rbbt-dm 1.2.1 → 1.2.4
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/rbbt/vector/model/huggingface.rb +3 -5
- data/lib/rbbt/vector/model.rb +1 -1
- data/python/rbbt_dm/__init__.py +1 -0
- data/python/rbbt_dm/huggingface.py +135 -0
- data/test/rbbt/vector/model/test_huggingface.rb +16 -1
- metadata +17 -15
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: abaea1fff82b5e14a84dc9afc966fc8dde6482d50769d196854c1d619adebaf3
|
4
|
+
data.tar.gz: 561b8864fc2c0ba271a2a658da0d3492c7481a2368b40c3b91fe6edb4ebca4cd
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: f26f6b27f1beb2554fa78369d1d618cc13175e0c9bb0e789b9490dcae0f7f6df4449a3c72d183ae22c96324d4e2f1ab0352bde8068c1c18871d52c5f5b53c235
|
7
|
+
data.tar.gz: bb33d93cbe24ea974beedb0530f9af317dec06c7e76f32c37d724322ba05f241c6b79a706a88f1bbe703ac4bc78c53c220f28c3f38cf7939477274b8747c436e
|
@@ -1,11 +1,12 @@
|
|
1
1
|
require 'rbbt/vector/model'
|
2
2
|
require 'rbbt/util/python'
|
3
3
|
|
4
|
+
RbbtPython.add_path Rbbt.python.find(:lib)
|
4
5
|
RbbtPython.init_rbbt
|
5
6
|
|
6
7
|
class HuggingfaceModel < VectorModel
|
7
8
|
|
8
|
-
attr_accessor :checkpoint, :task, :locate_tokens, :class_labels
|
9
|
+
attr_accessor :checkpoint, :task, :locate_tokens, :class_labels, :class_weights
|
9
10
|
|
10
11
|
def tsv_dataset(tsv_dataset_file, elements, labels = nil)
|
11
12
|
|
@@ -48,7 +49,7 @@ class HuggingfaceModel < VectorModel
|
|
48
49
|
|
49
50
|
if labels
|
50
51
|
training_args = call_method(:training_args, output_dir)
|
51
|
-
call_method(:train_model, @model, @tokenizer, training_args, tsv_dataset(tsv_file, elements, labels))
|
52
|
+
call_method(:train_model, @model, @tokenizer, training_args, tsv_dataset(tsv_file, elements, labels), @class_weights)
|
52
53
|
else
|
53
54
|
if Array === elements
|
54
55
|
training_args = call_method(:training_args, output_dir)
|
@@ -135,6 +136,3 @@ class HuggingfaceModel < VectorModel
|
|
135
136
|
end
|
136
137
|
end
|
137
138
|
|
138
|
-
if __FILE__ == $0
|
139
|
-
|
140
|
-
end
|
data/lib/rbbt/vector/model.rb
CHANGED
@@ -0,0 +1 @@
|
|
1
|
+
# Keep
|
@@ -0,0 +1,135 @@
|
|
1
|
+
#{{{ LOAD MODEL
|
2
|
+
|
3
|
+
def import_module_class(module, class_name):
|
4
|
+
exec(f"from {module} import {class_name}")
|
5
|
+
return eval(class_name)
|
6
|
+
|
7
|
+
def load_model(task, checkpoint):
|
8
|
+
class_name = 'AutoModelFor' + task
|
9
|
+
return import_module_class('transformers', class_name).from_pretrained(checkpoint)
|
10
|
+
|
11
|
+
def load_tokenizer(task, checkpoint):
|
12
|
+
class_name = 'AutoTokenizer'
|
13
|
+
return import_module_class('transformers', class_name).from_pretrained(checkpoint)
|
14
|
+
|
15
|
+
def load_model_and_tokenizer(task, checkpoint):
|
16
|
+
model = load_model(task, checkpoint)
|
17
|
+
tokenizer = load_tokenizer(task, checkpoint)
|
18
|
+
return model, tokenizer
|
19
|
+
|
20
|
+
#{{{ SIMPLE EVALUATE
|
21
|
+
|
22
|
+
def forward(model, features):
|
23
|
+
return model(**features)
|
24
|
+
|
25
|
+
def logits(predictions):
|
26
|
+
logits = predictions["logits"]
|
27
|
+
return [v.detach().cpu().numpy() for v in logits]
|
28
|
+
|
29
|
+
def eval_model(model, tokenizer, texts, return_logits = True):
|
30
|
+
features = tokenizer(texts, return_tensors='pt', truncation=True).to(model.device)
|
31
|
+
predictions = forward(model, features)
|
32
|
+
if (return_logits):
|
33
|
+
return logits(predictions)
|
34
|
+
else:
|
35
|
+
return predictions
|
36
|
+
|
37
|
+
#{{{ TRAIN AND PREDICT
|
38
|
+
|
39
|
+
def load_tsv(tsv_file):
|
40
|
+
from datasets import load_dataset
|
41
|
+
return load_dataset('csv', data_files=[tsv_file], sep="\t")
|
42
|
+
|
43
|
+
def tsv_dataset(tokenizer, tsv_file):
|
44
|
+
