rb-gsl 1.15.3.1 → 1.15.3.2
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/AUTHORS +2 -2
- data/ChangeLog +8 -0
- data/Rakefile +39 -96
- data/VERSION +1 -1
- data/ext/array.c +2 -2
- data/ext/block_source.c +1 -1
- data/ext/dirac.c +1 -1
- data/ext/eigen.c +13 -13
- data/ext/extconf.rb +17 -11
- data/ext/function.c +5 -5
- data/ext/gsl_narray.c +6 -6
- data/ext/histogram.c +7 -6
- data/ext/histogram2d.c +4 -4
- data/ext/interp.c +1 -1
- data/ext/linalg.c +13 -11
- data/ext/linalg_complex.c +8 -6
- data/ext/math.c +1 -1
- data/ext/matrix_complex.c +6 -6
- data/ext/matrix_source.c +10 -10
- data/ext/monte.c +2 -2
- data/ext/multimin.c +4 -4
- data/ext/multiroots.c +8 -8
- data/ext/nmf.c +6 -6
- data/ext/ntuple.c +4 -4
- data/ext/odeiv.c +2 -2
- data/ext/permutation.c +1 -1
- data/ext/poly2.c +6 -6
- data/ext/poly_source.c +9 -6
- data/ext/sf.c +31 -45
- data/ext/signal.c +2 -2
- data/ext/vector_complex.c +11 -10
- data/ext/vector_double.c +7 -4
- data/ext/vector_source.c +29 -26
- data/ext/wavelet.c +1 -1
- data/include/rb_gsl_common.h +12 -0
- data/include/rb_gsl_config.h +10 -1
- data/rdoc/blas.rdoc +4 -4
- data/rdoc/bspline.rdoc +8 -8
- data/rdoc/cheb.rdoc +9 -9
- data/rdoc/cholesky_complex.rdoc +1 -1
- data/rdoc/combi.rdoc +10 -10
- data/rdoc/complex.rdoc +12 -12
- data/rdoc/const.rdoc +21 -21
- data/rdoc/dht.rdoc +7 -7
- data/rdoc/diff.rdoc +7 -7
- data/rdoc/ehandling.rdoc +4 -4
- data/rdoc/eigen.rdoc +12 -12
- data/rdoc/fft.rdoc +27 -27
- data/rdoc/fit.rdoc +19 -19
- data/rdoc/function.rdoc +1 -1
- data/rdoc/graph.rdoc +3 -3
- data/rdoc/hist.rdoc +17 -17
- data/rdoc/hist2d.rdoc +5 -5
- data/rdoc/hist3d.rdoc +4 -4
- data/rdoc/index.rdoc +4 -4
- data/rdoc/integration.rdoc +17 -17
- data/rdoc/interp.rdoc +12 -12
- data/rdoc/intro.rdoc +4 -4
- data/rdoc/linalg.rdoc +21 -21
- data/rdoc/linalg_complex.rdoc +1 -1
- data/rdoc/math.rdoc +14 -14
- data/rdoc/matrix.rdoc +21 -21
- data/rdoc/min.rdoc +10 -10
- data/rdoc/monte.rdoc +4 -4
- data/rdoc/multimin.rdoc +13 -13
- data/rdoc/multiroot.rdoc +13 -13
- data/rdoc/narray.rdoc +10 -10
- data/rdoc/ndlinear.rdoc +5 -5
- data/rdoc/nonlinearfit.rdoc +18 -18
- data/rdoc/ntuple.rdoc +6 -6
- data/rdoc/odeiv.rdoc +13 -13
- data/rdoc/perm.rdoc +12 -12
- data/rdoc/poly.rdoc +18 -18
- data/rdoc/qrng.rdoc +10 -10
- data/rdoc/randist.rdoc +11 -11
- data/rdoc/ref.rdoc +50 -50
- data/rdoc/rng.rdoc +10 -10
- data/rdoc/rngextra.rdoc +5 -5
- data/rdoc/roots.rdoc +13 -13
- data/rdoc/sf.rdoc +36 -36
- data/rdoc/siman.rdoc +4 -4
- data/rdoc/sort.rdoc +7 -7
- data/rdoc/start.rdoc +1 -1
- data/rdoc/stats.rdoc +14 -14
- data/rdoc/sum.rdoc +5 -5
- data/rdoc/tensor.rdoc +4 -4
- data/rdoc/tut.rdoc +1 -1
- data/rdoc/use.rdoc +5 -5
- data/rdoc/vector.rdoc +29 -29
- data/rdoc/vector_complex.rdoc +6 -6
- data/rdoc/wavelet.rdoc +9 -9
- data/test/gsl/blas_test.rb +79 -0
- data/test/gsl/bspline_test.rb +63 -0
- data/test/gsl/cdf_test.rb +1512 -0
- data/test/gsl/cheb_test.rb +80 -0
- data/test/gsl/combination_test.rb +100 -0
- data/test/gsl/complex_test.rb +20 -0
- data/test/gsl/const_test.rb +29 -0
- data/test/gsl/deriv_test.rb +62 -0
- data/test/gsl/dht_test.rb +79 -0
- data/test/gsl/diff_test.rb +53 -0
- data/test/gsl/eigen_test.rb +563 -0
- data/test/gsl/err_test.rb +23 -0
- data/test/gsl/fit_test.rb +101 -0
- data/test/gsl/histo_test.rb +14 -0
- data/test/gsl/integration_test.rb +274 -0
- data/test/gsl/interp_test.rb +27 -0
- data/test/gsl/linalg_test.rb +463 -0
- data/test/gsl/matrix_nmf_test.rb +37 -0
- data/test/gsl/matrix_test.rb +77 -0
- data/test/gsl/min_test.rb +89 -0
- data/test/gsl/monte_test.rb +77 -0
- data/test/gsl/multifit_test.rb +753 -0
- data/test/gsl/multimin_test.rb +157 -0
- data/test/gsl/multiroot_test.rb +135 -0
- data/test/gsl/multiset_test.rb +52 -0
- data/test/gsl/odeiv_test.rb +275 -0
- data/test/gsl/poly_test.rb +338 -0
- data/test/gsl/qrng_test.rb +94 -0
- data/test/gsl/quartic_test.rb +28 -0
- data/test/gsl/randist_test.rb +122 -0
- data/test/gsl/rng_test.rb +303 -0
- data/test/gsl/roots_test.rb +78 -0
- data/test/gsl/sf_test.rb +2079 -0
- data/test/gsl/stats_test.rb +122 -0
- data/test/gsl/sum_test.rb +69 -0
- data/test/gsl/tensor_test.rb +396 -0
- data/test/gsl/vector_test.rb +223 -0
- data/test/gsl/wavelet_test.rb +130 -0
- data/test/gsl_test.rb +321 -0
- data/test/test_helper.rb +42 -0
- metadata +107 -150
- data/setup.rb +0 -1585
- data/tests/blas/amax.rb +0 -14
- data/tests/blas/asum.rb +0 -16
- data/tests/blas/axpy.rb +0 -25
- data/tests/blas/copy.rb +0 -23
- data/tests/blas/dot.rb +0 -23
- data/tests/bspline.rb +0 -53
- data/tests/cdf.rb +0 -1388
- data/tests/cheb.rb +0 -112
- data/tests/combination.rb +0 -123
- data/tests/complex.rb +0 -17
- data/tests/const.rb +0 -24
- data/tests/deriv.rb +0 -85
- data/tests/dht/dht1.rb +0 -17
- data/tests/dht/dht2.rb +0 -23
- data/tests/dht/dht3.rb +0 -23
- data/tests/dht/dht4.rb +0 -23
- data/tests/diff.rb +0 -78
- data/tests/eigen/eigen.rb +0 -220
- data/tests/eigen/gen.rb +0 -105
- data/tests/eigen/genherm.rb +0 -66
- data/tests/eigen/gensymm.rb +0 -68
- data/tests/eigen/nonsymm.rb +0 -53
- data/tests/eigen/nonsymmv.rb +0 -53
- data/tests/eigen/symm-herm.rb +0 -74
- data/tests/err.rb +0 -58
- data/tests/fit.rb +0 -124
- data/tests/gsl_test.rb +0 -118
- data/tests/gsl_test2.rb +0 -110
- data/tests/histo.rb +0 -12
- data/tests/integration/integration1.rb +0 -72
- data/tests/integration/integration2.rb +0 -71
- data/tests/integration/integration3.rb +0 -71
- data/tests/integration/integration4.rb +0 -71
- data/tests/interp.rb +0 -45
- data/tests/linalg/HH.rb +0 -64
- data/tests/linalg/LU.rb +0 -47
- data/tests/linalg/QR.rb +0 -77
- data/tests/linalg/SV.rb +0 -24
- data/tests/linalg/TDN.rb +0 -116
- data/tests/linalg/TDS.rb +0 -122
- data/tests/linalg/bidiag.rb +0 -73
- data/tests/linalg/cholesky.rb +0 -20
- data/tests/linalg/linalg.rb +0 -158
- data/tests/matrix/matrix_complex_test.rb +0 -36
- data/tests/matrix/matrix_nmf_test.rb +0 -39
- data/tests/matrix/matrix_test.rb +0 -48
- data/tests/min.rb +0 -99
- data/tests/monte/miser.rb +0 -31
- data/tests/monte/vegas.rb +0 -45
- data/tests/multifit/test_2dgauss.rb +0 -112
- data/tests/multifit/test_brown.rb +0 -90
