red-candle 0.0.3 → 0.0.5
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/Cargo.lock +1640 -398
- data/README.md +45 -8
- data/ext/candle/Cargo.toml +8 -2
- data/ext/candle/extconf.rb +3 -3
- data/ext/candle/src/lib.rs +88 -758
- data/lib/candle/tensor.rb +17 -0
- data/lib/candle/version.rb +1 -1
- data/lib/candle.rb +2 -1
- metadata +10 -7
data/ext/candle/src/lib.rs
CHANGED
@@ -1,773 +1,103 @@
|
|
1
|
-
use magnus::{function, method, prelude::*,
|
2
|
-
use std::sync::Arc;
|
1
|
+
use magnus::{function, method, prelude::*, Ruby};
|
3
2
|
|
4
|
-
use
|
3
|
+
use crate::model::{candle_utils, RbModel, RbDType, RbDevice, RbQTensor, RbResult, RbTensor};
|
5
4
|
|
6
|
-
|
7
|
-
|
8
|
-
type PyResult<T> = Result<T, Error>;
|
9
|
-
|
10
|
-
pub fn wrap_err(err: candle_core::Error) -> Error {
|
11
|
-
Error::new(magnus::exception::runtime_error(), err.to_string())
|
12
|
-
}
|
13
|
-
|
14
|
-
// #[derive(Clone, Debug)]
|
15
|
-
// struct RbShape(Vec<usize>);
|
16
|
-
|
17
|
-
// impl magnus::TryConvert for RbShape {
|
18
|
-
// fn try_convert(val: magnus::Value) -> PyResult<Self> {
|
19
|
-
// let ary = magnus::RArray::try_convert(val)?;
|
20
|
-
// let shape = ary
|
21
|
-
// .each()
|
22
|
-
// .map(|v| magnus::Integer::try_convert(v?).map(|v| v.to_usize().unwrap()))
|
23
|
-
// .collect::<PyResult<Vec<_>>>()?;
|
24
|
-
// Ok(Self(shape))
|
25
|
-
// }
|
26
|
-
// }
|
27
|
-
|
28
|
-
// impl magnus::IntoValue for RbShape {
|
29
|
-
// fn into_value_with(self, ruby: &Ruby) -> magnus::Value {
|
30
|
-
// let ary = magnus::RArray::from_vec(self.0);
|
31
|
-
// ary.into_value_with(ruby)
|
32
|
-
// }
|
33
|
-
//}
|
34
|
-
|
35
|
-
#[derive(Clone, Debug)]
|
36
|
-
#[magnus::wrap(class = "Candle::Tensor", free_immediately, size)]
|
37
|
-
/// A `candle` tensor.
|
38
|
-
struct PyTensor(Tensor);
|
39
|
-
|
40
|
-
impl std::ops::Deref for PyTensor {
|
41
|
-
type Target = Tensor;
|
42
|
-
|
43
|
-
fn deref(&self) -> &Self::Target {
|
44
|
-
&self.0
|
45
|
-
}
|
46
|
-
}
|
47
|
-
|
48
|
-
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
49
|
-
#[magnus::wrap(class = "Candle::DType", free_immediately, size)]
|
50
|
-
/// A `candle` dtype.
|
51
|
-
struct PyDType(DType);
|
52
|
-
|
53
|
-
impl PyDType {
|
54
|
-
fn __repr__(&self) -> String {
|
55
|
-
format!("{:?}", self.0)
|
56
|
-
}
|
57
|
-
|
58
|
-
fn __str__(&self) -> String {
|
59
|
-
self.__repr__()
|
60
|
-
}
|
61
|
-
}
|
62
|
-
|
63
|
-
impl PyDType {
|
64
|
-
fn from_pyobject(dtype: magnus::Symbol) -> PyResult<Self> {
|
65
|
-
let dtype = unsafe { dtype.to_s() }.unwrap().into_owned();
|
66
|
-
use std::str::FromStr;
|
67
|
-
let dtype = DType::from_str(&dtype).unwrap();
|
68
|
-
Ok(Self(dtype))
|
69
|
-
}
|
70
|
-
}
|
71
|
-
|
72
|
-
static CUDA_DEVICE: std::sync::Mutex<Option<Device>> = std::sync::Mutex::new(None);
|
73
|
-
|
74
|
-
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
|
75
|
-
#[magnus::wrap(class = "Candle::Device")]
|
76
|
-
enum PyDevice {
|
77
|
-
Cpu,
|
78
|
-
Cuda,
|
79
|
-
}
|
80
|
-
|
81
|
-
impl PyDevice {
|
82
|
-
fn from_device(device: &Device) -> Self {
|
83
|
-
match device {
|
84
|
-
Device::Cpu => Self::Cpu,
|
85
|
-
Device::Cuda(_) => Self::Cuda,
|
86
|
-
}
|
87
|
-
}
|
88
|
-
|
89
|
-
fn as_device(&self) -> PyResult<Device> {
|
90
|
-
match self {
|
91
|
-
Self::Cpu => Ok(Device::Cpu),
|
92
|
-
Self::Cuda => {
|
93
|
-
let mut device = CUDA_DEVICE.lock().unwrap();
|
94
|
-
if let Some(device) = device.as_ref() {
|
95
|
-
return Ok(device.clone());
|
96
|
-
};
|
97
|
-
let d = Device::new_cuda(0).map_err(wrap_err)?;
|
98
|
-
*device = Some(d.clone());
|
99
|
-
Ok(d)
|
100
|
-
}
|
101
|
-
}
|
102
|
-
}
|
103
|
-
|
104
|
-
fn __repr__(&self) -> String {
|
105
|
-
match self {
|
106
|
-
Self::Cpu => "cpu".to_string(),
|
107
|
-
Self::Cuda => "cuda".to_string(),
|
108
|
-
}
|
109
|
-
}
|
110
|
-
|
111
|
-
fn __str__(&self) -> String {
|
112
|
-
self.__repr__()
|
113
|
-
}
|
114
|
-
}
|
115
|
-
|
116
|
-
impl magnus::TryConvert for PyDevice {
|
117
|
-
fn try_convert(val: magnus::Value) -> PyResult<Self> {
|
118
|
-
let device = magnus::RString::try_convert(val)?;
|
119
|
-
let device = unsafe { device.as_str() }.unwrap();
|
120
|
-
let device = match device {
|
121
|
-
"cpu" => PyDevice::Cpu,
|
122
|
