red-candle 0.0.3
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/Cargo.lock +821 -0
- data/Cargo.toml +2 -0
- data/README.md +46 -0
- data/ext/candle/Cargo.toml +13 -0
- data/ext/candle/extconf.rb +4 -0
- data/ext/candle/src/lib.rs +773 -0
- data/lib/candle/version.rb +3 -0
- data/lib/candle.rb +1 -0
- metadata +67 -0
@@ -0,0 +1,773 @@
|
|
1
|
+
use magnus::{function, method, prelude::*, Error, Ruby};
|
2
|
+
use std::sync::Arc;
|
3
|
+
|
4
|
+
use half::{bf16, f16};
|
5
|
+
|
6
|
+
use ::candle_core::{quantized::QTensor, DType, Device, Tensor, WithDType};
|
7
|
+
|
8
|
+
type PyResult<T> = Result<T, Error>;
|
9
|
+
|
10
|
+
pub fn wrap_err(err: candle_core::Error) -> Error {
|
11
|
+
Error::new(magnus::exception::runtime_error(), err.to_string())
|
12
|
+
}
|
13
|
+
|
14
|
+
// #[derive(Clone, Debug)]
|
15
|
+
// struct RbShape(Vec<usize>);
|
16
|
+
|
17
|
+
// impl magnus::TryConvert for RbShape {
|
18
|
+
// fn try_convert(val: magnus::Value) -> PyResult<Self> {
|
19
|
+
// let ary = magnus::RArray::try_convert(val)?;
|
20
|
+
// let shape = ary
|
21
|
+
// .each()
|
22
|
+
// .map(|v| magnus::Integer::try_convert(v?).map(|v| v.to_usize().unwrap()))
|
23
|
+
// .collect::<PyResult<Vec<_>>>()?;
|
24
|
+
// Ok(Self(shape))
|
25
|
+
// }
|
26
|
+
// }
|
27
|
+
|
28
|
+
// impl magnus::IntoValue for RbShape {
|
29
|
+
// fn into_value_with(self, ruby: &Ruby) -> magnus::Value {
|
30
|
+
// let ary = magnus::RArray::from_vec(self.0);
|
31
|
+
// ary.into_value_with(ruby)
|
32
|
+
// }
|
33
|
+
//}
|
34
|
+
|
35
|
+
#[derive(Clone, Debug)]
|
36
|
+
#[magnus::wrap(class = "Candle::Tensor", free_immediately, size)]
|
37
|
+
/// A `candle` tensor.
|
38
|
+
struct PyTensor(Tensor);
|
39
|
+
|
40
|
+
impl std::ops::Deref for PyTensor {
|
41
|
+
type Target = Tensor;
|
42
|
+
|
43
|
+
fn deref(&self) -> &Self::Target {
|
44
|
+
&self.0
|
45
|
+
}
|
46
|
+
}
|
47
|
+
|
48
|
+
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
49
|
+
#[magnus::wrap(class = "Candle::DType", free_immediately, size)]
|
50
|
+
/// A `candle` dtype.
|
51
|
+
struct PyDType(DType);
|
52
|
+
|
53
|
+
impl PyDType {
|
54
|
+
fn __repr__(&self) -> String {
|
55
|
+
format!("{:?}", self.0)
|
56
|
+
}
|
57
|
+
|
58
|
+
fn __str__(&self) -> String {
|
59
|
+
self.__repr__()
|
60
|
+
}
|
61
|
+
}
|
62
|
+
|
63
|
+
impl PyDType {
|
64
|
+
fn from_pyobject(dtype: magnus::Symbol) -> PyResult<Self> {
|
65
|
+
let dtype = unsafe { dtype.to_s() }.unwrap().into_owned();
|
66
|
+
use std::str::FromStr;
|
67
|
+
let dtype = DType::from_str(&dtype).unwrap();
|
68
|
+
Ok(Self(dtype))
|
69
|
+
}
|
70
|
+
}
|
71
|
+
|
72
|
+
static CUDA_DEVICE: std::sync::Mutex<Option<Device>> = std::sync::Mutex::new(None);
|
73
|
+
|
74
|
+
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
75
|
+
#[magnus::wrap(class = "Candle::Device")]
|
76
|
+
enum PyDevice {
|
77
|
+
Cpu,
|
78
|
+
Cuda,
|
79
|
+
}
|
80
|
+
|
81
|
+
impl PyDevice {
|
82
|
+
fn from_device(device: &Device) -> Self {
|
83
|
+
match device {
|
84
|
+
Device::Cpu => Self::Cpu,
|
85
|
+
Device::Cuda(_) => Self::Cuda,
|
86
|
+
}
|
87
|
+
}
|
88
|
+
|
89
|
+
fn as_device(&self) -> PyResult<Device> {
|
90
|
+
match self {
|
91
|
+
Self::Cpu => Ok(Device::Cpu),
|
92
|
+
Self::Cuda => {
|
93
|
+
let mut device = CUDA_DEVICE.lock().unwrap();
|
94
|
+
if let Some(device) = device.as_ref() {
|
95
|
+
return Ok(device.clone());
|
96
|
+
};
|
97
|
+
let d = Device::new_cuda(0).map_err(wrap_err)?;
|
98
|
+
*device = Some(d.clone());
|
99
|
+
Ok(d)
|
100
|
+
}
|
101
|
+
}
|
102
|
+
}
|
103
|
+
|
104
|
+
fn __repr__(&self) -> String {
|
105
|
+
match self {
|
106
|
+
Self::Cpu => "cpu".to_string(),
|
107
|
+
Self::Cuda => "cuda".to_string(),
|
108
|
+
}
|
109
|
+
}
|
110
|
+
|
111
|
+
fn __str__(&self) -> String {
|
112
|
+
self.__repr__()
|
113
|
+
}
|
114
|
+
}
|
115
|
+
|
116
|
+
