rbbt-dm 1.1.48 → 1.1.53
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/lib/rbbt/network/paths.rb +1 -1
- data/lib/rbbt/tensorflow.rb +43 -0
- data/lib/rbbt/vector/model.rb +164 -65
- data/lib/rbbt/vector/model/spaCy.rb +76 -0
- data/lib/rbbt/vector/model/svm.rb +1 -1
- data/lib/rbbt/vector/model/tensorflow.rb +55 -0
- data/share/spaCy/cpu/textcat_accuracy.conf +86 -0
- data/share/spaCy/cpu/textcat_efficiency.conf +78 -0
- data/share/spaCy/gpu/textcat_accuracy.conf +84 -0
- data/share/spaCy/gpu/textcat_efficiency.conf +73 -0
- data/test/rbbt/network/test_paths.rb +1 -1
- data/test/rbbt/vector/model/test_spaCy.rb +121 -0
- data/test/rbbt/vector/model/test_tensorflow.rb +57 -0
- data/test/rbbt/vector/test_model.rb +354 -0
- metadata +15 -4
@@ -0,0 +1,57 @@
|
|
1
|
+
require File.join(File.expand_path(File.dirname(__FILE__)), '../../..', 'test_helper.rb')
|
2
|
+
require 'rbbt/vector/model/tensorflow'
|
3
|
+
|
4
|
+
class TestTensorflowModel < Test::Unit::TestCase
|
5
|
+
|
6
|
+
def test_keras
|
7
|
+
TmpFile.with_file() do |dir|
|
8
|
+
FileUtils.mkdir_p dir
|
9
|
+
|
10
|
+
model = TensorFlowModel.new(
|
11
|
+
dir,
|
12
|
+
optimizer:'adam',
|
13
|
+
loss: 'sparse_categorical_crossentropy',
|
14
|
+
metrics: ['accuracy']
|
15
|
+
)
|
16
|
+
|
17
|
+
model.keras_graph do
|
18
|
+
tf = tensorflow
|
19
|
+
tf.keras.models.Sequential.new([
|
20
|
+
tf.keras.layers.Flatten.new(input_shape: [28, 28]),
|
21
|
+
tf.keras.layers.Dense.new(128, activation:'relu'),
|
22
|
+
tf.keras.layers.Dropout.new(0.2),
|
23
|
+
tf.keras.layers.Dense.new(10, activation:'softmax')
|
24
|
+
])
|
25
|
+
end
|
26
|
+
|
27
|
+
sum = predictions = nil
|
28
|
+
model.tensorflow do
|
29
|
+
tf = tensorflow
|
30
|
+
mnist_db = tf.keras.datasets.mnist
|
31
|
+
|
32
|
+
(x_train, y_train), (x_test, y_test) = mnist_db.load_data()
|
33
|
+
x_train, x_test = x_train / 255.0, x_test / 255.0
|
34
|
+
|
35
|
+
num = PyCall.len(x_train)
|
36
|
+
|
37
|
+
num.times do |i|
|
38
|
+
model.add x_train[i], y_train[i]
|
39
|
+
end
|
40
|
+
|
41
|
+
model.train
|
42
|
+
|
43
|
+
predictions = model.eval_list x_test.tolist()
|
44
|
+
sum = 0
|
45
|
+
predictions.zip(y_test.tolist()).each do |pred,label|
|
46
|
+
sum += 1 if label.to_i == pred
|
47
|
+
end
|
48
|
+
|
49
|
+
end
|
50
|
+
|
51
|
+
assert sum.to_f / predictions.length > 0.7
|
52
|
+
|
53
|
+
|
54
|
+
end
|
55
|
+
end
|
56
|
+
end
|
57
|
+
|
@@ -71,4 +71,358 @@ cat(label, file="#{results}");
|
|
71
71
|
end
|
72
72
|
end
|
73
73
|
|
74
|
+
def test_model_list
|
75
|
+
text =<<-EOF
|
76
|
+
1 0;1;1
|
77
|
+
1 1;0;1
|
78
|
+
1 1;1;1
|
79
|
+
1 0;1;1
|
80
|
+
1 1;1;1
|
81
|
+
0 0;1;0
|
82
|
+
0 1;0;0
|
83
|
+
0 0;1;0
|
84
|
+
0 1;0;0
|
85
|
+
EOF
|
86
|
+
|
87
|
+
TmpFile.with_file() do |dir|
|
88
|
+
FileUtils.mkdir_p dir
|
89
|
+
model = VectorModel.new(dir)
|
90
|
+
|
91
|
+
model.extract_features = Proc.new{|element,list|
|
92
|
+
if element
|
93
|
+
element.split(";")
|
94
|
+
elsif list
|
95
|
+
list.collect{|e| e.split(";") }
|
96
|
+
end
|
97
|
+
}
|
98
|
+
|
99
|
+
model.train_model = Proc.new{|model_file,features,labels|
|
100
|
+
TmpFile.with_file do |feature_file|
|
101
|
+
Open.write(feature_file, features.collect{|feats| feats * "\t"} * "\n")
|
102
|
+
Open.write(feature_file + '.class', labels * "\n")
|
103
