red-arrow-numo-narray 0.0.1 → 0.0.2

Sign up to get free protection for your applications and to get access to all the features.
checksums.yaml CHANGED
@@ -1,7 +1,7 @@
1
1
  ---
2
- SHA1:
3
- metadata.gz: 0af7121f227811b26d39f741e41d202a72dcdea9
4
- data.tar.gz: 6b25427045952ac472d248d9aa728541be10ec66
2
+ SHA256:
3
+ metadata.gz: d3548b4dd13c4472bf84d6a46593328972efd81c81f71fd9c022f7823734ed9c
4
+ data.tar.gz: 3e6c02abf4ba9827db4ba6f6dc8421a805a20df7c81d2bd050226e6888a768e5
5
5
  SHA512:
6
- metadata.gz: '009047379e64ca2ef4d67e011045c8ee2e79290fd507815f0433295daf8765d13ca1e52ccdffc26439e98e82847309f0b63f080808adae4d1090b02ebaf17db1'
7
- data.tar.gz: 017462754b7a95cc01ac858786e04fb677594ce0711d8b0b71a29e52a3ee4453af79d1bc0f36e0cdd8e972aaa70a8b5ba872d22ef8c3dd3b821f1741e6354f94
6
+ metadata.gz: 2c6d433d0e3f6738f0e6d8b77b97760d36ac775faa4992ff1f4992f21179cc0439c2aa383cc3044090d54f82e37c968920f3b4ec638a65edb1a73e62c8220cab
7
+ data.tar.gz: 78f28f991402fd5b3ac96b901e7b7ef230d6459d55f08b3b1f3644a599cd2995aca020615c5f0ea2cc11a039b8529e3ec3e167db619e366f936630aaa58b6aea
data/README.md CHANGED
@@ -21,8 +21,8 @@ Red Arrow Numo::NArray adds `Arrow::Tensor#to_narray` and `#to_arrow` to `Numo::
21
21
  ```ruby
22
22
  require "arrow-numo-narray"
23
23
 
24
- tensor.to_narray # -> A Numo::NArray's numeric subclass such as Numo::Int8
25
- narray.to_arrow # -> An Arrow::Tensor object
24
+ tensor.to_narray # -> An object of Numo::NArray's numeric subclass such as Numo::Int8
25
+ narray.to_arrow # -> An object of Arrow::Tensor
26
26
  ```
27
27
 
28
28
  ## Dependencies
@@ -1,5 +1,16 @@
1
1
  # News
2
2
 
3
+ ## 0.0.2 - 2019-08-07
4
+
5
+ ### Improvements
6
+
7
+ * Added `Arrow::Array#to_narray`.
8
+ [GitHub#1][Suggested by Kenta Murata]
9
+
10
+ ### Thanks
11
+
12
+ * Kenta Murata
13
+
3
14
  ## 0.0.1 - 2017-04-20
4
15
 
5
16
  Initial release!!!
@@ -17,5 +17,7 @@ require "numo/narray"
17
17
 
18
18
  require "arrow-numo-narray/version"
19
19
 
20
+ require "arrow-numo-narray/error"
21
+
20
22
  require "arrow-numo-narray/to-arrow"
21
23
  require "arrow-numo-narray/to-narray"
@@ -0,0 +1,21 @@
1
+ # Copyright 2019 Sutou Kouhei <kou@clear-code.com>
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ module ArrowNumoNArray
16
+ class Error < StandardError
17
+ end
18
+
19
+ class UncovertableError < Error
20
+ end
21
+ end
@@ -1,4 +1,4 @@
1
- # Copyright 2017 Kouhei Sutou <kou@clear-code.com>
1
+ # Copyright 2017-2019 Sutou Kouhei <kou@clear-code.com>
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -73,6 +73,18 @@ module Arrow
73
73
  end
74
74
  end
75
75
 
76
+ class Array
77
+ def to_narray
78
+ unless n_nulls.zero?
79
+ message = "can't convert #{self.class} that has null values to NArray"
80
+ raise UnconvertableError, message
81
+ end
82
+ narray = value_data_type.narray_class.new(length)
83
+ narray.store_binary(buffer.data.to_s)
84
+ narray
85
+ end
86
+ end
87
+
76
88
  class Tensor
77
89
  def to_narray
78
90
  narray = value_data_type.narray_class.new(shape)
@@ -13,5 +13,5 @@
13
13
  # limitations under the License.
14
14
 
