519 t, chk, num, den, den2, den4, den6;
|
190
|
+
fe25519_setone(&r->z);
|
191
|
+
par = p[31] >> 7;
|
192
|
+
fe25519_unpack(&r->y, p);
|
193
|
+
fe25519_square(&num, &r->y); /* x = y^2 */
|
194
|
+
fe25519_mul(&den, &num, &ge25519_ecd); /* den = dy^2 */
|
195
|
+
fe25519_sub(&num, &num, &r->z); /* x = y^2-1 */
|
196
|
+
fe25519_add(&den, &r->z, &den); /* den = dy^2+1 */
|
197
|
+
|
198
|
+
/* Computation of sqrt(num/den) */
|
199
|
+
/* 1.: computation of num^((p-5)/8)*den^((7p-35)/8) = (num*den^7)^((p-5)/8) */
|
200
|
+
fe25519_square(&den2, &den);
|
201
|
+
fe25519_square(&den4, &den2);
|
202
|
+
fe25519_mul(&den6, &den4, &den2);
|
203
|
+
fe25519_mul(&t, &den6, &num);
|
204
|
+
fe25519_mul(&t, &t, &den);
|
205
|
+
|
206
|
+
fe25519_pow2523(&t, &t);
|
207
|
+
/* 2. computation of r->x = t * num * den^3 */
|
208
|
+
fe25519_mul(&t, &t, &num);
|
209
|
+
fe25519_mul(&t, &t, &den);
|
210
|
+
fe25519_mul(&t, &t, &den);
|
211
|
+
fe25519_mul(&r->x, &t, &den);
|
212
|
+
|
213
|
+
/* 3. Check whether sqrt computation gave correct result, multiply by sqrt(-1) if not: */
|
214
|
+
fe25519_square(&chk, &r->x);
|
215
|
+
fe25519_mul(&chk, &chk, &den);
|
216
|
+
if (!fe25519_iseq_vartime(&chk, &num))
|
217
|
+
fe25519_mul(&r->x, &r->x, &ge25519_sqrtm1);
|
218
|
+
|
219
|
+
/* 4. Now we have one of the two square roots, except if input was not a square */
|
220
|
+
fe25519_square(&chk, &r->x);
|
221
|
+
fe25519_mul(&chk, &chk, &den);
|
222
|
+
if (!fe25519_iseq_vartime(&chk, &num))
|
223
|
+
return -1;
|
224
|
+
|
225
|
+
/* 5. Choose the desired square root according to parity: */
|
226
|
+
if(fe25519_getparity(&r->x) != (1-par))
|
227
|
+
fe25519_neg(&r->x, &r->x);
|
228
|
+
|
229
|
+
fe25519_mul(&r->t, &r->x, &r->y);
|
230
|
+
return 0;
|
231
|
+
}
|
232
|
+
|
233
|
+
void ge25519_pack(unsigned char r[32], const ge25519_p3 *p)
|
234
|
+
{
|
235
|
+
fe25519 tx, ty, zi;
|
236
|
+
fe25519_invert(&zi, &p->z);
|
237
|
+
fe25519_mul(&tx, &p->x, &zi);
|
238
|
+
fe25519_mul(&ty, &p->y, &zi);
|
239
|
+
fe25519_pack(r, &ty);
|
240
|
+
r[31] ^= fe25519_getparity(&tx) << 7;
|
241
|
+
}
|
242
|
+
|
243
|
+
int ge25519_isneutral_vartime(const ge25519_p3 *p)
|
244
|
+
{
|
245
|
+
int ret = 1;
|
246
|
+
if(!fe25519_iszero(&p->x)) ret = 0;
|
247
|
+
if(!fe25519_iseq_vartime(&p->y, &p->z)) ret = 0;
|
248
|
+
return ret;
|
249
|
+
}
|
250
|
+
|
251
|
+
/* computes [s1]p1 + [s2]p2 */
|
252
|
+
void ge25519_double_scalarmult_vartime(ge25519_p3 *r, const ge25519_p3 *p1, const sc25519 *s1, const ge25519_p3 *p2, const sc25519 *s2)
