rbcluster 0.0.1
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.gitignore +9 -0
- data/.travis.yml +6 -0
- data/Gemfile +4 -0
- data/LICENSE +29 -0
- data/README.md +54 -0
- data/Rakefile +17 -0
- data/examples/simple_kcluster.rb +10 -0
- data/ext/rbcluster/cluster.c +4598 -0
- data/ext/rbcluster/cluster.h +93 -0
- data/ext/rbcluster/extconf.rb +6 -0
- data/ext/rbcluster/rbcluster.c +775 -0
- data/lib/rbcluster.rb +5 -0
- data/lib/rbcluster/tree.rb +20 -0
- data/lib/rbcluster/version.rb +3 -0
- data/rbcluster.gemspec +24 -0
- data/spec/clustercentroids_spec.rb +6 -0
- data/spec/clusterdistance_spec.rb +106 -0
- data/spec/clustermedoids_spec.rb +6 -0
- data/spec/cuttree_spec.rb +6 -0
- data/spec/kcluster_spec.rb +95 -0
- data/spec/kmedoids_spec.rb +86 -0
- data/spec/median_mean_spec.rb +26 -0
- data/spec/node_spec.rb +27 -0
- data/spec/pca_spec.rb +113 -0
- data/spec/somcluster_spec.rb +81 -0
- data/spec/spec_helper.rb +3 -0
- data/spec/treecluster_spec.rb +412 -0
- metadata +110 -0
@@ -0,0 +1,81 @@
|
|
1
|
+
require 'spec_helper'
|
2
|
+
|
3
|
+
describe "Cluster.somcluster" do
|
4
|
+
|
5
|
+
it "calculates somcluster for a first data set" do
|
6
|
+
weight = [ 1,1,1,1,1 ]
|
7
|
+
data = [
|
8
|
+
[ 1.1, 2.2, 3.3, 4.4, 5.5],
|
9
|
+
[ 3.1, 3.2, 1.3, 2.4, 1.5],
|
10
|
+
[ 4.1, 2.2, 0.3, 5.4, 0.5],
|
11
|
+
[ 12.1, 2.0, 0.0, 5.0, 0.0]
|
12
|
+
|
13
|
+
]
|
14
|
+
mask = [
|
15
|
+
[ 1, 1, 1, 1, 1],
|
16
|
+
[ 1, 1, 1, 1, 1],
|
17
|
+
[ 1, 1, 1, 1, 1],
|
18
|
+
[ 1, 1, 1, 1, 1]
|
19
|
+
]
|
20
|
+
|
21
|
+
clusterid, celldata = Cluster.somcluster data, :mask => mask,
|
22
|
+
:weight => weight,
|
23
|
+
:transpose => false,
|
24
|
+
:nxgrid => 10,
|
25
|
+
:nygrid => 10,
|
26
|
+
:inittau => 0.02,
|
27
|
+
:niter => 100,
|
28
|
+
:dist => 'e'
|
29
|
+
|
30
|
+
clusterid.size.should == data.size
|
31
|
+
clusterid[0].size.should == 2
|
32
|
+
celldata[0][0].size.should == 5
|
33
|
+
end
|
34
|
+
|
35
|
+
it "calculates somcluster for a second data set" do
|
36
|
+
weight = [ 1,1 ]
|
37
|
+
data = [
|
38
|
+
[ 1.1, 1.2 ],
|
39
|
+
[ 1.4, 1.3 ],
|
40
|
+
[ 1.1, 1.5 ],
|
41
|
+
[ 2.0, 1.5 ],
|
42
|
+
[ 1.7, 1.9 ],
|
43
|
+
[ 1.7, 1.9 ],
|
44
|
+
[ 5.7, 5.9 ],
|
45
|
+
[ 5.7, 5.9 ],
|
46
|
+
[ 3.1, 3.3 ],
|
47
|
+
[ 5.4, 5.3 ],
|
48
|
+
[ 5.1, 5.5 ],
|
49
|
+
[ 5.0, 5.5 ],
|
50
|
+
[ 5.1, 5.2 ]
|
51
|
+
]
|
52
|
+
|
53
|
+
mask = [
|
54
|
+
[ 1, 1 ],
|
55
|
+
[ 1, 1 ],
|
56
|
+
[ 1, 1 ],
|
57
|
+
[ 1, 1 ],
|
58
|
+
[ 1, 1 ],
|
59
|
+
[ 1, 1 ],
|
60
|
+
[ 1, 1 ],
|
61
|
+
[ 1, 1 ],
|
62
|
+
[ 1, 1 ],
|
63
|
+
[ 1, 1 ],
|
64
|
+
[ 1, 1 ],
|
65
|
+
[ 1, 1 ],
|
66
|
+
[ 1, 1 ]
|
67
|
+
]
|
68
|
+
|
69
|
+
clusterid, celldata = Cluster.somcluster data, :mask => mask,
|
70
|
+
:weight => weight,
|
71
|
+