15
15
  module ArrowNumoNArray
16
- VERSION = "0.0.1"
16
+ VERSION = "0.0.2"
17
17
  end
@@ -1,4 +1,4 @@
1
- # Copyright 2017 Kouhei Sutou <kou@clear-code.com>
1
+ # Copyright 2017-2019 Sutou Kouhei <kou@clear-code.com>
2
2
  #
3
3
  # Licensed under the Apache License, Version 2.0 (the "License");
4
4
  # you may not use this file except in compliance with the License.
@@ -13,253 +13,317 @@
13
13
  # limitations under the License.
14
14
 
15
15
  class ToNAarrayTest < Test::Unit::TestCase
16
- test("Int8") do
17
- data = [
18
- [
19
- [1, 2, 3, 4],
20
- [5, 6, 7, 8],
21
- ],
22
- [
23
- [9, 10, 11, 12],
24
- [-1, -2, -3, -4],
25
- ],
26
- [
27
- [-5, -6, -7, -8],
28
- [-9, -10, -11, -12],
29
- ],
30
- ]
31
- shape = [3, 2, 4]
32
- tensor = Arrow::Tensor.new(Arrow::UInt8DataType.new,
33
- Arrow::Buffer.new(data.flatten.pack("c*")),
34
- shape,
35
- nil,
36
- nil)
37
- assert_equal(Numo::Int8.new(shape).store(data),
38
- tensor.to_narray)
39
- end
16
+ sub_test_case("Array") do
17
+ test("Int8") do
18
+ array = Arrow::Int8Array.new([-(2 ** 7), 0, 2 ** 7 - 1])
19
+ assert_equal(Numo::Int8[-(2 ** 7), 0, 2 ** 7 - 1],
20
+ array.to_narray)
21
+ end
40
22
 
41
- test("Int16") do
42
- data = [
43
- [
44
- [1, 2, 3, 4],
45
- [5, 6, 7, 8],
46
- ],
47
- [
48
- [9, 10, 11, 12],
49
- [-1, -2, -3, -4],
50
- ],
51
- [
52
- [-5, -6, -7, -8],
53
- [-9, -10, -11, -12],
54
- ],
55
- ]
56
- shape = [3, 2, 4]
57
- tensor = Arrow::Tensor.new(Arrow::UInt16DataType.new,
58
- Arrow::Buffer.new(data.flatten.pack("s*")),
59
- shape,
60
- nil,
61
- nil)
62
- assert_equal(Numo::Int16.new(shape).store(data),
63
- tensor.to_narray)
64
- end
23
+ test("Int16") do
24
+ array = Arrow::Int16Array.new([-(2 ** 15), 0, 2 ** 15 - 1])
25
+ assert_equal(Numo::Int16[-(2 ** 15), 0, 2 ** 15 - 1],
26
+ array.to_narray)
27
+ end
65
28
 
66
- test("Int32") do
67
- data = [
68
- [
69
- [1, 2, 3, 4],
70
- [5, 6, 7, 8],
71
- ],
72
- [
73
- [9, 10, 11, 12],
74
- [-1, -2, -3, -4],
75
- ],
76
- [
77
- [-5, -6, -7, -8],
78
- [-9, -10, -11, -12],
79
- ],
80
- ]
81
- shape = [3, 2, 4]
82
- tensor = Arrow::Tensor.new(Arrow::UInt32DataType.new,
83
- Arrow::Buffer.new(data.flatten.pack("l*")),
84
- shape,
85
- nil,
86
- nil)
87
- assert_equal(Numo::Int32.new(shape).store(data),
88
- tensor.to_narray)
89
- end
29
+ test("Int32") do
30
+ array = Arrow::Int32Array.new([-(2 ** 31), 0, 2 ** 31 - 1])
31
+ assert_equal(Numo::Int32[-(2 ** 31), 0, 2 ** 31 - 1],
32
+ array.to_narray)
33
+ end
90
34
 