-
"cuda" => PyDevice::Cuda,
|
123
|
-
_ => return Err(Error::new(magnus::exception::arg_error(), "invalid device")),
|
124
|
-
};
|
125
|
-
Ok(device)
|
126
|
-
}
|
127
|
-
}
|
128
|
-
|
129
|
-
fn actual_index(t: &Tensor, dim: usize, index: i64) -> candle_core::Result<usize> {
|
130
|
-
let dim = t.dim(dim)?;
|
131
|
-
if 0 <= index {
|
132
|
-
let index = index as usize;
|
133
|
-
if dim <= index {
|
134
|
-
candle_core::bail!("index {index} is too large for tensor dimension {dim}")
|
135
|
-
}
|
136
|
-
Ok(index)
|
137
|
-
} else {
|
138
|
-
if (dim as i64) < -index {
|
139
|
-
candle_core::bail!("index {index} is too low for tensor dimension {dim}")
|
140
|
-
}
|
141
|
-
Ok((dim as i64 + index) as usize)
|
142
|
-
}
|
143
|
-
}
|
144
|
-
|
145
|
-
fn actual_dim(t: &Tensor, dim: i64) -> candle_core::Result<usize> {
|
146
|
-
let rank = t.rank();
|
147
|
-
if 0 <= dim {
|
148
|
-
let dim = dim as usize;
|
149
|
-
if rank <= dim {
|
150
|
-
candle_core::bail!("dimension index {dim} is too large for tensor rank {rank}")
|
151
|
-
}
|
152
|
-
Ok(dim)
|
153
|
-
} else {
|
154
|
-
if (rank as i64) < -dim {
|
155
|
-
candle_core::bail!("dimension index {dim} is too low for tensor rank {rank}")
|
156
|
-
}
|
157
|
-
Ok((rank as i64 + dim) as usize)
|
158
|
-
}
|
159
|
-
}
|
160
|
-
impl PyTensor {
|
161
|
-
fn new(array: magnus::RArray, dtype: Option<magnus::Symbol>) -> PyResult<Self> {
|
162
|
-
let dtype = dtype
|
163
|
-
.map(|dtype| PyDType::from_pyobject(dtype))
|
164
|
-
.unwrap_or(Ok(PyDType(DType::F32)))?;
|
165
|
-
// FIXME: Do not use `to_f64` here.
|
166
|
-
let array = array
|
167
|
-
.each()
|
168
|
-
.map(|v| magnus::Float::try_convert(v?).map(|v| v.to_f64()))
|
169
|
-
.collect::<PyResult<Vec<_>>>()?;
|
170
|
-
Ok(Self(
|
171
|
-
Tensor::new(array.as_slice(), &Device::Cpu)
|
172
|
-
.map_err(wrap_err)?
|
173
|
-
.to_dtype(dtype.0)
|
174
|
-
.map_err(wrap_err)?,
|
175
|
-
))
|
176
|
-
}
|
177
|
-
|
178
|
-
/// Gets the tensor's shape.
|
179
|
-
/// &RETURNS&: Tuple[int]
|
180
|
-
fn shape(&self) -> Vec<usize> {
|
181
|
-
self.0.dims().to_vec()
|
182
|
-
}
|
183
|
-
|
184
|
-
/// Gets the tensor's strides.
|
185
|
-
/// &RETURNS&: Tuple[int]
|
186
|
-
fn stride(&self) -> Vec<usize> {
|
187
|
-
self.0.stride().to_vec()
|
188
|
-
}
|
189
|
-
|
190
|
-
/// Gets the tensor's dtype.
|
191
|
-
/// &RETURNS&: DType
|
192
|
-
fn dtype(&self) -> PyDType {
|
193
|
-
PyDType(self.0.dtype())
|
194
|
-
}
|
195
|
-
|
196
|
-
/// Gets the tensor's device.
|
197
|
-
/// &RETURNS&: Device
|
198
|
-
fn device(&self) -> PyDevice {
|
199
|
-
PyDevice::from_device(self.0.device())
|
200
|
-
}
|
201
|
-
|
202
|
-
/// Gets the tensor's rank.
|
203
|
-
/// &RETURNS&: int
|
204
|
-
fn rank(&self) -> usize {
|
205
|
-
self.0.rank()
|
206
|
-
}
|
207
|
-
|
208
|
-
fn __repr__(&self) -> String {
|
209
|
-
format!("{}", self.0)
|
210
|
-
}
|
211
|
-
|
212
|
-
fn __str__(&self) -> String {
|
213
|
-
self.__repr__()
|
214
|
-
}
|
215
|
-
|
216
|
-
/// Performs the `sin` operation on the tensor.
|
217
|
-
/// &RETURNS&: Tensor
|
218
|
-
fn sin(&self) -> PyResult<Self> {
|
219
|
-
Ok(PyTensor(self.0.sin().map_err(wrap_err)?))
|
220
|
-
}
|
221
|
-
|
222
|
-
/// Performs the `cos` operation on the tensor.
|
223
|
-
/// &RETURNS&: Tensor
|
224
|
-
fn cos(&self) -> PyResult<Self> {
|
225
|
-
Ok(PyTensor(self.0.cos().map_err(wrap_err)?))
|
226
|
-
}
|
227
|
-
|
228
|
-
/// Performs the `log` operation on the tensor.
|
229
|
-
/// &RETURNS&: Tensor
|
230
|
-
fn log(&self) -> PyResult<Self> {
|
231
|
-
Ok(PyTensor(self.0.log().map_err(wrap_err)?))
|
232
|
-
}
|
233
|
-
|
234
|
-
/// Squares the tensor.
|
235
|
-
/// &RETURNS&: Tensor
|
236
|
-
fn sqr(&self) -> PyResult<Self> {
|
237
|
-
Ok(PyTensor(self.0.sqr().map_err(wrap_err)?))
|
238
|
-
}
|
239
|
-
|
240
|
-
/// Calculates the square root of the tensor.
|
241
|
-
/// &RETURNS&: Tensor
|
242
|
-
fn sqrt(&self) -> PyResult<Self> {
|
243
|
-
Ok(PyTensor(self.0.sqrt().map_err(wrap_err)?))
|
244
|
-
}
|
245
|
-
|
246
|
-
/// Get the `recip` of the tensor.
|
247
|
-
/// &RETURNS&: Tensor
|
248
|
-
fn recip(&self) -> PyResult<Self> {
|
249
|
-
Ok(PyTensor(self.0.recip().map_err(wrap_err)?))
|
250
|
-
}
|
251
|
-
|
252
|
-
/// Performs the `exp` operation on the tensor.