- data/tests/multifit/test_enso.rb +0 -246
- data/tests/multifit/test_filip.rb +0 -155
- data/tests/multifit/test_gauss.rb +0 -97
- data/tests/multifit/test_longley.rb +0 -110
- data/tests/multifit/test_multifit.rb +0 -52
- data/tests/multimin.rb +0 -139
- data/tests/multiroot.rb +0 -131
- data/tests/multiset.rb +0 -52
- data/tests/narray/blas_dnrm2.rb +0 -20
- data/tests/odeiv.rb +0 -353
- data/tests/poly/poly.rb +0 -290
- data/tests/poly/special.rb +0 -65
- data/tests/qrng.rb +0 -131
- data/tests/quartic.rb +0 -29
- data/tests/randist.rb +0 -134
- data/tests/rng.rb +0 -305
- data/tests/roots.rb +0 -76
- data/tests/run-test.sh +0 -17
- data/tests/sf/gsl_test_sf.rb +0 -249
- data/tests/sf/test_airy.rb +0 -83
- data/tests/sf/test_bessel.rb +0 -306
- data/tests/sf/test_coulomb.rb +0 -17
- data/tests/sf/test_dilog.rb +0 -25
- data/tests/sf/test_gamma.rb +0 -209
- data/tests/sf/test_hyperg.rb +0 -356
- data/tests/sf/test_legendre.rb +0 -227
- data/tests/sf/test_mathieu.rb +0 -59
- data/tests/sf/test_mode.rb +0 -19
- data/tests/sf/test_sf.rb +0 -839
- data/tests/stats.rb +0 -174
- data/tests/stats_mt.rb +0 -16
- data/tests/sum.rb +0 -98
- data/tests/sys.rb +0 -323
- data/tests/tensor.rb +0 -419
- data/tests/vector/vector_complex_test.rb +0 -101
- data/tests/vector/vector_test.rb +0 -141
- data/tests/wavelet.rb +0 -142
@@ -0,0 +1,37 @@
|
|
1
|
+
require 'test_helper'
|
2
|
+
|
3
|
+
class MatrixNmfTest < GSL::TestCase
|
4
|
+
|
5
|
+
def setup
|
6
|
+
@m1 = GSL::Matrix.alloc([6, 7, 8], [2, 3, 4], [3, 4, 5])
|
7
|
+
@m2 = GSL::Matrix.alloc([6, 7, 8], [2, 3, 4], [3, 4, 7])
|
8
|
+
end
|
9
|
+
|
10
|
+
def test_difcost
|
11
|
+
assert_equal 0, GSL::Matrix::NMF.difcost(@m1, @m1)
|
12
|
+
assert_equal 4, GSL::Matrix::NMF.difcost(@m1, @m2)
|
13
|
+
end
|
14
|
+
|
15
|
+
def test_nmf
|
16
|
+
[2, 3, 4, 5].each { |cols|
|
17
|
+
res = GSL::Matrix::NMF.nmf(@m1, cols)
|
18
|
+
assert_equal [3, cols], res[0].size
|
19
|
+
assert_equal [cols, 3], res[1].size
|
20
|
+
|
21
|
+
cost = GSL::Matrix::NMF.difcost(@m1, res[0] * res[1])
|
22
|
+
assert cost <= 0.0001, "Cols: #{cols}, Delta: #{cost}"
|
23
|
+
}
|
24
|
+
end
|
25
|
+
|
26
|
+
def test_matrix_nmf
|
27
|
+
[2, 3, 4, 5].each { |cols|
|
28
|
+
res = @m1.nmf(cols)
|
29
|
+
assert_equal [3, cols], res[0].size
|
30
|
+
assert_equal [cols, 3], res[1].size
|
31
|
+
|
32
|
+
cost = GSL::Matrix::NMF.difcost(@m1, res[0] * res[1])
|
33
|
+
assert cost <= 0.0001, "Cols: #{cols}, Delta: #{cost}"
|
34
|
+
}
|
35
|
+
end
|
36
|
+
|
37
|
+
end
|
@@ -0,0 +1,77 @@
|
|
1
|
+
require 'test_helper'
|
2
|
+
|
3
|
+
class MatrixTest < GSL::TestCase
|
4
|
+
|
5
|
+
def test_ispos_neg
|
6
|
+
m = GSL::Matrix::Int.alloc([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 3, 3)
|
7
|
+
assert_equal 0, m.ispos
|
8
|
+
assert_equal false, m.ispos?
|
9
|
+
assert_equal 0, m.isneg
|
10
|
+
assert_equal false, m.isneg?
|
11
|
+
|
12
|
+
m += 1
|
13
|
+
assert_equal 1, m.ispos
|
14
|
+
assert_equal true, m.ispos?
|
15
|
+
assert_equal 0, m.isneg
|
16
|
+
assert_equal false, m.isneg?
|
17
|
+
|
18
|
+
m -= 100
|
19
|
+
assert_equal 0, m.ispos
|
20
|
+
assert_equal false, m.ispos?
|
21
|
+
assert_equal 1, m.isneg
|
22
|
+
assert_equal true, m.isneg?
|
23
|
+
end
|
24
|
+
|
25
|
+
def test_isnonneg
|
26
|
+
m = GSL::Matrix::Int.alloc([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], 3, 3)
|
27
|
+
assert_equal 1, m.isnonneg
|
28
|
+
assert_equal true, m.isnonneg?
|
29
|
+
assert_equal 0, m.isneg
|
30
|
+
assert_equal false, m.isneg?
|
31
|
+
|
32
|
+
m -= 100
|
33
|
+
assert_equal 0, m.isnonneg
|
34
|
+
assert_equal false, m.isnonneg?
|
35
|
+
assert_equal 1, m.isneg
|
36
|
+
assert_equal true, m.isneg?
|
37
|
+
|
38
|
+
m += 200
|
39
|
+
assert_equal 1, m.isnonneg
|
40
|
+
assert_equal true, m.isnonneg?
|
41
|
+
assert_equal 1, m.ispos
|
42
|
+
assert_equal true, m.ispos?
|
43
|
+
end
|
44
|
+
|
45
|
+
def test_eye
|
46
|
+
z = GSL::Complex[1, 0]
|
47
|
+
m = GSL::Matrix::Complex.eye(2, z)
|
48
|
+
|
49
|
+
assert_equal z, m[0, 0]
|
50
|
+
assert_equal GSL::Complex[0, 0], m[0, 1]
|
51
|
+
assert_equal GSL::Complex[0, 0], m[1, 0]
|
52
|
+
assert_equal z, m[1, 1]
|
53
|
+
end
|
54
|
+
|
55
|
+
def test_set_row
|
56
|
+
z0 = GSL::Complex[1, 0]
|
57
|
+
z1 = GSL::Complex[2, 0]
|
58
|
+
|
59
|
+
m = GSL::Matrix::Complex[2, 2]
|
60
|
+
m.set_row(0, z0, z1)
|
61
|
+
|
62
|
+
assert_equal z0, m[0, 0]
|
63
|
+
assert_equal z1, m[0, 1]
|
64
|
+
end
|
65
|
+
|
66
|
+
def test_set_col
|
67
|
+
z0 = GSL::Complex[1, 0]
|
68
|
+
z1 = GSL::Complex[2, 0]
|
69
|
+
|
70
|
+
m = GSL::Matrix::Complex[2, 2]
|
71
|
+
m.set_col(0, z0, z1)
|
72
|
+
|
73
|
+
assert_equal z0, m[0, 0]
|
74
|
+
assert_equal z1, m[1, 0]
|
75
|
+
end
|
76
|
+
|
77
|
+
end
|
@@ -0,0 +1,89 @@
|
|
1
|
+
require 'test_helper'
|
2
|
+
|
3
|
+
class MinTest < GSL::TestCase
|
4
|
+
|
5
|
+
EPSABS = 0.001
|
6
|
+
EPSREL = 0.001
|
7
|
+
|
8
|
+
MAX_ITERATIONS = 100
|
9
|
+
|
10
|
+
def _test_f(type, desc, f, x_lower, mid, x_upper, min)
|
11
|
+
s = GSL::Min::FMinimizer.alloc(type)
|
12
|
+
s.set(@f[f], mid, x_lower, x_upper)
|
13
|
+
|
14
|
+
status = iterations = 0
|
15
|
+
|
16
|
+
begin
|
17
|
+
iterations += 1
|
18
|
+
status = s.iterate
|
19
|
+
|
20
|
+
m = s.x_minimum
|
21
|
+
a = s.x_lower
|
22
|
+
b = s.x_upper
|
23
|
+
|
24
|
+
refute a > b, 'interval is invalid (%g,%g)' % [a, b]
|
25
|
+
refute m < a || m > b, 'm lies outside interval %g (%g,%g)' % [m, a, b]
|
26
|
+
|
27
|
+
break if status == 1
|
28
|
+
|
29
|
+
status = GSL::Min.test_interval(a, b, EPSABS, EPSREL)
|
30
|
+
end while status == GSL::CONTINUE && iterations < MAX_ITERATIONS
|
31
|
+
|
32
|
+
assert status.zero?, '%s, %s (%g obs vs %g expected)' % [s.name, desc, s.x_minimum, min]
|
33
|
+
|
34
|
+
assert_tol m, min, 'incorrect precision (%g obs vs %g expected)' % [m, min]
|
35
|
+
end
|
36
|
+
|
37
|
+
def _test_f_e(type, desc, f, x_lower, mid, x_upper, min)
|
38
|
+
s = GSL::Min::FMinimizer.alloc(type)
|
39
|
+
|
40
|
+
assert_raises(GSL::ERROR::EINVAL, '%s, %s' % [s.name, desc]) {
|
41
|
+
s.set(@f[f], mid, x_lower, x_upper)
|
42
|
+
}
|
43
|
+
|
44
|
+
status = iterations = 0
|
45
|
+
|
46
|
+
begin
|
47
|
+
iterations += 1
|
48
|
+
s.iterate
