red-chainer 0.3.1 → 0.3.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +23 -8
- data/examples/{iris.rb → iris/iris.rb} +12 -9
- data/examples/{mnist.rb → mnist/mnist.rb} +0 -0
- data/lib/chainer/datasets/cifar.rb +11 -12
- data/lib/chainer/iterators/serial_iterator.rb +1 -1
- data/lib/chainer/reporter.rb +16 -0
- data/lib/chainer/training/extension.rb +7 -2
- data/lib/chainer/training/extensions/evaluator.rb +119 -0
- data/lib/chainer/training/extensions/exponential_shift.rb +3 -3
- data/lib/chainer/training/extensions/log_report.rb +8 -8
- data/lib/chainer/training/extensions/print_report.rb +2 -2
- data/lib/chainer/training/extensions/progress_bar.rb +3 -3
- data/lib/chainer/training/extensions/snapshot.rb +2 -0
- data/lib/chainer/version.rb +1 -1
- data/red-chainer.gemspec +1 -1
- metadata +6 -6
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 33a95bf098a08c334e6a9d29ff791350e6ac0bd9de843054f3ed14f2a005b79b
|
4
|
+
data.tar.gz: 6f4e53b84e93d01e26363b5d43dba73ec4fc515ecbebbd1574ac6a864f52fb83
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 40054365541bb8956c4a8211fbd489e75d1557a9e5c23bcb49f2cc2b393f0d96574d18259bad8e147525a3b720a5329f904be18c7c4f0891f1d886241b72a65d
|
7
|
+
data.tar.gz: fcb8e641d0efc1ffacc2014c2954d1c5a1e5f947fdcc18306f8946fb307c659e37bb3ccf08b9661d17e13184463b0282ae3594a6c252813d23a53fa0c6182a67
|
data/README.md
CHANGED
@@ -1,11 +1,14 @@
|
|
1
|
-
#
|
1
|
+
# Red Chainer : A deep learning framework
|
2
2
|
|
3
|
-
|
4
|
-
|
5
|
-
Red Chainer
|
3
|
+
A flexible framework for neural network for Ruby
|
6
4
|
|
7
5
|
## Description
|
8
|
-
|
6
|
+
|
7
|
+
It ported python's [Chainer](https://github.com/chainer/chainer) with Ruby.
|
8
|
+
|
9
|
+
## Requirements
|
10
|
+
|
11
|
+
* Ruby 2.3 or later
|
9
12
|
|
10
13
|
## Installation
|
11
14
|
|
@@ -28,15 +31,27 @@ $ gem install red-chainer
|
|
28
31
|
```
|
29
32
|
|
30
33
|
## Usage
|
31
|
-
mnist sample program is [here](./examples/mnist.rb)
|
34
|
+
mnist sample program is [here](./examples/mnist/mnist.rb)
|
32
35
|
|
33
36
|
```bash
|
34
37
|
# when install Gemfile
|
35
|
-
$ bundle exec ruby examples/mnist.rb
|
38
|
+
$ bundle exec ruby examples/mnist/mnist.rb
|
36
39
|
# when install yourself
|
37
|
-
$ ruby examples/mnist.rb
|
40
|
+
$ ruby examples/mnist/mnist.rb
|
38
41
|
```
|
39
42
|
|
40
43
|
## License
|
41
44
|
|
42
45
|
The MIT license. See [LICENSE.txt](./LICENSE.txt) for details.