:transpose => false,
|
72
|
+
:nxgrid => 10,
|
73
|
+
:nygrid => 10,
|
74
|
+
:inittau => 0.02,
|
75
|
+
:niter => 100,
|
76
|
+
:dist => 'e'
|
77
|
+
clusterid.size.should == data.size
|
78
|
+
clusterid[0].size.should == 2
|
79
|
+
celldata[0][0].size.should == 2
|
80
|
+
end
|
81
|
+
end
|
data/spec/spec_helper.rb
ADDED
@@ -0,0 +1,412 @@
|
|
1
|
+
require 'spec_helper'
|
2
|
+
|
3
|
+
describe "Cluster.treecluster" do
|
4
|
+
context "first data set" do
|
5
|
+
let(:weight) { [ 1,1,1,1,1 ] }
|
6
|
+
let(:data) {
|
7
|
+
[
|
8
|
+
[ 1.1, 2.2, 3.3, 4.4, 5.5],
|
9
|
+
[ 3.1, 3.2, 1.3, 2.4, 1.5],
|
10
|
+
[ 4.1, 2.2, 0.3, 5.4, 0.5],
|
11
|
+
[ 12.1, 2.0, 0.0, 5.0, 0.0]
|
12
|
+
]
|
13
|
+
}
|
14
|
+
|
15
|
+
let(:mask) {
|
16
|
+
[
|
17
|
+
[ 1, 1, 1, 1, 1],
|
18
|
+
[ 1, 1, 1, 1, 1],
|
19
|
+
[ 1, 1, 1, 1, 1],
|
20
|
+
[ 1, 1, 1, 1, 1]
|
21
|
+
]
|
22
|
+
}
|
23
|
+
|
24
|
+
it "calculates pairwise average-linkage clustering" do
|
25
|
+
tree = Cluster.treecluster data, :mask => mask,
|
26
|
+
:weight => weight,
|
27
|
+
:transpose => false,
|
28
|
+
:method => 'a',
|
29
|
+
:dist => 'e'
|
30
|
+
|
31
|
+
tree.size.should == data.size - 1
|
32
|
+
|
33
|
+
tree[0].left.should == 2
|
34
|
+
tree[0].right.should == 1
|
35
|
+
tree[0].distance.should be_within(0.001).of(2.600)
|
36
|
+
|
37
|
+
tree[1].left.should == -1
|
38
|
+
tree[1].right.should == 0
|
39
|
+
tree[1].distance.should be_within(0.001).of(7.300)
|
40
|
+
|
41
|
+
tree[2].left.should == 3
|
42
|
+
tree[2].right.should == -2
|
43
|
+
tree[2].distance.should be_within(0.001).of(21.348)
|
44
|
+
end
|
45
|
+
|
46
|
+
it "calcultes pairwise single-linkage clustering" do
|
47
|
+
tree = Cluster.treecluster data, :mask => mask,
|
48
|
+
:weight => weight,
|
49
|
+
:transpose => false,
|
50
|
+
:method => 's',
|
51
|
+
:dist => 'e'
|
52
|
+
|
53
|
+
tree.size.should == data.size - 1
|
54
|
+
|
55
|
+
tree[0].left.should == 1
|
56
|
+
tree[0].right.should == 2
|
57
|
+
tree[0].distance.should be_within(0.001).of(2.600)
|
58
|
+
|
59
|
+
tree[1].left.should == 0
|
60
|
+
tree[1].right.should == -1
|
61
|
+
tree[1].distance.should be_within(0.001).of(5.800)
|
62
|
+
|
63
|
+
tree[2].left.should == -2
|
64
|
+
tree[2].right.should == 3
|
65
|
+
tree[2].distance.should be_within(0.001).of(12.908)
|
66
|
+
end
|
67
|
+
|
68
|
+
it "calculates pairwise centroid-linkage clustering" do
|
69
|
+
tree = Cluster.treecluster data, :mask => mask,
|
70
|
+
:weight => weight,
|
71
|
+
:transpose => false,
|
72
|
+
:method => 'c',
|
73
|
+
:dist => 'e'
|
74
|
+
|
75
|
+
tree.size.should == data.size - 1
|
76
|
+
|
77
|
+
tree[0].left.should == 1
|
78
|
+
tree[0].right.should == 2
|
79
|
+
tree[0].distance.should be_within(0.001).of(2.600)
|
80
|
+
tree[1].left.should == 0