|
+
R.run <<-EOF
|
104
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
105
|
+
labels = scan("#{ feature_file }.class", what=numeric());
|
106
|
+
features = cbind(features, class = labels);
|
107
|
+
rbbt.require('e1071')
|
108
|
+
model = svm(class ~ ., data = features)
|
109
|
+
save(model, file="#{ model_file }");
|
110
|
+
EOF
|
111
|
+
end
|
112
|
+
}
|
113
|
+
|
114
|
+
model.eval_model = Proc.new{|model_file,features|
|
115
|
+
TmpFile.with_file do |feature_file|
|
116
|
+
TmpFile.with_file do |results|
|
117
|
+
Open.write(feature_file, features * "\t")
|
118
|
+
puts R.run(<<-EOF
|
119
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
120
|
+
library(e1071)
|
121
|
+
load(file="#{ model_file }")
|
122
|
+
label = predict(model, features);
|
123
|
+
cat(label, file="#{results}");
|
124
|
+
EOF
|
125
|
+
).read
|
126
|
+
Open.read(results)
|
127
|
+
end
|
128
|
+
end
|
129
|
+
|
130
|
+
}
|
131
|
+
|
132
|
+
pairs = text.split(/\n/).collect do |line|
|
133
|
+
label, features = line.split(" ")
|
134
|
+
[features, label]
|
135
|
+
end
|
136
|
+
|
137
|
+
model.add_list(*Misc.zip_fields(pairs))
|
138
|
+
|
139
|
+
model.train
|
140
|
+
|
141
|
+
assert model.eval("1;1;1").to_f > 0.5
|
142
|
+
assert model.eval("0;0;0").to_f < 0.5
|
143
|
+
end
|
144
|
+
end
|
145
|
+
|
146
|
+
def test_model_list2
|
147
|
+
text =<<-EOF
|
148
|
+
1 0;1;1
|
149
|
+
1 1;0;1
|
150
|
+
1 1;1;1
|
151
|
+
1 0;1;1
|
152
|
+
1 1;1;1
|
153
|
+
0 0;1;0
|
154
|
+
0 1;0;0
|
155
|
+
0 0;1;0
|
156
|
+
0 1;0;0
|
157
|
+
EOF
|
158
|
+
|
159
|
+
TmpFile.with_file() do |dir|
|
160
|
+
FileUtils.mkdir_p dir
|
161
|
+
model = VectorModel.new(dir)
|
162
|
+
|
163
|
+
model.extract_features = Proc.new{|element|
|
164
|
+
element.split(";")
|
165
|
+
}
|
166
|
+
|
167
|
+
model.train_model = Proc.new{|model_file,features,labels|
|
168
|
+
TmpFile.with_file do |feature_file|
|
169
|
+
Open.write(feature_file, features.collect{|feats| feats * "\t"} * "\n")
|
170
|
+
Open.write(feature_file + '.class', labels * "\n")
|
171
|
+
R.run <<-EOF
|
172
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
173
|
+
labels = scan("#{ feature_file }.class", what=numeric());
|
174
|
+
features = cbind(features, class = labels);
|
175
|
+
rbbt.require('e1071')
|
176
|
+
model = svm(class ~ ., data = features)
|
177
|
+
save(model, file="#{ model_file }");
|
178
|
+
EOF
|
179
|
+
end
|
180
|
+
}
|
181
|
+
|
182
|
+
model.eval_model = Proc.new{|model_file,features|
|
183
|
+
TmpFile.with_file do |feature_file|
|
184
|
+
TmpFile.with_file do |results|
|
185
|
+
Open.write(feature_file, features * "\t")
|
186
|
+
puts R.run(<<-EOF
|
187
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
188
|
+
library(e1071)
|
189
|
+
load(file="#{ model_file }")
|
190
|
+
label = predict(model, features);
|
191
|
+
cat(label, file="#{results}");
|
192
|
+
EOF
|
193
|
+
).read
|
194
|
+
Open.read(results)
|
195
|
+
end
|
196
|
+
end
|
197
|
+
|
198
|
+
}
|
199
|
+
|
200
|
+
pairs = text.split(/\n/).collect do |line|
|
201
|
+
label, features = line.split(" ")
|
202
|
+
[features, label]
|
203
|
+
end
|
204
|
+
|
205
|
+
model.add_list(*Misc.zip_fields(pairs))
|
206
|
+
|
207
|
+
model.train
|
208
|
+
|
209
|
+
assert model.eval("1;1;1").to_f > 0.5
|
210
|
+
assert model.eval("0;0;0").to_f < 0.5