|
46
|
+
|
47
|
+
## Red Chainer implementation status
|
48
|
+
|
49
|
+
| | Chainer 2.0<br>(Initial ported version) | Red Chainer (0.3.1) | example |
|
50
|
+
| ---- | ---- | ---- | ---- |
|
51
|
+
| [activation](https://github.com/red-data-tools/red-chainer/tree/master/lib/chainer/functions/activation) | 15 | 5 | LogSoftmax, ReLU, LeakyReLU, Sigmoid, Tanh |
|
52
|
+
| [loss](https://github.com/red-data-tools/red-chainer/tree/master/lib/chainer/functions/loss) | 17 | 2 | SoftMax, MeanSquaredError |
|
53
|
+
| [optimizer](https://github.com/red-data-tools/red-chainer/tree/master/lib/chainer/optimizers) | 9 | 2 | Adam, MomentumSGDRule |
|
54
|
+
| [connection](https://github.com/red-data-tools/red-chainer/tree/master/lib/chainer/functions/connection) | 12 | 2 | Linear, Convolution2D |
|
55
|
+
| [pooling](https://github.com/red-data-tools/red-chainer/tree/master/lib/chainer/functions/pooling) | 14 | 3 | Pooling2D, MaxPooling2D, AveragePooling2D |
|
56
|
+
| [example](https://github.com/red-data-tools/red-chainer/tree/master/examples) | 31 | 3 | MNIST, Iris, CIFAR |
|
57
|
+
| GPU | use cupy | ToDo | want to support [Cumo](https://github.com/sonots/cumo) |
|
@@ -31,10 +31,11 @@ optimizer = Chainer::Optimizers::Adam.new
|
|
31
31
|
optimizer.setup(model)
|
32
32
|
|
33
33
|
iris = Datasets::Iris.new
|
34
|
-
|
34
|
+
iris_table = iris.to_table
|
35
|
+
x = iris_table.fetch_values(:sepal_length, :sepal_width, :petal_length, :petal_width).transpose
|
35
36
|
|
36
37
|
# target
|
37
|
-
y_class =
|
38
|
+
y_class = iris_table[:class]
|
38
39
|
|
39
40
|
# class index array
|
40
41
|
# ["Iris-setosa", "Iris-versicolor", "Iris-virginica"]
|
@@ -45,17 +46,12 @@ y = y_class.map{|s|
|
|
45
46
|
}
|
46
47
|
|
47
48
|
# y_onehot => One-hot [[1.0, 0.0, 0.0], [1.0, 0.0, 0.0],,, [0.0, 1.0, 0.0], ,, [0.0, 0.0, 1.0]]
|
48
|
-
y_onehot =
|
49
|
-
i = class_name.index(s)
|
50
|
-
a = Array.new(class_name.size, 0.0)
|
51
|
-
a[i] = 1.0
|
52
|
-
a
|
53
|
-
}
|
49
|
+
y_onehot = Numo::SFloat.eye(class_name.size)[y,false]
|
54
50
|
|
55
51
|
puts "Iris Datasets"
|
56
52
|
puts "No. [sepal_length, sepal_width, petal_length, petal_width] one-hot #=> class"
|
57
53
|
x.each_with_index{|r, i|
|
58
|
-
puts "#{'%3d' % i} : [#{r.join(', ')}] #{y_onehot[i]} #=> #{y_class[i]}(#{y[i]})"
|
54
|
+
puts "#{'%3d' % i} : [#{r.join(', ')}] #{y_onehot[i, false].to_a} #=> #{y_class[i]}(#{y[i]})"
|
59
55
|
}
|
60
56
|
# [5.1, 3.5, 1.4, 0.2, "Iris-setosa"] => 50 data
|
61
57
|
# [7.0, 3.2, 4.7, 1.4, "Iris-versicolor"] => 50 data
|
@@ -70,8 +66,13 @@ y_train = y_onehot[(1..-1).step(2), true] #=> 75 data (Iris-setosa : 25, Iris-ve
|
|
70
66
|
x_test = x[(0..-1).step(2), true] #=> 75 data (Iris-setosa : 25, Iris-versicolor : 25, Iris-virginica : 25)
|
71
67
|
y_test = y[(0..-1).step(2)] #=> 75 data (Iris-setosa : 25, Iris-versicolor : 25, Iris-virginica : 25)
|
72
68
|
|
69