impl magnus::TryConvert for PyDevice {
|
117
|
+
fn try_convert(val: magnus::Value) -> PyResult<Self> {
|
118
|
+
let device = magnus::RString::try_convert(val)?;
|
119
|
+
let device = unsafe { device.as_str() }.unwrap();
|
120
|
+
let device = match device {
|
121
|
+
"cpu" => PyDevice::Cpu,
|
122
|
+
"cuda" => PyDevice::Cuda,
|
123
|
+
_ => return Err(Error::new(magnus::exception::arg_error(), "invalid device")),
|
124
|
+
};
|
125
|
+
Ok(device)
|
126
|
+
}
|
127
|
+
}
|
128
|
+
|
129
|
+
fn actual_index(t: &Tensor, dim: usize, index: i64) -> candle_core::Result<usize> {
|
130
|
+
let dim = t.dim(dim)?;
|
131
|
+
if 0 <= index {
|
132
|
+
let index = index as usize;
|
133
|
+
if dim <= index {
|
134
|
+
candle_core::bail!("index {index} is too large for tensor dimension {dim}")
|
135
|
+
}
|
136
|
+
Ok(index)
|
137
|
+
} else {
|
138
|
+
if (dim as i64) < -index {
|
139
|
+
candle_core::bail!("index {index} is too low for tensor dimension {dim}")
|
140
|
+
}
|
141
|
+
Ok((dim as i64 + index) as usize)
|
142
|
+
}
|
143
|
+
}
|
144
|
+
|
145
|
+
fn actual_dim(t: &Tensor, dim: i64) -> candle_core::Result<usize> {
|
146
|
+
let rank = t.rank();
|
147
|
+
if 0 <= dim {
|
148
|
+
let dim = dim as usize;
|
149
|
+
if rank <= dim {
|
150
|
+
candle_core::bail!("dimension index {dim} is too large for tensor rank {rank}")
|
151
|
+
}
|
152
|
+
Ok(dim)
|
153
|
+
} else {
|
154
|
+
if (rank as i64) < -dim {
|
155
|
+
candle_core::bail!("dimension index {dim} is too low for tensor rank {rank}")
|
156
|
+
}
|
157
|
+
Ok((rank as i64 + dim) as usize)
|
158
|
+
}
|
159
|
+
}
|
160
|
+
impl PyTensor {
|
161
|
+
fn new(array: magnus::RArray, dtype: Option<magnus::Symbol>) -> PyResult<Self> {
|
162
|
+
let dtype = dtype
|
163
|
+
.map(|dtype| PyDType::from_pyobject(dtype))
|
164
|
+
.unwrap_or(Ok(PyDType(DType::F32)))?;
|
165
|
+
// FIXME: Do not use `to_f64` here.
|
166
|
+
let array = array
|
167
|
+
.each()
|
168
|
+
.map(|v| magnus::Float::try_convert(v?).map(|v| v.to_f64()))
|
169
|
+
.collect::<PyResult<Vec<_>>>()?;
|
170
|
+
Ok(Self(
|
171
|
+
Tensor::new(array.as_slice(), &Device::Cpu)
|
172
|
+
.map_err(wrap_err)?
|
173
|
+
.to_dtype(dtype.0)
|
174
|
+
.map_err(wrap_err)?,
|
175
|
+
))
|
176
|
+
}
|
177
|
+
|
178
|
+
/// Gets the tensor's shape.
|
179
|
+
/// &RETURNS&: Tuple[int]
|
180
|
+
fn shape(&self) -> Vec<usize> {
|
181
|
+
self.0.dims().to_vec()
|
182
|
+
}
|
183
|
+
|
184
|
+
/// Gets the tensor's strides.
|
185
|
+
/// &RETURNS&: Tuple[int]
|
186
|
+
fn stride(&self) -> Vec<usize> {
|
187
|
+
self.0.stride().to_vec()
|
188
|
+
}
|
189
|
+
|
190
|
+
/// Gets the tensor's dtype.
|
191
|
+
/// &RETURNS&: DType
|
192
|
+
fn dtype(&self) -> PyDType {
|
193
|
+
PyDType(self.0.dtype())
|
194
|
+
}
|
195
|
+
|
196
|
+
/// Gets the tensor's device.
|
197
|
+
/// &RETURNS&: Device
|
198
|
+
fn device(&self) -> PyDevice {
|
199
|
+
PyDevice::from_device(self.0.device())
|
200
|
+
}
|
201
|
+
|
202
|
+
/// Gets the tensor's rank.
|
203
|
+
/// &RETURNS&: int
|
204
|
+
fn rank(&self) -> usize {
|
205
|
+
self.0.rank()
|
206
|
+
}
|
207
|
+
|
208
|
+
fn __repr__(&self) -> String {
|
209
|
+
format!("{}", self.0)
|
210
|
+
}
|
211
|
+
|
212
|
+
fn __str__(&self) -> String {
|
213
|
+
self.__repr__()
|
214
|
+
}
|
215
|
+
|
216
|
+
/// Performs the `sin` operation on the tensor.
|
217
|
+
/// &RETURNS&: Tensor
|
218
|
+
fn sin(&self) -> PyResult<Self> {
|
219
|
+
Ok(PyTensor(self.0.sin().map_err(wrap_err)?))
|
220
|
+
}
|
221
|
+
|
222
|
+
/// Performs the `cos` operation on the tensor.
|
223
|
+
/// &RETURNS&: Tensor
|
224
|
+
fn cos(&self) -> PyResult<Self> {
|
225
|
+
Ok(PyTensor(self.0.cos().map_err(wrap_err)?))
|
226
|
+
}
|
227
|
+
|
228
|
+
/// Performs the `log` operation on the tensor.
|
229
|
+
/// &RETURNS&: Tensor
|
230
|
+
fn log(&self) -> PyResult<Self> {
|
231
|
+
Ok(PyTensor(self.0.log().map_err(wrap_err)?))