|
49
|
+
|
50
|
+
_ = s.x_minimum
|
51
|
+
a = s.x_lower
|
52
|
+
b = s.x_upper
|
53
|
+
|
54
|
+
status = GSL::Min.test_interval(a, b, EPSABS, EPSREL)
|
55
|
+
rescue
|
56
|
+
end while status == GSL::CONTINUE && iterations < MAX_ITERATIONS
|
57
|
+
|
58
|
+
assert status.zero?, '%s, %s' % [s.name, desc]
|
59
|
+
end
|
60
|
+
|
61
|
+
def setup
|
62
|
+
@f = [GSL::Function.alloc { |x| Math.cos(x) }]
|
63
|
+
@f << GSL::Function.alloc { |x| GSL.pow(x, 4.0) - 1 }
|
64
|
+
@f << GSL::Function.alloc { |x| Math.sqrt(x.abs) }
|
65
|
+
@f << GSL::Function.alloc { |x| x < 1.0 ? 1 : -Math.exp(-x) }
|
66
|
+
@f << GSL::Function.alloc { |x| x - 30.0 / (1.0 + 1e5 * GSL.pow(x - 0.8, 2.0)) }
|
67
|
+
end
|
68
|
+
|
69
|
+
%w[goldensection brent quad_golden].each { |type|
|
70
|
+
{
|
71
|
+
'cos(x) [0 (3) 6]' => [0, 0.0, 3.0, 6.0, GSL::M_PI],
|
72
|
+
'x^4 - 1 [-3 (-1) 17]' => [1, -3.0, -1.0, 17.0, 0.0],
|
73
|
+
'sqrt(|x|) [-2 (-1) 1.5]' => [2, -2.0, -1.0, 1.5, 0.0],
|
74
|
+
'func3(x) [-2 (3) 4]' => [3, -2.0, 3.0, 4.0, 1.0],
|
75
|
+
'func4(x) [0 (0.782) 1]' => [4, 0, 0.782, 1.0, 0.8]
|
76
|
+
}.each_with_index { |(desc, args), i|
|
77
|
+
define_method("test_f_#{type}_#{i}") { _test_f(type, desc, *args) }
|
78
|
+
}
|
79
|
+
|
80
|
+
{
|
81
|
+
'invalid range check [4, 0]' => [0, 4.0, 3.0, 0.0, GSL::M_PI],
|
82
|
+
'invalid range check [1, 1]' => [0, 1.0, 1.0, 1.0, GSL::M_PI],
|
83
|
+
'invalid range check [-1, 1]' => [0, -1.0, 0.0, 1.0, GSL::M_PI]
|
84
|
+
}.each_with_index { |(desc, args), i|
|
85
|
+
define_method("test_f_e_#{type}_#{i}") { _test_f_e(type, desc, *args) }
|
86
|
+
}
|
87
|
+
}
|
88
|
+
|
89
|
+
end
|
@@ -0,0 +1,77 @@
|
|
1
|
+
require 'test_helper'
|
2
|
+
|
3
|
+
class MonteTest < GSL::TestCase
|
4
|
+
|
5
|
+
DIM = 1
|
6
|
+
|
7
|
+
def test_miser
|
8
|
+
return unless GSL::Monte::Miser.method_defined?(:params_get)
|
9
|
+
|
10
|
+
miser = GSL::Monte::Miser.alloc(DIM)
|
11
|
+
params = miser.params_get
|
12
|
+
|
13
|
+
params.estimate_frac = 99
|
14
|
+
miser.params_set(params)
|
15
|
+
assert_abs miser.estimate_frac, 99, 1e-5, 'miser_estimate_frac'
|
16
|
+
|
17
|
+
params.min_calls = 9
|
18
|
+
miser.params_set(params)
|
19
|
+
assert_int miser.min_calls, 9, 'miser_min_calls'
|
20
|
+
|
21
|
+
params.min_calls_per_bisection = 7
|
22
|
+
miser.params_set(params)
|
23
|
+
assert_int miser.min_calls_per_bisection, 7, 'miser_min_calls_per_bisection'
|
24
|
+
|
25
|
+
params.alpha = 3
|
26
|
+
miser.params_set(params)
|
27
|
+
assert_abs miser.alpha, 3, 1e-5, 'miser_alpha'
|
28
|
+
|
29
|
+
params.dither = 4
|
30
|
+
miser.params_set(params)
|
31
|
+
assert_abs miser.dither, 4, 1e-5, 'miser_dither'
|
32
|
+
end
|
33
|
+
|
34
|
+
def test_vegas
|
35
|
+
return unless GSL::Monte::Vegas.method_defined?(:params_get)
|
36
|
+
|
37
|
+
vegas = GSL::Monte::Vegas.alloc(DIM)
|
38
|
+
params = vegas.params_get
|
39
|
+
|
40
|
+
params.alpha = 1
|
41
|
+
vegas.params_set(params)
|
42
|
+
assert_abs vegas.alpha, 1, 1e-5, 'vegas_alpha'
|
43
|
+
|
44
|
+
params.iterations = 4
|
45
|
+
vegas.params_set(params)
|
46
|
+
assert_int vegas.iterations, 4, 'vegas_iterations'
|
47
|
+
|
48
|
+
params.stage = 3
|
49
|
+
vegas.params_set(params)
|
50
|
+
assert_int vegas.stage, 3, 'vegas_stage'
|
51
|
+
|
52
|
+
params.mode = GSL::Monte::Vegas::MODE_IMPORTANCE
|
53
|
+
vegas.params_set(params)
|
54
|
+
assert_int vegas.mode, GSL::Monte::Vegas::MODE_IMPORTANCE, 'vegas_mode MODE_IMPORTANCE'
|
55
|
+
|
56
|
+
params.mode = GSL::Monte::Vegas::MODE_IMPORTANCE_ONLY
|
57
|
+
vegas.params_set(params)
|
58
|
+
assert_int vegas.mode, GSL::Monte::Vegas::MODE_IMPORTANCE_ONLY, 'vegas_mode MODE_IMPORTANCE_ONLY'
|
59
|
+
|
60
|
+
params.mode = GSL::Monte::Vegas::MODE_STRATIFIED
|
61
|
+
vegas.params_set(params)
|
62
|
+
assert_int vegas.mode, GSL::Monte::Vegas::MODE_STRATIFIED, 'vegas_mode MODE_STRATIFIED'
|
63
|
+
|
64
|
+
params.verbose = 0
|
65
|
+
vegas.params_set(params)
|
66
|
+
assert_int vegas.verbose, 0, 'vegas_verbose 0'
|
67
|
+
|
68
|
+
params.verbose = 1
|
69
|
+
vegas.params_set(params)
|
70
|
+
assert_int vegas.verbose, 1, 'vegas_verbose 1'
|
71
|
+
|
72
|
+
params.verbose = -1
|
73
|
+
vegas.params_set(params)
|
74
|
+
assert_int vegas.verbose, -1, 'vegas_verbose -1'
|
75
|
+
end
|
76
|
+
|
77
|
+
end
|
@@ -0,0 +1,753 @@
|
|
1
|
+
require 'test_helper'
|
2
|
+
|
3
|
+
class MultifitTest < GSL::TestCase
|
4
|
+
|
5
|
+
def _test_lmder(fdf, x, xx, f, cov)
|
6
|
+
s = GSL::MultiFit::FdfSolver.alloc('lmsder', fdf.n, fdf.p)
|
7
|
+
s.set(fdf, x)
|
8
|
+
|
9
|
+
20.times { |i|
|
10
|
+
s.iterate
|
11
|
+
|
12
|
+
fdf.p.times { |j|
|
13
|
+
assert_rel s.x[j], xx[fdf.p * i + j], 1e-5, "lmsder, iter=#{i}, x#{j}"
|
14
|
+
}
|
15
|
+
|
16
|
+
assert_rel GSL::Blas.dnrm2(s.f), f[i], 1e-5, "lmsder, iter=#{i}, f"
|
17
|
+
}
|
18
|
+
|
19
|
+
covar = s.covar(0.0)
|
20
|
+
|
21
|
+
fdf.p.times { |i|
|
22
|
+
fdf.p.times { |j|
|
23
|
+
assert_rel covar[i, j], cov[i * fdf.p + j], 1e-7, "gsl_multifit_covar cov(#{i},#{j})"
|
24
|
+
}
|
25
|
+
}
|
26
|
+
end
|
27
|
+
|
28
|
+
def _test_fdf(name, fdf, x, x_final, f_sumsq, sigma)
|
29
|
+
s = GSL::MultiFit::FdfSolver.alloc('lmsder', fdf.n, fdf.p)
|
30
|
+
s.set(fdf, x)
|
31
|
+
|
32
|
+
1000.times {
|
33
|
+
s.iterate
|
34
|
+
|
35
|
+
status = s.test_delta(0.0, 1e-7)
|
36
|
+
break if status != GSL::CONTINUE
|
37
|
+
}
|
38
|
+
|
39
|
+
covar = s.covar(0.0)
|
40
|
+
|
41
|
+
fdf.p.times { |i|
|
42
|
+
assert_rel s.x[i], x_final[i], 1e-5, "#{name}, lmsder, x#{i}"
|
43
|
+
}
|
44
|
+
|
45
|
+
s2 = GSL.pow(GSL::Blas.dnrm2(s.f), 2.0)
|
46
|
+
assert_rel s2, f_sumsq, 1e-5, "#{name}, lmsder, |f|^2"
|
47
|
+
|
48
|
+
fdf.p.times { |i|
|
49
|
+
ei = Math.sqrt(s2 / (fdf.n - fdf.p)) * Math.sqrt(covar[i, i])
|
50
|
+
assert_rel ei, sigma[i], 1e-4, "#{name}, sigma(#{i})"
|
51
|
+
}
|
52
|
+
end
|
53
|
+
|
54
|
+
def test_2dgauss
|
55
|
+
maxiter = 10
|
56
|
+
n = 33
|
57
|
+
|
58
|
+
point = Struct.new(:x, :y)
|
59
|
+
|
60
|
+
# model: a * exp(-((x - x0) ** 2 + (y - y0) ** 2) / 2 / sigma ** 2)
|
61
|
+
gauss_f = lambda { |x, t, y, s, f|
|
62
|
+
# x: parameters as a Vecor
|
63
|
+
# t: observed points as an Array
|
64
|
+
# y: observed data as a GSL::Vector
|