|
211
|
+
end
|
212
|
+
end
|
213
|
+
|
214
|
+
def test_model_list
|
215
|
+
text =<<-EOF
|
216
|
+
1 0;1;1
|
217
|
+
1 1;0;1
|
218
|
+
1 1;1;1
|
219
|
+
1 0;1;1
|
220
|
+
1 1;1;1
|
221
|
+
0 0;1;0
|
222
|
+
0 1;0;0
|
223
|
+
0 0;1;0
|
224
|
+
0 1;0;0
|
225
|
+
EOF
|
226
|
+
|
227
|
+
TmpFile.with_file() do |dir|
|
228
|
+
FileUtils.mkdir_p dir
|
229
|
+
model = VectorModel.new(dir)
|
230
|
+
|
231
|
+
model.extract_features = Proc.new{|element,list|
|
232
|
+
if element
|
233
|
+
element.split(";")
|
234
|
+
elsif list
|
235
|
+
list.collect{|e| e.split(";") }
|
236
|
+
end
|
237
|
+
}
|
238
|
+
|
239
|
+
model.train_model = Proc.new{|model_file,features,labels|
|
240
|
+
TmpFile.with_file do |feature_file|
|
241
|
+
Open.write(feature_file, features.collect{|feats| feats * "\t"} * "\n")
|
242
|
+
Open.write(feature_file + '.class', labels * "\n")
|
243
|
+
R.run <<-EOF
|
244
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
245
|
+
labels = scan("#{ feature_file }.class", what=numeric());
|
246
|
+
features = cbind(features, class = labels);
|
247
|
+
rbbt.require('e1071')
|
248
|
+
model = svm(class ~ ., data = features)
|
249
|
+
save(model, file="#{ model_file }");
|
250
|
+
EOF
|
251
|
+
end
|
252
|
+
}
|
253
|
+
|
254
|
+
model.eval_model = Proc.new{|model_file,features|
|
255
|
+
TmpFile.with_file do |feature_file|
|
256
|
+
TmpFile.with_file do |results|
|
257
|
+
Open.write(feature_file, features * "\t")
|
258
|
+
puts R.run(<<-EOF
|
259
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
260
|
+
library(e1071)
|
261
|
+
load(file="#{ model_file }")
|
262
|
+
label = predict(model, features);
|
263
|
+
cat(label, file="#{results}");
|
264
|
+
EOF
|
265
|
+
).read
|
266
|
+
Open.read(results)
|
267
|
+
end
|
268
|
+
end
|
269
|
+
|
270
|
+
}
|
271
|
+
|
272
|
+
pairs = text.split(/\n/).collect do |line|
|
273
|
+
label, features = line.split(" ")
|
274
|
+
model.add features, label
|
275
|
+
end
|
276
|
+
|
277
|
+
model.train
|
278
|
+
|
279
|
+
assert model.eval("1;1;1").to_f > 0.5
|
280
|
+
assert model.eval("0;0;0").to_f < 0.5
|
281
|
+
end
|
282
|
+
end
|
283
|
+
|
284
|
+
def test_model_save
|
285
|
+
text =<<-EOF
|
286
|
+
1 0;1;1
|
287
|
+
1 1;0;1
|
288
|
+
1 1;1;1
|
289
|
+
1 0;1;1
|
290
|
+
1 1;1;1
|
291
|
+
0 0;1;0
|
292
|
+
0 1;0;0
|
293
|
+
0 0;1;0
|
294
|
+
0 1;0;0
|
295
|
+
EOF
|
296
|
+
|
297
|
+
TmpFile.with_file() do |dir|
|
298
|
+
FileUtils.mkdir_p dir
|
299
|
+
model = VectorModel.new(dir)
|
300
|
+
|
301
|
+
model.extract_features = Proc.new{|element|
|
302
|
+
element.split(";")
|
303
|
+
}
|
304
|
+
|
305
|
+
model.train_model = Proc.new{|model_file,features,labels|
|
306
|
+
TmpFile.with_file do |feature_file|
|
307
|
+
Open.write(feature_file, features.collect{|feats| feats * "\t"} * "\n")
|
308
|
+
Open.write(feature_file + '.class', labels * "\n")
|
309
|
+
R.run <<-EOF
|
310
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
311
|
+
labels = scan("#{ feature_file }.class", what=numeric());
|
312
|
+
features = cbind(features, class = labels);
|
313
|
+
rbbt.require('e1071')
|
314
|
+
model = svm(class ~ ., data = features)
|
315
|
+
save(model, file="#{ model_file }");
|
316
|
+
EOF
|
317
|
+
end
|
318
|
+
}
|
319
|
+
|
320
|
+
model.eval_model = Proc.new{|model_file,features|
|
321
|
+