dataset = load_tsv(tsv_file)
|
45
|
+
tokenized_dataset = dataset.map(lambda example: tokenizer(example["text"], truncation=True) , batched=True)
|
46
|
+
return tokenized_dataset
|
47
|
+
|
48
|
+
def training_args(*args, **kwargs):
|
49
|
+
from transformers import TrainingArguments
|
50
|
+
training_args = TrainingArguments(*args, **kwargs)
|
51
|
+
return training_args
|
52
|
+
|
53
|
+
|
54
|
+
def train_model(model, tokenizer, training_args, tsv_file, class_weights=None):
|
55
|
+
from transformers import Trainer
|
56
|
+
|
57
|
+
tokenized_dataset = tsv_dataset(tokenizer, tsv_file)
|
58
|
+
|
59
|
+
if (not class_weights == None):
|
60
|
+
import torch
|
61
|
+
from torch import nn
|
62
|
+
|
63
|
+
class WeightTrainer(Trainer):
|
64
|
+
def compute_loss(self, model, inputs, return_outputs=False):
|
65
|
+
labels = inputs.get("labels")
|
66
|
+
# forward pass
|
67
|
+
outputs = model(**inputs)
|
68
|
+
logits = outputs.get('logits')
|
69
|
+
# compute custom loss
|
70
|
+
loss_fct = nn.CrossEntropyLoss(weight=torch.tensor(class_weights).to(model.device))
|
71
|
+
loss = loss_fct(logits.view(-1, self.model.config.num_labels), labels.view(-1))
|
72
|
+
return (loss, outputs) if return_outputs else loss
|
73
|
+
|
74
|
+
trainer = WeightTrainer(
|
75
|
+
model,
|
76
|
+
training_args,
|
77
|
+
train_dataset = tokenized_dataset["train"],
|
78
|
+
tokenizer = tokenizer
|
79
|
+
)
|
80
|
+
else:
|
81
|
+
|
82
|
+
trainer = Trainer(
|
83
|
+
model,
|
84
|
+
training_args,
|
85
|
+
train_dataset = tokenized_dataset["train"],
|
86
|
+
tokenizer = tokenizer
|
87
|
+
)
|
88
|
+
|
89
|
+
trainer.train()
|
90
|
+
|
91
|
+
def find_tokens_in_input(dataset, token_ids):
|
92
|
+
position_rows = []
|
93
|
+
|
94
|
+
for row in dataset:
|
95
|
+
input_ids = row["input_ids"]
|
96
|
+
|
97
|
+
if (not hasattr(token_ids, "__len__")):
|
98
|
+
token_ids = [token_ids]
|
99
|
+
|
100
|
+
positions = []
|
101
|
+
for token_id in token_ids:
|
102
|
+
|
103
|
+
item_positions = []
|
104
|
+
for i in range(len(input_ids)):
|
105
|
+
if input_ids[i] == token_id:
|
106
|
+
item_positions.append(i)
|
107
|
+
|
108
|
+
positions.append(item_positions)
|
109
|
+
|
110
|
+
|
111
|
+
position_rows.append(positions)
|
112
|
+
|
113
|
+
return position_rows
|
114
|
+
|
115
|
+
|
116
|
+
def predict_model(model, tokenizer, training_args, tsv_file, locate_tokens = None):
|
117
|
+
from transformers import Trainer
|
118
|
+
|
119
|
+
tokenized_dataset = tsv_dataset(tokenizer, tsv_file)
|
120
|
+
|
121
|
+
trainer = Trainer(
|
122
|
+
model,
|
123
|
+
training_args,
|
124
|
+
tokenizer = tokenizer
|
125
|
+
)
|
126
|
+
|
127
|
+
result = trainer.predict(test_dataset = tokenized_dataset["train"])
|
128
|
+
if (locate_tokens != None):
|
129
|
+
token_ids = tokenizer.convert_tokens_to_ids(locate_tokens)
|
130
|
+
token_positions = find_tokens_in_input(tokenized_dataset["train"], token_ids)
|
131
|
+
return dict(result=result, token_positions=token_positions)
|
132
|
+
else:
|
133
|
+
return result
|
134
|
+
|
135
|
+
|
@@ -3,6 +3,22 @@ require 'rbbt/vector/model/huggingface'
|
|
3
3
|
|
4
4
|
class TestHuggingface < Test::Unit::TestCase
|
5
5
|
|
6
|
+
def test_pipeline
|
7
|
+
require 'rbbt/util/python'
|
8
|
+
model = VectorModel.new
|
9
|
+
model.post_process do |elements|
|
10
|
+
elements.collect{|e| e['label'] }
|
11
|
+
end
|
12
|
+
model.eval_model do |file, elements|
|
13
|
+
RbbtPython.run :transformers do
|
14
|
+
classifier ||= transformers.pipeline("sentiment-analysis")
|
15
|
+
classifier.call(elements)
|
16
|
+
end
|
17
|
+
end
|
18
|
+
|
19
|
+
assert_equal ["POSITIVE"], model.eval("I've been waiting for a HuggingFace course my whole life.")