|
253
|
-
/// &RETURNS&: Tensor
|
254
|
-
fn exp(&self) -> PyResult<Self> {
|
255
|
-
Ok(PyTensor(self.0.exp().map_err(wrap_err)?))
|
256
|
-
}
|
257
|
-
|
258
|
-
/// Performs the `pow` operation on the tensor with the given exponent.
|
259
|
-
/// &RETURNS&: Tensor
|
260
|
-
fn powf(&self, p: f64) -> PyResult<Self> {
|
261
|
-
Ok(PyTensor(self.0.powf(p).map_err(wrap_err)?))
|
262
|
-
}
|
263
|
-
|
264
|
-
/// Select values for the input tensor at the target indexes across the specified dimension.
|
265
|
-
///
|
266
|
-
/// The `indexes` is argument is an int tensor with a single dimension.
|
267
|
-
/// The output has the same number of dimension as the `self` input. The target dimension of
|
268
|
-
/// the output has length the length of `indexes` and the values are taken from `self` using
|
269
|
-
/// the index from `indexes`. Other dimensions have the same number of elements as the input
|
270
|
-
/// tensor.
|
271
|
-
/// &RETURNS&: Tensor
|
272
|
-
fn index_select(&self, rhs: &Self, dim: i64) -> PyResult<Self> {
|
273
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
274
|
-
Ok(PyTensor(self.0.index_select(rhs, dim).map_err(wrap_err)?))
|
275
|
-
}
|
276
|
-
|
277
|
-
/// Performs a matrix multiplication between the two tensors.
|
278
|
-
/// &RETURNS&: Tensor
|
279
|
-
fn matmul(&self, rhs: &Self) -> PyResult<Self> {
|
280
|
-
Ok(PyTensor(self.0.matmul(rhs).map_err(wrap_err)?))
|
281
|
-
}
|
282
|
-
|
283
|
-
/// Adds the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
284
|
-
/// &RETURNS&: Tensor
|
285
|
-
fn broadcast_add(&self, rhs: &Self) -> PyResult<Self> {
|
286
|
-
Ok(PyTensor(self.0.broadcast_add(rhs).map_err(wrap_err)?))
|
287
|
-
}
|
288
|
-
|
289
|
-
/// Subtracts the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
290
|
-
/// &RETURNS&: Tensor
|
291
|
-
fn broadcast_sub(&self, rhs: &Self) -> PyResult<Self> {
|
292
|
-
Ok(PyTensor(self.0.broadcast_sub(rhs).map_err(wrap_err)?))
|
293
|
-
}
|
294
|
-
|
295
|
-
/// Multiplies the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
296
|
-
/// &RETURNS&: Tensor
|
297
|
-
fn broadcast_mul(&self, rhs: &Self) -> PyResult<Self> {
|
298
|
-
Ok(PyTensor(self.0.broadcast_mul(rhs).map_err(wrap_err)?))
|
299
|
-
}
|
300
|
-
|
301
|
-
/// Divides the two tensors, while broadcasting the right-hand-side tensor to match the shape of the left-hand-side tensor.
|
302
|
-
/// &RETURNS&: Tensor
|
303
|
-
fn broadcast_div(&self, rhs: &Self) -> PyResult<Self> {
|
304
|
-
Ok(PyTensor(self.0.broadcast_div(rhs).map_err(wrap_err)?))
|
305
|
-
}
|
306
|
-
|
307
|
-
/// Returns a tensor with the same shape as the input tensor, the values are taken from
|
308
|
-
/// `on_true` if the input tensor value is not zero, and `on_false` at the positions where the
|
309
|
-
/// input tensor is equal to zero.
|
310
|
-
/// &RETURNS&: Tensor
|
311
|
-
fn where_cond(&self, on_true: &Self, on_false: &Self) -> PyResult<Self> {
|
312
|
-
Ok(PyTensor(
|
313
|
-
self.0.where_cond(on_true, on_false).map_err(wrap_err)?,
|
314
|
-
))
|
315
|
-
}
|
316
|
-
|
317
|
-
/// Add two tensors.
|
318
|
-
/// &RETURNS&: Tensor
|
319
|
-
fn __add__(&self, rhs: &PyTensor) -> PyResult<Self> {
|
320
|
-
Ok(Self(self.0.add(&rhs.0).map_err(wrap_err)?))
|
321
|
-
}
|
322
|
-
|
323
|
-
/// Multiply two tensors.
|
324
|
-
/// &RETURNS&: Tensor
|
325
|
-
fn __mul__(&self, rhs: &PyTensor) -> PyResult<Self> {
|
326
|
-
Ok(Self(self.0.mul(&rhs.0).map_err(wrap_err)?))
|
327
|
-
}
|
328
|
-
|
329
|
-
/// Subtract two tensors.
|
330
|
-
/// &RETURNS&: Tensor
|
331
|
-
fn __sub__(&self, rhs: &PyTensor) -> PyResult<Self> {
|
332
|
-
Ok(Self(self.0.sub(&rhs.0).map_err(wrap_err)?))
|
333
|
-
}
|
334
|
-
|
335
|
-
/// Divide two tensors.
|
336
|
-
/// &RETURNS&: Tensor
|
337
|
-
fn __truediv__(&self, rhs: &PyTensor) -> PyResult<Self> {
|
338
|
-
Ok(Self(self.0.div(&rhs.0).map_err(wrap_err)?))
|
339
|
-
}
|
340
|
-
|
341
|
-
/// Reshapes the tensor to the given shape.
|
342
|
-
/// &RETURNS&: Tensor
|
343
|
-
fn reshape(&self, shape: Vec<usize>) -> PyResult<Self> {
|
344
|
-
Ok(PyTensor(self.0.reshape(shape).map_err(wrap_err)?))
|
345
|
-
}
|
346
|
-
|
347
|
-
/// Broadcasts the tensor to the given shape.
|
348
|
-
/// &RETURNS&: Tensor
|
349
|
-
fn broadcast_as(&self, shape: Vec<usize>) -> PyResult<Self> {
|
350
|
-
Ok(PyTensor(self.0.broadcast_as(shape).map_err(wrap_err)?))
|
351
|
-
}
|
352
|
-
|
353
|
-
/// Broadcasts the tensor to the given shape, adding new dimensions on the left.
|
354
|
-
/// &RETURNS&: Tensor
|
355
|
-
fn broadcast_left(&self, shape: Vec<usize>) -> PyResult<Self> {
|
356
|
-
Ok(PyTensor(self.0.broadcast_left(shape).map_err(wrap_err)?))