TmpFile.with_file do |feature_file|
|
322
|
+
TmpFile.with_file do |results|
|
323
|
+
Open.write(feature_file, features * "\t")
|
324
|
+
puts R.run(<<-EOF
|
325
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
326
|
+
library(e1071)
|
327
|
+
load(file="#{ model_file }")
|
328
|
+
label = predict(model, features);
|
329
|
+
cat(label, file="#{results}");
|
330
|
+
EOF
|
331
|
+
).read
|
332
|
+
Open.read(results)
|
333
|
+
end
|
334
|
+
end
|
335
|
+
|
336
|
+
}
|
337
|
+
|
338
|
+
pairs = text.split(/\n/).collect do |line|
|
339
|
+
label, features = line.split(" ")
|
340
|
+
[features, label]
|
341
|
+
end
|
342
|
+
|
343
|
+
model.add_list(*Misc.zip_fields(pairs))
|
344
|
+
|
345
|
+
model.train
|
346
|
+
|
347
|
+
assert model.eval("1;1;1").to_f > 0.5
|
348
|
+
assert model.eval("0;0;0").to_f < 0.5
|
349
|
+
end
|
350
|
+
end
|
351
|
+
|
352
|
+
def test_model_save
|
353
|
+
text =<<-EOF
|
354
|
+
1 0;1;1
|
355
|
+
1 1;0;1
|
356
|
+
1 1;1;1
|
357
|
+
1 0;1;1
|
358
|
+
1 1;1;1
|
359
|
+
0 0;1;0
|
360
|
+
0 1;0;0
|
361
|
+
0 0;1;0
|
362
|
+
0 1;0;0
|
363
|
+
EOF
|
364
|
+
|
365
|
+
TmpFile.with_file() do |dir|
|
366
|
+
FileUtils.mkdir_p dir
|
367
|
+
model = VectorModel.new(dir)
|
368
|
+
|
369
|
+
model.extract_features = Proc.new{|element,list|
|
370
|
+
if element
|
371
|
+
element.split(";")
|
372
|
+
elsif list
|
373
|
+
list.collect{|e| e.split(";") }
|
374
|
+
end
|
375
|
+
}
|
376
|
+
|
377
|
+
model.train_model = Proc.new{|model_file,features,labels|
|
378
|
+
TmpFile.with_file do |feature_file|
|
379
|
+
Open.write(feature_file, features.collect{|feats| feats * "\t"} * "\n")
|
380
|
+
Open.write(feature_file + '.class', labels * "\n")
|
381
|
+
R.run <<-EOF
|
382
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
383
|
+
labels = scan("#{ feature_file }.class", what=numeric());
|
384
|
+
features = cbind(features, class = labels);
|
385
|
+
rbbt.require('e1071')
|
386
|
+
model = svm(class ~ ., data = features)
|
387
|
+
save(model, file="#{ model_file }");
|
388
|
+
EOF
|
389
|
+
end
|
390
|
+
}
|
391
|
+
|
392
|
+
model.eval_model = Proc.new{|model_file,features|
|
393
|
+
TmpFile.with_file do |feature_file|
|
394
|
+
TmpFile.with_file do |results|
|
395
|
+
Open.write(feature_file, features * "\t")
|
396
|
+
puts R.run(<<-EOF
|
397
|
+
features = read.table("#{ feature_file }", sep ="\\t", stringsAsFactors=FALSE);
|
398
|
+
library(e1071)
|
399
|
+
load(file="#{ model_file }")
|
400
|
+
label = predict(model, features);
|
401
|
+
cat(label, file="#{results}");
|
402
|
+
EOF
|
403
|
+
).read
|
404
|
+
Open.read(results)
|
405
|
+
end
|
406
|
+
end
|
407
|
+
|
408
|
+
}
|
409
|
+
|
410
|
+
pairs = text.split(/\n/).collect do |line|
|
411
|
+
label, features = line.split(" ")
|
412
|
+
model.add features, label
|
413
|
+
end
|
414
|
+
|
415
|
+
model.train
|
416
|
+
|
417
|
+
model = VectorModel.new(dir)
|
418
|
+
pairs = text.split(/\n/).collect do |line|
|
419
|
+
label, features = line.split(" ")
|
420
|
+
model.add features, label
|
421
|
+
end
|
422
|
+
|
423
|
+
assert model.eval("1;1;1").to_f > 0.5
|
424
|
+
assert model.eval("0;0;0").to_f < 0.5
|
425
|
+
end
|
426
|
+
end
|
427
|
+
|
74
428
|
end
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: rbbt-dm
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 1.1.