91
- test("Int64") do
92
- data = [
93
- [
94
- [1, 2, 3, 4],
95
- [5, 6, 7, 8],
96
- ],
97
- [
98
- [9, 10, 11, 12],
99
- [-1, -2, -3, -4],
100
- ],
101
- [
102
- [-5, -6, -7, -8],
103
- [-9, -10, -11, -12],
104
- ],
105
- ]
106
- shape = [3, 2, 4]
107
- tensor = Arrow::Tensor.new(Arrow::UInt64DataType.new,
108
- Arrow::Buffer.new(data.flatten.pack("q*")),
109
- shape,
110
- nil,
111
- nil)
112
- assert_equal(Numo::Int64.new(shape).store(data),
113
- tensor.to_narray)
114
- end
35
+ test("Int64") do
36
+ array = Arrow::Int64Array.new([-(2 ** 63), 0, 2 ** 63 - 1])
37
+ assert_equal(Numo::Int64[-(2 ** 63), 0, 2 ** 63 - 1],
38
+ array.to_narray)
39
+ end
115
40
 
116
- test("UInt8") do
117
- data = [
118
- [
119
- [1, 2, 3, 4],
120
- [5, 6, 7, 8],
121
- ],
122
- [
123
- [9, 10, 11, 12],
124
- [13, 14, 15, 16],
125
- ],
126
- [
127
- [17, 18, 19, 20],
128
- [21, 22, 23, 24],
129
- ],
130
- ]
131
- shape = [3, 2, 4]
132
- tensor = Arrow::Tensor.new(Arrow::UInt8DataType.new,
133
- Arrow::Buffer.new(data.flatten.pack("C*")),
134
- shape,
135
- nil,
136
- nil)
137
- assert_equal(Numo::UInt8.new(shape).store(data),
138
- tensor.to_narray)
139
- end
41
+ test("UInt8") do
42
+ array = Arrow::UInt8Array.new([0, 2 ** 8 - 1])
43
+ assert_equal(Numo::UInt8[0, 2 ** 8 - 1],
44
+ array.to_narray)
45
+ end
140
46
 
141
- test("UInt16") do
142
- data = [
143
- [
144
- [1, 2, 3, 4],
145
- [5, 6, 7, 8],
146
- ],
147
- [
148
- [9, 10, 11, 12],
149
- [13, 14, 15, 16],
150
- ],
151
- [
152
- [17, 18, 19, 20],
153
- [21, 22, 23, 24],
154
- ],
155
- ]
156
- shape = [3, 2, 4]
157
- tensor = Arrow::Tensor.new(Arrow::UInt16DataType.new,
158
- Arrow::Buffer.new(data.flatten.pack("S*")),
159
- shape,
160
- nil,
161
- nil)
162
- assert_equal(Numo::UInt16.new(shape).store(data),
163
- tensor.to_narray)
164
- end
47
+ test("UInt16") do
48
+ array = Arrow::UInt16Array.new([0, 2 ** 16 - 1])
49
+ assert_equal(Numo::UInt16[0, 2 ** 16 - 1],
50
+ array.to_narray)
51
+ end
165
52
 
166
- test("UInt32") do
167
- data = [
168
- [
169
- [1, 2, 3, 4],
170
- [5, 6, 7, 8],
171
- ],
172
- [
173
- [9, 10, 11, 12],
174
- [13, 14, 15, 16],
175
- ],
176
- [
177
- [17, 18, 19, 20],
178
- [21, 22, 23, 24],
179
- ],
180
- ]
181
- shape = [3, 2, 4]
182
- tensor = Arrow::Tensor.new(Arrow::UInt32DataType.new,
183
- Arrow::Buffer.new(data.flatten.pack("L*")),
184
- shape,
185
- nil,
186
- nil)
187
- assert_equal(Numo::UInt32.new(shape).store(data),
188
- tensor.to_narray)
189
- end
53
+ test("UInt32") do
54
+ array = Arrow::UInt32Array.new([0, 2 ** 32 - 1])
55
+ assert_equal(Numo::UInt32[0, 2 ** 32 - 1],
56
+ array.to_narray)
57
+ end
190
58
 
191
- test("UInt64") do
192
- data = [
193
- [
194
- [1, 2, 3, 4],
195
- [5, 6, 7, 8],
196
- ],
197
- [
198
- [9, 10, 11, 12],
199
- [13, 14, 15, 16],
200
- ],
201
- [
202
- [17, 18, 19, 20],
203
- [21, 22, 23, 24],
204
- ],
205
- ]
206
- shape = [3, 2, 4]
207
- tensor = Arrow::Tensor.new(Arrow::UInt64DataType.new,
208
- Arrow::Buffer.new(data.flatten.pack("Q*")),
209
- shape,
210
- nil,
211
- nil)
212
- assert_equal(Numo::UInt64.new(shape).store(data),
213
- tensor.to_narray)
214
- end
59
+ test("UInt64") do
60
+ array = Arrow::UInt64Array.new([0, 2 ** 64 - 1])
61
+ assert_equal(Numo::UInt64[0, 2 ** 64 - 1],
62
+ array.to_narray)
63
+ end
64
+
65
+ test("Float") do
66
+ array = Arrow::FloatArray.new([-1.1, 0, 1.1])
67
+ assert_equal(Numo::SFloat[-1.1, 0, 1.1],
68
+ array.to_narray)
69
+ end
215
70
 