|
357
|
-
}
|
358
|
-
|
359
|
-
/// Creates a new tensor with the specified dimension removed if its size was one.
|
360
|
-
/// &RETURNS&: Tensor
|
361
|
-
fn squeeze(&self, dim: i64) -> PyResult<Self> {
|
362
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
363
|
-
Ok(PyTensor(self.0.squeeze(dim).map_err(wrap_err)?))
|
364
|
-
}
|
365
|
-
|
366
|
-
/// Creates a new tensor with a dimension of size one inserted at the specified position.
|
367
|
-
/// &RETURNS&: Tensor
|
368
|
-
fn unsqueeze(&self, dim: usize) -> PyResult<Self> {
|
369
|
-
Ok(PyTensor(self.0.unsqueeze(dim).map_err(wrap_err)?))
|
370
|
-
}
|
371
|
-
|
372
|
-
/// Gets the value at the specified index.
|
373
|
-
/// &RETURNS&: Tensor
|
374
|
-
fn get(&self, index: i64) -> PyResult<Self> {
|
375
|
-
let index = actual_index(self, 0, index).map_err(wrap_err)?;
|
376
|
-
Ok(PyTensor(self.0.get(index).map_err(wrap_err)?))
|
377
|
-
}
|
378
|
-
|
379
|
-
/// Returns a tensor that is a transposed version of the input, the given dimensions are swapped.
|
380
|
-
/// &RETURNS&: Tensor
|
381
|
-
fn transpose(&self, dim1: usize, dim2: usize) -> PyResult<Self> {
|
382
|
-
Ok(PyTensor(self.0.transpose(dim1, dim2).map_err(wrap_err)?))
|
383
|
-
}
|
384
|
-
|
385
|
-
/// Returns a new tensor that is a narrowed version of the input, the dimension `dim`
|
386
|
-
/// ranges from `start` to `start + len`.
|
387
|
-
/// &RETURNS&: Tensor
|
388
|
-
fn narrow(&self, dim: i64, start: i64, len: usize) -> PyResult<Self> {
|
389
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
390
|
-
let start = actual_index(self, dim, start).map_err(wrap_err)?;
|
391
|
-
Ok(PyTensor(self.0.narrow(dim, start, len).map_err(wrap_err)?))
|
392
|
-
}
|
393
|
-
|
394
|
-
/// Returns the indices of the maximum value(s) across the selected dimension.
|
395
|
-
/// &RETURNS&: Tensor
|
396
|
-
fn argmax_keepdim(&self, dim: i64) -> PyResult<Self> {
|
397
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
398
|
-
Ok(PyTensor(self.0.argmax_keepdim(dim).map_err(wrap_err)?))
|
399
|
-
}
|
400
|
-
|
401
|
-
/// Returns the indices of the minimum value(s) across the selected dimension.
|
402
|
-
/// &RETURNS&: Tensor
|
403
|
-
fn argmin_keepdim(&self, dim: i64) -> PyResult<Self> {
|
404
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
405
|
-
Ok(PyTensor(self.0.argmin_keepdim(dim).map_err(wrap_err)?))
|
406
|
-
}
|
407
|
-
|
408
|
-
/// Gathers the maximum value across the selected dimension.
|
409
|
-
/// &RETURNS&: Tensor
|
410
|
-
fn max_keepdim(&self, dim: i64) -> PyResult<Self> {
|
411
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
412
|
-
Ok(PyTensor(self.0.max_keepdim(dim).map_err(wrap_err)?))
|
413
|
-
}
|
414
|
-
|
415
|
-
/// Gathers the minimum value across the selected dimension.
|
416
|
-
/// &RETURNS&: Tensor
|
417
|
-
fn min_keepdim(&self, dim: i64) -> PyResult<Self> {
|
418
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
419
|
-
Ok(PyTensor(self.0.min_keepdim(dim).map_err(wrap_err)?))
|
420
|
-
}
|
421
|
-
|
422
|
-
// fn eq(&self, rhs: &Self) -> PyResult<Self> {
|
423
|
-
// Ok(PyTensor(self.0.eq(rhs).map_err(wrap_err)?))
|
424
|
-
// }
|
425
|
-
|
426
|
-
// fn ne(&self, rhs: &Self) -> PyResult<Self> {
|
427
|
-
// Ok(PyTensor(self.0.ne(rhs).map_err(wrap_err)?))
|
428
|
-
// }
|
429
|
-
|
430
|
-
// fn lt(&self, rhs: &Self) -> PyResult<Self> {
|
431
|
-
// Ok(PyTensor(self.0.lt(rhs).map_err(wrap_err)?))
|
432
|
-
// }
|
433
|
-
|
434
|
-
// fn gt(&self, rhs: &Self) -> PyResult<Self> {
|
435
|
-
// Ok(PyTensor(self.0.gt(rhs).map_err(wrap_err)?))
|
436
|
-
// }
|
437
|
-
|
438
|
-
// fn ge(&self, rhs: &Self) -> PyResult<Self> {
|
439
|
-
// Ok(PyTensor(self.0.ge(rhs).map_err(wrap_err)?))
|
440
|
-
// }
|
441
|
-
|
442
|
-
// fn le(&self, rhs: &Self) -> PyResult<Self> {
|
443
|
-
// Ok(PyTensor(self.0.le(rhs).map_err(wrap_err)?))
|
444
|
-
// }
|
445
|
-
|
446
|
-
/// Returns the sum of the tensor.
|
447
|
-
/// &RETURNS&: Tensor
|
448
|
-
fn sum_all(&self) -> PyResult<Self> {
|
449
|
-
Ok(PyTensor(self.0.sum_all().map_err(wrap_err)?))
|
450
|
-
}
|
451
|
-
|
452
|
-
/// Returns the mean of the tensor.
|
453
|
-
/// &RETURNS&: Tensor
|
454
|
-
fn mean_all(&self) -> PyResult<Self> {
|
455
|
-
let elements = self.0.elem_count();
|
456
|
-
let sum = self.0.sum_all().map_err(wrap_err)?;
|
457
|
-
let mean = (sum / elements as f64).map_err(wrap_err)?;
|
458
|
-
Ok(PyTensor(mean))
|
459
|
-
}
|
460
|
-
|
461
|
-
/// Flattens the tensor on the dimension indexes from `dim` (inclusive) to the last dimension.
|
462
|
-
/// &RETURNS&: Tensor
|
463
|
-
fn flatten_from(&self, dim: i64) -> PyResult<Self> {
|
464
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
465
|
-
Ok(PyTensor(self.0.flatten_from(dim).map_err(wrap_err)?))