|
81
|
+
tree[1].right.should == -1
|
82
|
+
tree[1].distance.should be_within(0.001).of(6.650)
|
83
|
+
tree[2].left.should == -2
|
84
|
+
tree[2].right.should == 3
|
85
|
+
tree[2].distance.should be_within(0.001).of(19.437)
|
86
|
+
end
|
87
|
+
|
88
|
+
it "calculates pairwise maximum-linkage clustering" do
|
89
|
+
tree = Cluster.treecluster data, :mask => mask,
|
90
|
+
:weight => weight,
|
91
|
+
:transpose => false,
|
92
|
+
:method => 'm',
|
93
|
+
:dist => 'e'
|
94
|
+
|
95
|
+
tree.size.should == data.size - 1
|
96
|
+
|
97
|
+
tree[0].left.should == 2
|
98
|
+
tree[0].right.should == 1
|
99
|
+
tree[0].distance.should be_within(0.001).of(2.600)
|
100
|
+
tree[1].left.should == -1
|
101
|
+
tree[1].right.should == 0
|
102
|
+
tree[1].distance.should be_within(0.001).of(8.800)
|
103
|
+
tree[2].left.should == 3
|
104
|
+
tree[2].right.should == -2
|
105
|
+
tree[2].distance.should be_within(0.001).of(32.508)
|
106
|
+
end
|
107
|
+
end
|
108
|
+
|
109
|
+
context "second data set" do
|
110
|
+
let(:weight) { [ 1,1 ] }
|
111
|
+
let(:data) {
|
112
|
+
[
|
113
|
+
[ 0.8223, 0.9295 ],
|
114
|
+
[ 1.4365, 1.3223 ],
|
115
|
+
[ 1.1623, 1.5364 ],
|
116
|
+
[ 2.1826, 1.1934 ],
|
117
|
+
[ 1.7763, 1.9352 ],
|
118
|
+
[ 1.7215, 1.9912 ],
|
119
|
+
[ 2.1812, 5.9935 ],
|
120
|
+
[ 5.3290, 5.9452 ],
|
121
|
+
[ 3.1491, 3.3454 ],
|
122
|
+
[ 5.1923, 5.3156 ],
|
123
|
+
[ 4.7735, 5.4012 ],
|
124
|
+
[ 5.1297, 5.5645 ],
|
125
|
+
[ 5.3934, 5.1823 ]
|
126
|
+
]
|
127
|
+
}
|
128
|
+
|
129
|
+
let(:mask) {
|
130
|
+
[
|
131
|
+
[ 1, 1 ],
|
132
|
+
[ 1, 1 ],
|
133
|
+
[ 1, 1 ],
|
134
|
+
[ 1, 1 ],
|
135
|
+
[ 1, 1 ],
|
136
|
+
[ 1, 1 ],
|
137
|
+
[ 1, 1 ],
|
138
|
+
[ 1, 1 ],
|
139
|
+
[ 1, 1 ],
|
140
|
+
[ 1, 1 ],
|
141
|
+
[ 1, 1 ],
|
142
|
+
[ 1, 1 ],
|
143
|
+
[ 1, 1 ]
|
144
|
+
]
|
145
|
+
}
|
146
|
+
|
147
|
+
it "calculates pairwise average-linkage clustering" do
|
148
|
+
tree = Cluster.treecluster data, :mask => mask,
|
149
|
+
:weight => weight,
|
150
|
+
:transpose => false,
|
151
|
+
:method => 'a',
|
152
|
+
:dist => 'e'
|
153
|
+
|
154
|
+
tree.size.should == data.size - 1
|
155
|
+
tree[0].left.should == 5
|
156
|
+
tree[0].right.should == 4
|
157
|
+
tree[0].distance.should be_within(0.001).of(0.003)
|
158
|
+
|
159
|
+
tree[1].left.should == 9
|
160
|
+
tree[1].right.should == 12
|
161
|
+
tree[1].distance.should be_within(0.001).of(0.029)
|
162
|
+
|
163
|
+
tree[2].left.should == 2
|
164
|
+
tree[2].right.should == 1
|
165
|
+
tree[2].distance.should be_within(0.001).of(0.061)
|
166
|
+
|
167
|
+
tree[3].left.should == 11
|
168
|
+
tree[3].right.should == -2
|
169
|
+
tree[3].distance.should be_within(0.001).of(0.070)
|
170
|
+
|
171
|
+
tree[4].left.should == -4
|
172
|
+
tree[4].right.should == 10
