rbtree-pure 0.1.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
data/old_ext/dict.c ADDED
@@ -0,0 +1,1216 @@
1
+ /*
2
+ * Dictionary Abstract Data Type
3
+ * Copyright (C) 1997 Kaz Kylheku <kaz@ashi.footprints.net>
4
+ *
5
+ * Free Software License:
6
+ *
7
+ * All rights are reserved by the author, with the following exceptions:
8
+ * Permission is granted to freely reproduce and distribute this software,
9
+ * possibly in exchange for a fee, provided that this copyright notice appears
10
+ * intact. Permission is also granted to adapt this software to produce
11
+ * derivative works, as long as the modified versions carry this copyright
12
+ * notice and additional notices stating that the work has been modified.
13
+ * This source code may be translated into executable form and incorporated
14
+ * into proprietary software; there is no requirement for such software to
15
+ * contain a copyright notice related to this source.
16
+ *
17
+ * $Id: dict.c,v 1.15 2005/10/06 05:16:35 kuma Exp $
18
+ * $Name: $
19
+ */
20
+
21
+ /*
22
+ * Modified for Ruby/RBTree by OZAWA Takuma.
23
+ */
24
+
25
+ #include <stdlib.h>
26
+ #include <stddef.h>
27
+ #include <assert.h>
28
+ #include "dict.h"
29
+
30
+ #include <ruby.h>
31
+
32
+ #ifdef KAZLIB_RCSID
33
+ static const char rcsid[] = "$Id: dict.c,v 1.15 2005/10/06 05:16:35 kuma Exp $";
34
+ #endif
35
+
36
+ /*
37
+ * These macros provide short convenient names for structure members,
38
+ * which are embellished with dict_ prefixes so that they are
39
+ * properly confined to the documented namespace. It's legal for a
40
+ * program which uses dict to define, for instance, a macro called ``parent''.
41
+ * Such a macro would interfere with the dnode_t struct definition.
42
+ * In general, highly portable and reusable C modules which expose their
43
+ * structures need to confine structure member names to well-defined spaces.
44
+ * The resulting identifiers aren't necessarily convenient to use, nor
45
+ * readable, in the implementation, however!
46
+ */
47
+
48
+ #define left dict_left
49
+ #define right dict_right
50
+ #define parent dict_parent
51
+ #define color dict_color
52
+ #define key dict_key
53
+ #define data dict_data
54
+
55
+ #define nilnode dict_nilnode
56
+ #define nodecount dict_nodecount
57
+ #define compare dict_compare
58
+ #define allocnode dict_allocnode
59
+ #define freenode dict_freenode
60
+ #define context dict_context
61
+ #define dupes dict_dupes
62
+
63
+ #define dictptr dict_dictptr
64
+
65
+ #define dict_root(D) ((D)->nilnode.left)
66
+ #define dict_nil(D) (&(D)->nilnode)
67
+ #define DICT_DEPTH_MAX 64
68
+
69
+ #define COMPARE(dict, key1, key2) dict->compare(key1, key2, dict->context)
70
+
71
+ static dnode_t *dnode_alloc(void *context);
72
+ static void dnode_free(dnode_t *node, void *context);
73
+
74
+ /*
75
+ * Perform a ``left rotation'' adjustment on the tree. The given node P and
76
+ * its right child C are rearranged so that the P instead becomes the left
77
+ * child of C. The left subtree of C is inherited as the new right subtree
78
+ * for P. The ordering of the keys within the tree is thus preserved.
79
+ */
80
+
81
+ static void rotate_left(dnode_t *upper)
82
+ {
83
+ dnode_t *lower, *lowleft, *upparent;
84
+
85
+ lower = upper->right;
86
+ upper->right = lowleft = lower->left;
87
+ lowleft->parent = upper;
88
+
89
+ lower->parent = upparent = upper->parent;
90
+
91
+ /* don't need to check for root node here because root->parent is
92
+ the sentinel nil node, and root->parent->left points back to root */
93
+
94
+ if (upper == upparent->left) {
95
+ upparent->left = lower;
96
+ } else {
97
+ assert (upper == upparent->right);
98
+ upparent->right = lower;
99
+ }
100
+
101
+ lower->left = upper;
102
+ upper->parent = lower;
103
+ }
104
+
105
+ /*
106
+ * This operation is the ``mirror'' image of rotate_left. It is
107
+ * the same procedure, but with left and right interchanged.
108
+ */
109
+
110
+ static void rotate_right(dnode_t *upper)
111
+ {
112
+ dnode_t *lower, *lowright, *upparent;
113
+
114
+ lower = upper->left;
115
+ upper->left = lowright = lower->right;
116
+ lowright->parent = upper;
117
+
118
+ lower->parent = upparent = upper->parent;
119
+
120
+ if (upper == upparent->right) {
121
+ upparent->right = lower;
122
+ } else {
123
+ assert (upper == upparent->left);
124
+ upparent->left = lower;
125
+ }
126
+
127
+ lower->right = upper;
128
+ upper->parent = lower;
129
+ }
130
+
131
+ /*
132
+ * Do a postorder traversal of the tree rooted at the specified
133
+ * node and free everything under it. Used by dict_free().