|
466
|
-
}
|
467
|
-
|
468
|
-
///Flattens the tensor on the dimension indexes from `0` to `dim` (inclusive).
|
469
|
-
/// &RETURNS&: Tensor
|
470
|
-
fn flatten_to(&self, dim: i64) -> PyResult<Self> {
|
471
|
-
let dim = actual_dim(self, dim).map_err(wrap_err)?;
|
472
|
-
Ok(PyTensor(self.0.flatten_to(dim).map_err(wrap_err)?))
|
473
|
-
}
|
474
|
-
|
475
|
-
/// Flattens the tensor into a 1D tensor.
|
476
|
-
/// &RETURNS&: Tensor
|
477
|
-
fn flatten_all(&self) -> PyResult<Self> {
|
478
|
-
Ok(PyTensor(self.0.flatten_all().map_err(wrap_err)?))
|
479
|
-
}
|
480
|
-
|
481
|
-
/// Transposes the tensor.
|
482
|
-
/// &RETURNS&: Tensor
|
483
|
-
fn t(&self) -> PyResult<Self> {
|
484
|
-
Ok(PyTensor(self.0.t().map_err(wrap_err)?))
|
485
|
-
}
|
486
|
-
|
487
|
-
/// Makes the tensor contiguous in memory.
|
488
|
-
/// &RETURNS&: Tensor
|
489
|
-
fn contiguous(&self) -> PyResult<Self> {
|
490
|
-
Ok(PyTensor(self.0.contiguous().map_err(wrap_err)?))
|
491
|
-
}
|
492
|
-
|
493
|
-
/// Returns true if the tensor is contiguous in C order.
|
494
|
-
/// &RETURNS&: bool
|
495
|
-
fn is_contiguous(&self) -> bool {
|
496
|
-
self.0.is_contiguous()
|
497
|
-
}
|
498
|
-
|
499
|
-
/// Returns true if the tensor is contiguous in Fortran order.
|
500
|
-
/// &RETURNS&: bool
|
501
|
-
fn is_fortran_contiguous(&self) -> bool {
|
502
|
-
self.0.is_fortran_contiguous()
|
503
|
-
}
|
504
|
-
|
505
|
-
/// Detach the tensor from the computation graph.
|
506
|
-
/// &RETURNS&: Tensor
|
507
|
-
fn detach(&self) -> PyResult<Self> {
|
508
|
-
Ok(PyTensor(self.0.detach().map_err(wrap_err)?))
|
509
|
-
}
|
510
|
-
|
511
|
-
/// Returns a copy of the tensor.
|
512
|
-
/// &RETURNS&: Tensor
|
513
|
-
fn copy(&self) -> PyResult<Self> {
|
514
|
-
Ok(PyTensor(self.0.copy().map_err(wrap_err)?))
|
515
|
-
}
|
516
|
-
|
517
|
-
/// Convert the tensor to a new dtype.
|
518
|
-
/// &RETURNS&: Tensor
|
519
|
-
fn to_dtype(&self, dtype: magnus::Symbol) -> PyResult<Self> {
|
520
|
-
let dtype = PyDType::from_pyobject(dtype)?;
|
521
|
-
Ok(PyTensor(self.0.to_dtype(dtype.0).map_err(wrap_err)?))
|
522
|
-
}
|
523
|
-
|
524
|
-
/// Move the tensor to a new device.
|
525
|
-
/// &RETURNS&: Tensor
|
526
|
-
fn to_device(&self, device: PyDevice) -> PyResult<Self> {
|
527
|
-
let device = device.as_device()?;
|
528
|
-
Ok(PyTensor(self.0.to_device(&device).map_err(wrap_err)?))
|
529
|
-
}
|
530
|
-
}
|
531
|
-
|
532
|
-
impl PyTensor {
|
533
|
-
// fn cat(tensors: Vec<PyTensor>, dim: i64) -> PyResult<PyTensor> {
|
534
|
-
// if tensors.is_empty() {
|
535
|
-
// return Err(Error::new(
|
536
|
-
// magnus::exception::arg_error(),
|
537
|
-
// "empty input to cat",
|
538
|
-
// ));
|
539
|
-
// }
|
540
|
-
// let dim = actual_dim(&tensors[0].0, dim).map_err(wrap_err)?;
|
541
|
-
// let tensors = tensors.into_iter().map(|t| t.0).collect::<Vec<_>>();
|
542
|
-
// let tensor = Tensor::cat(&tensors, dim).map_err(wrap_err)?;
|
543
|
-
// Ok(PyTensor(tensor))
|
544
|
-
// }
|
545
|
-
|
546
|
-
// fn stack(tensors: Vec<PyTensor>, dim: usize) -> PyResult<Self> {
|
547
|
-
// let tensors = tensors.into_iter().map(|t| t.0).collect::<Vec<_>>();
|
548
|
-
// let tensor = Tensor::stack(&tensors, dim).map_err(wrap_err)?;
|
549
|
-
// Ok(Self(tensor))
|
550
|
-
// }
|
551
|
-
|
552
|
-
/// Creates a new tensor with random values.
|
553
|
-
/// &RETURNS&: Tensor
|
554
|
-
fn rand(shape: Vec<usize>) -> PyResult<Self> {
|
555
|
-
let device = PyDevice::Cpu.as_device()?;
|
556
|
-
Ok(Self(
|
557
|
-
Tensor::rand(0f32, 1f32, shape, &device).map_err(wrap_err)?,
|
558
|
-
))
|
559
|
-
}
|
560
|
-
|
561
|
-
/// Creates a new tensor with random values from a normal distribution.
|
562
|
-
/// &RETURNS&: Tensor
|
563
|
-
fn randn(shape: Vec<usize>) -> PyResult<Self> {
|
564
|
-
let device = PyDevice::Cpu.as_device()?;
|
565
|
-
Ok(Self(
|
566
|
-
Tensor::randn(0f32, 1f32, shape, &device).map_err(wrap_err)?,
|
567
|
-
))
|
568
|
-
}
|
569
|
-
|
570
|
-
/// Creates a new tensor filled with ones.
|
571
|
-
/// &RETURNS&: Tensor
|
572
|
-
fn ones(shape: Vec<usize>) -> PyResult<Self> {
|
573
|
-
let device = PyDevice::Cpu.as_device()?;
|
574
|
-
Ok(Self(
|
575
|
-
Tensor::ones(shape, DType::F32, &device).map_err(wrap_err)?,
|
576
|
-
))
|
577
|
-
}
|
578
|
-
/// Creates a new tensor filled with zeros.