|
173
|
+
tree[4].distance.should be_within(0.001).of(0.128)
|
174
|
+
|
175
|
+
tree[5].left.should == 7
|
176
|
+
tree[5].right.should == -5
|
177
|
+
tree[5].distance.should be_within(0.001).of(0.224)
|
178
|
+
|
179
|
+
tree[6].left.should == -3
|
180
|
+
tree[6].right.should == 0
|
181
|
+
tree[6].distance.should be_within(0.001).of(0.254)
|
182
|
+
|
183
|
+
tree[7].left.should == -1
|
184
|
+
tree[7].right.should == 3
|
185
|
+
tree[7].distance.should be_within(0.001).of(0.391)
|
186
|
+
|
187
|
+
tree[8].left.should == -8
|
188
|
+
tree[8].right.should == -7
|
189
|
+
tree[8].distance.should be_within(0.001).of(0.532)
|
190
|
+
|
191
|
+
tree[9].left.should == 8
|
192
|
+
tree[9].right.should == -9
|
193
|
+
tree[9].distance.should be_within(0.001).of(3.234)
|
194
|
+
|
195
|
+
tree[10].left.should == -6
|
196
|
+
tree[10].right.should == 6
|
197
|
+
tree[10].distance.should be_within(0.001).of(4.636)
|
198
|
+
|
199
|
+
tree[11].left.should == -11
|
200
|
+
tree[11].right.should == -10
|
201
|
+
tree[11].distance.should be_within(0.001).of(12.741)
|
202
|
+
end
|
203
|
+
|
204
|
+
it "calculates pairwise single-linkage clustering" do
|
205
|
+
tree = Cluster.treecluster data, :mask => mask,
|
206
|
+
:weight => weight,
|
207
|
+
:transpose => false,
|
208
|
+
:method => 's',
|
209
|
+
:dist => 'e'
|
210
|
+
|
211
|
+
tree.size.should == data.size - 1
|
212
|
+
|
213
|
+
tree[0].left.should == 4
|
214
|
+
tree[0].right.should == 5
|
215
|
+
tree[0].distance.should be_within(0.001).of(0.003)
|
216
|
+
|
217
|
+
tree[1].left.should == 9
|
218
|
+
tree[1].right.should == 12
|
219
|
+
tree[1].distance.should be_within(0.001).of(0.029)
|
220
|
+
|
221
|
+
tree[2].left.should == 11
|
222
|
+
tree[2].right.should == -2
|
223
|
+
tree[2].distance.should be_within(0.001).of(0.033)
|
224
|
+
|
225
|
+
tree[3].left.should == 1
|
226
|
+
tree[3].right.should == 2
|
227
|
+
tree[3].distance.should be_within(0.001).of(0.061)
|
228
|
+
|
229
|
+
tree[4].left.should == 10
|
230
|
+
tree[4].right.should == -3
|
231
|
+
tree[4].distance.should be_within(0.001).of(0.077)
|
232
|
+
|
233
|
+
tree[5].left.should == 7
|
234
|
+
tree[5].right.should == -5
|
235
|
+
tree[5].distance.should be_within(0.001).of(0.092)
|
236
|
+
|
237
|
+
tree[6].left.should == 0
|
238
|
+
tree[6].right.should == -4
|
239
|
+
tree[6].distance.should be_within(0.001).of(0.242)
|
240
|
+
|
241
|
+
tree[7].left.should == -7
|
242
|
+
tree[7].right.should == -1
|
243
|
+
tree[7].distance.should be_within(0.001).of(0.246)
|
244
|
+
|
245
|
+
tree[8].left.should == 3
|
246
|
+
tree[8].right.should == -8
|
247
|
+
tree[8].distance.should be_within(0.001).of(0.287)
|
248
|
+
|
249
|
+
tree[9].left.should == -9
|
250
|
+
tree[9].right.should == 8
