red-arrow-numo-narray 0.0.1 → 0.0.2

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
- SHA1:
3
- metadata.gz: 0af7121f227811b26d39f741e41d202a72dcdea9
4
- data.tar.gz: 6b25427045952ac472d248d9aa728541be10ec66
2
+ SHA256:
3
+ metadata.gz: d3548b4dd13c4472bf84d6a46593328972efd81c81f71fd9c022f7823734ed9c
4
+ data.tar.gz: 3e6c02abf4ba9827db4ba6f6dc8421a805a20df7c81d2bd050226e6888a768e5
5
5
  SHA512:
6
- metadata.gz: '009047379e64ca2ef4d67e011045c8ee2e79290fd507815f0433295daf8765d13ca1e52ccdffc26439e98e82847309f0b63f080808adae4d1090b02ebaf17db1'
7
- data.tar.gz: 017462754b7a95cc01ac858786e04fb677594ce0711d8b0b71a29e52a3ee4453af79d1bc0f36e0cdd8e972aaa70a8b5ba872d22ef8c3dd3b821f1741e6354f94
6
+ metadata.gz: 2c6d433d0e3f6738f0e6d8b77b97760d36ac775faa4992ff1f4992f21179cc0439c2aa383cc3044090d54f82e37c968920f3b4ec638a65edb1a73e62c8220cab
7
+ data.tar.gz: 78f28f991402fd5b3ac96b901e7b7ef230d6459d55f08b3b1f3644a599cd2995aca020615c5f0ea2cc11a039b8529e3ec3e167db619e366f936630aaa58b6aea
data/README.md CHANGED
@@ -21,8 +21,8 @@ Red Arrow Numo::NArray adds `Arrow::Tensor#to_narray` and `#to_arrow` to `Numo::
21
21
  ```ruby
22
22
  require "arrow-numo-narray"
23
23
 
24
- tensor.to_narray # -> A Numo::NArray's numeric subclass such as Numo::Int8
25
- narray.to_arrow # -> An Arrow::Tensor object
24
+ tensor.to_narray # -> An object of Numo::NArray's numeric subclass such as Numo::Int8
25
+ narray.to_arrow # -> An object of Arrow::Tensor
26
26
  ```
27
27
 
28
28
  ## Dependencies
@@ -1,5 +1,16 @@
1
1
  # News
2
2
 
3
+ ## 0.0.2 - 2019-08-07
4
+
5
+ ### Improvements
6
+
7
+ * Added `Arrow::Array#to_narray`.
8
+ [GitHub#1][Suggested by Kenta Murata]
9
+
10
+ ### Thanks
11
+
12
+ * Kenta Murata
13
+
3
14
  ## 0.0.1 - 2017-04-20
4
15
 
5
16
  Initial release!!!
@@ -17,5 +17,7 @@ require "numo/narray"
17
17
 
18
18
  require "arrow-numo-narray/version"
19
19
 
20
+ require "arrow-numo-narray/error"
21
+
20
22
  require "arrow-numo-narray/to-arrow"
21
23
  require "arrow-numo-narray/to-narray"
@@ -0,0 +1,21 @@
1
+ # Copyright 2019 Sutou Kouhei <kou@clear-code.com>
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ module ArrowNumoNArray
16
+ class Error < StandardError
17
+ end
18
+
19
+ class UncovertableError < Error
20
+ end
21
+ end
@@ -1,4 +1,4 @@
1
- # Copyright 2017 Kouhei Sutou <kou@clear-code.com>
1
+ # Copyright 2017-2019 Sutou Kouhei <kou@clear-code.com>
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -73,6 +73,18 @@ module Arrow
73
73
  end
74
74
  end
75
75
 
76
+ class Array
77
+ def to_narray
78
+ unless n_nulls.zero?
79
+ message = "can't convert #{self.class} that has null values to NArray"
80
+ raise UnconvertableError, message
81
+ end
82
+ narray = value_data_type.narray_class.new(length)
83
+ narray.store_binary(buffer.data.to_s)
84
+ narray
85
+ end
86
+ end
87
+
76
88
  class Tensor
77
89
  def to_narray
78
90
  narray = value_data_type.narray_class.new(shape)
@@ -13,5 +13,5 @@
13
13
  # limitations under the License.
14
14
 