|
232
|
+
}
|
233
|
+
|
234
|
+
/// Squares the tensor.
|
235
|
+
/// &RETURNS&: Tensor
|
236
|
+
fn sqr(&self) -> PyResult<Self> {
|
237
|
+
Ok(PyTensor(self.0.sqr().map_err(wrap_err)?))
|
238
|
+
}
|
239
|
+
|
240
|
+
/// Calculates the square root of the tensor.
|
241
|
+
/// &RETURNS&: Tensor
|
242
|
+
fn sqrt(&self) -> PyResult<Self> {
|
243
|
+
Ok(PyTensor(self.0.sqrt().map_err(wrap_err)?))
|
244
|
+
}
|
245
|
+
|
246
|
+
/// Get the `recip` of the tensor.
|
247
|
+
/// &RETURNS&: Tensor
|
248
|
+
fn recip(&self) -> PyResult<Self> {
|
249
|
+
Ok(PyTensor(self.0.recip().map_err(wrap_err)?))
|
250
|
+
}
|
251
|
+
|
252
|
+
/// Performs the `exp` operation on the tensor.
|
253
|
+
/// &RETURNS&: Tensor
|
254
|
+
fn exp(&self) -> PyResult<Self> {
|
255
|
+
Ok(PyTensor(self.0.exp().map_err(wrap_err)?))
|
256
|
+
}
|
257
|
+
|
258
|
+
/// Performs the `pow` operation on the tensor with the given exponent.
|
259
|
+
/// &RETURNS&: Tensor
|
260
|
+
fn powf(&self, p: f64) -> PyResult<Self> {
|
261
|
+
Ok(PyTensor(self.0.powf(p).map_err(wrap_err)?))
|
262
|
+
}
|
263
|
+
|
264
|
+
/// Select values for the input tensor at the target indexes across the specified dimension.
|
265
|
+
///
|
266
|
+
/// The `indexes` is argument is an int tensor with a single dimension.
|
267
|
+
/// The output has the same number of dimension as the `self` input. The target dimension of
|
268
|
+
/// the output has length the length of `indexes` and the values are taken from `self` using
|
269
|
+
/// the index from `indexes`. Other dimensions have the same number of elements as the input
|
270
|
+
/// tensor.
|
271
|
+
/// &RETURNS&: Tensor
|
272
|
+
fn index_select(&self, rhs: &Self, dim: i64) -> PyResult<Self> {
|
273
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
274
|
+
Ok(PyTensor(self.0.index_select(rhs, dim).map_err(wrap_err)?))
|
275
|
+
}
|
276
|
+
|
277
|
+
/// Performs a matrix multiplication between the two tensors.
|
278
|
+
/// &RETURNS&: Tensor
|
279
|
+
fn matmul(&self, rhs: &Self) -> PyResult<Self> {
|
280
|
+
Ok(PyTensor(self.0.matmul(rhs).map_err(wrap_err)?))
|
281
|
+
}
|
282
|
+
|
283
|
+
/// Adds the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
284
|
+
/// &RETURNS&: Tensor
|
285
|
+
fn broadcast_add(&self, rhs: &Self) -> PyResult<Self> {
|
286
|
+
Ok(PyTensor(self.0.broadcast_add(rhs).map_err(wrap_err)?))
|
287
|
+
}
|
288
|
+
|
289
|
+
/// Subtracts the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
290
|
+
/// &RETURNS&: Tensor
|
291
|
+
fn broadcast_sub(&self, rhs: &Self) -> PyResult<Self> {
|
292
|
+
Ok(PyTensor(self.0.broadcast_sub(rhs).map_err(wrap_err)?))
|
293
|
+
}
|
294
|
+
|
295
|
+
/// Multiplies the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
296
|
+
/// &RETURNS&: Tensor
|
297
|
+
fn broadcast_mul(&self, rhs: &Self) -> PyResult<Self> {
|
298
|
+
Ok(PyTensor(self.0.broadcast_mul(rhs).map_err(wrap_err)?))
|
299
|
+
}
|
300
|
+
|
301
|
+
/// Divides the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
302
|
+
/// &RETURNS&: Tensor
|
303
|
+
fn broadcast_div(&self, rhs: &Self) -> PyResult<Self> {
|
304
|
+
Ok(PyTensor(self.0.broadcast_div(rhs).map_err(wrap_err)?))
|
305
|
+
}
|
306
|
+
|
307
|
+
/// Returns a tensor with the same shape as the input tensor, the values are taken from
|
308
|
+
/// `on_true` if the input tensor value is not zero, and `on_false` at the positions where the
|
309
|
+
/// input tensor is equal to zero.
|
310
|
+
/// &RETURNS&: Tensor
|
311
|
+
fn where_cond(&self, on_true: &Self, on_false: &Self) -> PyResult<Self> {
|
312
|
+
Ok(PyTensor(
|
313
|
+
self.0.where_cond(on_true, on_false).map_err(wrap_err)?,
|
314
|
+
))
|
315
|
+
}
|
316
|
+
|
317
|
+
/// Add two tensors.
|
318
|
+
/// &RETURNS&: Tensor
|
319
|
+
fn __add__(&self, rhs: &PyTensor) -> PyResult<Self> {
|
320
|
+
Ok(Self(self.0.add(&rhs.0).map_err(wrap_err)?))
|
321
|
+
}
|
322
|
+
|
323
|
+
/// Multiply two tensors.
|
324
|
+
/// &RETURNS&: Tensor
|
325
|
+
fn __mul__(&self, rhs: &PyTensor) -> PyResult<Self> {
|
326
|
+
Ok(Self(self.0.mul(&rhs.0).map_err(wrap_err)?))
|
327
|
+
}
|
328
|
+
|
329
|
+
/// Subtract two tensors.