|
253
|
+
{
|
254
|
+
ge25519_p1p1 tp1p1;
|
255
|
+
ge25519_p3 pre[16];
|
256
|
+
unsigned char b[127];
|
257
|
+
int i;
|
258
|
+
|
259
|
+
/* precomputation s2 s1 */
|
260
|
+
setneutral(pre); /* 00 00 */
|
261
|
+
pre[1] = *p1; /* 00 01 */
|
262
|
+
dbl_p1p1(&tp1p1,(ge25519_p2 *)p1); p1p1_to_p3( &pre[2], &tp1p1); /* 00 10 */
|
263
|
+
add_p1p1(&tp1p1,&pre[1], &pre[2]); p1p1_to_p3( &pre[3], &tp1p1); /* 00 11 */
|
264
|
+
pre[4] = *p2; /* 01 00 */
|
265
|
+
add_p1p1(&tp1p1,&pre[1], &pre[4]); p1p1_to_p3( &pre[5], &tp1p1); /* 01 01 */
|
266
|
+
add_p1p1(&tp1p1,&pre[2], &pre[4]); p1p1_to_p3( &pre[6], &tp1p1); /* 01 10 */
|
267
|
+
add_p1p1(&tp1p1,&pre[3], &pre[4]); p1p1_to_p3( &pre[7], &tp1p1); /* 01 11 */
|
268
|
+
dbl_p1p1(&tp1p1,(ge25519_p2 *)p2); p1p1_to_p3( &pre[8], &tp1p1); /* 10 00 */
|
269
|
+
add_p1p1(&tp1p1,&pre[1], &pre[8]); p1p1_to_p3( &pre[9], &tp1p1); /* 10 01 */
|
270
|
+
dbl_p1p1(&tp1p1,(ge25519_p2 *)&pre[5]); p1p1_to_p3(&pre[10], &tp1p1); /* 10 10 */
|
271
|
+
add_p1p1(&tp1p1,&pre[3], &pre[8]); p1p1_to_p3(&pre[11], &tp1p1); /* 10 11 */
|
272
|
+
add_p1p1(&tp1p1,&pre[4], &pre[8]); p1p1_to_p3(&pre[12], &tp1p1); /* 11 00 */
|
273
|
+
add_p1p1(&tp1p1,&pre[1],&pre[12]); p1p1_to_p3(&pre[13], &tp1p1); /* 11 01 */
|
274
|
+
add_p1p1(&tp1p1,&pre[2],&pre[12]); p1p1_to_p3(&pre[14], &tp1p1); /* 11 10 */
|
275
|
+
add_p1p1(&tp1p1,&pre[3],&pre[12]); p1p1_to_p3(&pre[15], &tp1p1); /* 11 11 */
|
276
|
+
|
277
|
+
sc25519_2interleave2(b,s1,s2);
|
278
|
+
|
279
|
+
/* scalar multiplication */
|
280
|
+
*r = pre[b[126]];
|
281
|
+
for(i=125;i>=0;i--)
|
282
|
+
{
|
283
|
+
dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
|
284
|
+
p1p1_to_p2((ge25519_p2 *) r, &tp1p1);
|
285
|
+
dbl_p1p1(&tp1p1, (ge25519_p2 *)r);
|
286
|
+
if(b[i]!=0)
|
287
|
+
{
|
288
|
+
p1p1_to_p3(r, &tp1p1);
|
289
|
+
add_p1p1(&tp1p1, r, &pre[b[i]]);
|
290
|
+
}
|
291
|
+
if(i != 0) p1p1_to_p2((ge25519_p2 *)r, &tp1p1);
|
292
|
+
else p1p1_to_p3(r, &tp1p1);
|
293
|
+
}
|
294
|
+
}
|
295
|
+
|
296
|
+
void ge25519_scalarmult_base(ge25519_p3 *r, const sc25519 *s)
|
297
|
+
{
|
298
|
+
signed char b[85];
|
299
|
+
int i;
|
300
|
+
ge25519_aff t;
|
301
|
+
sc25519_window3(b,s);
|
302
|
+
|
303
|
+
choose_t((ge25519_aff *)r, 0, b[0]);
|
304
|
+
fe25519_setone(&r->z);
|
305
|
+
fe25519_mul(&r->t, &r->x, &r->y);
|
306
|
+
for(i=1;i<85;i++)
|
307
|
+
{
|
308
|
+
choose_t(&t, (unsigned long long) i, b[i]);
|
309
|
+
ge25519_mixadd2(r, &t);
|
310
|
+
}
|
311
|
+
}
|