65
|
+
# s: errorbar
|
66
|
+
# f: result
|
67
|
+
a = x[0]
|
68
|
+
x0 = x[1]
|
69
|
+
y0 = x[2]
|
70
|
+
sigma2 = x[3] ** 2
|
71
|
+
|
72
|
+
y.size.times { |i|
|
73
|
+
f.set(i, (a * Math.exp(-((t[i].x - x0) ** 2 + (t[i].y - y0) ** 2) / 2 / sigma2) - y[i]) / s[i])
|
74
|
+
}
|
75
|
+
|
76
|
+
GSL::SUCCESS
|
77
|
+
}
|
78
|
+
|
79
|
+
gauss_df = lambda { |x, t, y, s, df|
|
80
|
+
a = x[0]
|
81
|
+
x0 = x[1]
|
82
|
+
y0 = x[2]
|
83
|
+
sigma = x[3]
|
84
|
+
sigma2 = sigma ** 2
|
85
|
+
|
86
|
+
y.size.times { |i|
|
87
|
+
dx = t[i].x - x0; dx2 = dx ** 2
|
88
|
+
dy = t[i].y - y0; dy2 = dy ** 2
|
89
|
+
|
90
|
+
f = a * Math.exp(-(dx2 + dy2) / 2 / sigma2)
|
91
|
+
|
92
|
+
df.set(i, 0, f / a / s[i])
|
93
|
+
df.set(i, 1, f * dx / sigma2 / s[i])
|
94
|
+
df.set(i, 2, f * dy / sigma2 / s[i])
|
95
|
+
df.set(i, 3, f * (dx2 + dy2) / sigma2 / sigma / s[i])
|
96
|
+
}
|
97
|
+
|
98
|
+
GSL::SUCCESS
|
99
|
+
}
|
100
|
+
|
101
|
+
# goal
|
102
|
+
xgoal = GSL::Vector.alloc([1, 0, 0, 1])
|
103
|
+
parname = %w[a x0 y0 si]
|
104
|
+
|
105
|
+
# data
|
106
|
+
t = []
|
107
|
+
tmin = -10.0
|
108
|
+
tmax = 10.0
|
109
|
+
|
110
|
+
n.times { |j|
|
111
|
+
n.times { |i|
|
112
|
+
t << point.new(tmin + (tmax - tmin) * i / (n - 1), tmin + (tmax - tmin) * j / (n - 1))
|
113
|
+
}
|
114
|
+
}
|
115
|
+
|
116
|
+
stdev = xgoal[0] * 0.1
|
117
|
+
|
118
|
+
s = GSL::Vector.alloc(Array.new(t.size, stdev)) # error bar of each datum
|
119
|
+
r = GSL::Rng.alloc
|
120
|
+
e = GSL::Vector.alloc(t.size)
|
121
|
+
|
122
|
+
t.size.times { |i|
|
123
|
+
e[i] = -r.gaussian(stdev) # perturbation to data
|
124
|
+
}
|
125
|
+
|
126
|
+
y = GSL::Vector.alloc(t.size)
|
127
|
+
n = GSL::Vector.alloc(Array.new(t.size, 1.0))
|
128
|
+
gauss_f.call(xgoal, t, e, n, y) # data: y = model - e
|
129
|
+
|
130
|
+
# fitting
|
131
|
+
x = GSL::Vector.alloc([0.5, 0.1, -0.1, 2.0]) # initial guess
|
132
|
+
fdf = GSL::MultiFit::Function_fdf.alloc(gauss_f, gauss_df, x.size)
|
133
|
+
fdf.set_data(t, y, s)
|
134
|
+
|
135
|
+
solver = GSL::MultiFit::FdfSolver.alloc(GSL::MultiFit::FdfSolver::LMSDER, t.size, x.size)
|
136
|
+
solver.set(fdf, x)
|
137
|
+
|
138
|
+
#solver.print_state(0)
|
139
|
+
|
140
|
+
maxiter.times { |i|
|
141
|
+
solver.iterate
|
142
|
+
|
143
|
+
status = solver.test_delta(1e-6, 1e-6)
|
144
|
+
#solver.print_state(i + 1)
|
145
|
+
|
146
|
+
break if status != GSL::CONTINUE
|
147
|
+
}
|
148
|
+
|
149
|
+
# results
|
150
|
+
covar = solver.covar(0.0)
|
151
|
+
xresult = solver.position
|
152
|
+
dof = t.size - xresult.size
|
153
|
+
chi2 = GSL.pow_2(solver.f.dnrm2)
|
154
|
+
xsigma = GSL::Vector.alloc(xresult.size)
|
155
|
+
|
156
|
+
xresult.size.times { |i|
|
157
|
+
xsigma[i] = Math.sqrt(chi2 / dof * covar[i, i]) * 2.0
|
158
|
+
# allow resulting parameters to differ two times than standard error
|
159
|
+
}
|
160
|
+
|
161
|
+
desc = "a*exp(-((x-x0)**2+(y-y0)**2)/2/si**2), chi2/N:%.3g" % (chi2 / t.size)
|
162
|
+
|
163
|
+
xresult.size.times { |i|
|
164
|
+
assert_rel xresult[i], xgoal[i], xsigma[i], '%s: %-2.2s' % [desc, parname[i]]
|
165
|
+
|
166
|
+
refute((xresult[i] - xgoal[i]).abs > xsigma[i],
|
167
|
+
'%s: %-2.2s is %s +- %s' % [desc, parname[i], xresult[i], xsigma[i]])
|
168
|
+
}
|
169
|
+
end
|
170
|
+
|
171
|
+
def test_brown
|
172
|
+
brown_N = 20
|
173
|
+
brown_P = 4
|
174
|
+
|
175
|
+
brown_X = GSL::Matrix.alloc(
|
176
|
+
[24.3485677, 4.71448798, -2.19486633, 2.69405755],
|
177
|
+
[22.4116222, 3.93075538, -1.42344852, 2.5233557],
|
178
|
+
[17.88886, 2.9290853, 0.125174936, -3.96823353],
|
179
|
+
[17.3237176, 2.99606803, 2.03285653, 2.28992327],
|
180
|
+
[17.0906508, 3.02485425, 0.296995153, 0.0876226126],
|
181
|
+
[16.578006, 3.1036312, -0.18617941, 0.103262914],
|
182
|
+
[15.692993, 3.33088442, 0.0706406887, 1.05923955],
|
183
|
+
[14.3232177, 3.85604218, -2.3762839, -3.09486813],
|
184
|
+
[14.1279266, 3.97896121, 0.446109351, 1.40023753],
|
185
|
+
[13.6081961, 4.16435075, -1.51250057, -1.52510626],
|
186
|
+
[13.4295245, 4.22697223, -0.196985195, 0.532009293],
|
187
|
+
[13.0176117, 4.3579261, -0.353131208, 0.301377627],
|
188
|
+
[12.2713535, 4.62398535, -0.00183585584, 0.894170703],
|
189
|
+
[11.0316144, 5.13967727, -2.38978772, -2.89510064],
|
190
|
+
[10.8807981, 5.24558004, 0.230495952, 1.27315117],
|
191
|
+
[10.4029264, 5.41141257, -1.5116632, -1.47615921],
|
192
|
+
[10.2574435, 5.46211045, -0.299855732, 0.451893162],
|
193
|
+
[9.87863876, 5.57914292, -0.368885288, 0.358086545],
|
194
|
+
[9.1894983, 5.82082741, -0.230157969, 0.621476534],
|
195
|
+
[8.00589008, 6.27788753, -1.46022815, -1.33468082]
|
196
|
+
)
|
197
|
+
|
198
|
+
brown_F = GSL::Vector.alloc(
|
199
|
+
2474.05541, 1924.69004, 1280.63194, 1244.81867,
|
200
|
+
1190.53739, 1159.34935, 1108.44426, 1090.11073,
|
201
|
+
1015.92942, 1002.43533, 971.221084, 949.589435,
|
202
|
+
911.359899, 906.522994, 840.525729, 833.950164,
|
203
|
+
807.557511, 791.00924, 761.09598, 726.787783
|
204
|
+
)
|
205
|
+
|
206
|
+
brown_cov = GSL::Matrix.alloc(
|
207
|
+
[ 1.8893186910e-01, -4.7099989571e-02, 5.2154168404e-01, 1.6608168209e-02],
|
208
|
+
[-4.7099989571e-02, 1.1761534388e-02, -1.2987843074e-01, -4.1615942391e-03],
|
209
|
+
[ 5.2154168404e-01, -1.2987843074e-01, 1.4653936514e+00, 1.5738321686e-02],
|
210
|
+
[ 1.6608168209e-02, -4.1615942391e-03, 1.5738321686e-02, 4.2348042340e-02]
|
211
|
+
)
|
212
|
+
|
213
|
+
brown_x0 = GSL::Vector.alloc(25, 5, -5, -1)
|
214
|
+
|
215
|
+
brown_f = lambda { |x, t, y, f|
|
216
|
+
brown_N.times { |i|
|
217
|
+
ti = 0.2 * (i + 1)
|
218
|
+
ui = x[0] + x[1] * ti - Math.exp(ti)
|
219
|
+
vi = x[2] + x[3] * Math.sin(ti) - Math.cos(ti)
|
220
|
+
f[i] = ui * ui + vi * vi
|
221
|
+
}
|
222
|
+
|
223
|
+
GSL::SUCCESS
|
224
|
+
}
|
225
|
+
|
226
|
+
brown_df = lambda { |x, t, y, df|
|
227
|
+
brown_N.times { |i|
|
228
|
+
ti = 0.2 * (i + 1)
|
229
|
+
ui = x[0] + x[1] * ti - Math.exp(ti)
|
230
|
+
vi = x[2] + x[3] * Math.sin(ti) - Math.cos(ti)
|
231
|
+
|
232
|
+
df.set(i, 0, 2.0 * ui)
|
233
|
+
df.set(i, 1, 2.0 * ui * ti)
|
234
|
+
df.set(i, 2, 2.0 * vi)
|
235
|
+
df.set(i, 3, 2.0 * vi * Math.sin(ti))
|
236
|
+
}
|
237
|
+
|
238
|
+
GSL::SUCCESS
|
239
|
+
}
|
240