|
579
|
-
/// &RETURNS&: Tensor
|
580
|
-
fn zeros(shape: Vec<usize>) -> PyResult<Self> {
|
581
|
-
let device = PyDevice::Cpu.as_device()?;
|
582
|
-
Ok(Self(
|
583
|
-
Tensor::zeros(shape, DType::F32, &device).map_err(wrap_err)?,
|
584
|
-
))
|
585
|
-
}
|
586
|
-
}
|
587
|
-
|
588
|
-
#[derive(Debug)]
|
589
|
-
#[magnus::wrap(class = "Candle::QTensor", free_immediately, size)]
|
590
|
-
/// A quantized tensor.
|
591
|
-
struct PyQTensor(Arc<QTensor>);
|
592
|
-
|
593
|
-
impl std::ops::Deref for PyQTensor {
|
594
|
-
type Target = QTensor;
|
595
|
-
|
596
|
-
fn deref(&self) -> &Self::Target {
|
597
|
-
self.0.as_ref()
|
598
|
-
}
|
599
|
-
}
|
600
|
-
|
601
|
-
impl PyQTensor {
|
602
|
-
///Gets the tensors quantized dtype.
|
603
|
-
/// &RETURNS&: str
|
604
|
-
fn ggml_dtype(&self) -> String {
|
605
|
-
format!("{:?}", self.0.dtype())
|
606
|
-
}
|
607
|
-
|
608
|
-
///Gets the rank of the tensor.
|
609
|
-
/// &RETURNS&: int
|
610
|
-
fn rank(&self) -> usize {
|
611
|
-
self.0.rank()
|
612
|
-
}
|
613
|
-
|
614
|
-
///Gets the shape of the tensor.
|
615
|
-
/// &RETURNS&: Tuple[int]
|
616
|
-
fn shape(&self) -> Vec<usize> {
|
617
|
-
self.0.shape().dims().to_vec()
|
618
|
-
}
|
619
|
-
|
620
|
-
fn __repr__(&self) -> String {
|
621
|
-
format!("{:?}", self.0)
|
622
|
-
}
|
623
|
-
|
624
|
-
fn __str__(&self) -> String {
|
625
|
-
self.__repr__()
|
626
|
-
}
|
627
|
-
|
628
|
-
/// Dequantizes the tensor.
|
629
|
-
/// &RETURNS&: Tensor
|
630
|
-
fn dequantize(&self) -> PyResult<PyTensor> {
|
631
|
-
let tensor = self.0.dequantize(&Device::Cpu).map_err(wrap_err)?;
|
632
|
-
Ok(PyTensor(tensor))
|
633
|
-
}
|
634
|
-
|
635
|
-
// fn matmul_t(&self, lhs: &PyTensor) -> PyResult<PyTensor> {
|
636
|
-
// let qmatmul = ::candle_core::quantized::QMatMul::from_arc(self.0.clone());
|
637
|
-
// let res = qmatmul.forward(lhs).map_err(wrap_err)?;
|
638
|
-
// Ok(PyTensor(res))
|
639
|
-
// }
|
640
|
-
}
|
641
|
-
|
642
|
-
/// Returns true if the 'cuda' backend is available.
|
643
|
-
/// &RETURNS&: bool
|
644
|
-
fn cuda_is_available() -> bool {
|
645
|
-
candle_core::utils::cuda_is_available()
|
646
|
-
}
|
647
|
-
|
648
|
-
/// Returns true if candle was compiled with 'accelerate' support.
|
649
|
-
/// &RETURNS&: bool
|
650
|
-
fn has_accelerate() -> bool {
|
651
|
-
candle_core::utils::has_accelerate()
|
652
|
-
}
|
653
|
-
|
654
|
-
/// Returns true if candle was compiled with MKL support.
|
655
|
-
/// &RETURNS&: bool
|
656
|
-
fn has_mkl() -> bool {
|
657
|
-
candle_core::utils::has_mkl()
|
658
|
-
}
|
659
|
-
|
660
|
-
/// Returns the number of threads used by the candle.
|
661
|
-
/// &RETURNS&: int
|
662
|
-
fn get_num_threads() -> usize {
|
663
|
-
candle_core::utils::get_num_threads()
|
664
|
-
}
|
665
|
-
|
666
|
-
fn candle_utils(rb_candle: magnus::RModule) -> Result<(), Error> {
|
667
|
-
let rb_utils = rb_candle.define_module("Utils")?;
|
668
|
-
rb_utils.define_singleton_method("cuda_is_available", function!(cuda_is_available, 0))?;
|
669
|
-
rb_utils.define_singleton_method("get_num_threads", function!(get_num_threads, 0))?;
|
670
|
-
rb_utils.define_singleton_method("has_accelerate", function!(has_accelerate, 0))?;
|
671
|
-
rb_utils.define_singleton_method("has_mkl", function!(has_mkl, 0))?;
|
672
|
-
Ok(())
|
673
|
-
}
|
674
|
-
|
675
|
-
/// Applies the Softmax function to a given tensor.#
|
676
|
-
/// &RETURNS&: Tensor
|
677
|
-
fn softmax(tensor: PyTensor, dim: i64) -> PyResult<PyTensor> {
|
678
|
-
let dim = actual_dim(&tensor, dim).map_err(wrap_err)?;
|
679
|
-
let sm = candle_nn::ops::softmax(&tensor.0, dim).map_err(wrap_err)?;
|
680
|
-
Ok(PyTensor(sm))
|
681
|
-
}
|
682
|
-
|
683
|
-
/// Applies the Sigmoid Linear Unit (SiLU) function to a given tensor.