|
251
|
+
tree[9].distance.should be_within(0.001).of(1.936)
|
252
|
+
|
253
|
+
tree[10].left.should == -10
|
254
|
+
tree[10].right.should == -6
|
255
|
+
tree[10].distance.should be_within(0.001).of(3.432)
|
256
|
+
|
257
|
+
tree[11].left.should == 6
|
258
|
+
tree[11].right.should == -11
|
259
|
+
tree[11].distance.should be_within(0.001).of(3.535)
|
260
|
+
end
|
261
|
+
|
262
|
+
it "calculates pairwise centroid-linkage clustering" do
|
263
|
+
tree = Cluster.treecluster data, :mask => mask,
|
264
|
+
:weight => weight,
|
265
|
+
:transpose => false,
|
266
|
+
:method => 'c',
|
267
|
+
:dist => 'e'
|
268
|
+
|
269
|
+
tree.size.should == data.size - 1
|
270
|
+
|
271
|
+
tree[0].left.should == 4
|
272
|
+
tree[0].right.should == 5
|
273
|
+
tree[0].distance.should be_within(0.001).of(0.003)
|
274
|
+
|
275
|
+
tree[1].left.should == 12
|
276
|
+
tree[1].right.should == 9
|
277
|
+
tree[1].distance.should be_within(0.001).of(0.029)
|
278
|
+
|
279
|
+
tree[2].left.should == 1
|
280
|
+
tree[2].right.should == 2
|
281
|
+
tree[2].distance.should be_within(0.001).of(0.061)
|
282
|
+
|
283
|
+
tree[3].left.should == -2
|
284
|
+
tree[3].right.should == 11
|
285
|
+
tree[3].distance.should be_within(0.001).of(0.063)
|
286
|
+
|
287
|
+
tree[4].left.should == 10
|
288
|
+
tree[4].right.should == -4
|
289
|
+
tree[4].distance.should be_within(0.001).of(0.109)
|
290
|
+
|
291
|
+
tree[5].left.should == -5
|
292
|
+
tree[5].right.should == 7
|
293
|
+
tree[5].distance.should be_within(0.001).of(0.189)
|
294
|
+
|
295
|
+
tree[6].left.should == 0
|
296
|
+
tree[6].right.should == -3
|
297
|
+
tree[6].distance.should be_within(0.001).of(0.239)
|
298
|
+
|
299
|
+
tree[7].left.should == 3
|
300
|
+
tree[7].right.should == -1
|
301
|
+
tree[7].distance.should be_within(0.001).of(0.390)
|
302
|
+
|
303
|
+
tree[8].left.should == -7
|
304
|
+
tree[8].right.should == -8
|
305
|
+
tree[8].distance.should be_within(0.001).of(0.382)
|
306
|
+
|
307
|
+
tree[9].left.should == -9
|
308
|
+
tree[9].right.should == 8
|
309
|
+
tree[9].distance.should be_within(0.001).of(3.063)
|
310
|
+
|
311
|
+
tree[10].left.should == 6
|
312
|
+
tree[10].right.should == -6
|
313
|
+
tree[10].distance.should be_within(0.001).of(4.578)
|
314
|
+
|
315
|
+
tree[11].left.should == -10
|
316
|
+
tree[11].right.should == -11
|
317
|
+
tree[11].distance.should be_within(0.001).of(11.536)
|
318
|
+
end
|
319
|
+
|
320
|
+
it "calculates pairwise maximum-linkage clustering" do
|
321
|
+
tree = Cluster.treecluster data, :mask => mask,
|
322
|
+
:weight => weight,
|
323
|
+
:transpose => false,
|
324
|
+
:method => 'm',
|
325
|
+
:dist => 'e'
|
326
|
+
|
327
|
+
tree.size.should == data.size - 1
|
328
|
+
|
329
|
+
tree[0].left.should == 5
|