|
+
|
241
|
+
fdf = GSL::MultiFit::Function_fdf.alloc(brown_f, brown_df, brown_P)
|
242
|
+
fdf.set_data(GSL::Vector.alloc(brown_N), GSL::Vector.alloc(brown_N))
|
243
|
+
|
244
|
+
_test_lmder(fdf, brown_x0, brown_X.vector_view, brown_F, brown_cov.vector_view)
|
245
|
+
end
|
246
|
+
|
247
|
+
def test_enso
|
248
|
+
enso_N = 168
|
249
|
+
enso_P = 9
|
250
|
+
|
251
|
+
enso_x0 = GSL::Vector.alloc(10.0, 3.0, 0.5, 44.0, -1.5, 0.5, 26.0, 0.1, 1.5)
|
252
|
+
|
253
|
+
enso_x = GSL::Vector.alloc(
|
254
|
+
1.0510749193E+01, 3.0762128085E+00, 5.3280138227E-01,
|
255
|
+
4.4311088700E+01, -1.6231428586E+00, 5.2554493756E-01,
|
256
|
+
2.6887614440E+01, 2.1232288488E-01, 1.4966870418E+00
|
257
|
+
)
|
258
|
+
|
259
|
+
enso_sumsq = 7.8853978668E+02
|
260
|
+
|
261
|
+
enso_sigma = GSL::Vector.alloc(
|
262
|
+
1.7488832467E-01, 2.4310052139E-01, 2.4354686618E-01,
|
263
|
+
9.4408025976E-01, 2.8078369611E-01, 4.8073701119E-01,
|
264
|
+
4.1612939130E-01, 5.1460022911E-01, 2.5434468893E-01
|
265
|
+
)
|
266
|
+
|
267
|
+
enso_F = GSL::Vector.alloc(
|
268
|
+
12.90000, 11.30000, 10.60000, 11.20000, 10.90000, 7.50000, 7.70000,
|
269
|
+
11.70000, 12.90000, 14.30000, 10.90000, 13.70000, 17.10000, 14.00000,
|
270
|
+
15.30000, 8.50000, 5.70000, 5.50000, 7.60000, 8.60000, 7.30000,
|
271
|
+
7.60000, 12.70000, 11.00000, 12.70000, 12.90000, 13.00000, 10.90000,
|
272
|
+
10.40000, 10.20000, 8.00000, 10.90000, 13.60000, 10.50000, 9.20000,
|
273
|
+
12.40000, 12.70000, 13.30000, 10.10000, 7.80000, 4.80000, 3.00000,
|
274
|
+
2.50000, 6.30000, 9.70000, 11.60000, 8.60000, 12.40000, 10.50000,
|
275
|
+
13.30000, 10.40000, 8.10000, 3.70000, 10.70000, 5.10000, 10.40000,
|
276
|
+
10.90000, 11.70000, 11.40000, 13.70000, 14.10000, 14.00000, 12.50000,
|
277
|
+
6.30000, 9.60000, 11.70000, 5.00000, 10.80000, 12.70000, 10.80000,
|
278
|
+
11.80000, 12.60000, 15.70000, 12.60000, 14.80000, 7.80000, 7.10000,
|
279
|
+
11.20000, 8.10000, 6.40000, 5.20000, 12.00000, 10.20000, 12.70000,
|
280
|
+
10.20000, 14.70000, 12.20000, 7.10000, 5.70000, 6.70000, 3.90000,
|
281
|
+
8.50000, 8.30000, 10.80000, 16.70000, 12.60000, 12.50000, 12.50000,
|
282
|
+
9.80000, 7.20000, 4.10000, 10.60000, 10.10000, 10.10000, 11.90000,
|
283
|
+
13.60000, 16.30000, 17.60000, 15.50000, 16.00000, 15.20000, 11.20000,
|
284
|
+
14.30000, 14.50000, 8.50000, 12.00000, 12.70000, 11.30000, 14.50000,
|
285
|
+
15.10000, 10.40000, 11.50000, 13.40000, 7.50000, 0.60000, 0.30000,
|
286
|
+
5.50000, 5.00000, 4.60000, 8.20000, 9.90000, 9.20000, 12.50000,
|
287
|
+
10.90000, 9.90000, 8.90000, 7.60000, 9.50000, 8.40000, 10.70000,
|
288
|
+
13.60000, 13.70000, 13.70000, 16.50000, 16.80000, 17.10000, 15.40000,
|
289
|
+
9.50000, 6.10000, 10.10000, 9.30000, 5.30000, 11.20000, 16.60000,
|
290
|
+
15.60000, 12.00000, 11.50000, 8.60000, 13.80000, 8.70000, 8.60000,
|
291
|
+
8.60000, 8.70000, 12.80000, 13.20000, 14.00000, 13.40000, 14.80000
|
292
|
+
)
|
293
|
+
|
294
|
+
enso_f = lambda { |x, t, y, f|
|
295
|
+
b = x
|
296
|
+
|
297
|
+
enso_N.times { |i|
|
298
|
+
ti, pi = t[i], GSL::M_PI
|
299
|
+
|
300
|
+
yy = b[0]
|
301
|
+
yy += b[1] * Math.cos(2.0 * pi * ti / 12)
|
302
|
+
yy += b[2] * Math.sin(2.0 * pi * ti / 12)
|
303
|
+
yy += b[4] * Math.cos(2.0 * pi * ti / b[3])
|
304
|
+
yy += b[5] * Math.sin(2.0 * pi * ti / b[3])
|
305
|
+
yy += b[7] * Math.cos(2.0 * pi * ti / b[6])
|
306
|
+
yy += b[8] * Math.sin(2.0 * pi * ti / b[6])
|
307
|
+
|
308
|
+
f[i] = y[i] - yy
|
309
|
+
}
|
310
|
+
|
311
|
+
GSL::SUCCESS
|
312
|
+
}
|
313
|
+
|
314
|
+
enso_df = lambda { |x, t, y, df|
|
315
|
+
b = x
|
316
|
+
|
317
|
+
enso_N.times { |i|
|
318
|
+
ti, pi = t[i], GSL::M_PI
|
319
|
+
|
320
|
+
df.set(i, 0, -1.0)
|
321
|
+
df.set(i, 1, -Math.cos(2.0 * pi * ti / 12))
|
322
|
+
df.set(i, 2, -Math.sin(2.0 * pi * ti / 12))
|
323
|
+
df.set(i, 3, -b[4] * (2.0 * pi * ti / (b[3] * b[3])) * Math.sin(2 * pi * ti / b[3]) + b[5] * (2 * pi * ti / (b[3] * b[3])) * Math.cos(2 * pi * ti / b[3]))
|
324
|
+
df.set(i, 4, -Math.cos(2 * pi * ti / b[3]))
|
325
|
+
df.set(i, 5, -Math.sin(2 * pi * ti / b[3]))
|
326
|
+
df.set(i, 6, -b[7] * (2 * pi * ti / (b[6] * b[6])) * Math.sin(2 * pi * ti / b[6]) + b[8] * (2 * pi * ti / (b[6] * b[6])) * Math.cos(2 * pi * ti / b[6]))
|
327
|
+
df.set(i, 7, -Math.cos(2 * pi * ti / b[6]))
|
328
|
+
df.set(i, 8, -Math.sin(2 * pi * ti / b[6]))
|
329
|
+
}
|
330
|
+
|
331
|
+
GSL::SUCCESS
|
332
|
+
}
|
333
|
+
|
334
|
+
fdf = GSL::MultiFit::Function_fdf.alloc(enso_f, enso_df, enso_P)
|
335
|
+
|
336
|
+
#fdf.set_data(GSL::Vector.alloc(1..168), enso_F)
|
337
|
+
fdf.set_data(GSL::Vector.indgen(168, 1), enso_F)
|
338
|
+
|
339
|
+
_test_fdf('nist-ENSO', fdf, enso_x0, enso_x, enso_sumsq, enso_sigma)
|
340
|
+
end
|
341
|
+
|
342
|
+
def test_filip
|
343
|
+
filip_n = 82
|
344
|
+
filip_p = 11
|
345
|
+
|
346
|
+
filip_x = GSL::Vector.alloc(
|
347
|
+
-6.860120914, -4.324130045, -4.358625055, -4.358426747, -6.955852379,
|
348
|
+
-6.661145254, -6.355462942, -6.118102026, -7.115148017, -6.815308569,
|
349
|
+
-6.519993057, -6.204119983, -5.853871964, -6.109523091, -5.79832982,
|
350
|
+
-5.482672118, -5.171791386, -4.851705903, -4.517126416, -4.143573228,
|
351
|
+
-3.709075441, -3.499489089, -6.300769497, -5.953504836, -5.642065153,
|
352
|
+
-5.031376979, -4.680685696, -4.329846955, -3.928486195, -8.56735134,
|
353
|
+
-8.363211311, -8.107682739, -7.823908741, -7.522878745, -7.218819279,
|
354
|
+
-6.920818754, -6.628932138, -6.323946875, -5.991399828, -8.781464495,
|
355
|
+
-8.663140179, -8.473531488, -8.247337057, -7.971428747, -7.676129393,
|
356
|
+
-7.352812702, -7.072065318, -6.774174009, -6.478861916, -6.159517513,
|
357
|
+
-6.835647144, -6.53165267, -6.224098421, -5.910094889, -5.598599459,
|
358
|
+
-5.290645224, -4.974284616, -4.64454848, -4.290560426, -3.885055584,
|
359
|
+
-3.408378962, -3.13200249, -8.726767166, -8.66695597, -8.511026475,
|
360
|
+
-8.165388579, -7.886056648, -7.588043762, -7.283412422, -6.995678626,
|
361
|
+
-6.691862621, -6.392544977, -6.067374056, -6.684029655, -6.378719832,
|
362
|
+
-6.065855188, -5.752272167, -5.132414673, -4.811352704, -4.098269308,
|
363
|
+
-3.66174277, -3.2644011
|
364
|
+
)
|
365
|
+
|