216
- test("Float") do
217
- data = [
218
- [
219
- [1.0, 2.0, 3.0, 4.0],
220
- [5.0, 6.0, 7.0, 8.0],
221
- ],
222
- [
223
- [9.0, 10.0, 11.0, 12.0],
224
- [13.0, 14.0, 15.0, 16.0],
225
- ],
226
- [
227
- [17.0, 18.0, 19.0, 20.0],
228
- [21.0, 22.0, 23.0, 24.0],
229
- ],
230
- ]
231
- shape = [3, 2, 4]
232
- tensor = Arrow::Tensor.new(Arrow::FloatDataType.new,
233
- Arrow::Buffer.new(data.flatten.pack("f*")),
234
- shape,
235
- nil,
236
- nil)
237
- assert_equal(Numo::SFloat.new(shape).store(data),
238
- tensor.to_narray)
71
+ test("Double") do
72
+ array = Arrow::DoubleArray.new([-1.1, 0, 1.1])
73
+ assert_equal(Numo::DFloat[-1.1, 0, 1.1],
74
+ array.to_narray)
75
+ end
239
76
  end
240
77
 
241
- test("Double") do
242
- data = [
243
- [
244
- [1.0, 2.0, 3.0, 4.0],
245
- [5.0, 6.0, 7.0, 8.0],
246
- ],
247
- [
248
- [9.0, 10.0, 11.0, 12.0],
249
- [13.0, 14.0, 15.0, 16.0],
250
- ],
251
- [
252
- [17.0, 18.0, 19.0, 20.0],
253
- [21.0, 22.0, 23.0, 24.0],
254
- ],
255
- ]
256
- shape = [3, 2, 4]
257
- tensor = Arrow::Tensor.new(Arrow::DoubleDataType.new,
258
- Arrow::Buffer.new(data.flatten.pack("d*")),
259
- shape,
260
- nil,
261
- nil)
262
- assert_equal(Numo::DFloat.new(shape).store(data),
263
- tensor.to_narray)
78
+ sub_test_case("Tensor") do
79
+ test("Int8") do
80
+ data = [
81
+ [
82
+ [1, 2, 3, 4],
83
+ [5, 6, 7, 8],
84
+ ],
85
+ [
86
+ [9, 10, 11, 12],
87
+ [-1, -2, -3, -4],
88
+ ],
89
+ [
90
+ [-5, -6, -7, -8],
91
+ [-9, -10, -11, -12],
92
+ ],
93
+ ]
94
+ shape = [3, 2, 4]
95
+ tensor = Arrow::Tensor.new(Arrow::Int8DataType.new,
96
+ Arrow::Buffer.new(data.flatten.pack("c*")),
97
+ shape,
98
+ nil,
99
+ nil)
100
+ assert_equal(Numo::Int8.new(shape).store(data),
101
+ tensor.to_narray)
102
+ end
103
+
104
+ test("Int16") do
105
+ data = [
106
+ [
107
+ [1, 2, 3, 4],
108
+ [5, 6, 7, 8],
109
+ ],
110
+ [
111
+ [9, 10, 11, 12],
112
+ [-1, -2, -3, -4],
113
+ ],
114
+ [
115
+ [-5, -6, -7, -8],
116
+ [-9, -10, -11, -12],
117
+ ],
118
+ ]
119
+ shape = [3, 2, 4]
120
+ tensor = Arrow::Tensor.new(Arrow::Int16DataType.new,
121
+ Arrow::Buffer.new(data.flatten.pack("s*")),
122
+ shape,
123
+ nil,
124
+ nil)
125
+ assert_equal(Numo::Int16.new(shape).store(data),
126
+ tensor.to_narray)
127
+ end
128
+
129
+ test("Int32") do
130
+ data = [
131
+ [
132
+ [1, 2, 3, 4],
133
+ [5, 6, 7, 8],
134
+ ],
135
+ [
136
+ [9, 10, 11, 12],
137
+ [-1, -2, -3, -4],
138
+ ],
139
+ [
140
+ [-5, -6, -7, -8],
141
+ [-9, -10, -11, -12],
142
+ ],
143
+ ]
144
+ shape = [3, 2, 4]
145
+ tensor = Arrow::Tensor.new(Arrow::Int32DataType.new,
146
+ Arrow::Buffer.new(data.flatten.pack("l*")),