|
+
puts
|
70
|
+
|
73
71
|
# Train
|
72
|
+
print("Training ")
|
73
|
+
|
74
74
|
10000.times{|i|
|
75
|
+
print(".") if i % 1000 == 0
|
75
76
|
x = Chainer::Variable.new(x_train)
|
76
77
|
y = Chainer::Variable.new(y_train)
|
77
78
|
model.cleargrads()
|
@@ -80,6 +81,8 @@ y_test = y[(0..-1).step(2)] #=> 75 data (Iris-setosa : 25, Iris-ve
|
|
80
81
|
optimizer.update()
|
81
82
|
}
|
82
83
|
|
84
|
+
puts
|
85
|
+
|
83
86
|
# Test
|
84
87
|
xt = Chainer::Variable.new(x_test)
|
85
88
|
yt = model.fwd(xt)
|
File without changes
|
@@ -12,18 +12,17 @@ module Chainer
|
|
12
12
|
end
|
13
13
|
|
14
14
|
def self.get_cifar(n_classes, with_label, ndim, scale)
|
15
|
-
|
16
|
-
|
17
|
-
|
18
|
-
|
19
|
-
|
20
|
-
|
21
|
-
|
22
|
-
|
23
|
-
|
24
|
-
|
25
|
-
|
26
|
-
test_labels << (n_classes == 10 ? record.label : record.fine_label)
|
15
|
+
train_table = ::Datasets::CIFAR.new(n_classes: n_classes, type: :train).to_table
|
16
|
+
test_table = ::Datasets::CIFAR.new(n_classes: n_classes, type: :test).to_table
|
17
|
+
|
18
|
+
train_data = train_table[:pixels]
|
19
|
+
test_data = test_table[:pixels]
|
20
|
+
if n_classes == 10
|
21
|
+
train_labels = train_table[:label]
|
22
|
+
test_labels = test_table[:label]
|
23
|
+
else
|
24
|
+
train_labels = train_table[:fine_label]
|
25
|
+
test_labels = test_table[:fine_label]
|
27
26
|
end
|
28
27
|
|
29
28
|
[
|
data/lib/chainer/reporter.rb
CHANGED
@@ -6,6 +6,8 @@ module Chainer
|
|
6
6
|
class Reporter
|
7
7
|
include ReportService
|
8
8
|
|
9
|
+
attr_accessor :observer_names, :observation
|
10
|
+
|
9
11
|
def initialize
|
10
12
|
@observer_names = {}
|
11
13
|
@observation = {}
|
@@ -16,6 +18,14 @@ module Chainer
|
|
16
18
|
reporter.report(values, observer)
|
17
19
|
end
|
18
20
|
|
21
|
+
def self.report_scope(observation)
|
22
|
+
current = @@reporters[-1]
|
23
|
+
old = current.observation
|
24
|
+
current.observation = observation
|
25
|
+
yield
|
26
|
+
current.observation = old
|
27
|
+
end
|
28
|
+
|
19
29
|
def report(values, observer=nil)
|
20
30
|
# TODO: keep_graph_on_report option
|
21
31
|
if observer
|
@@ -37,6 +47,12 @@ module Chainer
|
|
37
47
|
@observer_names[observer.object_id] = name
|
38
48
|
end
|
39
49
|
|
50
|
+
def add_observers(prefix, observers, skipself: true)
|
51
|
+
observers.call(skipself: skipself) do |name, observer|
|
52
|
+
@observer_names[observer.object_id] = "#{prefix}#{name}"
|
53
|
+
end
|
54
|
+
end
|
55
|
+
|
40
56
|
def scope(observation)
|
41
57
|
@@reporters << self
|
42
58
|
old = @observation
|
@@ -5,7 +5,8 @@ module Chainer
|
|
5
5
|
PRIORITY_EDITOR = 200
|
6
6
|
PRIORITY_READER = 100
|
7
7
|
|
8
|
-
attr_accessor :name
|
8
|
+
attr_accessor :name
|
9
|
+
attr_writer :trigger, :priority
|
9
10
|
|
10
11
|
def initialize
|
11
12
|
end
|
@@ -14,7 +15,11 @@ module Chainer
|
|
14
15
|
end
|
15
16
|
|
16
17
|
def default_name
|
17
|
-
self.class.