366
|
+
filip_y = GSL::Vector.alloc(
|
367
|
+
0.8116, 0.9072, 0.9052, 0.9039, 0.8053, 0.8377, 0.8667, 0.8809, 0.7975,
|
368
|
+
0.8162, 0.8515, 0.8766, 0.8885, 0.8859, 0.8959, 0.8913, 0.8959, 0.8971,
|
369
|
+
0.9021, 0.909, 0.9139, 0.9199, 0.8692, 0.8872, 0.89, 0.891, 0.8977,
|
370
|
+
0.9035, 0.9078, 0.7675, 0.7705, 0.7713, 0.7736, 0.7775, 0.7841, 0.7971,
|
371
|
+
0.8329, 0.8641, 0.8804, 0.7668, 0.7633, 0.7678, 0.7697, 0.77, 0.7749,
|
372
|
+
0.7796, 0.7897, 0.8131, 0.8498, 0.8741, 0.8061, 0.846, 0.8751, 0.8856,
|
373
|
+
0.8919, 0.8934, 0.894, 0.8957, 0.9047, 0.9129, 0.9209, 0.9219, 0.7739,
|
374
|
+
0.7681, 0.7665, 0.7703, 0.7702, 0.7761, 0.7809, 0.7961, 0.8253, 0.8602,
|
375
|
+
0.8809, 0.8301, 0.8664, 0.8834, 0.8898, 0.8964, 0.8963, 0.9074, 0.9119,
|
376
|
+
0.9228
|
377
|
+
)
|
378
|
+
|
379
|
+
work = GSL::MultiFit::Workspace.alloc(filip_n, filip_p)
|
380
|
+
|
381
|
+
expected_c = GSL::Vector.alloc(
|
382
|
+
-1467.48961422980, -2772.17959193342, -2316.37108160893,
|
383
|
+
-1127.97394098372, -354.478233703349, -75.1242017393757,
|
384
|
+
-10.8753180355343, -1.06221498588947, -0.670191154593408e-01,
|
385
|
+
-0.246781078275479e-02, -0.402962525080404e-04
|
386
|
+
)
|
387
|
+
|
388
|
+
expected_sd = GSL::Vector.alloc(
|
389
|
+
298.084530995537, 559.779865474950, 466.477572127796,
|
390
|
+
227.204274477751, 71.6478660875927, 15.2897178747400,
|
391
|
+
2.23691159816033, 0.221624321934227, 0.142363763154724e-01,
|
392
|
+
0.535617408889821e-03, 0.896632837373868e-05
|
393
|
+
)
|
394
|
+
|
395
|
+
expected_chisq = 0.795851382172941e-03
|
396
|
+
|
397
|
+
xx = GSL::Matrix.alloc(filip_n, filip_p)
|
398
|
+
|
399
|
+
filip_n.times { |i|
|
400
|
+
filip_p.times { |j|
|
401
|
+
xx.set(i, j, GSL.pow(filip_x[i], j))
|
402
|
+
}
|
403
|
+
}
|
404
|
+
|
405
|
+
c, cov, chisq, _ = GSL::MultiFit.linear(xx, filip_y, work)
|
406
|
+
|
407
|
+
assert_rel c[0], expected_c[0], 1e-7, 'filip gsl_fit_multilinear c0'
|
408
|
+
assert_rel c[1], expected_c[1], 1e-7, 'filip gsl_fit_multilinear c1'
|
409
|
+
assert_rel c[2], expected_c[2], 1e-7, 'filip gsl_fit_multilinear c2'
|
410
|
+
assert_rel c[3], expected_c[3], 1e-7, 'filip gsl_fit_multilinear c3'
|
411
|
+
assert_rel c[4], expected_c[4], 1e-7, 'filip gsl_fit_multilinear c4'
|
412
|
+
assert_rel c[5], expected_c[5], 1e-7, 'filip gsl_fit_multilinear c5'
|
413
|
+
assert_rel c[6], expected_c[6], 1e-7, 'filip gsl_fit_multilinear c6'
|
414
|
+
assert_rel c[7], expected_c[7], 1e-7, 'filip gsl_fit_multilinear c7'
|
415
|
+
assert_rel c[8], expected_c[8], 1e-7, 'filip gsl_fit_multilinear c8'
|
416
|
+
assert_rel c[9], expected_c[9], 1e-7, 'filip gsl_fit_multilinear c9'
|
417
|
+
assert_rel c[10], expected_c[10], 1e-7, 'filip gsl_fit_multilinear c10'
|
418
|
+
|
419
|
+
diag = cov.diagonal
|
420
|
+
|
421
|
+
assert_rel diag[0], GSL.pow(expected_sd[0],2.0), 1e-6, 'filip gsl_fit_multilinear cov00'
|
422
|
+
assert_rel diag[1], GSL.pow(expected_sd[1],2.0), 1e-6, 'filip gsl_fit_multilinear cov11'
|
423
|
+
assert_rel diag[2], GSL.pow(expected_sd[2],2.0), 1e-6, 'filip gsl_fit_multilinear cov22'
|
424
|
+
assert_rel diag[3], GSL.pow(expected_sd[3],2.0), 1e-6, 'filip gsl_fit_multilinear cov33'
|
425
|
+
assert_rel diag[4], GSL.pow(expected_sd[4],2.0), 1e-6, 'filip gsl_fit_multilinear cov44'
|
426
|
+
assert_rel diag[5], GSL.pow(expected_sd[5],2.0), 1e-6, 'filip gsl_fit_multilinear cov55'
|
427
|
+
assert_rel diag[6], GSL.pow(expected_sd[6],2.0), 1e-6, 'filip gsl_fit_multilinear cov66'
|
428
|
+
assert_rel diag[7], GSL.pow(expected_sd[7],2.0), 1e-6, 'filip gsl_fit_multilinear cov77'
|
429
|
+
assert_rel diag[8], GSL.pow(expected_sd[8],2.0), 1e-6, 'filip gsl_fit_multilinear cov88'
|
430
|
+
assert_rel diag[9], GSL.pow(expected_sd[9],2.0), 1e-6, 'filip gsl_fit_multilinear cov99'
|
431
|
+
assert_rel diag[10], GSL.pow(expected_sd[10],2.0), 1e-6, 'filip gsl_fit_multilinear cov1010'
|
432
|
+
|
433
|
+
assert_rel chisq, expected_chisq, 1e-7, 'filip gsl_fit_multilinear chisq'
|
434
|
+
|
435
|
+
expected_c = GSL::Vector.alloc(
|
436
|
+
-1467.48961422980, -2772.17959193342, -2316.37108160893, -1127.97394098372,
|
437
|
+
-354.478233703349, -75.1242017393757, -10.8753180355343, -1.06221498588947,
|
438
|
+
-0.670191154593408e-01, -0.246781078275479e-02, -0.402962525080404e-04
|
439
|
+
)
|
440
|
+
|
441
|
+
expected_cov = GSL::Matrix.alloc(
|
442
|
+
[ 7.9269341767252183262588583867942e9, 1.4880416622254098343441063389706e10,
|
443
|
+
1.2385811858111487905481427591107e10, 6.0210784406215266653697715794241e9,
|
444
|
+
1.8936652526181982747116667336389e9, 4.0274900618493109653998118587093e8,
|
445
|
+
5.8685468011819735806180092394606e7, 5.7873451475721689084330083708901e6,
|
446
|
+
3.6982719848703747920663262917032e5, 1.3834818802741350637527054170891e4,
|
447
|
+
2.301758578713219280719633494302e2 ],
|
448
|
+
[ 1.4880416622254098334697515488559e10, 2.7955091668548290835529555438088e10,
|
449
|
+
2.3286604504243362691678565997033e10, 1.132895006796272983689297219686e10,
|
450
|
+
3.5657281653312473123348357644683e9, 7.5893300392314445528176646366087e8,
|
451
|
+
1.1066654886143524811964131660002e8, 1.0921285448484575110763947787775e7,
|
452
|
+
6.9838139975394769253353547606971e5, 2.6143091775349597218939272614126e4,
|
453
|
+
4.3523386330348588614289505633539e2 ],
|
454
|
+
[ 1.2385811858111487890788272968677e10, 2.3286604504243362677757802422747e10,
|
455
|
+
1.9412787917766676553608636489674e10, 9.4516246492862131849077729250098e9,
|
456
|
+
2.9771226694709917550143152097252e9, 6.3413035086730038062129508949859e8,
|
457
|
+
9.2536164488309401636559552742339e7, 9.1386304643423333815338760248027e6,
|
458
|
+
5.8479478338916429826337004060941e5, 2.1905933113294737443808429764554e4,
|
459
|
+
3.6493161325305557266196635180155e2 ],
|
460
|
+
[ 6.0210784406215266545770691532365e9, 1.1328950067962729823273441573365e10,
|
461
|
+
9.4516246492862131792040001429636e9, 4.6053152992000107509329772255094e9,
|
462
|
+
1.4517147860312147098138030287038e9, 3.0944988323328589376402579060072e8,
|
463
|
+
4.5190223822292688669369522708712e7, 4.4660958693678497534529855690752e6,
|
464
|
+
2.8599340736122198213681258676423e5, 1.0720394998549386596165641244705e4,