15
15
  module ArrowNumoNArray
16
- VERSION = "0.0.1"
16
+ VERSION = "0.0.2"
17
17
  end
@@ -1,4 +1,4 @@
1
- # Copyright 2017 Kouhei Sutou <kou@clear-code.com>
1
+ # Copyright 2017-2019 Sutou Kouhei <kou@clear-code.com>
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -13,253 +13,317 @@
13
13
  # limitations under the License.
14
14
 
15
15
  class ToNAarrayTest < Test::Unit::TestCase
16
- test("Int8") do
17
- data = [
18
- [
19
- [1, 2, 3, 4],
20
- [5, 6, 7, 8],
21
- ],
22
- [
23
- [9, 10, 11, 12],
24
- [-1, -2, -3, -4],
25
- ],
26
- [
27
- [-5, -6, -7, -8],
28
- [-9, -10, -11, -12],
29
- ],
30
- ]
31
- shape = [3, 2, 4]
32
- tensor = Arrow::Tensor.new(Arrow::UInt8DataType.new,
33
- Arrow::Buffer.new(data.flatten.pack("c*")),
34
- shape,
35
- nil,
36
- nil)
37
- assert_equal(Numo::Int8.new(shape).store(data),
38
- tensor.to_narray)
39
- end
16
+ sub_test_case("Array") do
17
+ test("Int8") do
18
+ array = Arrow::Int8Array.new([-(2 ** 7), 0, 2 ** 7 - 1])
19
+ assert_equal(Numo::Int8[-(2 ** 7), 0, 2 ** 7 - 1],
20
+ array.to_narray)
21
+ end
40
22
 
41
- test("Int16") do
42
- data = [
43
- [
44
- [1, 2, 3, 4],
45
- [5, 6, 7, 8],
46
- ],
47
- [
48
- [9, 10, 11, 12],
49
- [-1, -2, -3, -4],
50
- ],
51
- [
52
- [-5, -6, -7, -8],
53
- [-9, -10, -11, -12],
54
- ],
55
- ]
56
- shape = [3, 2, 4]
57
- tensor = Arrow::Tensor.new(Arrow::UInt16DataType.new,
58
- Arrow::Buffer.new(data.flatten.pack("s*")),
59
- shape,
60
- nil,
61
- nil)
62
- assert_equal(Numo::Int16.new(shape).store(data),
63
- tensor.to_narray)
64
- end
23
+ test("Int16") do
24
+ array = Arrow::Int16Array.new([-(2 ** 15), 0, 2 ** 15 - 1])
25
+ assert_equal(Numo::Int16[-(2 ** 15), 0, 2 ** 15 - 1],
26
+ array.to_narray)
27
+ end
65
28
 
66
- test("Int32") do
67
- data = [
68
- [
69
- [1, 2, 3, 4],
70
- [5, 6, 7, 8],
71
- ],
72
- [
73
- [9, 10, 11, 12],
74
- [-1, -2, -3, -4],
75
- ],
76
- [
77
- [-5, -6, -7, -8],
78
- [-9, -10, -11, -12],
79
- ],
80
- ]
81
- shape = [3, 2, 4]
82
- tensor = Arrow::Tensor.new(Arrow::UInt32DataType.new,
83
- Arrow::Buffer.new(data.flatten.pack("l*")),
84
- shape,
85
- nil,
86
- nil)
87
- assert_equal(Numo::Int32.new(shape).store(data),
88
- tensor.to_narray)
89
- end
29
+ test("Int32") do
30
+ array = Arrow::Int32Array.new([-(2 ** 31), 0, 2 ** 31 - 1])
31
+ assert_equal(Numo::Int32[-(2 ** 31), 0, 2 ** 31 - 1],
32
+ array.to_narray)
33
+ end
90
34
 