147
+ shape,
148
+ nil,
149
+ nil)
150
+ assert_equal(Numo::Int32.new(shape).store(data),
151
+ tensor.to_narray)
152
+ end
153
+
154
+ test("Int64") do
155
+ data = [
156
+ [
157
+ [1, 2, 3, 4],
158
+ [5, 6, 7, 8],
159
+ ],
160
+ [
161
+ [9, 10, 11, 12],
162
+ [-1, -2, -3, -4],
163
+ ],
164
+ [
165
+ [-5, -6, -7, -8],
166
+ [-9, -10, -11, -12],
167
+ ],
168
+ ]
169
+ shape = [3, 2, 4]
170
+ tensor = Arrow::Tensor.new(Arrow::Int64DataType.new,
171
+ Arrow::Buffer.new(data.flatten.pack("q*")),
172
+ shape,
173
+ nil,
174
+ nil)
175
+ assert_equal(Numo::Int64.new(shape).store(data),
176
+ tensor.to_narray)
177
+ end
178
+
179
+ test("UInt8") do
180
+ data = [
181
+ [
182
+ [1, 2, 3, 4],
183
+ [5, 6, 7, 8],
184
+ ],
185
+ [
186
+ [9, 10, 11, 12],
187
+ [13, 14, 15, 16],
188
+ ],
189
+ [
190
+ [17, 18, 19, 20],
191
+ [21, 22, 23, 24],
192
+ ],
193
+ ]
194
+ shape = [3, 2, 4]
195
+ tensor = Arrow::Tensor.new(Arrow::UInt8DataType.new,
196
+ Arrow::Buffer.new(data.flatten.pack("C*")),
197
+ shape,
198
+ nil,
199
+ nil)
200
+ assert_equal(Numo::UInt8.new(shape).store(data),
201
+ tensor.to_narray)
202
+ end
203
+
204
+ test("UInt16") do
205
+ data = [
206
+ [
207
+ [1, 2, 3, 4],
208
+ [5, 6, 7, 8],
209
+ ],
210
+ [
211
+ [9, 10, 11, 12],
212
+ [13, 14, 15, 16],
213
+ ],
214
+ [
215
+ [17, 18, 19, 20],
216
+ [21, 22, 23, 24],
217
+ ],
218
+ ]
219
+ shape = [3, 2, 4]
220
+ tensor = Arrow::Tensor.new(Arrow::UInt16DataType.new,
221
+ Arrow::Buffer.new(data.flatten.pack("S*")),
222
+ shape,
223
+ nil,
224
+ nil)
225
+ assert_equal(Numo::UInt16.new(shape).store(data),
226
+ tensor.to_narray)
227
+ end
228
+
229
+ test("UInt32") do
230
+ data = [
231
+ [
232
+ [1, 2, 3, 4],
233
+ [5, 6, 7, 8],
234
+ ],
235
+ [
236
+ [9, 10, 11, 12],
237
+ [13, 14, 15, 16],
238
+ ],
239
+ [
240
+ [17, 18, 19, 20],
241
+ [21, 22, 23, 24],
242
+ ],
243
+ ]
244
+ shape = [3, 2, 4]
245
+ tensor = Arrow::Tensor.new(Arrow::UInt32DataType.new,
246
+ Arrow::Buffer.new(data.flatten.pack("L*")),
247
+ shape,
248
+ nil,
249
+ nil)
250
+ assert_equal(Numo::UInt32.new(shape).store(data),
251
+ tensor.to_narray)
252
+ end
253
+
254
+ test("UInt64") do
255
+ data = [
256
+ [
257
+ [1, 2, 3, 4],
258
+ [5, 6, 7, 8],
259
+ ],
260
+ [
261
+ [9, 10, 11, 12],
262
+ [13, 14, 15, 16],
263
+ ],
264
+ [
265
+ [17, 18, 19, 20],
266
+ [21, 22, 23, 24],
267
+ ],
268
+ ]
269
+ shape = [3, 2, 4]
270
+ tensor = Arrow::Tensor.new(Arrow::UInt64DataType.new,
271
+ Arrow::Buffer.new(data.flatten.pack("Q*")),
272
+ shape,
273
+ nil,
274
+ nil)
275
+ assert_equal(Numo::UInt64.new(shape).store(data),