|
465
|
+
1.7870937745661967319298031044424e2 ],
|
466
|
+
[ 1.8936652526181982701620450132636e9, 3.5657281653312473058825073094524e9,
|
467
|
+
2.9771226694709917514149924058297e9, 1.451714786031214708936087401632e9,
|
468
|
+
4.5796563896564815123074920050827e8, 9.7693972414561515534525103622773e7,
|
469
|
+
1.427717861635658545863942948444e7, 1.4120161287735817621354292900338e6,
|
470
|
+
9.0484361228623960006818614875557e4, 3.394106783764852373199087455398e3,
|
471
|
+
5.6617406468519495376287407526295e1 ],
|
472
|
+
[ 4.0274900618493109532650887473599e8, 7.589330039231444534478894935778e8,
|
473
|
+
6.3413035086730037947153564986653e8, 3.09449883233285893390542947998e8,
|
474
|
+
9.7693972414561515475770399055121e7, 2.0855726248311948992114244257719e7,
|
475
|
+
3.0501263034740400533872858749566e6, 3.0187475839310308153394428784224e5,
|
476
|
+
1.9358204633534233524477930175632e4, 7.2662989867560017077361942813911e2,
|
477
|
+
1.2129002231061036467607394277965e1 ],
|
478
|
+
[ 5.868546801181973559370854830868e7, 1.1066654886143524778548044386795e8,
|
479
|
+
9.2536164488309401413296494869777e7, 4.5190223822292688587853853162072e7,
|
480
|
+
1.4277178616356585441556046753562e7, 3.050126303474040051574715592746e6,
|
481
|
+
4.4639982579046340884744460329946e5, 4.4212093985989836047285007760238e4,
|
482
|
+
2.8371395028774486687625333589972e3, 1.0656694507620102300567296504381e2,
|
483
|
+
1.7799982046359973175080475654123e0 ],
|
484
|
+
[ 5.7873451475721688839974153925406e6, 1.0921285448484575071271480643397e7,
|
485
|
+
9.1386304643423333540728480344578e6, 4.4660958693678497427674903565664e6,
|
486
|
+
1.4120161287735817596182229182587e6, 3.0187475839310308117812257613082e5,
|
487
|
+
4.4212093985989836021482392757677e4, 4.3818874017028389517560906916315e3,
|
488
|
+
2.813828775753142855163154605027e2, 1.0576188138416671883232607188969e1,
|
489
|
+
1.7676976288918295012452853715408e-1 ],
|
490
|
+
[ 3.6982719848703747742568351456818e5, 6.9838139975394768959780068745979e5,
|
491
|
+
5.8479478338916429616547638954781e5, 2.8599340736122198128717796825489e5,
|
492
|
+
9.0484361228623959793493985226792e4, 1.9358204633534233490579641064343e4,
|
493
|
+
2.8371395028774486654873647731797e3, 2.8138287757531428535592907878017e2,
|
494
|
+
1.8081118503579798222896804627964e1, 6.8005074291434681866415478598732e-1,
|
495
|
+
1.1373581557749643543869665860719e-2 ],
|
496
|
+
[ 1.3834818802741350562839757244708e4, 2.614309177534959709397445440919e4,
|
497
|
+
2.1905933113294737352721470167247e4, 1.0720394998549386558251721913182e4,
|
498
|
+
3.3941067837648523632905604575131e3, 7.2662989867560016909534954790835e2,
|
499
|
+
1.0656694507620102282337905013451e2, 1.0576188138416671871337685672492e1,
|
500
|
+
6.8005074291434681828743281967838e-1, 2.5593857187900736057022477529078e-2,
|
501
|
+
4.2831487599116264442963102045936e-4 ],
|
502
|
+
[ 2.3017585787132192669801658674163e2, 4.3523386330348588381716460685124e2,
|
503
|
+
3.6493161325305557094116270974735e2, 1.7870937745661967246233792737255e2,
|
504
|
+
5.6617406468519495180024059284629e1, 1.2129002231061036433003571679329e1,
|
505
|
+
1.7799982046359973135014027410646e0, 1.7676976288918294983059118597214e-1,
|
506
|
+
1.137358155774964353146460100337e-2, 4.283148759911626442000316269063e-4,
|
507
|
+
7.172253875245080423800933453952e-6 ]
|
508
|
+
)
|
509
|
+
|
510
|
+
expected_chisq = 0.795851382172941E-03
|
511
|
+
|
512
|
+
filip_n.times { |i|
|
513
|
+
filip_p.times { |j|
|
514
|
+
xx.set(i, j, GSL.pow(filip_x[i], j))
|
515
|
+
}
|
516
|
+
}
|
517
|
+
|
518
|
+
w = GSL::Vector.alloc(filip_n)
|
519
|
+
w.set_all(1.0)
|
520
|
+
|
521
|
+
c, cov, _, _ = GSL::MultiFit.wlinear(xx, w, filip_y, work)
|
522
|
+
|
523
|
+
filip_p.times { |i|
|
524
|
+
assert_rel c[i], expected_c[i], 1e-7, "filip gsl_fit_multilinear c#{i}"
|
525
|
+
}
|
526
|
+
|
527
|
+
filip_p.times { |i|
|
528
|
+
filip_p.times { |j|
|
529
|
+
assert_rel cov[i, j], expected_cov[i, j], 1e-6, "filip gsl_fit_wmultilinear cov(#{i},#{j})"
|
530
|
+
}
|
531
|
+
}
|
532
|
+
end
|
533
|
+
|
534
|
+
def test_gauss
|
535
|
+
maxiter = 10
|
536
|
+
n = 1000
|
537
|
+
|
538
|
+
# model: a * exp(-(x - x0) ** 2 / 2 / sigma ** 2)
|
539
|
+
gauss_p = 3
|
540
|
+
gauss_f = lambda { |x, t, y, s, f|
|
541
|
+
# x: parameters as a Vecor
|
542
|
+
# t: observed points as a GSL::Vector
|
543
|
+
# y: observed data as a GSL::Vector
|
544
|
+
# s: errorbar
|
545
|
+
# f: result
|
546
|
+
a = x[0]
|
547
|
+
x0 = x[1]
|
548
|
+
sigma2 = x[2] ** 2
|
549
|
+
|
550
|
+
y.size.times { |i|
|
551
|
+
f.set(i, (a * Math.exp(-(t[i] - x0) ** 2 / 2 / sigma2) - y[i]) / s[i])
|
552
|
+
}
|
553
|
+
|
554
|
+
GSL::SUCCESS
|
555
|
+
}
|
556
|
+
|
557
|
+
gauss_df = lambda { |x, t, y, s, df|
|
558
|
+
a = x[0]
|
559
|
+
x0 = x[1]
|
560
|
+
sigma = x[2]
|
561
|
+
sigma2 = sigma ** 2
|
562
|
+
|
563
|
+
y.size.times { |i|
|
564
|
+
dx = t[i] - x0
|
565
|
+
dx2 = dx ** 2
|
566
|
+
f = a * Math.exp(-dx2 / 2 / sigma2)
|
567
|
+
|
568
|
+
df.set(i, 0, f / a / s[i])
|
569
|
+
df.set(i, 1, f * dx / sigma2 / s[i])
|
570
|
+
df.set(i, 2, f * dx2 / sigma2 / sigma / s[i])
|
571
|
+
}
|
572
|
+
|
573
|
+
GSL::SUCCESS
|
574
|
+
}
|
575
|
+
|
576
|
+
# goal
|
577
|
+
xgoal = GSL::Vector.alloc([1, 0, 1])
|
578
|
+
parname = %w[a x0 si]
|
579
|
+
|
580
|
+
# data
|
581
|
+
t = GSL::Vector.alloc(n) # positions of data
|
582
|
+
tmin = -10.0
|
583
|
+
tmax = 10.0
|
584
|
+
|
585
|
+
t.size.times { |i|
|
586
|
+
t[i] = tmin + (tmax - tmin) * i / (n - 1)
|
587
|
+
}
|
588
|
+
|
589
|
+
stdev = xgoal[0] * 0.1
|
590
|
+
|
591
|
+
s = GSL::Vector.alloc(Array.new(t.size, stdev)) # error bar of each datum
|
592
|
+
r = GSL::Rng.alloc
|
593
|
+
e = GSL::Vector.alloc(t.size)
|
594
|
+
|
595
|
+
t.size.times { |i|
|
596
|
+
e[i] = -r.gaussian(stdev) # perturbation to data
|
597
|
+
}
|
598
|
+
|
599
|
+
y = GSL::Vector.alloc(t.size)
|
600
|
+
n = GSL::Vector.alloc(Array.new(t.size, 1.0))
|
601
|
+
gauss_f.call(xgoal, t, e, n, y) # data: y = model - e
|
602
|
+
|
603
|
+
# fitting
|
604
|
+
x = GSL::Vector.alloc([0.5, 0.1, 2]) # initial guess
|
605
|
+
|
606
|
+
fdf = GSL::MultiFit::Function_fdf.alloc(gauss_f, gauss_df, gauss_p)