134
+ */
135
+
136
+ static void free_nodes(dict_t *dict, dnode_t *node, dnode_t *nil)
137
+ {
138
+ if (node == nil)
139
+ return;
140
+ free_nodes(dict, node->left, nil);
141
+ free_nodes(dict, node->right, nil);
142
+ dict->freenode(node, dict->context);
143
+ }
144
+
145
+ /*
146
+ * This procedure performs a verification that the given subtree is a binary
147
+ * search tree. It performs an inorder traversal of the tree using the
148
+ * dict_next() successor function, verifying that the key of each node is
149
+ * strictly lower than that of its successor, if duplicates are not allowed,
150
+ * or lower or equal if duplicates are allowed. This function is used for
151
+ * debugging purposes.
152
+ */
153
+
154
+ static int verify_bintree(dict_t *dict)
155
+ {
156
+ dnode_t *first, *next;
157
+
158
+ first = dict_first(dict);
159
+
160
+ if (dict->dupes) {
161
+ while (first && (next = dict_next(dict, first))) {
162
+ if (COMPARE(dict, first->key, next->key) > 0)
163
+ return 0;
164
+ first = next;
165
+ }
166
+ } else {
167
+ while (first && (next = dict_next(dict, first))) {
168
+ if (COMPARE(dict, first->key, next->key) >= 0)
169
+ return 0;
170
+ first = next;
171
+ }
172
+ }
173
+ return 1;
174
+ }
175
+
176
+
177
+ /*
178
+ * This function recursively verifies that the given binary subtree satisfies
179
+ * three of the red black properties. It checks that every red node has only
180
+ * black children. It makes sure that each node is either red or black. And it
181
+ * checks that every path has the same count of black nodes from root to leaf.
182
+ * It returns the blackheight of the given subtree; this allows blackheights to
183
+ * be computed recursively and compared for left and right siblings for
184
+ * mismatches. It does not check for every nil node being black, because there
185
+ * is only one sentinel nil node. The return value of this function is the
186
+ * black height of the subtree rooted at the node ``root'', or zero if the
187
+ * subtree is not red-black.
188
+ */
189
+
190
+ static unsigned int verify_redblack(dnode_t *nil, dnode_t *root)
191
+ {
192
+ unsigned height_left, height_right;
193
+
194
+ if (root != nil) {
195
+ height_left = verify_redblack(nil, root->left);
196
+ height_right = verify_redblack(nil, root->right);
197
+ if (height_left == 0 || height_right == 0)
198
+ return 0;
199
+ if (height_left != height_right)
200
+ return 0;
201
+ if (root->color == dnode_red) {
202
+ if (root->left->color != dnode_black)
203
+ return 0;
204
+ if (root->right->color != dnode_black)
205
+ return 0;
206
+ return height_left;
207
+ }
208
+ if (root->color != dnode_black)
209
+ return 0;
210
+ return height_left + 1;
211
+ }
212
+ return 1;
213
+ }
214
+
215
+ /*
216
+ * Compute the actual count of nodes by traversing the tree and
217
+ * return it. This could be compared against the stored count to
218
+ * detect a mismatch.
219
+ */
220
+
221
+ static dictcount_t verify_node_count(dnode_t *nil, dnode_t *root)
222
+ {
223
+ if (root == nil)
224
+ return 0;
225
+ else
226
+ return 1 + verify_node_count(nil, root->left)
227
+ + verify_node_count(nil, root->right);
228
+ }
229
+
230
+ /*
231
+ * Verify that the tree contains the given node. This is done by
232
+ * traversing all of the nodes and comparing their pointers to the
233
+ * given pointer. Returns 1 if the node is found, otherwise
234
+ * returns zero. It is intended for debugging purposes.
235
+ */
236
+
237
+ static int verify_dict_has_node(dnode_t *nil, dnode_t *root, dnode_t *node)
238
+ {
239
+ if (root != nil) {
240
+ return root == node
241
+ || verify_dict_has_node(nil, root->left, node)
242
+ || verify_dict_has_node(nil, root->right, node);
243
+ }
244
+ return 0;
245
+ }
246
+
247
+
248
+ /*
249
+ * Dynamically allocate and initialize a dictionary object.
250
+ */
251
+
252
+ dict_t *dict_create(dict_comp_t comp)
253
+ {
254
+ dict_t* new = ALLOC(dict_t);
255
+
256
+ if (new) {
257
+ new->compare = comp;
258
+ new->allocnode = dnode_alloc;
259
+ new->freenode = dnode_free;
260
+ new->context = NULL;
261
+ new->nodecount = 0;
262
+ new->nilnode.left = &new->nilnode;
263
+ new->nilnode.right = &new->nilnode;
264
+ new->nilnode.parent = &new->nilnode;
265
+ new->nilnode.color = dnode_black;
266
+ new->dupes = 0;
267
+ }
268
+ return new;
269
+ }
270
+
271
+ /*
272
+ * Select a different set of node allocator routines.
273
+ */
274
+
275
+ void dict_set_allocator(dict_t *dict, dnode_alloc_t al,
276
+ dnode_free_t fr, void *context)
277
+ {
278
+ assert (dict_count(dict) == 0);
279
+ assert ((al == NULL && fr == NULL) || (al != NULL && fr != NULL));
280
+
281
+ dict->allocnode = al ? al : dnode_alloc;
282
+ dict->freenode = fr ? fr : dnode_free;
283
+ dict->context = context;
284
+ }
285
+
286
+ /*
287
+ * Free a dynamically allocated dictionary object. Removing the nodes
288
+ * from the tree before deleting it is required.
