rbbt-dm 1.2.1 → 1.2.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/lib/rbbt/vector/model.rb +1 -1
- data/python/rbbt_dm/huggingface.py +112 -0
- metadata +2 -1
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: 2ff72107967b0f7c654697f3a7b3c0ef10f7a5264d775117f12f74084a2819b2
|
4
|
+
data.tar.gz: 6b9a58b5a2723c095332f79a37d9c1c7f4bc1431410f23a55beeed1c3b52f7ad
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: a0fb4198cb0be3aa5253df0f655ee230621dd26a31956a774fffe95eac35f4c8b558a41c0e340c25c6eef463760ff6230b967f09eb09671b2078a50066067384
|
7
|
+
data.tar.gz: 0bd6c3667a8ec26ed092c54e78176671807ed0634e136e497303e34a17b2740e5e023041bc06389ac187de39b54942b9b1c5cd77abbc067c89250424654b6974
|
data/lib/rbbt/vector/model.rb
CHANGED
@@ -0,0 +1,112 @@
|
|
1
|
+
#{{{ LOAD MODEL
|
2
|
+
|
3
|
+
def import_module_class(module, class_name):
|
4
|
+
exec(f"from {module} import {class_name}")
|
5
|
+
return eval(class_name)
|
6
|
+
|
7
|
+
def load_model(task, checkpoint):
|
8
|
+
class_name = 'AutoModelFor' + task
|
9
|
+
return import_module_class('transformers', class_name).from_pretrained(checkpoint)
|
10
|
+
|
11
|
+
def load_tokenizer(task, checkpoint):
|
12
|
+
class_name = 'AutoTokenizer'
|
13
|
+
return import_module_class('transformers', class_name).from_pretrained(checkpoint)
|
14
|
+
|
15
|
+
def load_model_and_tokenizer(task, checkpoint):
|
16
|
+
model = load_model(task, checkpoint)
|
17
|
+
tokenizer = load_tokenizer(task, checkpoint)
|
18
|
+
return model, tokenizer
|
19
|
+
|
20
|
+
#{{{ SIMPLE EVALUATE
|
21
|
+
|
22
|
+
def forward(model, features):
|
23
|
+
return model(**features)
|
24
|
+
|
25
|
+
def logits(predictions):
|
26
|
+
logits = predictions["logits"]
|
27
|
+
return [v.detach().cpu().numpy() for v in logits]
|
28
|
+
|
29
|
+
def eval_model(model, tokenizer, texts, return_logits = True):
|
30
|
+
features = tokenizer(texts, return_tensors='pt', truncation=True).to(model.device)
|
31
|
+
predictions = forward(model, features)
|
32
|
+
if (return_logits):
|
33
|
+
return logits(predictions)
|
34
|
+
else:
|
35
|
+
return predictions
|
36
|
+
|
37
|
+
#{{{ TRAIN AND PREDICT
|
38
|
+
|
39
|
+
def load_tsv(tsv_file):
|
40
|
+
from datasets import load_dataset
|
41
|
+
return load_dataset('csv', data_files=[tsv_file], sep="\t")
|
42
|
+
|
43
|
+
def tsv_dataset(tokenizer, tsv_file):
|
44
|
+
dataset = load_tsv(tsv_file)
|
45
|
+
tokenized_dataset = dataset.map(lambda example: tokenizer(example["text"], truncation=True) , batched=True)
|
46
|
+
return tokenized_dataset
|
47
|
+
|
48
|
+
def training_args(*args, **kwargs):
|
49
|
+
from transformers import TrainingArguments
|
50
|
+
training_args = TrainingArguments(*args, **kwargs)
|
51
|
+
return training_args
|
52
|
+
|
53
|
+
|
54
|
+
def train_model(model, tokenizer, training_args, tsv_file):
|
55
|
+
from transformers import Trainer
|
56
|
+
|
57
|
+
tokenized_dataset = tsv_dataset(tokenizer, tsv_file)
|
58
|
+
|
59
|
+
trainer = Trainer(
|
60
|
+
model,
|
61
|
+
training_args,
|
62
|
+
train_dataset = tokenized_dataset["train"],
|
63
|
+
tokenizer = tokenizer
|
64
|
+
)
|
65
|
+
|
66
|
+
trainer.train()
|
67
|
+
|
68
|
+
def find_tokens_in_input(dataset, token_ids):
|
69
|
+
position_rows = []
|
70
|
+
|
71
|
+
for row in dataset:
|
72
|
+
input_ids = row["input_ids"]
|
73
|
+
|
74
|
+
if (not hasattr(token_ids, "__len__")):
|
75
|
+
token_ids = [token_ids]
|
76
|
+
|
77
|
+
positions = []
|
78
|
+
for token_id in token_ids:
|
79
|
+
|
80
|
+
item_positions = []
|
81
|
+
for i in range(len(input_ids)):
|
82
|
+
if input_ids[i] == token_id:
|
83
|
+
item_positions.append(i)
|
84
|
+
|
85
|
+
positions.append(item_positions)
|
86
|
+
|
87
|
+
|
88
|
+
position_rows.append(positions)
|
89
|
+
|
90
|
+
return position_rows
|
91
|
+
|
92
|
+
|
93
|
+
|
94
|
+
def predict_model(model, tokenizer, training_args, tsv_file, locate_tokens = None):
|
95
|
+
from transformers import Trainer
|
96
|
+
|
97
|
+
tokenized_dataset = tsv_dataset(tokenizer, tsv_file)
|
98
|
+
|
99
|
+
trainer = Trainer(
|
100
|
+
model,
|
101
|
+
training_args,
|
102
|
+
tokenizer = tokenizer
|
103
|
+
)
|
104
|
+
|
105
|
+
result = trainer.predict(test_dataset = tokenized_dataset["train"])
|
106
|
+
if (locate_tokens != None):
|
107
|
+
token_ids = tokenizer.convert_tokens_to_ids(locate_tokens)
|
108
|
+
token_positions = find_tokens_in_input(tokenized_dataset["train"], token_ids)
|
109
|
+
return dict(result=result, token_positions=token_positions)
|
110
|
+
else:
|
111
|
+
return result
|
112
|
+
|
metadata
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rbbt-dm
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.2.
|
4
|
+
version: 1.2.3
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Miguel Vazquez
|
@@ -113,6 +113,7 @@ files:
|
|
113
113
|
- lib/rbbt/vector/model/svm.rb
|
114
114
|
- lib/rbbt/vector/model/tensorflow.rb
|
115
115
|
- lib/rbbt/vector/model/util.rb
|
116
|
+
- python/rbbt_dm/huggingface.py
|
116
117
|
- share/R/MA.R
|
117
118
|
- share/R/barcode.R
|
118
119
|
- share/R/heatmap.3.R
|