|
607
|
+
fdf.set_data(t, y, s)
|
608
|
+
|
609
|
+
solver = GSL::MultiFit::FdfSolver.alloc(GSL::MultiFit::FdfSolver::LMSDER, t.size, gauss_p)
|
610
|
+
solver.set(fdf, x)
|
611
|
+
|
612
|
+
#solver.print_state(0)
|
613
|
+
|
614
|
+
maxiter.times { |i|
|
615
|
+
solver.iterate
|
616
|
+
|
617
|
+
status = solver.test_delta(1e-6, 1e-6)
|
618
|
+
#solver.print_state(i + 1)
|
619
|
+
|
620
|
+
break if status != GSL::CONTINUE
|
621
|
+
}
|
622
|
+
|
623
|
+
# results
|
624
|
+
covar = solver.covar(0.0)
|
625
|
+
xresult = solver.position
|
626
|
+
dof = t.size - gauss_p
|
627
|
+
chi2 = GSL.pow_2(solver.f.dnrm2)
|
628
|
+
xsigma = GSL::Vector.alloc(xresult.size)
|
629
|
+
|
630
|
+
xresult.size.times { |i|
|
631
|
+
xsigma[i] = Math.sqrt(chi2 / dof * covar[i, i]) * 2.0
|
632
|
+
# resulting parameters to differ two times than standard error
|
633
|
+
}
|
634
|
+
|
635
|
+
desc = 'a*exp(-(x-x0)**2/2/si**2), chi2/N:%.3g' % (chi2 / t.size)
|
636
|
+
|
637
|
+
xresult.size.times { |i|
|
638
|
+
assert_rel xresult[i], xgoal[i], xsigma[i], '%s: %-2.2s' % [desc, parname[i]]
|
639
|
+
refute((xresult[i] - xgoal[i]).abs > xsigma[i], desc)
|
640
|
+
}
|
641
|
+
end
|
642
|
+
|
643
|
+
def test_longley
|
644
|
+
longley_n = 16
|
645
|
+
longley_p = 7
|
646
|
+
|
647
|
+
longley_x = GSL::Vector.alloc(
|
648
|
+
1, 83.0, 234289, 2356, 1590, 107608, 1947,
|
649
|
+
1, 88.5, 259426, 2325, 1456, 108632, 1948,
|
650
|
+
1, 88.2, 258054, 3682, 1616, 109773, 1949,
|
651
|
+
1, 89.5, 284599, 3351, 1650, 110929, 1950,
|
652
|
+
1, 96.2, 328975, 2099, 3099, 112075, 1951,
|
653
|
+
1, 98.1, 346999, 1932, 3594, 113270, 1952,
|
654
|
+
1, 99.0, 365385, 1870, 3547, 115094, 1953,
|
655
|
+
1, 100.0, 363112, 3578, 3350, 116219, 1954,
|
656
|
+
1, 101.2, 397469, 2904, 3048, 117388, 1955,
|
657
|
+
1, 104.6, 419180, 2822, 2857, 118734, 1956,
|
658
|
+
1, 108.4, 442769, 2936, 2798, 120445, 1957,
|
659
|
+
1, 110.8, 444546, 4681, 2637, 121950, 1958,
|
660
|
+
1, 112.6, 482704, 3813, 2552, 123366, 1959,
|
661
|
+
1, 114.2, 502601, 3931, 2514, 125368, 1960,
|
662
|
+
1, 115.7, 518173, 4806, 2572, 127852, 1961,
|
663
|
+
1, 116.9, 554894, 4007, 2827, 130081, 1962
|
664
|
+
)
|
665
|
+
|
666
|
+
longley_y = GSL::Vector.alloc(
|
667
|
+
60323, 61122, 60171, 61187, 63221, 63639, 64989, 63761,
|
668
|
+
66019, 67857, 68169, 66513, 68655, 69564, 69331, 70551
|
669
|
+
)
|
670
|
+
|
671
|
+
work = GSL::MultiFit::Workspace.alloc(longley_n, longley_p)
|
672
|
+
|
673
|
+
x = GSL::Matrix.alloc(longley_x, longley_n, longley_p).view
|
674
|
+
y = longley_y.view
|
675
|
+
|
676
|
+
expected_c = GSL::Vector.alloc(
|
677
|
+
-3482258.63459582,
|
678
|
+
15.0618722713733,
|
679
|
+
-0.358191792925910e-01,
|
680
|
+
-2.02022980381683,
|
681
|
+
-1.03322686717359,
|
682
|
+
-0.511041056535807e-01,
|
683
|
+
1829.15146461355
|
684
|
+
)
|
685
|
+
|
686
|
+
expected_sd = GSL::Vector.alloc(
|
687
|
+
890420.383607373,
|
688
|
+
84.9149257747669,
|
689
|
+
0.334910077722432e-01,
|
690
|
+
0.488399681651699,
|
691
|
+
0.214274163161675,
|
692
|
+
0.226073200069370,
|
693
|
+
455.478499142212
|
694
|
+
)
|
695
|
+
|
696
|
+
expected_chisq = 836424.055505915
|
697
|
+
|
698
|
+
c, cov, chisq, _ = GSL::MultiFit.linear(x, y, work)
|
699
|
+
|
700
|
+
7.times { |i|
|
701
|
+
assert_rel c[i], expected_c[i], 1e-10, "longley gsl_fit_multilinear c#{i}"
|
702
|
+
}
|
703
|
+
|
704
|
+
diag = cov.diagonal
|
705
|
+
|
706
|
+
assert_rel diag[0], GSL.pow(expected_sd[0],2.0), 1e-10, 'longley gsl_fit_multilinear cov00'
|
707
|
+
assert_rel diag[1], GSL.pow(expected_sd[1],2.0), 1e-10, 'longley gsl_fit_multilinear cov11'
|
708
|
+
assert_rel diag[2], GSL.pow(expected_sd[2],2.0), 1e-10, 'longley gsl_fit_multilinear cov22'
|
709
|
+
assert_rel diag[3], GSL.pow(expected_sd[3],2.0), 1e-10, 'longley gsl_fit_multilinear cov33'
|
710
|
+
assert_rel diag[4], GSL.pow(expected_sd[4],2.0), 1e-10, 'longley gsl_fit_multilinear cov44'
|
711
|
+
assert_rel diag[5], GSL.pow(expected_sd[5],2.0), 1e-10, 'longley gsl_fit_multilinear cov55'
|
712
|
+
assert_rel diag[6], GSL.pow(expected_sd[6],2.0), 1e-10, 'longley gsl_fit_multilinear cov66'
|
713
|
+
|
714
|
+
assert_rel chisq, expected_chisq, 1e-10, 'longley gsl_fit_multilinear chisq'
|
715
|
+
|
716
|
+
expected_cov = GSL::Matrix.alloc(
|
717
|
+
[ 8531122.56783558, -166.727799925578, 0.261873708176346, 3.91188317230983,
|
718
|
+
1.1285582054705, -0.889550869422687, -4362.58709870581 ],
|
719
|
+
[ -166.727799925578, 0.0775861253030891, -1.98725210399982e-05, -0.000247667096727256,
|
720
|
+
-6.82911920718824e-05, 0.000136160797527761, 0.0775255245956248 ],
|
721
|
+
[ 0.261873708176346, -1.98725210399982e-05, 1.20690316701888e-08, 1.66429546772984e-07,
|
722
|
+
3.61843600487847e-08, -6.78805814483582e-08, -0.00013158719037715 ],
|
723
|
+
[ 3.91188317230983, -0.000247667096727256, 1.66429546772984e-07, 2.56665052544717e-06,
|
724
|
+
6.96541409215597e-07, -9.00858307771567e-07, -0.00197260370663974 ],
|
725
|
+
[ 1.1285582054705, -6.82911920718824e-05, 3.61843600487847e-08, 6.96541409215597e-07,
|
726
|
+
4.94032602583969e-07, -9.8469143760973e-08, -0.000576921112208274 ],
|
727
|
+
[ -0.889550869422687, 0.000136160797527761, -6.78805814483582e-08, -9.00858307771567e-07,
|
728
|
+
-9.8469143760973e-08, 5.49938542664952e-07, 0.000430074434198215 ],
|
729
|
+
[ -4362.58709870581, 0.0775255245956248, -0.00013158719037715, -0.00197260370663974,
|
730
|
+
-0.000576921112208274, 0.000430074434198215, 2.23229587481535 ]
|
731
|
+
)
|
732
|
+
|
733
|
+
expected_chisq = 836424.055505915
|
734
|
+
|
735
|
+
w = GSL::Vector.alloc(longley_n)
|
736
|
+
w.set_all(1.0)
|
737
|
+
|
738
|
+
c, cov, chisq, _ = GSL::MultiFit.wlinear(x, w, y, work)
|
739
|
+
|
740
|
+
7.times { |i|
|
741
|
+
assert_rel c[i], expected_c[i], 1e-10, "longley gsl_fit_wmultilinear c#{i}"
|
742
|
+
}
|
743
|
+
|
744
|
+
longley_p.times { |i|
|
745
|
+
longley_p.times { |j|
|
746
|
+
assert_rel cov[i, j], expected_cov[i, j], 1e-7, "longley gsl_fit_wmultilinear cov(#{i},#{j})"
|
747
|
+
}
|
748
|
+
}
|
749
|
+
|
750
|
+
assert_rel chisq, expected_chisq, 1e-10, 'longley gsl_fit_wmultilinear chisq'
|
751
|
+
end
|
752
|
+
|
753
|
+
end
|