289
+ */
290
+
291
+ void dict_destroy(dict_t *dict)
292
+ {
293
+ assert (dict_isempty(dict));
294
+ xfree(dict);
295
+ }
296
+
297
+ /*
298
+ * Free all the nodes in the dictionary by using the dictionary's
299
+ * installed free routine. The dictionary is emptied.
300
+ */
301
+
302
+ void dict_free_nodes(dict_t *dict)
303
+ {
304
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
305
+ free_nodes(dict, root, nil);
306
+ dict->nodecount = 0;
307
+ dict->nilnode.left = &dict->nilnode;
308
+ dict->nilnode.right = &dict->nilnode;
309
+ dict->nilnode.parent = &dict->nilnode;
310
+ }
311
+
312
+ /*
313
+ * Obsolescent function, equivalent to dict_free_nodes
314
+ */
315
+
316
+ void dict_free(dict_t *dict)
317
+ {
318
+ #ifdef KAZLIB_OBSOLESCENT_DEBUG
319
+ assert ("call to obsolescent function dict_free()" && 0);
320
+ #endif
321
+ dict_free_nodes(dict);
322
+ }
323
+
324
+ /*
325
+ * Initialize a user-supplied dictionary object.
326
+ */
327
+
328
+ dict_t *dict_init(dict_t *dict, dict_comp_t comp)
329
+ {
330
+ dict->compare = comp;
331
+ dict->allocnode = dnode_alloc;
332
+ dict->freenode = dnode_free;
333
+ dict->context = NULL;
334
+ dict->nodecount = 0;
335
+ dict->nilnode.left = &dict->nilnode;
336
+ dict->nilnode.right = &dict->nilnode;
337
+ dict->nilnode.parent = &dict->nilnode;
338
+ dict->nilnode.color = dnode_black;
339
+ dict->dupes = 0;
340
+ return dict;
341
+ }
342
+
343
+ /*
344
+ * Initialize a dictionary in the likeness of another dictionary
345
+ */
346
+
347
+ void dict_init_like(dict_t *dict, const dict_t *template)
348
+ {
349
+ dict->compare = template->compare;
350
+ dict->allocnode = template->allocnode;
351
+ dict->freenode = template->freenode;
352
+ dict->context = template->context;
353
+ dict->nodecount = 0;
354
+ dict->nilnode.left = &dict->nilnode;
355
+ dict->nilnode.right = &dict->nilnode;
356
+ dict->nilnode.parent = &dict->nilnode;
357
+ dict->nilnode.color = dnode_black;
358
+ dict->dupes = template->dupes;
359
+
360
+ assert (dict_similar(dict, template));
361
+ }
362
+
363
+ /*
364
+ * Remove all nodes from the dictionary (without freeing them in any way).
365
+ */
366
+
367
+ static void dict_clear(dict_t *dict)
368
+ {
369
+ dict->nodecount = 0;
370
+ dict->nilnode.left = &dict->nilnode;
371
+ dict->nilnode.right = &dict->nilnode;
372
+ dict->nilnode.parent = &dict->nilnode;
373
+ assert (dict->nilnode.color == dnode_black);
374
+ }
375
+
376
+ /*
377
+ * Verify the integrity of the dictionary structure. This is provided for
378
+ * debugging purposes, and should be placed in assert statements. Just because
379
+ * this function succeeds doesn't mean that the tree is not corrupt. Certain
380
+ * corruptions in the tree may simply cause undefined behavior.
381
+ */
382
+
383
+ int dict_verify(dict_t *dict)
384
+ {
385
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict);
386
+
387
+ /* check that the sentinel node and root node are black */
388
+ if (root->color != dnode_black)
389
+ return 0;
390
+ if (nil->color != dnode_black)
391
+ return 0;
392
+ if (nil->right != nil)
393
+ return 0;
394
+ /* nil->left is the root node; check that its parent pointer is nil */
395
+ if (nil->left->parent != nil)
396
+ return 0;
397
+ /* perform a weak test that the tree is a binary search tree */
398
+ if (!verify_bintree(dict))
399
+ return 0;
400
+ /* verify that the tree is a red-black tree */
401
+ if (!verify_redblack(nil, root))
402
+ return 0;
403
+ if (verify_node_count(nil, root) != dict_count(dict))
404
+ return 0;
405
+ return 1;
406
+ }
407
+
408
+ /*
409
+ * Determine whether two dictionaries are similar: have the same comparison and
410
+ * allocator functions, and same status as to whether duplicates are allowed.
411
+ */
412
+
413
+ int dict_similar(const dict_t *left, const dict_t *right)
414
+ {
415
+ if (left->compare != right->compare)
416
+ return 0;
417
+
418
+ if (left->allocnode != right->allocnode)
419
+ return 0;
420
+
421
+ if (left->freenode != right->freenode)
422
+ return 0;
423
+
424
+ if (left->context != right->context)
425
+ return 0;
426
+
427
+ /* if (left->dupes != right->dupes) */
428
+ /* return 0; */
429
+
430
+ return 1;
431
+ }
432
+
433
+ /*
434
+ * Locate a node in the dictionary having the given key.