|
18
|
+
self.class.name.split('::').last
|
19
|
+
end
|
20
|
+
|
21
|
+
def trigger
|
22
|
+
@trigger || [1, 'iteration']
|
18
23
|
end
|
19
24
|
|
20
25
|
def priority
|
@@ -1,9 +1,48 @@
|
|
1
1
|
module Chainer
|
2
2
|
module Training
|
3
3
|
module Extensions
|
4
|
+
# Trainer extension to evaluate models on a validation set.
|
5
|
+
# This extension evaluates the current models by a given evaluation function.
|
6
|
+
#
|
7
|
+
# It creates a Chainer::Reporter object to store values observed in
|
8
|
+
# the evaluation function on each iteration. The report for all iterations
|
9
|
+
# are aggregated to Chainer::DictSummary. The collected mean values
|
10
|
+
# are further reported to the reporter object of the trainer, where the name
|
11
|
+
# of each observation is prefixed by the evaluator name. See
|
12
|
+
# Chainer::Reporter for details in naming rules of the reports.
|
13
|
+
#
|
14
|
+
# Evaluator has a structure to customize similar to that of Chainer::Training::StandardUpdater.
|
15
|
+
# The main differences are:
|
16
|
+
#
|
17
|
+
# - There are no optimizers in an evaluator. Instead, it holds links to evaluate.
|
18
|
+
# - An evaluation loop function is used instead of an update function.
|
19
|
+
# - Preparation routine can be customized, which is called before each evaluation.
|
20
|
+
# It can be used, e.g., to initialize the state of stateful recurrent networks.
|
21
|
+
#
|
22
|
+
# There are two ways to modify the evaluation behavior besides setting a custom evaluation function.
|
23
|
+
# One is by setting a custom evaluation loop via the `eval_func` argument.
|
24
|
+
# The other is by inheriting this class and overriding the `evaluate` method.
|
25
|
+
# In latter case, users have to create and handle a reporter object manually.
|
26
|
+
# Users also have to copy the iterators before using them, in order to reuse them at the next time of evaluation.
|
27
|
+
# In both cases, the functions are called in testing mode (i.e., `chainer.config.train` is set to `false`).
|
28
|
+
#
|
29
|
+
# This extension is called at the end of each epoch by default.
|
4
30
|
class Evaluator < Extension
|
31
|
+
# @param [Dataset::Iterator] iterator Dataset iterator for the validation dataset. It can also be a dictionary of iterators.
|
32
|
+
# If this is just an iterator, the iterator is registered by the name 'main'.
|
33
|
+
# @param [Chainer::Link] target Link object or a dictionary of links to evaluate.
|
34
|
+
# If this is just a link object, the link is registered by the name 'main'.
|
35
|
+
# @param [Dataset::Convert] converter Converter function to build input arrays.
|
36
|
+
# `Chainer::Dataset.concat_examples` is used by default.
|
37
|
+
# @param [integer] device Device to which the training data is sent. Negative value indicates the host memory (CPU).
|
38
|
+
# @param [Function] eval_hook Function to prepare for each evaluation process.
|
39
|
+
# It is called at the beginning of the evaluation.
|
40
|
+
# The evaluator extension object is passed at each call.
|
41
|
+
# @param [Function] eval_func Evaluation function called at each iteration.
|
42
|
+
# The target link to evaluate as a callable is used by default.
|
5
43
|
def initialize(iterator, target, converter: nil, device: nil, eval_hook: nil, eval_func: nil)
|
6
44
|
@priority = Extension::PRIORITY_WRITER
|
45
|
+
@trigger = [1, 'epoch']
|
7
46
|
|
8
47
|
if iterator.kind_of?(Dataset::Iterator)
|
9
48
|
iterator = { main: iterator }
|
@@ -20,6 +59,86 @@ module Chainer
|
|
20
59
|
@eval_hook = eval_hook
|
21
60
|
@eval_func = eval_func
|
22
61
|
end
|
62
|
+
|
63
|
+
# Executes the evaluator extension.
|
64
|
+
#
|
65
|
+
# Unlike usual extensions, this extension can be executed without passing a trainer object.
|
66
|
+
# This extension reports the performance on validation dataset using the `Chainer.report` function.
|
67
|
+
# Thus, users can use this extension independently from any trainer by manually configuring a `Chainer::Reporter` object.