91
- test("Int64") do
92
- data = [
93
- [
94
- [1, 2, 3, 4],
95
- [5, 6, 7, 8],
96
- ],
97
- [
98
- [9, 10, 11, 12],
99
- [-1, -2, -3, -4],
100
- ],
101
- [
102
- [-5, -6, -7, -8],
103
- [-9, -10, -11, -12],
104
- ],
105
- ]
106
- shape = [3, 2, 4]
107
- tensor = Arrow::Tensor.new(Arrow::UInt64DataType.new,
108
- Arrow::Buffer.new(data.flatten.pack("q*")),
109
- shape,
110
- nil,
111
- nil)
112
- assert_equal(Numo::Int64.new(shape).store(data),
113
- tensor.to_narray)
114
- end
35
+ test("Int64") do
36
+ array = Arrow::Int64Array.new([-(2 ** 63), 0, 2 ** 63 - 1])
37
+ assert_equal(Numo::Int64[-(2 ** 63), 0, 2 ** 63 - 1],
38
+ array.to_narray)
39
+ end
115
40
 
116
- test("UInt8") do
117
- data = [
118
- [
119
- [1, 2, 3, 4],
120
- [5, 6, 7, 8],
121
- ],
122
- [
123
- [9, 10, 11, 12],
124
- [13, 14, 15, 16],
125
- ],
126
- [
127
- [17, 18, 19, 20],
128
- [21, 22, 23, 24],
129
- ],
130
- ]
131
- shape = [3, 2, 4]
132
- tensor = Arrow::Tensor.new(Arrow::UInt8DataType.new,
133
- Arrow::Buffer.new(data.flatten.pack("C*")),
134
- shape,
135
- nil,
136
- nil)
137
- assert_equal(Numo::UInt8.new(shape).store(data),
138
- tensor.to_narray)
139
- end
41
+ test("UInt8") do
42
+ array = Arrow::UInt8Array.new([0, 2 ** 8 - 1])
43
+ assert_equal(Numo::UInt8[0, 2 ** 8 - 1],
44
+ array.to_narray)
45
+ end
140
46
 
141
- test("UInt16") do
142
- data = [
143
- [
144
- [1, 2, 3, 4],
145
- [5, 6, 7, 8],
146
- ],
147
- [
148
- [9, 10, 11, 12],
149
- [13, 14, 15, 16],
150
- ],
151
- [
152
- [17, 18, 19, 20],
153
- [21, 22, 23, 24],
154
- ],
155
- ]
156
- shape = [3, 2, 4]
157
- tensor = Arrow::Tensor.new(Arrow::UInt16DataType.new,
158
- Arrow::Buffer.new(data.flatten.pack("S*")),
159
- shape,
160
- nil,
161
- nil)
162
- assert_equal(Numo::UInt16.new(shape).store(data),
163
- tensor.to_narray)
164
- end
47
+ test("UInt16") do
48
+ array = Arrow::UInt16Array.new([0, 2 ** 16 - 1])
49
+ assert_equal(Numo::UInt16[0, 2 ** 16 - 1],
50
+ array.to_narray)
51
+ end
165
52
 
166
- test("UInt32") do
167
- data = [
168
- [
169
- [1, 2, 3, 4],
170
- [5, 6, 7, 8],
171
- ],
172
- [
173
- [9, 10, 11, 12],
174
- [13, 14, 15, 16],
175
- ],
176
- [
177
- [17, 18, 19, 20],
178
- [21, 22, 23, 24],
179
- ],
180
- ]
181
- shape = [3, 2, 4]
182
- tensor = Arrow::Tensor.new(Arrow::UInt32DataType.new,
183
- Arrow::Buffer.new(data.flatten.pack("L*")),
184
- shape,
185
- nil,
186
- nil)
187
- assert_equal(Numo::UInt32.new(shape).store(data),
188
- tensor.to_narray)
189
- end
53
+ test("UInt32") do
54
+ array = Arrow::UInt32Array.new([0, 2 ** 32 - 1])
55
+ assert_equal(Numo::UInt32[0, 2 ** 32 - 1],
56
+ array.to_narray)
57
+ end
190
58
 