435
+ * If the node is not found, a null a pointer is returned (rather than
436
+ * a pointer that dictionary's nil sentinel node), otherwise a pointer to the
437
+ * located node is returned.
438
+ */
439
+
440
+ dnode_t *dict_lookup(dict_t *dict, const void *key)
441
+ {
442
+ dnode_t *root = dict_root(dict);
443
+ dnode_t *nil = dict_nil(dict);
444
+ dnode_t *saved;
445
+ int result;
446
+
447
+ /* simple binary search adapted for trees that contain duplicate keys */
448
+
449
+ while (root != nil) {
450
+ result = COMPARE(dict, key, root->key);
451
+ if (result < 0)
452
+ root = root->left;
453
+ else if (result > 0)
454
+ root = root->right;
455
+ else {
456
+ if (!dict->dupes) { /* no duplicates, return match */
457
+ return root;
458
+ } else { /* could be dupes, find leftmost one */
459
+ do {
460
+ saved = root;
461
+ root = root->left;
462
+ while (root != nil && COMPARE(dict, key, root->key))
463
+ root = root->right;
464
+ } while (root != nil);
465
+ return saved;
466
+ }
467
+ }
468
+ }
469
+
470
+ return NULL;
471
+ }
472
+
473
+ /*
474
+ * Look for the node corresponding to the lowest key that is equal to or
475
+ * greater than the given key. If there is no such node, return null.
476
+ */
477
+
478
+ dnode_t *dict_lower_bound(dict_t *dict, const void *key)
479
+ {
480
+ dnode_t *root = dict_root(dict);
481
+ dnode_t *nil = dict_nil(dict);
482
+ dnode_t *tentative = 0;
483
+
484
+ while (root != nil) {
485
+ int result = COMPARE(dict, key, root->key);
486
+
487
+ if (result > 0) {
488
+ root = root->right;
489
+ } else if (result < 0) {
490
+ tentative = root;
491
+ root = root->left;
492
+ } else {
493
+ if (!dict->dupes) {
494
+ return root;
495
+ } else {
496
+ tentative = root;
497
+ root = root->left;
498
+ }
499
+ }
500
+ }
501
+
502
+ return tentative;
503
+ }
504
+
505
+ /*
506
+ * Look for the node corresponding to the greatest key that is equal to or
507
+ * lower than the given key. If there is no such node, return null.
508
+ */
509
+
510
+ dnode_t *dict_upper_bound(dict_t *dict, const void *key)
511
+ {
512
+ dnode_t *root = dict_root(dict);
513
+ dnode_t *nil = dict_nil(dict);
514
+ dnode_t *tentative = 0;
515
+
516
+ while (root != nil) {
517
+ int result = COMPARE(dict, key, root->key);
518
+
519
+ if (result < 0) {
520
+ root = root->left;
521
+ } else if (result > 0) {
522
+ tentative = root;
523
+ root = root->right;
524
+ } else {
525
+ if (!dict->dupes) {
526
+ return root;
527
+ } else {
528
+ tentative = root;
529
+ root = root->right;
530
+ }
531
+ }
532
+ }
533
+
534
+ return tentative;
535
+ }
536
+
537
+ /*
538
+ * Insert a node into the dictionary. The node should have been
539
+ * initialized with a data field. All other fields are ignored.
540
+ * The behavior is undefined if the user attempts to insert into
541
+ * a dictionary that is already full (for which the dict_isfull()
542
+ * function returns true).
543
+ */
544
+
545
+ int dict_insert(dict_t *dict, dnode_t *node, const void *key)
546
+ {
547
+ dnode_t *where = dict_root(dict), *nil = dict_nil(dict);
548
+ dnode_t *parent = nil, *uncle, *grandpa;
549
+ int result = -1;
550
+
551
+ node->key = key;
552
+
553
+ assert (!dict_isfull(dict));
554
+ assert (!dict_contains(dict, node));
555
+ assert (!dnode_is_in_a_dict(node));
556
+
557
+ /* basic binary tree insert */
558
+
559
+ while (where != nil) {
560
+ parent = where;
561
+ result = COMPARE(dict, key, where->key);
562
+ /* trap attempts at duplicate key insertion unless it's explicitly allowed */
563
+
564
+ if (!dict->dupes && result == 0) {
565
+ where->data = node->data;
566
+ return 0;
567
+ } else if (result < 0) {
568
+ where = where->left;
569
+ } else {
570
+ where = where->right;
571
+ }
572
+ }
573
+
574
+ assert (where == nil);
575
+
576
+ if (result < 0)
577
+ parent->left = node;
578
+ else
579
+ parent->right = node;
580
+
581
+ node->parent = parent;
582
+ node->left = nil;
583
+ node->right = nil;
584
+
585
+ dict->nodecount++;
586
+
587
+ /* red black adjustments */
588
+
589
+ node->color = dnode_red;
590
+
591
+ while (parent->color == dnode_red) {
592
+ grandpa = parent->parent;
593
+ if (parent == grandpa->left) {
594
+ uncle = grandpa->right;
595
+ if (uncle->color == dnode_red) { /* red parent, red uncle */
596
+ parent->color = dnode_black;
597
+ uncle->color = dnode_black;
598
+ grandpa->color = dnode_red;
599
+ node = grandpa;
600
+ parent = grandpa->parent;
601
+ } else { /* red parent, black uncle */
602
+ if (node == parent->right) {
603
+ rotate_left(parent);
604
+ parent = node;
605
+ assert (grandpa == parent->parent);
606
+ /* rotation between parent and child preserves grandpa */
607
+ }
608
+ parent->color = dnode_black;
609
+ grandpa->color = dnode_red;
610
+ rotate_right(grandpa);
611
+ break;
612
+ }
613
+ } else { /* symmetric cases: parent == parent->parent->right */
614
+ uncle = grandpa->left;
615
+ if (uncle->color == dnode_red) {
616
+ parent->color = dnode_black;
617
+ uncle->color = dnode_black;
618
+ grandpa->color = dnode_red;
619
+ node = grandpa;
620
+ parent = grandpa->parent;
621
+ } else {
622
+ if (node == parent->left) {
623
+ rotate_right(parent);
624
+ parent = node;
625
+ assert (grandpa == parent->parent);
626
+ }
627
+ parent->color = dnode_black;
628
+ grandpa->color = dnode_red;
629
+ rotate_left(grandpa);
630
+ break;
631
+ }
632
+ }
633
+ }
634
+
635
+ dict_root(dict)->color = dnode_black;
636
+
637
+ assert (dict_verify(dict));
638
+ return 1;
639
+ }
640
+
641
+ /*
642
+ * Delete the given node from the dictionary. If the given node does not belong
643
+ * to the given dictionary, undefined behavior results. A pointer to the
644
+ * deleted node is returned.