|
68
|
+
#
|
69
|
+
# @param [Chainer::Training::Trainer] trainer Trainer object that invokes this extension.
|
70
|
+
# It can be omitted in case of calling this extension manually.
|
71
|
+
def call(trainer = nil)
|
72
|
+
reporter = Reporter.new
|
73
|
+
prefix = self.respond_to?(:name) ? "#{self.name}/" : ""
|
74
|
+
|
75
|
+
@targets.each do |name, target|
|
76
|
+
reporter.add_observer("#{prefix}#{name}", target)
|
77
|
+
reporter.add_observers("#{prefix}#{name}", target.method(:namedlinks), skipself: true)
|
78
|
+
end
|
79
|
+
|
80
|
+
result = nil
|
81
|
+
reporter.scope(reporter.observation) do
|
82
|
+
old_train = Chainer.configuration.train
|
83
|
+
Chainer.configuration.train = false
|
84
|
+
result = evaluate()
|
85
|
+
Chainer.configuration.train = old_train
|
86
|
+
end
|
87
|
+
|
88
|
+
Reporter.save_report(result)
|
89
|
+
return result
|
90
|
+
end
|
91
|
+
|
92
|
+
# Evaluates the model and returns a result dictionary.
|
93
|
+
# This method runs the evaluation loop over the validation dataset.
|
94
|
+
# It accumulates the reported values to `DictSummary` and returns a dictionary whose values are means computed by the summary.
|
95
|
+
#
|
96
|
+
# Users can override this method to customize the evaluation routine.
|
97
|
+
# @return dict Result dictionary. This dictionary is further reported via `Chainer.save_report` without specifying any observer.
|
98
|
+
def evaluate
|
99
|
+
iterator = @iterators[:main]
|
100
|
+
target = @targets[:main]
|
101
|
+
eval_func = @eval_func || target
|
102
|
+
|
103
|
+
@eval_hook.(self) if @eval_hook
|
104
|
+
|
105
|
+
if iterator.respond_to?(:reset)
|
106
|
+
iterator.reset
|
107
|
+
it = iterator
|
108
|
+
else
|
109
|
+
it = iterator.dup
|
110
|
+
end
|
111
|
+
|
112
|
+
summary = DictSummary.new
|
113
|
+
|
114
|
+
until it.is_new_epoch do
|
115
|
+
batch = it.next
|
116
|
+
observation = {}
|
117
|
+
Reporter.report_scope(observation) do
|
118
|
+
in_arrays = @converter.(batch, device: @device)
|
119
|
+
|
120
|
+
old_enable_backprop = Chainer.configuration.enable_backprop
|
121
|
+
Chainer.configuration.enable_backprop = false
|
122
|
+
|
123
|
+
if in_arrays.kind_of?(Array)
|
124
|
+
eval_func.(*in_arrays)
|
125
|
+
elsif in_arrays.kind_of?(Hash)
|
126
|
+
eval_func.(**in_arrays)
|
127
|
+
else
|
128
|
+
eval_func.(in_arrays)
|
129
|
+
end
|
130
|
+
|
131
|
+
Chainer.configuration.enable_backprop = old_enable_backprop
|
132
|
+
end
|
133
|
+
summary.add(observation)
|
134
|
+
end
|
135
|
+
|
136
|
+
summary.compute_mean()
|
137
|
+
end
|
138
|
+
|
139
|
+
def default_name
|
140
|
+
"validation"