191
- test("UInt64") do
192
- data = [
193
- [
194
- [1, 2, 3, 4],
195
- [5, 6, 7, 8],
196
- ],
197
- [
198
- [9, 10, 11, 12],
199
- [13, 14, 15, 16],
200
- ],
201
- [
202
- [17, 18, 19, 20],
203
- [21, 22, 23, 24],
204
- ],
205
- ]
206
- shape = [3, 2, 4]
207
- tensor = Arrow::Tensor.new(Arrow::UInt64DataType.new,
208
- Arrow::Buffer.new(data.flatten.pack("Q*")),
209
- shape,
210
- nil,
211
- nil)
212
- assert_equal(Numo::UInt64.new(shape).store(data),
213
- tensor.to_narray)
214
- end
59
+ test("UInt64") do
60
+ array = Arrow::UInt64Array.new([0, 2 ** 64 - 1])
61
+ assert_equal(Numo::UInt64[0, 2 ** 64 - 1],
62
+ array.to_narray)
63
+ end
64
+
65
+ test("Float") do
66
+ array = Arrow::FloatArray.new([-1.1, 0, 1.1])
67
+ assert_equal(Numo::SFloat[-1.1, 0, 1.1],
68
+ array.to_narray)
69
+ end
215
70
 
216
- test("Float") do
217
- data = [
218
- [
219
- [1.0, 2.0, 3.0, 4.0],
220
- [5.0, 6.0, 7.0, 8.0],
221
- ],
222
- [
223
- [9.0, 10.0, 11.0, 12.0],
224
- [13.0, 14.0, 15.0, 16.0],
225
- ],
226
- [
227
- [17.0, 18.0, 19.0, 20.0],
228
- [21.0, 22.0, 23.0, 24.0],
229
- ],
230
- ]
231
- shape = [3, 2, 4]
232
- tensor = Arrow::Tensor.new(Arrow::FloatDataType.new,
233
- Arrow::Buffer.new(data.flatten.pack("f*")),
234
- shape,
235
- nil,
236
- nil)
237
- assert_equal(Numo::SFloat.new(shape).store(data),
238
- tensor.to_narray)
71
+ test("Double") do
72
+ array = Arrow::DoubleArray.new([-1.1, 0, 1.1])
73
+ assert_equal(Numo::DFloat[-1.1, 0, 1.1],
74
+ array.to_narray)
75
+ end
239
76
  end
240
77
 