645
+ */
646
+
647
+ dnode_t *dict_delete(dict_t *dict, dnode_t *delete)
648
+ {
649
+ dnode_t *nil = dict_nil(dict), *child, *delparent = delete->parent;
650
+
651
+ /* basic deletion */
652
+
653
+ assert (!dict_isempty(dict));
654
+ assert (dict_contains(dict, delete));
655
+
656
+ /*
657
+ * If the node being deleted has two children, then we replace it with its
658
+ * successor (i.e. the leftmost node in the right subtree.) By doing this,
659
+ * we avoid the traditional algorithm under which the successor's key and
660
+ * value *only* move to the deleted node and the successor is spliced out
661
+ * from the tree. We cannot use this approach because the user may hold
662
+ * pointers to the successor, or nodes may be inextricably tied to some
663
+ * other structures by way of embedding, etc. So we must splice out the
664
+ * node we are given, not some other node, and must not move contents from
665
+ * one node to another behind the user's back.
666
+ */
667
+
668
+ if (delete->left != nil && delete->right != nil) {
669
+ dnode_t *next = dict_next(dict, delete);
670
+ dnode_t *nextparent = next->parent;
671
+ dnode_color_t nextcolor = next->color;
672
+
673
+ assert (next != nil);
674
+ assert (next->parent != nil);
675
+ assert (next->left == nil);
676
+
677
+ /*
678
+ * First, splice out the successor from the tree completely, by
679
+ * moving up its right child into its place.
680
+ */
681
+
682
+ child = next->right;
683
+ child->parent = nextparent;
684
+
685
+ if (nextparent->left == next) {
686
+ nextparent->left = child;
687
+ } else {
688
+ assert (nextparent->right == next);
689
+ nextparent->right = child;
690
+ }
691
+
692
+ /*
693
+ * Now that the successor has been extricated from the tree, install it
694
+ * in place of the node that we want deleted.
695
+ */
696
+
697
+ next->parent = delparent;
698
+ next->left = delete->left;
699
+ next->right = delete->right;
700
+ next->left->parent = next;
701
+ next->right->parent = next;
702
+ next->color = delete->color;
703
+ delete->color = nextcolor;
704
+
705
+ if (delparent->left == delete) {
706
+ delparent->left = next;
707
+ } else {
708
+ assert (delparent->right == delete);
709
+ delparent->right = next;
710
+ }
711
+
712
+ } else {
713
+ assert (delete != nil);
714
+ assert (delete->left == nil || delete->right == nil);
715
+
716
+ child = (delete->left != nil) ? delete->left : delete->right;
717
+
718
+ child->parent = delparent = delete->parent;
719
+
720
+ if (delete == delparent->left) {
721
+ delparent->left = child;
722
+ } else {
723
+ assert (delete == delparent->right);
724
+ delparent->right = child;
725
+ }
726
+ }
727
+
728
+ delete->parent = NULL;
729
+ delete->right = NULL;
730
+ delete->left = NULL;
731
+
732
+ dict->nodecount--;
733
+
734
+ assert (verify_bintree(dict));
735
+
736
+ /* red-black adjustments */
737
+
738
+ if (delete->color == dnode_black) {
739
+ dnode_t *parent, *sister;
740
+
741
+ dict_root(dict)->color = dnode_red;
742
+
743
+ while (child->color == dnode_black) {
744
+ parent = child->parent;
745
+ if (child == parent->left) {
746
+ sister = parent->right;
747
+ assert (sister != nil);
748
+ if (sister->color == dnode_red) {
749
+ sister->color = dnode_black;
750
+ parent->color = dnode_red;
751
+ rotate_left(parent);
752
+ sister = parent->right;
753
+ assert (sister != nil);
754
+ }
755
+ if (sister->left->color == dnode_black
756
+ && sister->right->color == dnode_black) {
757
+ sister->color = dnode_red;
758
+ child = parent;
759
+ } else {
760
+ if (sister->right->color == dnode_black) {
761
+ assert (sister->left->color == dnode_red);
762
+ sister->left->color = dnode_black;
763
+ sister->color = dnode_red;
764
+ rotate_right(sister);
765