|
330
|
+
/// &RETURNS&: Tensor
|
331
|
+
fn __sub__(&self, rhs: &PyTensor) -> PyResult<Self> {
|
332
|
+
Ok(Self(self.0.sub(&rhs.0).map_err(wrap_err)?))
|
333
|
+
}
|
334
|
+
|
335
|
+
/// Divide two tensors.
|
336
|
+
/// &RETURNS&: Tensor
|
337
|
+
fn __truediv__(&self, rhs: &PyTensor) -> PyResult<Self> {
|
338
|
+
Ok(Self(self.0.div(&rhs.0).map_err(wrap_err)?))
|
339
|
+
}
|
340
|
+
|
341
|
+
/// Reshapes the tensor to the given shape.
|
342
|
+
/// &RETURNS&: Tensor
|
343
|
+
fn reshape(&self, shape: Vec<usize>) -> PyResult<Self> {
|
344
|
+
Ok(PyTensor(self.0.reshape(shape).map_err(wrap_err)?))
|
345
|
+
}
|
346
|
+
|
347
|
+
/// Broadcasts the tensor to the given shape.
|
348
|
+
/// &RETURNS&: Tensor
|
349
|
+
fn broadcast_as(&self, shape: Vec<usize>) -> PyResult<Self> {
|
350
|
+
Ok(PyTensor(self.0.broadcast_as(shape).map_err(wrap_err)?))
|
351
|
+
}
|
352
|
+
|
353
|
+
/// Broadcasts the tensor to the given shape, adding new dimensions on the left.
|
354
|
+
/// &RETURNS&: Tensor
|
355
|
+
fn broadcast_left(&self, shape: Vec<usize>) -> PyResult<Self> {
|
356
|
+
Ok(PyTensor(self.0.broadcast_left(shape).map_err(wrap_err)?))
|
357
|
+
}
|
358
|
+
|
359
|
+
/// Creates a new tensor with the specified dimension removed if its size was one.
|
360
|
+
/// &RETURNS&: Tensor
|
361
|
+
fn squeeze(&self, dim: i64) -> PyResult<Self> {
|
362
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
363
|
+
Ok(PyTensor(self.0.squeeze(dim).map_err(wrap_err)?))
|
364
|
+
}
|
365
|
+
|
366
|
+
/// Creates a new tensor with a dimension of size one inserted at the specified position.
|
367
|
+
/// &RETURNS&: Tensor
|
368
|
+
fn unsqueeze(&self, dim: usize) -> PyResult<Self> {
|
369
|
+
Ok(PyTensor(self.0.unsqueeze(dim).map_err(wrap_err)?))
|
370
|
+
}
|
371
|
+
|
372
|
+
/// Gets the value at the specified index.
|
373
|
+
/// &RETURNS&: Tensor
|
374
|
+
fn get(&self, index: i64) -> PyResult<Self> {
|
375
|
+
let index = actual_index(self, 0, index).map_err(wrap_err)?;
|
376
|
+
Ok(PyTensor(self.0.get(index).map_err(wrap_err)?))
|
377
|
+
}
|
378
|
+
|
379
|
+
/// Returns a tensor that is a transposed version of the input, the given dimensions are swapped.
|
380
|
+
/// &RETURNS&: Tensor
|
381
|
+
fn transpose(&self, dim1: usize, dim2: usize) -> PyResult<Self> {
|
382
|
+
Ok(PyTensor(self.0.transpose(dim1, dim2).map_err(wrap_err)?))
|
383
|
+
}
|
384
|
+
|
385
|
+
/// Returns a new tensor that is a narrowed version of the input, the dimension `dim`
|
386
|
+
/// ranges from `start` to `start + len`.
|
387
|
+
/// &RETURNS&: Tensor
|
388
|
+
fn narrow(&self, dim: i64, start: i64, len: usize) -> PyResult<Self> {
|
389
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
390
|
+
let start = actual_index(self, dim, start).map_err(wrap_err)?;
|
391
|
+
Ok(PyTensor(self.0.narrow(dim, start, len).map_err(wrap_err)?))
|
392
|
+
}
|
393
|
+
|
394
|
+
/// Returns the indices of the maximum value(s) across the selected dimension.
|
395
|
+
/// &RETURNS&: Tensor
|
396
|
+
fn argmax_keepdim(&self, dim: i64) -> PyResult<Self> {
|
397
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
398
|
+
Ok(PyTensor(self.0.argmax_keepdim(dim).map_err(wrap_err)?))
|
399
|
+
}
|
400
|
+
|
401
|
+
/// Returns the indices of the minimum value(s) across the selected dimension.
|
402
|
+
/// &RETURNS&: Tensor
|
403
|
+
fn argmin_keepdim(&self, dim: i64) -> PyResult<Self> {
|
404
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
405
|
+
Ok(PyTensor(self.0.argmin_keepdim(dim).map_err(wrap_err)?))
|
406
|
+
}
|
407
|
+
|
408
|
+
/// Gathers the maximum value across the selected dimension.
|
409
|
+
/// &RETURNS&: Tensor
|
410
|
+
fn max_keepdim(&self, dim: i64) -> PyResult<Self> {
|
411
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
412
|
+
Ok(PyTensor(self.0.max_keepdim(dim).map_err(wrap_err)?))
|
413
|
+
}
|
414
|
+
|
415
|
+
/// Gathers the minimum value across the selected dimension.
|
416
|
+
/// &RETURNS&: Tensor
|
417
|
+
fn min_keepdim(&self, dim: i64) -> PyResult<Self> {
|
418
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
419
|
+
Ok(PyTensor(self.0.min_keepdim(dim).map_err(wrap_err)?))
|
420
|
+
}
|
421
|
+
|
422
|
+
// fn eq(&self, rhs: &Self) -> PyResult<Self> {
|
423
|
+
// Ok(PyTensor(self.0.eq(rhs).map_err(wrap_err)?))