|
141
|
+
end
|
23
142
|
end
|
24
143
|
end
|
25
144
|
end
|
@@ -2,12 +2,12 @@ module Chainer
|
|
2
2
|
module Training
|
3
3
|
module Extensions
|
4
4
|
# Trainer extension to exponentially shift an optimizer attribute.
|
5
|
-
#
|
5
|
+
#
|
6
6
|
# This extension exponentially increases or decreases the specified attribute of the optimizer.
|
7
7
|
# The typical use case is an exponential decay of the learning rate.
|
8
8
|
# This extension is also called before the training loop starts by default.
|
9
9
|
class ExponentialShift < Extension
|
10
|
-
attr_reader :last_value
|
10
|
+
attr_reader :last_value
|
11
11
|
|
12
12
|
# @param [string] attr Name of the attribute to shift
|
13
13
|
# @param [float] rate Rate of the exponential shift.
|
@@ -62,7 +62,7 @@ module Chainer
|
|
62
62
|
end
|
63
63
|
end
|
64
64
|
|
65
|
-
private
|
65
|
+
private
|
66
66
|
|
67
67
|
def get_optimizer(trainer)
|
68
68
|
@optimizer || trainer.updater.get_optimizer(:main)
|
@@ -9,7 +9,7 @@ module Chainer
|
|
9
9
|
|
10
10
|
def initialize(keys: nil, trigger: [1, 'epoch'], postprocess: nil, log_name: 'log')
|
11
11
|
@keys = keys
|
12
|
-
@
|
12
|
+
@_trigger = Chainer::Training::Util.get_trigger(trigger)
|
13
13
|
@postprocess = postprocess
|
14
14
|
@log_name = log_name
|
15
15
|
@log = []
|
@@ -25,11 +25,11 @@ module Chainer
|
|
25
25
|
else
|
26
26
|
symbolized_observation = Hash[observation.map{|(k,v)| [k.to_sym,v]}]
|
27
27
|
filterd_keys = @keys.select {|k| observation.keys.include?(k.to_sym) }
|
28
|
-
@summary.add(filterd_keys.each_with_object({}) {|k, hash| hash[k.to_s] = observation[k.to_sym] })
|
28
|
+
@summary.add(filterd_keys.each_with_object({}) {|k, hash| hash[k.to_s] = observation[k.to_sym] })
|
29
29
|
end
|
30
30
|
|
31
|
-
# if
|
32
|
-
return unless @
|
31
|
+
# if @_trigger is true, output the result
|
32
|
+
return unless @_trigger.(trainer)
|
33
33
|
|
34
34
|
stats = @summary.compute_mean
|
35
35
|
stats_cpu = {}
|
@@ -41,9 +41,9 @@ module Chainer
|
|
41
41
|
stats_cpu['epoch'] = updater.epoch
|
42
42
|
stats_cpu['iteration'] = updater.iteration
|
43
43
|
stats_cpu['elapsed_time'] = trainer.elapsed_time
|
44
|
-
|
44
|
+
|
45
45
|
@postprocess.(stats_cpu) unless @postprocess.nil?
|
46
|
-
|
46
|
+
|
47
47
|
@log << stats_cpu
|
48
48
|
|
49
49
|
unless @log_name.nil?
|
@@ -62,8 +62,8 @@ module Chainer
|
|
62
62
|
end
|
63
63
|
|
64
64
|
def serialize(serializer)
|
65
|
-
if @
|
66
|
-
@
|
65
|
+
if @_trigger.respond_to?(:serialize)
|
66
|
+
@_trigger.serialize(serializer['_trigger'])
|
67
67
|
end
|
68
68
|
# Note that this serialization may lose some information of small
|
69
69
|
# numerical differences.
|
@@ -2,7 +2,7 @@ module Chainer
|
|
2
2
|
module Training
|
3
3
|
module Extensions
|
4
4
|
class PrintReport < Extension
|
5
|
-
def initialize(entries, log_report: '
|
5
|
+
def initialize(entries, log_report: 'LogReport', out: STDOUT)
|
6
6
|
@entries = entries
|
7
7
|
@log_report = log_report
|
8
8
|
@out = out
|
@@ -27,7 +27,7 @@ module Chainer
|
|
27
27
|
@out.write(@header)
|
28
28
|
@header = nil
|
29
29
|
end
|
30
|
-
|
30
|
+
|
31
31
|
if @log_report.is_a?(String)
|
32
32
|
log_report = trainer.get_extension(@log_report)
|
33
33
|
elsif @log_report.is_a?(LogReport)
|
@@ -14,7 +14,7 @@ module Chainer
|
|
14
14
|
@recent_timing = []
|
15
15
|
end
|
16
16
|
|
17
|
-
def call(trainer)
|
17
|
+
def call(trainer)
|
18
18
|
if @training_length.nil?