+ sister = parent->right;
766
+ assert (sister != nil);
767
+ }
768
+ sister->color = parent->color;
769
+ sister->right->color = dnode_black;
770
+ parent->color = dnode_black;
771
+ rotate_left(parent);
772
+ break;
773
+ }
774
+ } else { /* symmetric case: child == child->parent->right */
775
+ assert (child == parent->right);
776
+ sister = parent->left;
777
+ assert (sister != nil);
778
+ if (sister->color == dnode_red) {
779
+ sister->color = dnode_black;
780
+ parent->color = dnode_red;
781
+ rotate_right(parent);
782
+ sister = parent->left;
783
+ assert (sister != nil);
784
+ }
785
+ if (sister->right->color == dnode_black
786
+ && sister->left->color == dnode_black) {
787
+ sister->color = dnode_red;
788
+ child = parent;
789
+ } else {
790
+ if (sister->left->color == dnode_black) {
791
+ assert (sister->right->color == dnode_red);
792
+ sister->right->color = dnode_black;
793
+ sister->color = dnode_red;
794
+ rotate_left(sister);
795
+ sister = parent->left;
796
+ assert (sister != nil);
797
+ }
798
+ sister->color = parent->color;
799
+ sister->left->color = dnode_black;
800
+ parent->color = dnode_black;
801
+ rotate_right(parent);
802
+ break;
803
+ }
804
+ }
805
+ }
806
+
807
+ child->color = dnode_black;
808
+ dict_root(dict)->color = dnode_black;
809
+ }
810
+
811
+ assert (dict_verify(dict));
812
+
813
+ return delete;
814
+ }
815
+
816
+ /*
817
+ * Allocate a node using the dictionary's allocator routine, give it
818
+ * the data item.
819
+ */
820
+
821
+ int dict_alloc_insert(dict_t *dict, const void *key, void *data)
822
+ {
823
+ dnode_t *node = dict->allocnode(dict->context);
824
+
825
+ if (node) {
826
+ dnode_init(node, data);
827
+ if (!dict_insert(dict, node, key))
828
+ dict->freenode(node, dict->context);
829
+ return 1;
830
+ }
831
+ return 0;
832
+ }
833
+
834
+ void dict_delete_free(dict_t *dict, dnode_t *node)
835
+ {
836
+ dict_delete(dict, node);
837
+ dict->freenode(node, dict->context);
838
+ }
839
+
840
+ /*
841
+ * Return the node with the lowest (leftmost) key. If the dictionary is empty
842
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
843
+ */
844
+
845
+ dnode_t *dict_first(dict_t *dict)
846
+ {
847
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *left;
848
+
849
+ if (root != nil)
850
+ while ((left = root->left) != nil)
851
+ root = left;
852
+
853
+ return (root == nil) ? NULL : root;
854
+ }
855
+
856
+ /*
857
+ * Return the node with the highest (rightmost) key. If the dictionary is empty
858
+ * (that is, dict_isempty(dict) returns 1) a null pointer is returned.
859
+ */
860
+
861
+ dnode_t *dict_last(dict_t *dict)
862
+ {
863
+ dnode_t *nil = dict_nil(dict), *root = dict_root(dict), *right;
864
+
865
+ if (root != nil)
866
+ while ((right = root->right) != nil)
867
+ root = right;
868
+
869
+ return (root == nil) ? NULL : root;
870
+ }
871
+
872
+ /*
873
+ * Return the given node's successor node---the node which has the
874
+ * next key in the the left to right ordering. If the node has
875
+ * no successor, a null pointer is returned rather than a pointer to
876
+ * the nil node.
877
+ */
878
+
879
+ dnode_t *dict_next(dict_t *dict, dnode_t *curr)
880
+ {
881
+ dnode_t *nil = dict_nil(dict), *parent, *left;
882
+
883
+ if (curr->right != nil) {
884
+ curr = curr->right;
885
+ while ((left = curr->left) != nil)
886
+ curr = left;
887
+ return curr;
888
+ }
889
+
890
+ parent = curr->parent;
891
+
892
+ while (parent != nil && curr == parent->right) {
893
+ curr = parent;
894
+ parent = curr->parent;
895
+ }
896
+
897
+ return (parent == nil) ? NULL : parent;
898
+ }
899
+
900
+ /*
901
+ * Return the given node's predecessor, in the key order.
902
+ * The nil sentinel node is returned if there is no predecessor.