|
684
|
-
/// &RETURNS&: Tensor
|
685
|
-
fn silu(tensor: PyTensor) -> PyResult<PyTensor> {
|
686
|
-
let s = candle_nn::ops::silu(&tensor.0).map_err(wrap_err)?;
|
687
|
-
Ok(PyTensor(s))
|
688
|
-
}
|
5
|
+
pub mod model;
|
689
6
|
|
690
7
|
#[magnus::init]
|
691
|
-
fn init(ruby: &Ruby) ->
|
8
|
+
fn init(ruby: &Ruby) -> RbResult<()> {
|
692
9
|
let rb_candle = ruby.define_module("Candle")?;
|
693
10
|
candle_utils(rb_candle)?;
|
694
11
|
let rb_tensor = rb_candle.define_class("Tensor", Ruby::class_object(ruby))?;
|
695
|
-
rb_tensor.define_singleton_method("new", function!(
|
696
|
-
// rb_tensor.define_singleton_method("cat", function!(
|
697
|
-
// rb_tensor.define_singleton_method("stack", function!(
|
698
|
-
rb_tensor.define_singleton_method("rand", function!(
|
699
|
-
rb_tensor.define_singleton_method("randn", function!(
|
700
|
-
rb_tensor.define_singleton_method("ones", function!(
|
701
|
-
rb_tensor.define_singleton_method("zeros", function!(
|
702
|
-
rb_tensor.define_method("
|
703
|
-
rb_tensor.define_method("
|
704
|
-
rb_tensor.define_method("
|
705
|
-
rb_tensor.define_method("
|
706
|
-
rb_tensor.define_method("
|
707
|
-
rb_tensor.define_method("
|
708
|
-
rb_tensor.define_method("
|
709
|
-
rb_tensor.define_method("
|
710
|
-
rb_tensor.define_method("
|
711
|
-
rb_tensor.define_method("
|
712
|
-
rb_tensor.define_method("
|
713
|
-
rb_tensor.define_method("
|
714
|
-
rb_tensor.define_method("
|
715
|
-
rb_tensor.define_method("
|
716
|
-
rb_tensor.define_method("
|
717
|
-
rb_tensor.define_method("
|
718
|
-
rb_tensor.define_method("
|
719
|
-
rb_tensor.define_method("
|
720
|
-
rb_tensor.define_method("
|
721
|
-
rb_tensor.define_method("
|
722
|
-
rb_tensor.define_method("
|
723
|
-
rb_tensor.define_method("
|
724
|
-
rb_tensor.define_method("
|
725
|
-
rb_tensor.define_method("
|
726
|
-
rb_tensor.define_method("
|
727
|
-
rb_tensor.define_method("
|
728
|
-
rb_tensor.define_method("
|
729
|
-
rb_tensor.define_method("
|
730
|
-
rb_tensor.define_method("
|
731
|
-
rb_tensor.define_method("
|
732
|
-
rb_tensor.define_method("
|
733
|
-
rb_tensor.define_method("
|
734
|
-
rb_tensor.define_method("
|
735
|
-
rb_tensor.define_method("
|
736
|
-
rb_tensor.define_method("
|
737
|
-
|
738
|
-
|
739
|
-
|
740
|
-
// rb_tensor.define_method("
|
741
|
-
// rb_tensor.define_method("
|
742
|
-
// rb_tensor.define_method("
|
743
|
-
rb_tensor.define_method("
|
744
|
-
rb_tensor.define_method("
|
745
|
-
rb_tensor.define_method("
|
746
|
-
rb_tensor.define_method("
|
747
|
-
rb_tensor.define_method("
|
748
|
-
rb_tensor.define_method("
|
749
|
-
rb_tensor.define_method("
|
750
|
-
rb_tensor.define_method("
|
12
|
+
rb_tensor.define_singleton_method("new", function!(RbTensor::new, 2))?;
|
13
|
+
// rb_tensor.define_singleton_method("cat", function!(RbTensor::cat, 2))?;
|
14
|
+
// rb_tensor.define_singleton_method("stack", function!(RbTensor::stack, 2))?;
|
15
|
+
rb_tensor.define_singleton_method("rand", function!(RbTensor::rand, 1))?;
|
16
|
+
rb_tensor.define_singleton_method("randn", function!(RbTensor::randn, 1))?;
|
17
|
+
rb_tensor.define_singleton_method("ones", function!(RbTensor::ones, 1))?;
|
18
|
+
rb_tensor.define_singleton_method("zeros", function!(RbTensor::zeros, 1))?;
|
19
|
+
rb_tensor.define_method("values", method!(RbTensor::values, 0))?;
|
20
|
+
rb_tensor.define_method("shape", method!(RbTensor::shape, 0))?;
|
21
|
+
rb_tensor.define_method("stride", method!(RbTensor::stride, 0))?;
|
22
|
+
rb_tensor.define_method("dtype", method!(RbTensor::dtype, 0))?;
|
23
|
+
rb_tensor.define_method("device", method!(RbTensor::device, 0))?;
|
24
|
+
rb_tensor.define_method("rank", method!(RbTensor::rank, 0))?;
|
25
|
+
rb_tensor.define_method("elem_count", method!(RbTensor::elem_count, 0))?;
|
26
|
+
rb_tensor.define_method("sin", method!(RbTensor::sin, 0))?;
|
27
|
+
rb_tensor.define_method("cos", method!(RbTensor::cos, 0))?;
|
28
|
+
rb_tensor.define_method("log", method!(RbTensor::log, 0))?;
|
29
|
+
rb_tensor.define_method("sqr", method!(RbTensor::sqr, 0))?;
|
30
|
+
rb_tensor.define_method("sqrt", method!(RbTensor::sqrt, 0))?;
|
31
|
+
rb_tensor.define_method("recip", method!(RbTensor::recip, 0))?;
|
32
|
+
rb_tensor.define_method("exp", method!(RbTensor::exp, 0))?;
|
33
|
+
rb_tensor.define_method("powf", method!(RbTensor::powf, 1))?;
|
34
|
+
rb_tensor.define_method("index_select", method!(RbTensor::index_select, 2))?;
|
35
|
+
rb_tensor.define_method("matmul", method!(RbTensor::matmul, 1))?;
|
36
|
+
rb_tensor.define_method("broadcast_add", method!(RbTensor::broadcast_add, 1))?;
|
37
|
+
rb_tensor.define_method("broadcast_sub", method!(RbTensor::broadcast_sub, 1))?;
|
38
|
+
rb_tensor.define_method("broadcast_mul", method!(RbTensor::broadcast_mul, 1))?;
|
39
|
+
rb_tensor.define_method("broadcast_div", method!(RbTensor::broadcast_div, 1))?;
|
40
|
+
rb_tensor.define_method("where_cond", method!(RbTensor::where_cond, 2))?;
|
41
|
+
rb_tensor.define_method("+", method!(RbTensor::__add__, 1))?;