276
+ tensor.to_narray)
277
+ end
278
+
279
+ test("Float") do
280
+ data = [
281
+ [
282
+ [1.0, 2.0, 3.0, 4.0],
283
+ [5.0, 6.0, 7.0, 8.0],
284
+ ],
285
+ [
286
+ [9.0, 10.0, 11.0, 12.0],
287
+ [13.0, 14.0, 15.0, 16.0],
288
+ ],
289
+ [
290
+ [17.0, 18.0, 19.0, 20.0],
291
+ [21.0, 22.0, 23.0, 24.0],
292
+ ],
293
+ ]
294
+ shape = [3, 2, 4]
295
+ tensor = Arrow::Tensor.new(Arrow::FloatDataType.new,
296
+ Arrow::Buffer.new(data.flatten.pack("f*")),
297
+ shape,
298
+ nil,
299
+ nil)
300
+ assert_equal(Numo::SFloat.new(shape).store(data),
301
+ tensor.to_narray)
302
+ end
303
+
304
+ test("Double") do
305
+ data = [
306
+ [
307
+ [1.0, 2.0, 3.0, 4.0],
308
+ [5.0, 6.0, 7.0, 8.0],
309
+ ],
310
+ [
311
+ [9.0, 10.0, 11.0, 12.0],
312
+ [13.0, 14.0, 15.0, 16.0],
313
+ ],
314
+ [
315
+ [17.0, 18.0, 19.0, 20.0],
316
+ [21.0, 22.0, 23.0, 24.0],
317
+ ],
318
+ ]
319
+ shape = [3, 2, 4]
320
+ tensor = Arrow::Tensor.new(Arrow::DoubleDataType.new,
321
+ Arrow::Buffer.new(data.flatten.pack("d*")),
322
+ shape,
323
+ nil,
324
+ nil)
325
+ assert_equal(Numo::DFloat.new(shape).store(data),
326
+ tensor.to_narray)
327
+ end
264
328
  end
265
329
  end
metadata CHANGED
@@ -1,14 +1,14 @@
1
1
  --- !ruby/object:Gem::Specification
2
2
  name: red-arrow-numo-narray
3
3
  version: !ruby/object:Gem::Version
4
- version: 0.0.1
4
+ version: 0.0.2
5
5
  platform: ruby
6
6
  authors:
7
7
  - Kouhei Sutou
8
8
  autorequire:
9
9
  bindir: bin
10
10
  cert_chain: []
11
- date: 2017-04-20 00:00:00.000000000 Z
11
+ date: 2019-08-07 00:00:00.000000000 Z
12
12
  dependencies:
13
13
  - !ruby/object:Gem::Dependency
14
14
  name: red-arrow
@@ -127,6 +127,7 @@ files:
127
127
  - doc/text/apache-2.0.txt
128
128
  - doc/text/news.md
129
129
  - lib/arrow-numo-narray.rb
130
+ - lib/arrow-numo-narray/error.rb
130
131
  - lib/arrow-numo-narray/to-arrow.rb
131
132
  - lib/arrow-numo-narray/to-narray.rb
132
133
  - lib/arrow-numo-narray/version.rb
@@ -155,13 +156,13 @@ required_rubygems_version: !ruby/object:Gem::Requirement
155
156
  version: '0'
156
157
  requirements: []
157
158
  rubyforge_project:
158
- rubygems_version: 2.5.2
159
+ rubygems_version: 2.7.6.2
159
160
  signing_key:
160
161
  specification_version: 4
161
162
  summary: Red Arrow Numo::NArray is a library that provides converters between Apache
162
163
  Arrow's tensor data (`Arrow::Tensor`) and Numo::NArray data.
163
164
  test_files:
164
- - test/test-to-narray.rb
165
- - test/test-to-arrow.rb
166
165
  - test/helper.rb
167
166
  - test/run-test.rb
167
+ - test/test-to-arrow.rb
168
+ - test/test-to-narray.rb