903
+ */
904
+
905
+ dnode_t *dict_prev(dict_t *dict, dnode_t *curr)
906
+ {
907
+ dnode_t *nil = dict_nil(dict), *parent, *right;
908
+
909
+ if (curr->left != nil) {
910
+ curr = curr->left;
911
+ while ((right = curr->right) != nil)
912
+ curr = right;
913
+ return curr;
914
+ }
915
+
916
+ parent = curr->parent;
917
+
918
+ while (parent != nil && curr == parent->left) {
919
+ curr = parent;
920
+ parent = curr->parent;
921
+ }
922
+
923
+ return (parent == nil) ? NULL : parent;
924
+ }
925
+
926
+ void dict_allow_dupes(dict_t *dict)
927
+ {
928
+ dict->dupes = 1;
929
+ }
930
+
931
+ dictcount_t dict_count(dict_t *dict)
932
+ {
933
+ return dict->nodecount;
934
+ }
935
+
936
+ int dict_isempty(dict_t *dict)
937
+ {
938
+ return dict->nodecount == 0;
939
+ }
940
+
941
+ int dict_isfull(dict_t *dict)
942
+ {
943
+ return dict->nodecount == DICTCOUNT_T_MAX;
944
+ }
945
+
946
+ int dict_contains(dict_t *dict, dnode_t *node)
947
+ {
948
+ return verify_dict_has_node(dict_nil(dict), dict_root(dict), node);
949
+ }
950
+
951
+ static dnode_t *dnode_alloc(void *context)
952
+ {
953
+ return malloc(sizeof *dnode_alloc(NULL));
954
+ }
955
+
956
+ static void dnode_free(dnode_t *node, void *context)
957
+ {
958
+ free(node);
959
+ }
960
+
961
+ dnode_t *dnode_create(void *data)
962
+ {
963
+ dnode_t *new = malloc(sizeof *new);
964
+ if (new) {
965
+ new->data = data;
966
+ new->parent = NULL;
967
+ new->left = NULL;
968
+ new->right = NULL;
969
+ }
970
+ return new;
971
+ }
972
+
973
+ dnode_t *dnode_init(dnode_t *dnode, void *data)
974
+ {
975
+ dnode->data = data;
976
+ dnode->parent = NULL;
977
+ dnode->left = NULL;
978
+ dnode->right = NULL;
979
+ return dnode;
980
+ }
981
+
982
+ void dnode_destroy(dnode_t *dnode)
983
+ {
984
+ assert (!dnode_is_in_a_dict(dnode));
985
+ free(dnode);
986
+ }
987
+
988
+ void *dnode_get(dnode_t *dnode)
989
+ {
990
+ return dnode->data;
991
+ }
992
+
993
+ const void *dnode_getkey(dnode_t *dnode)
994
+ {
995
+ return dnode->key;
996
+ }
997
+
998
+ void dnode_put(dnode_t *dnode, void *data)
999
+ {
1000
+ dnode->data = data;
1001
+ }
1002
+
1003
+ int dnode_is_in_a_dict(dnode_t *dnode)
1004
+ {
1005
+ return (dnode->parent && dnode->left && dnode->right);
1006
+ }
1007
+
1008
+ void dict_process(dict_t *dict, void *context, dnode_process_t function)
1009
+ {
1010
+ dnode_t *node = dict_first(dict), *next;
1011
+
1012
+ while (node != NULL) {
1013
+ /* check for callback function deleting */
1014
+ /* the next node from under us */
1015
+ assert (dict_contains(dict, node));
1016
+ next = dict_next(dict, node);
1017
+ function(dict, node, context);
1018
+ node = next;
1019
+ }
1020
+ }
1021
+
1022
+ static void load_begin_internal(dict_load_t *load, dict_t *dict)
1023
+ {
1024
+ load->dictptr = dict;
1025
+ load->nilnode.left = &load->nilnode;
1026
+ load->nilnode.right = &load->nilnode;
1027
+ }
1028
+
1029
+ void dict_load_begin(dict_load_t *load, dict_t *dict)
1030
+ {
1031
+ assert (dict_isempty(dict));
1032
+ load_begin_internal(load, dict);
1033
+ }
1034
+
1035
+ void dict_load_next(dict_load_t *load, dnode_t *newnode, const void *key)
1036
+ {
1037
+ dict_t *dict = load->dictptr;
1038
+ dnode_t *nil = &load->nilnode;
1039
+
1040
+ assert (!dnode_is_in_a_dict(newnode));
1041
+ assert (dict->nodecount < DICTCOUNT_T_MAX);
1042
+
1043
+ #ifndef NDEBUG
1044
+ if (dict->nodecount > 0) {
1045
+ if (dict->dupes)
1046
+ assert (COMPARE(dict, nil->left->key, key) <= 0);
1047
+ else
1048
+ assert (COMPARE(dict, nil->left->key, key) < 0);
1049
+ }
1050
+ #endif
1051
+
1052
+ newnode->key = key;
1053
+ nil->right->left = newnode;
1054
+ nil->right = newnode;
1055
+ newnode->left = nil;
1056
+ dict->nodecount++;
1057
+ }
1058
+
1059
+ void dict_load_end(dict_load_t *load)
1060
+ {
1061
+ dict_t *dict = load->dictptr;
1062
+ dnode_t *tree[DICT_DEPTH_MAX] = { 0 };
1063
+ dnode_t *curr, *dictnil = dict_nil(dict), *loadnil = &load->nilnode, *next;
1064
+ dnode_t *complete = 0;
1065