|
4
|
+
version: 1.1.53
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Miguel Vazquez
|
8
8
|
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2021-06-25 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: rbbt-util
|
@@ -39,7 +39,7 @@ dependencies:
|
|
39
39
|
- !ruby/object:Gem::Version
|
40
40
|
version: '0'
|
41
41
|
- !ruby/object:Gem::Dependency
|
42
|
-
name:
|
42
|
+
name: priority_queue_cxx17
|
43
43
|
requirement: !ruby/object:Gem::Requirement
|
44
44
|
requirements:
|
45
45
|
- - ">="
|
@@ -105,11 +105,18 @@ files:
|
|
105
105
|
- lib/rbbt/statistics/hypergeometric.rb
|
106
106
|
- lib/rbbt/statistics/random_walk.rb
|
107
107
|
- lib/rbbt/statistics/rank_product.rb
|
108
|
+
- lib/rbbt/tensorflow.rb
|
108
109
|
- lib/rbbt/vector/model.rb
|
110
|
+
- lib/rbbt/vector/model/spaCy.rb
|
109
111
|
- lib/rbbt/vector/model/svm.rb
|
112
|
+
- lib/rbbt/vector/model/tensorflow.rb
|
110
113
|
- share/R/MA.R
|
111
114
|
- share/R/barcode.R
|
112
115
|
- share/R/heatmap.3.R
|
116
|
+
- share/spaCy/cpu/textcat_accuracy.conf
|
117
|
+
- share/spaCy/cpu/textcat_efficiency.conf
|
118
|
+
- share/spaCy/gpu/textcat_accuracy.conf
|
119
|
+
- share/spaCy/gpu/textcat_efficiency.conf
|
113
120
|
- test/rbbt/matrix/test_barcode.rb
|
114
121
|
- test/rbbt/network/test_paths.rb
|
115
122
|
- test/rbbt/statistics/test_fdr.rb
|
@@ -118,7 +125,9 @@ files:
|
|
118
125
|
- test/rbbt/statistics/test_random_walk.rb
|
119
126
|
- test/rbbt/test_ml_task.rb
|
120
127
|
- test/rbbt/test_stan.rb
|
128
|
+
- test/rbbt/vector/model/test_spaCy.rb
|
121
129
|
- test/rbbt/vector/model/test_svm.rb
|
130
|
+
- test/rbbt/vector/model/test_tensorflow.rb
|
122
131
|
- test/rbbt/vector/test_model.rb
|
123
132
|
- test/test_helper.rb
|
124
133
|
homepage: http://github.com/mikisvaz/rbbt-phgx
|
@@ -139,7 +148,7 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
139
148
|
- !ruby/object:Gem::Version
|
140
149
|
version: '0'
|
141
150
|
requirements: []
|
142
|
-
rubygems_version: 3.
|
151
|
+
rubygems_version: 3.1.4
|
143
152
|
signing_key:
|
144
153
|
specification_version: 4
|
145
154
|
summary: Data-mining and statistics
|
@@ -152,6 +161,8 @@ test_files:
|
|
152
161
|
- test/rbbt/statistics/test_hypergeometric.rb
|
153
162
|
- test/rbbt/test_ml_task.rb
|
154
163
|
- test/rbbt/vector/test_model.rb
|
164
|
+
- test/rbbt/vector/model/test_spaCy.rb
|
165
|
+
- test/rbbt/vector/model/test_tensorflow.rb
|
155
166
|
- test/rbbt/vector/model/test_svm.rb
|
156
167
|
- test/rbbt/test_stan.rb
|
157
168
|
- test/test_helper.rb
|