|
424
|
+
// }
|
425
|
+
|
426
|
+
// fn ne(&self, rhs: &Self) -> PyResult<Self> {
|
427
|
+
// Ok(PyTensor(self.0.ne(rhs).map_err(wrap_err)?))
|
428
|
+
// }
|
429
|
+
|
430
|
+
// fn lt(&self, rhs: &Self) -> PyResult<Self> {
|
431
|
+
// Ok(PyTensor(self.0.lt(rhs).map_err(wrap_err)?))
|
432
|
+
// }
|
433
|
+
|
434
|
+
// fn gt(&self, rhs: &Self) -> PyResult<Self> {
|
435
|
+
// Ok(PyTensor(self.0.gt(rhs).map_err(wrap_err)?))
|
436
|
+
// }
|
437
|
+
|
438
|
+
// fn ge(&self, rhs: &Self) -> PyResult<Self> {
|
439
|
+
// Ok(PyTensor(self.0.ge(rhs).map_err(wrap_err)?))
|
440
|
+
// }
|
441
|
+
|
442
|
+
// fn le(&self, rhs: &Self) -> PyResult<Self> {
|
443
|
+
// Ok(PyTensor(self.0.le(rhs).map_err(wrap_err)?))
|
444
|
+
// }
|
445
|
+
|
446
|
+
/// Returns the sum of the tensor.
|
447
|
+
/// &RETURNS&: Tensor
|
448
|
+
fn sum_all(&self) -> PyResult<Self> {
|
449
|
+
Ok(PyTensor(self.0.sum_all().map_err(wrap_err)?))
|
450
|
+
}
|
451
|
+
|
452
|
+
/// Returns the mean of the tensor.
|
453
|
+
/// &RETURNS&: Tensor
|
454
|
+
fn mean_all(&self) -> PyResult<Self> {
|
455
|
+
let elements = self.0.elem_count();
|
456
|
+
let sum = self.0.sum_all().map_err(wrap_err)?;
|
457
|
+
let mean = (sum / elements as f64).map_err(wrap_err)?;
|
458
|
+
Ok(PyTensor(mean))
|
459
|
+
}
|
460
|
+
|
461
|
+
/// Flattens the tensor on the dimension indexes from `dim` (inclusive) to the last dimension.
|
462
|
+
/// &RETURNS&: Tensor
|
463
|
+
fn flatten_from(&self, dim: i64) -> PyResult<Self> {
|
464
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
465
|
+
Ok(PyTensor(self.0.flatten_from(dim).map_err(wrap_err)?))
|
466
|
+
}
|
467
|
+
|
468
|
+
///Flattens the tensor on the dimension indexes from `0` to `dim` (inclusive).
|
469
|
+
/// &RETURNS&: Tensor
|
470
|
+
fn flatten_to(&self, dim: i64) -> PyResult<Self> {
|
471
|
+
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
472
|
+
Ok(PyTensor(self.0.flatten_to(dim).map_err(wrap_err)?))
|
473
|
+
}
|
474
|
+
|
475
|
+
/// Flattens the tensor into a 1D tensor.
|
476
|
+
/// &RETURNS&: Tensor
|
477
|
+
fn flatten_all(&self) -> PyResult<Self> {
|
478
|
+
Ok(PyTensor(self.0.flatten_all().map_err(wrap_err)?))
|
479
|
+
}
|
480
|
+
|
481
|
+
/// Transposes the tensor.
|
482
|
+
/// &RETURNS&: Tensor
|
483
|
+
fn t(&self) -> PyResult<Self> {
|
484
|
+
Ok(PyTensor(self.0.t().map_err(wrap_err)?))
|
485
|
+
}
|
486
|
+
|
487
|
+
/// Makes the tensor contiguous in memory.
|
488
|
+
/// &RETURNS&: Tensor
|
489
|
+
fn contiguous(&self) -> PyResult<Self> {
|
490
|
+
Ok(PyTensor(self.0.contiguous().map_err(wrap_err)?))
|
491
|
+
}
|
492
|
+
|
493
|
+
/// Returns true if the tensor is contiguous in C order.
|
494
|
+
/// &RETURNS&: bool
|
495
|
+
fn is_contiguous(&self) -> bool {
|
496
|
+
self.0.is_contiguous()
|
497
|
+
}
|
498
|
+
|
499
|
+
/// Returns true if the tensor is contiguous in Fortran order.
|
500
|
+
/// &RETURNS&: bool
|
501
|
+
fn is_fortran_contiguous(&self) -> bool {
|
502
|
+
self.0.is_fortran_contiguous()
|
503
|
+
}
|
504
|
+
|
505
|
+
/// Detach the tensor from the computation graph.
|
506
|
+
/// &RETURNS&: Tensor
|
507
|
+
fn detach(&self) -> PyResult<Self> {
|
508
|
+
Ok(PyTensor(self.0.detach().map_err(wrap_err)?))
|
509
|
+
}
|
510
|
+
|
511
|
+
/// Returns a copy of the tensor.
|
512
|
+
/// &RETURNS&: Tensor
|
513
|
+
fn copy(&self) -> PyResult<Self> {
|
514
|
+
Ok(PyTensor(self.0.copy().map_err(wrap_err)?))
|
515
|
+
}
|
516
|
+
|
517
|
+
/// Convert the tensor to a new dtype.
|
518
|
+
/// &RETURNS&: Tensor
|
519
|
+
fn to_dtype(&self, dtype: magnus::Symbol) -> PyResult<Self> {
|
520
|
+
let dtype = PyDType::from_pyobject(dtype)?;
|
521
|
+
Ok(PyTensor(self.0.to_dtype(dtype.0).map_err(wrap_err)?))
|
522
|
+
}
|
523
|
+
|
524
|
+
/// Move the tensor to a new device.