241
- test("Double") do
242
- data = [
243
- [
244
- [1.0, 2.0, 3.0, 4.0],
245
- [5.0, 6.0, 7.0, 8.0],
246
- ],
247
- [
248
- [9.0, 10.0, 11.0, 12.0],
249
- [13.0, 14.0, 15.0, 16.0],
250
- ],
251
- [
252
- [17.0, 18.0, 19.0, 20.0],
253
- [21.0, 22.0, 23.0, 24.0],
254
- ],
255
- ]
256
- shape = [3, 2, 4]
257
- tensor = Arrow::Tensor.new(Arrow::DoubleDataType.new,
258
- Arrow::Buffer.new(data.flatten.pack("d*")),
259
- shape,
260
- nil,
261
- nil)
262
- assert_equal(Numo::DFloat.new(shape).store(data),
263
- tensor.to_narray)
78
+ sub_test_case("Tensor") do
79
+ test("Int8") do
80
+ data = [
81
+ [
82
+ [1, 2, 3, 4],
83
+ [5, 6, 7, 8],
84
+ ],
85
+ [
86
+ [9, 10, 11, 12],
87
+ [-1, -2, -3, -4],
88
+ ],
89
+ [
90
+ [-5, -6, -7, -8],
91
+ [-9, -10, -11, -12],
92
+ ],
93
+ ]
94
+ shape = [3, 2, 4]
95
+ tensor = Arrow::Tensor.new(Arrow::Int8DataType.new,
96
+ Arrow::Buffer.new(data.flatten.pack("c*")),
97
+ shape,
98
+ nil,
99
+ nil)
100
+ assert_equal(Numo::Int8.new(shape).store(data),
101
+ tensor.to_narray)
102
+ end
103
+
104
+ test("Int16") do
105
+ data = [
106
+ [
107
+ [1, 2, 3, 4],
108
+ [5, 6, 7, 8],
109
+ ],
110
+ [
111
+ [9, 10, 11, 12],
112
+ [-1, -2, -3, -4],
113
+ ],
114
+ [
115
+ [-5, -6, -7, -8],
116
+ [-9, -10, -11, -12],
117
+ ],
118
+ ]
119
+ shape = [3, 2, 4]
120
+ tensor = Arrow::Tensor.new(Arrow::Int16DataType.new,
121
+ Arrow::Buffer.new(data.flatten.pack("s*")),
122
+ shape,
123
+ nil,
124
+ nil)
125
+ assert_equal(Numo::Int16.new(shape).store(data),
126
+ tensor.to_narray)
127
+ end
128
+
129
+ test("Int32") do
130
+ data = [
131
+ [
132
+ [1, 2, 3, 4],
133
+ [5, 6, 7, 8],
134
+ ],
135
+ [
136
+ [9, 10, 11, 12],
137
+ [-1, -2, -3, -4],
138
+ ],
139
+ [
140
+ [-5, -6, -7, -8],
141
+ [-9, -10, -11, -12],
142
+ ],
143
+ ]
144
+ shape = [3, 2, 4]
145
+ tensor = Arrow::Tensor.new(Arrow::Int32DataType.new,
146
+ Arrow::Buffer.new(data.flatten.pack("l*")),
147
+ shape,
148
+ nil,
149
+ nil)
150
+ assert_equal(Numo::Int32.new(shape).store(data),
151
+ tensor.to_narray)
152
+ end
153
+
154
+ test("Int64") do
155
+ data = [
156
+ [
157
+ [1, 2, 3, 4],
158
+ [5, 6, 7, 8],
159
+ ],
160
+ [
161
+ [9, 10, 11, 12],
162
+ [-1, -2, -3, -4],
163
+ ],
164
+ [
165
+ [-5, -6, -7, -8],
166
+ [-9, -10, -11, -12],
167
+ ],
168
+ ]
169
+ shape = [3, 2, 4]
170
+ tensor = Arrow::Tensor.new(Arrow::Int64DataType.new,
171
+ Arrow::Buffer.new(data.flatten.pack("q*")),
172
+ shape,
173
+ nil,
174
+ nil)
175
+ assert_equal(Numo::Int64.new(shape).store(data),
176
+ tensor.to_narray)
177
+ end
178
+
179
+ test("UInt8") do
180
+ data = [
181
+ [
182
+ [1, 2, 3, 4],
183
+ [5, 6, 7, 8],
184
+ ],
185
+ [
186
+ [9, 10, 11, 12],
187
+ [13, 14, 15, 16],
188
+ ],
189
+ [
190
+ [17, 18, 19, 20],
191
+ [21, 22, 23, 24],
192
+ ],
193
+ ]
194
+ shape = [3, 2, 4]
195
+ tensor = Arrow::Tensor.new(Arrow::UInt8DataType.new,
196
+ Arrow::Buffer.new(data.flatten.pack("C*")),
197
+ shape,
198
+ nil,
199
+ nil)
200
+ assert_equal(Numo::UInt8.new(shape).store(data),
201
+ tensor.to_narray)
202
+ end
203
+
204
+ test("UInt16") do
205
+ data = [
206
+ [
207
+ [1, 2, 3, 4],
208
+ [5, 6, 7, 8],
209
+ ],
210
+ [
211
+ [9, 10, 11, 12],
212
+ [13, 14, 15, 16],
213
+ ],
214
+ [
215
+ [17, 18, 19, 20],
216
+ [21, 22, 23, 24],
217
+ ],
218
+ ]
219
+ shape = [3, 2, 4]
220
+ tensor = Arrow::Tensor.new(Arrow::UInt16DataType.new,
221
+ Arrow::Buffer.new(data.flatten.pack("S*")),
222
+ shape,
223
+ nil,
224
+ nil)
225
+ assert_equal(Numo::UInt16.new(shape).store(data),