|
42
|
+
rb_tensor.define_method("*", method!(RbTensor::__mul__, 1))?;
|
43
|
+
rb_tensor.define_method("-", method!(RbTensor::__sub__, 1))?;
|
44
|
+
rb_tensor.define_method("reshape", method!(RbTensor::reshape, 1))?;
|
45
|
+
rb_tensor.define_method("broadcast_as", method!(RbTensor::broadcast_as, 1))?;
|
46
|
+
rb_tensor.define_method("broadcast_left", method!(RbTensor::broadcast_left, 1))?;
|
47
|
+
rb_tensor.define_method("squeeze", method!(RbTensor::squeeze, 1))?;
|
48
|
+
rb_tensor.define_method("unsqueeze", method!(RbTensor::unsqueeze, 1))?;
|
49
|
+
rb_tensor.define_method("get", method!(RbTensor::get, 1))?;
|
50
|
+
rb_tensor.define_method("[]", method!(RbTensor::get, 1))?;
|
51
|
+
rb_tensor.define_method("transpose", method!(RbTensor::transpose, 2))?;
|
52
|
+
rb_tensor.define_method("narrow", method!(RbTensor::narrow, 3))?;
|
53
|
+
rb_tensor.define_method("argmax_keepdim", method!(RbTensor::argmax_keepdim, 1))?;
|
54
|
+
rb_tensor.define_method("argmin_keepdim", method!(RbTensor::argmin_keepdim, 1))?;
|
55
|
+
rb_tensor.define_method("max_keepdim", method!(RbTensor::max_keepdim, 1))?;
|
56
|
+
rb_tensor.define_method("min_keepdim", method!(RbTensor::min_keepdim, 1))?;
|
57
|
+
// rb_tensor.define_method("eq", method!(RbTensor::eq, 1))?;
|
58
|
+
// rb_tensor.define_method("ne", method!(RbTensor::ne, 1))?;
|
59
|
+
// rb_tensor.define_method("lt", method!(RbTensor::lt, 1))?;
|
60
|
+
// rb_tensor.define_method("gt", method!(RbTensor::gt, 1))?;
|
61
|
+
// rb_tensor.define_method("ge", method!(RbTensor::ge, 1))?;
|
62
|
+
// rb_tensor.define_method("le", method!(RbTensor::le, 1))?;
|
63
|
+
rb_tensor.define_method("sum_all", method!(RbTensor::sum_all, 0))?;
|
64
|
+
rb_tensor.define_method("mean_all", method!(RbTensor::mean_all, 0))?;
|
65
|
+
rb_tensor.define_method("flatten_from", method!(RbTensor::flatten_from, 1))?;
|
66
|
+
rb_tensor.define_method("flatten_to", method!(RbTensor::flatten_to, 1))?;
|
67
|
+
rb_tensor.define_method("flatten_all", method!(RbTensor::flatten_all, 0))?;
|
68
|
+
rb_tensor.define_method("t", method!(RbTensor::t, 0))?;
|
69
|
+
rb_tensor.define_method("contiguous", method!(RbTensor::contiguous, 0))?;
|
70
|
+
rb_tensor.define_method("is_contiguous", method!(RbTensor::is_contiguous, 0))?;
|
751
71
|
rb_tensor.define_method(
|
752
72
|
"is_fortran_contiguous",
|
753
|
-
method!(
|
73
|
+
method!(RbTensor::is_fortran_contiguous, 0),
|
754
74
|
)?;
|
755
|
-
rb_tensor.define_method("detach", method!(
|
756
|
-
rb_tensor.define_method("copy", method!(
|
757
|
-
rb_tensor.define_method("to_dtype", method!(
|
758
|
-
rb_tensor.define_method("to_device", method!(
|
759
|
-
rb_tensor.define_method("to_s", method!(
|
760
|
-
rb_tensor.define_method("inspect", method!(
|
75
|
+
rb_tensor.define_method("detach", method!(RbTensor::detach, 0))?;
|
76
|
+
rb_tensor.define_method("copy", method!(RbTensor::copy, 0))?;
|
77
|
+
rb_tensor.define_method("to_dtype", method!(RbTensor::to_dtype, 1))?;
|
78
|
+
rb_tensor.define_method("to_device", method!(RbTensor::to_device, 1))?;
|
79
|
+
rb_tensor.define_method("to_s", method!(RbTensor::__str__, 0))?;
|
80
|
+
rb_tensor.define_method("inspect", method!(RbTensor::__repr__, 0))?;
|
81
|
+
|
761
82
|
let rb_dtype = rb_candle.define_class("DType", Ruby::class_object(ruby))?;
|
762
|
-
rb_dtype.define_method("to_s", method!(
|
763
|
-
rb_dtype.define_method("inspect", method!(
|
83
|
+
rb_dtype.define_method("to_s", method!(RbDType::__str__, 0))?;
|
84
|
+
rb_dtype.define_method("inspect", method!(RbDType::__repr__, 0))?;
|
85
|
+
|
764
86
|
let rb_device = rb_candle.define_class("Device", Ruby::class_object(ruby))?;
|
765
|
-
rb_device.define_method("to_s", method!(
|
766
|
-
rb_device.define_method("inspect", method!(
|
87
|
+
rb_device.define_method("to_s", method!(RbDevice::__str__, 0))?;
|
88
|
+
rb_device.define_method("inspect", method!(RbDevice::__repr__, 0))?;
|
89
|
+
|
767
90
|
let rb_qtensor = rb_candle.define_class("QTensor", Ruby::class_object(ruby))?;
|
768
|
-
rb_qtensor.define_method("ggml_dtype", method!(
|
769
|
-
rb_qtensor.define_method("rank", method!(
|
770
|
-
rb_qtensor.define_method("shape", method!(
|
771
|
-
rb_qtensor.define_method("dequantize", method!(
|
91
|
+
rb_qtensor.define_method("ggml_dtype", method!(RbQTensor::ggml_dtype, 0))?;
|
92
|
+
rb_qtensor.define_method("rank", method!(RbQTensor::rank, 0))?;
|
93
|
+
rb_qtensor.define_method("shape", method!(RbQTensor::shape, 0))?;
|
94
|
+
rb_qtensor.define_method("dequantize", method!(RbQTensor::dequantize, 0))?;
|
95
|
+
|
96
|
+
let rb_model = rb_candle.define_class("Model", Ruby::class_object(ruby))?;
|
97
|
+
rb_model.define_singleton_method("new", function!(RbModel::new, 0))?;
|
98
|
+
rb_model.define_method("embedding", method!(RbModel::embedding, 1))?;
|
99
|
+
rb_model.define_method("to_s", method!(RbModel::__str__, 0))?;
|
100
|
+
rb_model.define_method("inspect", method!(RbModel::__repr__, 0))?;
|
101
|
+
|
772
102
|
Ok(())
|
773
103
|
}
|