+ dictcount_t fullcount = DICTCOUNT_T_MAX, nodecount = dict->nodecount;
1066
+ dictcount_t botrowcount;
1067
+ unsigned baselevel = 0, level = 0, i;
1068
+
1069
+ assert (dnode_red == 0 && dnode_black == 1);
1070
+
1071
+ while (fullcount >= nodecount && fullcount)
1072
+ fullcount >>= 1;
1073
+
1074
+ botrowcount = nodecount - fullcount;
1075
+
1076
+ for (curr = loadnil->left; curr != loadnil; curr = next) {
1077
+ next = curr->left;
1078
+
1079
+ if (complete == NULL && botrowcount-- == 0) {
1080
+ assert (baselevel == 0);
1081
+ assert (level == 0);
1082
+ baselevel = level = 1;
1083
+ complete = tree[0];
1084
+
1085
+ if (complete != 0) {
1086
+ tree[0] = 0;
1087
+ complete->right = dictnil;
1088
+ while (tree[level] != 0) {
1089
+ tree[level]->right = complete;
1090
+ complete->parent = tree[level];
1091
+ complete = tree[level];
1092
+ tree[level++] = 0;
1093
+ }
1094
+ }
1095
+ }
1096
+
1097
+ if (complete == NULL) {
1098
+ curr->left = dictnil;
1099
+ curr->right = dictnil;
1100
+ curr->color = level % 2;
1101
+ complete = curr;
1102
+
1103
+ assert (level == baselevel);
1104
+ while (tree[level] != 0) {
1105
+ tree[level]->right = complete;
1106
+ complete->parent = tree[level];
1107
+ complete = tree[level];
1108
+ tree[level++] = 0;
1109
+ }
1110
+ } else {
1111
+ curr->left = complete;
1112
+ curr->color = (level + 1) % 2;
1113
+ complete->parent = curr;
1114
+ tree[level] = curr;
1115
+ complete = 0;
1116
+ level = baselevel;
1117
+ }
1118
+ }
1119
+
1120
+ if (complete == NULL)
1121
+ complete = dictnil;
1122
+
1123
+ for (i = 0; i < DICT_DEPTH_MAX; i++) {
1124
+ if (tree[i] != 0) {
1125
+ tree[i]->right = complete;
1126
+ complete->parent = tree[i];
1127
+ complete = tree[i];
1128
+ }
1129
+ }
1130
+
1131
+ dictnil->color = dnode_black;
1132
+ dictnil->right = dictnil;
1133
+ complete->parent = dictnil;
1134
+ complete->color = dnode_black;
1135
+ dict_root(dict) = complete;
1136
+
1137
+ assert (dict_verify(dict));
1138
+ }
1139
+
1140
+ void dict_merge(dict_t *dest, dict_t *source)
1141
+ {
1142
+ dict_load_t load;
1143
+ dnode_t *leftnode = dict_first(dest), *rightnode = dict_first(source);
1144
+
1145
+ assert (dict_similar(dest, source));
1146
+
1147
+ if (source == dest)
1148
+ return;
1149
+
1150
+ dest->nodecount = 0;
1151
+ load_begin_internal(&load, dest);
1152
+
1153
+ for (;;) {
1154
+ if (leftnode != NULL && rightnode != NULL) {
1155
+ if (COMPARE(dest, leftnode->key, rightnode->key) < 0)
1156
+ goto copyleft;
1157
+ else
1158
+ goto copyright;
1159
+ } else if (leftnode != NULL) {
1160
+ goto copyleft;
1161
+ } else if (rightnode != NULL) {
1162
+ goto copyright;
1163
+ } else {
1164
+ assert (leftnode == NULL && rightnode == NULL);
1165
+ break;
1166
+ }
1167
+
1168
+ copyleft:
1169
+ {
1170
+ dnode_t *next = dict_next(dest, leftnode);
1171
+ #ifndef NDEBUG
1172
+ leftnode->left = NULL; /* suppress assertion in dict_load_next */
1173
+ #endif
1174
+ dict_load_next(&load, leftnode, leftnode->key);
1175
+ leftnode = next;
1176
+ continue;
1177
+ }
1178
+
1179
+ copyright:
1180
+ {
1181
+ dnode_t *next = dict_next(source, rightnode);
1182
+ #ifndef NDEBUG
1183
+ rightnode->left = NULL;
1184
+ #endif
1185
+ dict_load_next(&load, rightnode, rightnode->key);
1186
+ rightnode = next;
1187
+ continue;
1188
+ }
1189
+ }
1190
+
1191
+ dict_clear(source);
1192
+ dict_load_end(&load);
1193
+ }
1194
+
1195
+ int dict_equal(dict_t* dict1, dict_t* dict2,
1196
+ dict_value_eql_t value_eql)
1197
+ {
1198
+ dnode_t* node1;
1199
+ dnode_t* node2;
1200
+
1201
+ if (dict_count(dict1) != dict_count(dict2))
1202
+ return 0;
1203
+ if (!dict_similar(dict1, dict2))
1204
+ return 0;
1205
+
1206
+ for (node1 = dict_first(dict1), node2 = dict_first(dict2);
1207
+ node1 != NULL && node2 != NULL;
1208
+ node1 = dict_next(dict1, node1), node2 = dict_next(dict2, node2)) {
1209
+
1210
+ if (COMPARE(dict1, node1->key, node2->key) != 0)
1211
+ return 0;
1212
+ if (!value_eql(node1->data, node2->data))
1213
+ return 0;
1214
+ }
1215
+ return 1;
1216
+ }