|
20
|
+
end
|
21
|
+
|
6
22
|
def test_sst_eval
|
7
23
|
TmpFile.with_file do |dir|
|
8
24
|
checkpoint = "distilbert-base-uncased-finetuned-sst-2-english"
|
@@ -12,7 +28,6 @@ class TestHuggingface < Test::Unit::TestCase
|
|
12
28
|
model.class_labels = ["Bad", "Good"]
|
13
29
|
|
14
30
|
assert_equal ["Bad", "Good"], model.eval(["This is dog", "This is cat"])
|
15
|
-
|
16
31
|
end
|
17
32
|
end
|
18
33
|
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rbbt-dm
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.2.
|
4
|
+
version: 1.2.4
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Miguel Vazquez
|
8
|
-
autorequire:
|
8
|
+
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date: 2023-02-
|
11
|
+
date: 2023-02-07 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rbbt-util
|
@@ -113,6 +113,8 @@ files:
|
|
113
113
|
- lib/rbbt/vector/model/svm.rb
|
114
114
|
- lib/rbbt/vector/model/tensorflow.rb
|
115
115
|
- lib/rbbt/vector/model/util.rb
|
116
|
+
- python/rbbt_dm/__init__.py
|
117
|
+
- python/rbbt_dm/huggingface.py
|
116
118
|
- share/R/MA.R
|
117
119
|
- share/R/barcode.R
|
118
120
|
- share/R/heatmap.3.R
|
@@ -141,7 +143,7 @@ files:
|
|
141
143
|
homepage: http://github.com/mikisvaz/rbbt-phgx
|
142
144
|
licenses: []
|
143
145
|
metadata: {}
|
144
|
-
post_install_message:
|
146
|
+
post_install_message:
|
145
147
|
rdoc_options: []
|
146
148
|
require_paths:
|
147
149
|
- lib
|
@@ -156,22 +158,22 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
156
158
|
- !ruby/object:Gem::Version
|
157
159
|
version: '0'
|
158
160
|
requirements: []
|
159
|
-
rubygems_version: 3.1.
|
160
|
-
signing_key:
|
161
|
+
rubygems_version: 3.1.6
|
162
|
+
signing_key:
|
161
163
|
specification_version: 4
|
162
164
|
summary: Data-mining and statistics
|
163
165
|
test_files:
|
164
|
-
- test/
|
166
|
+
- test/rbbt/statistics/test_hypergeometric.rb
|
167
|
+
- test/rbbt/statistics/test_fisher.rb
|
168
|
+
- test/rbbt/statistics/test_fdr.rb
|
169
|
+
- test/rbbt/statistics/test_random_walk.rb
|
170
|
+
- test/rbbt/test_ml_task.rb
|
165
171
|
- test/rbbt/vector/test_model.rb
|
166
|
-
- test/rbbt/vector/model/test_huggingface.rb
|
167
172
|
- test/rbbt/vector/model/test_tensorflow.rb
|
168
173
|
- test/rbbt/vector/model/test_spaCy.rb
|
174
|
+
- test/rbbt/vector/model/test_huggingface.rb
|
169
175
|
- test/rbbt/vector/model/test_svm.rb
|
170
|
-
- test/rbbt/statistics/test_random_walk.rb
|
171
|
-
- test/rbbt/statistics/test_fisher.rb
|
172
|
-
- test/rbbt/statistics/test_fdr.rb
|
173
|
-
- test/rbbt/statistics/test_hypergeometric.rb
|
174
|
-
- test/rbbt/test_stan.rb
|
175
|
-
- test/rbbt/matrix/test_barcode.rb
|
176
|
-
- test/rbbt/test_ml_task.rb
|
177
176
|
- test/rbbt/network/test_paths.rb
|
177
|
+
- test/rbbt/matrix/test_barcode.rb
|
178
|
+
- test/rbbt/test_stan.rb
|
179
|
+
- test/test_helper.rb
|