330
|
+
tree[0].right.should == 4
|
331
|
+
tree[0].distance.should be_within(0.001).of(0.003)
|
332
|
+
|
333
|
+
tree[1].left.should == 9
|
334
|
+
tree[1].right.should == 12
|
335
|
+
tree[1].distance.should be_within(0.001).of(0.029)
|
336
|
+
|
337
|
+
tree[2].left.should == 2
|
338
|
+
tree[2].right.should == 1
|
339
|
+
tree[2].distance.should be_within(0.001).of(0.061)
|
340
|
+
|
341
|
+
tree[3].left.should == 11
|
342
|
+
tree[3].right.should == 10
|
343
|
+
tree[3].distance.should be_within(0.001).of(0.077)
|
344
|
+
|
345
|
+
tree[4].left.should == -2
|
346
|
+
tree[4].right.should == -4
|
347
|
+
tree[4].distance.should be_within(0.001).of(0.216)
|
348
|
+
|
349
|
+
tree[5].left.should == -3
|
350
|
+
tree[5].right.should == 0
|
351
|
+
tree[5].distance.should be_within(0.001).of(0.266)
|
352
|
+
|
353
|
+
tree[6].left.should == -5
|
354
|
+
tree[6].right.should == 7
|
355
|
+
tree[6].distance.should be_within(0.001).of(0.302)
|
356
|
+
|
357
|
+
tree[7].left.should == -1
|
358
|
+
tree[7].right.should == 3
|
359
|
+
tree[7].distance.should be_within(0.001).of(0.425)
|
360
|
+
|
361
|
+
tree[8].left.should == -8
|
362
|
+
tree[8].right.should == -6
|
363
|
+
tree[8].distance.should be_within(0.001).of(0.968)
|
364
|
+
|
365
|
+
tree[9].left.should == 8
|
366
|
+
tree[9].right.should == 6
|
367
|
+
tree[9].distance.should be_within(0.001).of(3.975)
|
368
|
+
|
369
|
+
tree[10].left.should == -10
|
370
|
+
tree[10].right.should == -7
|
371
|
+
tree[10].distance.should be_within(0.001).of(5.755)
|
372
|
+
|
373
|
+
tree[11].left.should == -11
|
374
|
+
tree[11].right.should == -9
|
375
|
+
tree[11].distance.should be_within(0.001).of(22.734)
|
376
|
+
end
|
377
|
+
end
|
378
|
+
|
379
|
+
context "bad input" do
|
380
|
+
it "fails for a ragged matrix" do
|
381
|
+
ragged = [
|
382
|
+
[ 91.1, 92.2, 93.3, 94.4, 95.5],
|
383
|
+
[ 93.1, 93.2, 91.3, 92.4 ],
|
384
|
+
[ 94.1, 92.2, 90.3 ],
|
385
|
+
[ 12.1, 92.0, 90.0, 95.0, 90.0 ]
|
386
|
+
]
|
387
|
+
|
388
|
+
lambda { Cluster.treecluster(ragged) }.should raise_error(ArgumentError)
|
389
|
+
end
|
390
|
+
|
391
|
+
it "fails for a matrix with bad cells" do
|
392
|
+
bad_cells = [
|
393
|
+
[ 7.1, 7.2, 7.3, 7.4, 7.5, ],
|
394
|
+
[ 7.1, 7.2, 7.3, 7.4, 'snoopy'],
|
395
|
+
[ 7.1, 7.2, 7.3, nil, nil]
|
396
|
+
]
|
397
|
+
|
398
|
+
lambda { Cluster.treecluster(bad_cells) }.should raise_error(TypeError)
|
399
|
+
end
|
400
|
+
|
401
|
+
it "fails for a matrix with a bad row" do
|
402
|
+
bad_row = [
|
403
|
+
[ 23.1, 23.2, 23.3, 23.4, 23.5],
|
404
|
+
nil,
|
405
|
+
[ 23.1, 23.0, 23.0, 23.0, 23.0]
|
406
|
+
]
|
407
|
+
|
408
|
+
lambda { Cluster.treecluster(bad_row) }.should raise_error(TypeError)
|
409
|
+
end
|
410
|
+
end
|
411
|
+
end
|
412
|
+
|