|
19
19
|
t = trainer.stop_trigger
|
20
20
|
raise TypeError, "cannot retrieve the training length #{t.class}" unless t.is_a?(Chainer::Training::Triggers::IntervalTrigger)
|
@@ -27,7 +27,7 @@ module Chainer
|
|
27
27
|
|
28
28
|
length, unit = @training_length
|
29
29
|
iteration = trainer.updater.iteration
|
30
|
-
|
30
|
+
|
31
31
|
# print the progress bar according to interval
|
32
32
|
return unless iteration % @update_interval == 0
|
33
33
|
|
@@ -69,7 +69,7 @@ module Chainer
|
|
69
69
|
else
|
70
70
|
estimated_time = (length - epoch) / speed_e
|
71
71
|
end
|
72
|
-
|
72
|
+
|
73
73
|
@out.write(sprintf("%10.5g iters/sec. Estimated time to finish: %s.\n", speed_t, (Time.parse("1991/01/01") + (estimated_time)).strftime("%H:%m:%S")))
|
74
74
|
|
75
75
|
# move the cursor to the head of the progress bar
|
@@ -13,6 +13,8 @@ module Chainer
|
|
13
13
|
end
|
14
14
|
|
15
15
|
def initialize(save_class: nil, filename_proc: nil, target: nil)
|
16
|
+
@priority = -100
|
17
|
+
@trigger = [1, 'epoch']
|
16
18
|
@save_class = save_class || Chainer::Serializers::MarshalSerializer
|
17
19
|
@filename_proc = filename_proc || Proc.new { |trainer| "snapshot_iter_#{trainer.updater.iteration}" }
|
18
20
|
@target = target
|
data/lib/chainer/version.rb
CHANGED
data/red-chainer.gemspec
CHANGED
@@ -20,7 +20,7 @@ Gem::Specification.new do |spec|
|
|
20
20
|
spec.require_paths = ["lib"]
|
21
21
|
|
22
22
|
spec.add_runtime_dependency "numo-narray", ">= 0.9.1.1"
|
23
|
-
spec.add_runtime_dependency "red-datasets"
|
23
|
+
spec.add_runtime_dependency "red-datasets", ">= 0.0.5"
|
24
24
|
|
25
25
|
spec.add_development_dependency "bundler", "~> 1.15"
|
26
26
|
spec.add_development_dependency "rake", "~> 10.0"
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: red-chainer
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.3.
|
4
|
+
version: 0.3.2
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Yusaku Hatanaka
|
8
8
|
autorequire:
|
9
9
|
bindir: exe
|
10
10
|
cert_chain: []
|
11
|
-
date: 2018-
|
11
|
+
date: 2018-06-27 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: numo-narray
|
@@ -30,14 +30,14 @@ dependencies:
|
|
30
30
|
requirements:
|
31
31
|
- - ">="
|
32
32
|
- !ruby/object:Gem::Version
|
33
|
-
version:
|
33
|
+
version: 0.0.5
|
34
34
|
type: :runtime
|
35
35
|
prerelease: false
|
36
36
|
version_requirements: !ruby/object:Gem::Requirement
|
37
37
|
requirements:
|
38
38
|
- - ">="
|
39
39
|
- !ruby/object:Gem::Version
|
40
|
-
version:
|
40
|
+
version: 0.0.5
|
41
41
|
- !ruby/object:Gem::Dependency
|
42
42
|
name: bundler
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
@@ -99,8 +99,8 @@ files:
|
|
99
99
|
- examples/cifar/models/resnet18.rb
|
100
100
|
- examples/cifar/models/vgg.rb
|
101
101
|
- examples/cifar/train_cifar.rb
|
102
|
-
- examples/iris.rb
|
103
|
-
- examples/mnist.rb
|
102
|
+
- examples/iris/iris.rb
|
103
|
+
- examples/mnist/mnist.rb
|
104
104
|
- lib/chainer.rb
|
105
105
|
- lib/chainer/configuration.rb
|
106
106
|
- lib/chainer/cuda.rb
|