|
525
|
+
/// &RETURNS&: Tensor
|
526
|
+
fn to_device(&self, device: PyDevice) -> PyResult<Self> {
|
527
|
+
let device = device.as_device()?;
|
528
|
+
Ok(PyTensor(self.0.to_device(&device).map_err(wrap_err)?))
|
529
|
+
}
|
530
|
+
}
|
531
|
+
|
532
|
+
impl PyTensor {
|
533
|
+
// fn cat(tensors: Vec<PyTensor>, dim: i64) -> PyResult<PyTensor> {
|
534
|
+
// if tensors.is_empty() {
|
535
|
+
// return Err(Error::new(
|
536
|
+
// magnus::exception::arg_error(),
|
537
|
+
// "empty input to cat",
|
538
|
+
// ));
|
539
|
+
// }
|
540
|
+
// let dim = actual_dim(&tensors[0].0, dim).map_err(wrap_err)?;
|
541
|
+
// let tensors = tensors.into_iter().map(|t| t.0).collect::<Vec<_>>();
|
542
|
+
// let tensor = Tensor::cat(&tensors, dim).map_err(wrap_err)?;
|
543
|
+
// Ok(PyTensor(tensor))
|
544
|
+
// }
|
545
|
+
|
546
|
+
// fn stack(tensors: Vec<PyTensor>, dim: usize) -> PyResult<Self> {
|
547
|
+
// let tensors = tensors.into_iter().map(|t| t.0).collect::<Vec<_>>();
|
548
|
+
// let tensor = Tensor::stack(&tensors, dim).map_err(wrap_err)?;
|
549
|
+
// Ok(Self(tensor))
|
550
|
+
// }
|
551
|
+
|
552
|
+
/// Creates a new tensor with random values.
|
553
|
+
/// &RETURNS&: Tensor
|
554
|
+
fn rand(shape: Vec<usize>) -> PyResult<Self> {
|
555
|
+
let device = PyDevice::Cpu.as_device()?;
|
556
|
+
Ok(Self(
|
557
|
+
Tensor::rand(0f32, 1f32, shape, &device).map_err(wrap_err)?,
|
558
|
+
))
|
559
|
+
}
|
560
|
+
|
561
|
+
/// Creates a new tensor with random values from a normal distribution.
|
562
|
+
/// &RETURNS&: Tensor
|
563
|
+
fn randn(shape: Vec<usize>) -> PyResult<Self> {
|
564
|
+
let device = PyDevice::Cpu.as_device()?;
|
565
|
+
Ok(Self(
|
566
|
+
Tensor::randn(0f32, 1f32, shape, &device).map_err(wrap_err)?,
|
567
|
+
))
|
568
|
+
}
|
569
|
+
|
570
|
+
/// Creates a new tensor filled with ones.
|
571
|
+
/// &RETURNS&: Tensor
|
572
|
+
fn ones(shape: Vec<usize>) -> PyResult<Self> {
|
573
|
+
let device = PyDevice::Cpu.as_device()?;
|
574
|
+
Ok(Self(
|
575
|
+
Tensor::ones(shape, DType::F32, &device).map_err(wrap_err)?,
|
576
|
+
))
|
577
|
+
}
|
578
|
+
/// Creates a new tensor filled with zeros.
|
579
|
+
/// &RETURNS&: Tensor
|
580
|
+
fn zeros(shape: Vec<usize>) -> PyResult<Self> {
|
581
|
+
let device = PyDevice::Cpu.as_device()?;
|
582
|
+
Ok(Self(
|
583
|
+
Tensor::zeros(shape, DType::F32, &device).map_err(wrap_err)?,
|
584
|
+
))
|
585
|
+
}
|
586
|
+
}
|
587
|
+
|
588
|
+
#[derive(Debug)]
|
589
|
+
#[magnus::wrap(class = "Candle::QTensor", free_immediately, size)]
|
590
|
+
/// A quantized tensor.
|
591
|
+
struct PyQTensor(Arc<QTensor>);
|
592
|
+
|
593
|
+
impl std::ops::Deref for PyQTensor {
|
594
|
+
type Target = QTensor;
|
595
|
+
|
596
|
+
fn deref(&self) -> &Self::Target {
|
597
|
+
self.0.as_ref()
|
598
|
+
}
|
599
|
+
}
|
600
|
+
|
601
|
+
impl PyQTensor {
|
602
|
+
///Gets the tensors quantized dtype.
|
603
|
+
/// &RETURNS&: str
|
604
|
+
fn ggml_dtype(&self) -> String {
|
605
|
+
format!("{:?}", self.0.dtype())
|
606
|
+
}
|
607
|
+
|
608
|
+
///Gets the rank of the tensor.
|
609
|
+
/// &RETURNS&: int
|
610
|
+
fn rank(&self) -> usize {
|
611
|
+
self.0.rank()
|
612
|
+
}
|
613
|
+
|
614
|
+
///Gets the shape of the tensor.
|
615
|
+
/// &RETURNS&: Tuple[int]
|
616
|
+
fn shape(&self) -> Vec<usize> {
|
617
|
+
self.0.shape().dims().to_vec()
|
618
|
+
}
|
619
|
+
|
620
|
+
fn __repr__(&self) -> String {
|
621
|
+
format!("{:?}", self.0)
|
622
|
+
}
|
623
|
+
|
624
|
+
fn __str__(&self) -> String {
|
625
|
+
self.__repr__()
|
626
|
+
}
|
627
|
+
|
628
|
+
/// Dequantizes the tensor.
|
629
|
+
/// &RETURNS&: Tensor
|
630
|
+
fn dequantize(&self) -> PyResult<PyTensor> {
|
631
|
+
let tensor = self.0.dequantize(&Device::Cpu).map_err(wrap_err)?;
|
632
|
+
Ok(PyTensor(tensor))
|
633
|
+
}
|
634
|
+
|
635
|
+
// fn matmul_t(&self, lhs: &PyTensor) -> PyResult<PyTensor> {
|
636
|
+
// let qmatmul = ::candle_core::quantized::QMatMul::from_arc(self.0.clone());
|
637
|
+
// let res = qmatmul.forward(lhs).map_err(wrap_err)?;
|
638
|
+
// Ok(PyTensor(res))
|
639
|
+
// }
|
640
|
+
}
|
641
|
+
|
642
|
+
/// Returns true if the 'cuda' backend is available.