226
+ tensor.to_narray)
227
+ end
228
+
229
+ test("UInt32") do
230
+ data = [
231
+ [
232
+ [1, 2, 3, 4],
233
+ [5, 6, 7, 8],
234
+ ],
235
+ [
236
+ [9, 10, 11, 12],
237
+ [13, 14, 15, 16],
238
+ ],
239
+ [
240
+ [17, 18, 19, 20],
241
+ [21, 22, 23, 24],
242
+ ],
243
+ ]
244
+ shape = [3, 2, 4]
245
+ tensor = Arrow::Tensor.new(Arrow::UInt32DataType.new,
246
+ Arrow::Buffer.new(data.flatten.pack("L*")),
247
+ shape,
248
+ nil,
249
+ nil)
250
+ assert_equal(Numo::UInt32.new(shape).store(data),
251
+ tensor.to_narray)
252
+ end
253
+
254
+ test("UInt64") do
255
+ data = [
256
+ [
257
+ [1, 2, 3, 4],
258
+ [5, 6, 7, 8],
259
+ ],
260
+ [
261
+ [9, 10, 11, 12],
262
+ [13, 14, 15, 16],
263
+ ],
264
+ [
265
+ [17, 18, 19, 20],
266
+ [21, 22, 23, 24],
267
+ ],
268
+ ]
269
+ shape = [3, 2, 4]
270
+ tensor = Arrow::Tensor.new(Arrow::UInt64DataType.new,
271
+ Arrow::Buffer.new(data.flatten.pack("Q*")),
272
+ shape,
273
+ nil,
274
+ nil)
275
+ assert_equal(Numo::UInt64.new(shape).store(data),
276
+ tensor.to_narray)
277
+ end
278
+
279
+ test("Float") do
280
+ data = [
281
+ [
282
+ [1.0, 2.0, 3.0, 4.0],
283
+ [5.0, 6.0, 7.0, 8.0],
284
+ ],
285
+ [
286
+ [9.0, 10.0, 11.0, 12.0],
287
+ [13.0, 14.0, 15.0, 16.0],
288
+ ],
289
+ [
290
+ [17.0, 18.0, 19.0, 20.0],
291
+ [21.0, 22.0, 23.0, 24.0],
292
+ ],
293
+ ]
294
+ shape = [3, 2, 4]
295
+ tensor = Arrow::Tensor.new(Arrow::FloatDataType.new,
296
+ Arrow::Buffer.new(data.flatten.pack("f*")),
297
+ shape,
298
+ nil,
299
+ nil)
300
+ assert_equal(Numo::SFloat.new(shape).store(data),
301
+ tensor.to_narray)
302
+ end
303
+
304
+ test("Double") do
305
+ data = [
306
+ [
307
+ [1.0, 2.0, 3.0, 4.0],
308
+ [5.0, 6.0, 7.0, 8.0],
309
+ ],
310
+ [
311
+ [9.0, 10.0, 11.0, 12.0],
312
+ [13.0, 14.0, 15.0, 16.0],
313
+ ],
314
+ [
315
+ [17.0, 18.0, 19.0, 20.0],
316
+ [21.0, 22.0, 23.0, 24.0],
317
+ ],
318
+ ]
319
+ shape = [3, 2, 4]
320
+ tensor = Arrow::Tensor.new(Arrow::DoubleDataType.new,
321
+ Arrow::Buffer.new(data.flatten.pack("d*")),
322
+ shape,
323
+ nil,
324
+ nil)
325
+ assert_equal(Numo::DFloat.new(shape).store(data),
326
+ tensor.to_narray)
327
+ end
264
328
  end
265
329
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: red-arrow-numo-narray
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.1
4
+ version: 0.0.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - Kouhei Sutou
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2017-04-20 00:00:00.000000000 Z
11
+ date: 2019-08-07 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: red-arrow
@@ -127,6 +127,7 @@ files:
127
127
  - doc/text/apache-2.0.txt
128
128
  - doc/text/news.md
129
129
  - lib/arrow-numo-narray.rb
130
+ - lib/arrow-numo-narray/error.rb
130
131
  - lib/arrow-numo-narray/to-arrow.rb
131
132
  - lib/arrow-numo-narray/to-narray.rb
132
133
  - lib/arrow-numo-narray/version.rb
@@ -155,13 +156,13 @@ required_rubygems_version: !ruby/object:Gem::Requirement
155
156
  version: '0'
156
157
  requirements: []
157
158
  rubyforge_project:
158
- rubygems_version: 2.5.2
159
+ rubygems_version: 2.7.6.2
159
160
  signing_key:
160
161
  specification_version: 4
161
162
  summary: Red Arrow Numo::NArray is a library that provides converters between Apache
162
163
  Arrow's tensor data (`Arrow::Tensor`) and Numo::NArray data.
163
164
  test_files:
164
- - test/test-to-narray.rb
165
- - test/test-to-arrow.rb
166
165
  - test/helper.rb
167
166
  - test/run-test.rb
167
+ - test/test-to-arrow.rb
168
+ - test/test-to-narray.rb