|
643
|
+
/// &RETURNS&: bool
|
644
|
+
fn cuda_is_available() -> bool {
|
645
|
+
candle_core::utils::cuda_is_available()
|
646
|
+
}
|
647
|
+
|
648
|
+
/// Returns true if candle was compiled with 'accelerate' support.
|
649
|
+
/// &RETURNS&: bool
|
650
|
+
fn has_accelerate() -> bool {
|
651
|
+
candle_core::utils::has_accelerate()
|
652
|
+
}
|
653
|
+
|
654
|
+
/// Returns true if candle was compiled with MKL support.
|
655
|
+
/// &RETURNS&: bool
|
656
|
+
fn has_mkl() -> bool {
|
657
|
+
candle_core::utils::has_mkl()
|
658
|
+
}
|
659
|
+
|
660
|
+
/// Returns the number of threads used by the candle.
|
661
|
+
/// &RETURNS&: int
|
662
|
+
fn get_num_threads() -> usize {
|
663
|
+
candle_core::utils::get_num_threads()
|
664
|
+
}
|
665
|
+
|
666
|
+
fn candle_utils(rb_candle: magnus::RModule) -> Result<(), Error> {
|
667
|
+
let rb_utils = rb_candle.define_module("Utils")?;
|
668
|
+
rb_utils.define_singleton_method("cuda_is_available", function!(cuda_is_available, 0))?;
|
669
|
+
rb_utils.define_singleton_method("get_num_threads", function!(get_num_threads, 0))?;
|
670
|
+
rb_utils.define_singleton_method("has_accelerate", function!(has_accelerate, 0))?;
|
671
|
+
rb_utils.define_singleton_method("has_mkl", function!(has_mkl, 0))?;
|
672
|
+
Ok(())
|
673
|
+
}
|
674
|
+
|
675
|
+
/// Applies the Softmax function to a given tensor.#
|
676
|
+
/// &RETURNS&: Tensor
|
677
|
+
fn softmax(tensor: PyTensor, dim: i64) -> PyResult<PyTensor> {
|
678
|
+
let dim = actual_dim(&tensor, dim).map_err(wrap_err)?;
|
679
|
+
let sm = candle_nn::ops::softmax(&tensor.0, dim).map_err(wrap_err)?;
|
680
|
+
Ok(PyTensor(sm))
|
681
|
+
}
|
682
|
+
|
683
|
+
/// Applies the Sigmoid Linear Unit (SiLU) function to a given tensor.
|
684
|
+
/// &RETURNS&: Tensor
|
685
|
+
fn silu(tensor: PyTensor) -> PyResult<PyTensor> {
|
686
|
+
let s = candle_nn::ops::silu(&tensor.0).map_err(wrap_err)?;
|
687
|
+
Ok(PyTensor(s))
|
688
|
+
}
|
689
|
+
|
690
|
+
#[magnus::init]
|
691
|
+
fn init(ruby: &Ruby) -> PyResult<()> {
|
692
|
+
let rb_candle = ruby.define_module("Candle")?;
|
693
|
+
candle_utils(rb_candle)?;
|
694
|
+
let rb_tensor = rb_candle.define_class("Tensor", Ruby::class_object(ruby))?;
|
695
|
+
rb_tensor.define_singleton_method("new", function!(PyTensor::new, 2))?;
|
696
|
+
// rb_tensor.define_singleton_method("cat", function!(PyTensor::cat, 2))?;
|
697
|
+
// rb_tensor.define_singleton_method("stack", function!(PyTensor::stack, 2))?;
|
698
|
+
rb_tensor.define_singleton_method("rand", function!(PyTensor::rand, 1))?;
|
699
|
+
rb_tensor.define_singleton_method("randn", function!(PyTensor::randn, 1))?;
|
700
|
+
rb_tensor.define_singleton_method("ones", function!(PyTensor::ones, 1))?;
|
701
|
+
rb_tensor.define_singleton_method("zeros", function!(PyTensor::zeros, 1))?;
|
702
|
+
rb_tensor.define_method("shape", method!(PyTensor::shape, 0))?;
|
703
|
+
rb_tensor.define_method("stride", method!(PyTensor::stride, 0))?;
|
704
|
+
rb_tensor.define_method("dtype", method!(PyTensor::dtype, 0))?;
|
705
|
+
rb_tensor.define_method("device", method!(PyTensor::device, 0))?;
|
706
|
+
rb_tensor.define_method("rank", method!(PyTensor::rank, 0))?;
|
707
|
+
rb_tensor.define_method("sin", method!(PyTensor::sin, 0))?;
|
708
|
+
rb_tensor.define_method("cos", method!(PyTensor::cos, 0))?;
|
709
|
+
rb_tensor.define_method("log", method!(PyTensor::log, 0))?;
|
710
|
+
rb_tensor.define_method("sqr", method!(PyTensor::sqr, 0))?;
|
711
|
+
rb_tensor.define_method("sqrt", method!(PyTensor::sqrt, 0))?;
|
712
|
+
rb_tensor.define_method("recip", method!(PyTensor::recip, 0))?;
|
713
|
+
rb_tensor.define_method("exp", method!(PyTensor::exp, 0))?;
|
714
|
+
rb_tensor.define_method("powf", method!(PyTensor::powf, 1))?;
|
715
|
+
rb_tensor.define_method("index_select", method!(PyTensor::index_select, 2))?;
|
716
|
+
rb_tensor.define_method("matmul", method!(PyTensor::matmul, 1))?;
|
717
|
+
rb_tensor.define_method("broadcast_add", method!(PyTensor::broadcast_add, 1))?;
|
718
|
+
rb_tensor.define_method("broadcast_sub", method!(PyTensor::broadcast_sub, 1))?;
|
719
|
+
rb_tensor.define_method("broadcast_mul", method!(PyTensor::broadcast_mul, 1))?;
|
720
|
+
rb_tensor.define_method("broadcast_div", method!(PyTensor::broadcast_div, 1))?;
|
721
|
+
rb_tensor.define_method("where_cond", method!(PyTensor::where_cond, 2))?;
|
722
|
+
rb_tensor.define_method("+", method!(PyTensor::__add__, 1))?;
|
723
|
+
rb_tensor.define_method("*", method!(PyTensor::__mul__, 1))?;
|
724
|
+
rb_tensor.define_method("-", method!(PyTensor::__sub__, 1))?;
|
725
|
+
rb_tensor.define_method("reshape", method!(PyTensor::reshape, 1))?;
|
726
|
+
rb_tensor.define_method("broadcast_as", method!(PyTensor::broadcast_as, 1))?;
|
727
|
+
rb_tensor.define_method("broadcast_left", method!(PyTensor::broadcast_left, 1))?;
|
728
|
+
rb_tensor.define_method("squeeze", method!(PyTensor::squeeze, 1))?;
|
729
|
+
rb_tensor.define_method("unsqueeze", method!(PyTensor::unsqueeze, 1))?;
|
730
|
+
rb_tensor.define_method("get", method!(PyTensor::get, 1))?;
|
731
|
+
rb_tensor.define_method("transpose", method!(PyTensor::transpose, 2))?;
|
732
|
+
rb_tensor.define_method("narrow", method!(PyTensor::narrow, 3))?;
|
733
|
+
rb_tensor.define_method("argmax_keepdim", method!(PyTensor::argmax_keepdim, 1))?;
|
734
|
+
rb_tensor.define_method("argmin_keepdim", method!(PyTensor::argmin_keepdim, 1))?;
|
735
|
+
rb_tensor.define_method("max_keepdim", method!(PyTensor::max_keepdim, 1))?;
|
736
|
+
rb_tensor.define_method("min_keepdim", method!(PyTensor::min_keepdim, 1))?;
|
737
|
+
// rb_tensor.define_method("eq", method!(PyTensor::eq, 1))?;
|
738
|
+
// rb_tensor.define_method("ne", method!(PyTensor::ne, 1))?;
|
739
|
+
// rb_tensor.define_method("lt", method!(PyTensor::lt, 1))?;
|
740
|
+
// rb_tensor.define_method("gt", method!(PyTensor::gt, 1))?;
|
741
|
+
// rb_tensor.define_method("ge", method!(PyTensor::ge, 1))?;
|
742
|
+
// rb_tensor.define_method("le", method!(PyTensor::le, 1))?;
|
743
|
+
rb_tensor.define_method("sum_all", method!(PyTensor::sum_all, 0))?;
|
744
|
+
rb_tensor.define_method("mean_all", method!(PyTensor::mean_all, 0))?;
|
745
|
+
rb_tensor.define_method("flatten_from", method!(PyTensor::flatten_from, 1))?;
|
746
|
+
rb_tensor.define_method("flatten_to", method!(PyTensor::flatten_to, 1))?;
|
747
|
+
rb_tensor.define_method("flatten_all", method!(PyTensor::flatten_all, 0))?;
|
748
|
+
rb_tensor.define_method("t", method!(PyTensor::t, 0))?;
|
749
|
+
rb_tensor.define_method("contiguous", method!(PyTensor::contiguous, 0))?;
|
750
|
+
rb_tensor.define_method("is_contiguous", method!(PyTensor::is_contiguous, 0))?;
|
751
|
+
rb_tensor.define_method(
|
752
|
+
"is_fortran_contiguous",
|
753
|
+
method!(PyTensor::is_fortran_contiguous, 0),
|
754
|
+
)?;
|
755
|
+
rb_tensor.define_method("detach", method!(PyTensor::detach, 0))?;
|
756
|
+
rb_tensor.define_method("copy", method!(PyTensor::copy, 0))?;
|
757
|
+
rb_tensor.define_method("to_dtype", method!(PyTensor::to_dtype, 1))?;
|
758
|
+
rb_tensor.define_method("to_device", method!(PyTensor::to_device, 1))?;
|
759
|
+
rb_tensor.define_method("to_s", method!(PyTensor::__str__, 0))?;
|
760
|
+
rb_tensor.define_method("inspect", method!(PyTensor::__repr__, 0))?;
|
761
|
+
let rb_dtype = rb_candle.define_class("DType", Ruby::class_object(ruby))?;
|
762
|
+
rb_dtype.define_method("to_s", method!(PyDType::__str__, 0))?;
|
763
|
+
rb_dtype.define_method("inspect", method!(PyDType::__repr__, 0))?;
|
764
|
+
let rb_device = rb_candle.define_class("Device", Ruby::class_object(ruby))?;
|
765
|
+
rb_device.define_method("to_s", method!(PyDevice::__str__, 0))?;
|
766
|
+
rb_device.define_method("inspect", method!(PyDevice::__repr__, 0))?;
|
767
|
+
let rb_qtensor = rb_candle.define_class("QTensor", Ruby::class_object(ruby))?;
|
768
|
+
rb_qtensor.define_method("ggml_dtype", method!(PyQTensor::ggml_dtype, 0))?;
|
769
|
+
rb_qtensor.define_method("rank", method!(PyQTensor::rank, 0))?;
|
770
|
+
rb_qtensor.define_method("shape", method!(PyQTensor::shape, 0))?;
|
771
|
+
rb_qtensor.define_method("dequantize", method!(PyQTensor::dequantize, 0))?;
|
772
|
+
Ok(())
|
773
|
+
}
|