rarff 0.2.0 → 0.2.2
Sign up to get free protection for your applications and to get access to all the features.
- data/{README → README.md} +10 -23
- data/lib/rarff.rb +191 -198
- data/tests/test_case_arff.arff +694 -0
- data/tests/test_comments_arff.arff +21 -0
- data/tests/test_comments_raw.csv +11 -0
- data/tests/ts_rarff.rb +90 -77
- metadata +35 -38
@@ -0,0 +1,694 @@
|
|
1
|
+
%1. Title: Balance Scale Weight & Distance Database
|
2
|
+
%
|
3
|
+
%2. Source Information:
|
4
|
+
% (a) Source: Generated to model psychological experiments reported
|
5
|
+
% by Siegler, R. S. (1976). Three Aspects of Cognitive
|
6
|
+
% Development. Cognitive Psychology, 8, 481-520.
|
7
|
+
% (b) Donor: Tim Hume (hume@ics.uci.edu)
|
8
|
+
% (c) Date: 22 April 1994
|
9
|
+
%
|
10
|
+
%3. Past Usage: (possibly different formats of this data)
|
11
|
+
% - Publications
|
12
|
+
% 1. Klahr, D., & Siegler, R.S. (1978). The Representation of
|
13
|
+
% Children's Knowledge. In H. W. Reese & L. P. Lipsitt (Eds.),
|
14
|
+
% Advances in Child Development and Behavior, pp. 61-116. New
|
15
|
+
% York: Academic Press
|
16
|
+
% 2. Langley,P. (1987). A General Theory of Discrimination
|
17
|
+
% Learning. In D. Klahr, P. Langley, & R. Neches (Eds.),
|
18
|
+
% Production System Models of Learning and Development, pp.
|
19
|
+
% 99-161. Cambridge, MA: MIT Press
|
20
|
+
% 3. Newell, A. (1990). Unified Theories of Cognition.
|
21
|
+
% Cambridge, MA: Harvard University Press
|
22
|
+
% 4. McClelland, J.L. (1988). Parallel Distibuted Processing:
|
23
|
+
% Implications for Cognition and Development. Technical
|
24
|
+
% Report AIP-47, Department of Psychology, Carnegie-Mellon
|
25
|
+
% University
|
26
|
+
% 5. Shultz, T., Mareschal, D., & Schmidt, W. (1994). Modeling
|
27
|
+
% Cognitive Development on Balance Scale Phenomena. Machine
|
28
|
+
% Learning, Vol. 16, pp. 59-88.
|
29
|
+
%
|
30
|
+
%4. Relevant Information:
|
31
|
+
% This data set was generated to model psychological
|
32
|
+
% experimental results. Each example is classified as having the
|
33
|
+
% balance scale tip to the right, tip to the left, or be
|
34
|
+
% balanced. The attributes are the left weight, the left
|
35
|
+
% distance, the right weight, and the right distance. The
|
36
|
+
% correct way to find the class is the greater of
|
37
|
+
% (left-distance * left-weight) and (right-distance *
|
38
|
+
% right-weight). If they are equal, it is balanced.
|
39
|
+
%
|
40
|
+
%5. Number of Instances: 625 (49 balanced, 288 left, 288 right)
|
41
|
+
%
|
42
|
+
%6. Number of Attributes: 4 (numeric) + class name = 5
|
43
|
+
%
|
44
|
+
%7. Attribute Information:
|
45
|
+
% 1. Class Name: 3 (L, B, R)
|
46
|
+
% 2. Left-Weight: 5 (1, 2, 3, 4, 5)
|
47
|
+
% 3. Left-Distance: 5 (1, 2, 3, 4, 5)
|
48
|
+
% 4. Right-Weight: 5 (1, 2, 3, 4, 5)
|
49
|
+
% 5. Right-Distance: 5 (1, 2, 3, 4, 5)
|
50
|
+
%
|
51
|
+
%8. Missing Attribute Values:
|
52
|
+
% none
|
53
|
+
%
|
54
|
+
%9. Class Distribution:
|
55
|
+
% 1. 46.08 percent are L
|
56
|
+
% 2. 07.84 percent are B
|
57
|
+
% 3. 46.08 percent are R
|
58
|
+
%
|
59
|
+
|
60
|
+
@relation balance-scale
|
61
|
+
@attribute left-weight real
|
62
|
+
@attribute left-distance real
|
63
|
+
@attribute right-weight real
|
64
|
+
@attribute right-distance real
|
65
|
+
@attribute class { L, B, R}
|
66
|
+
@data
|
67
|
+
1,1,1,1,B
|
68
|
+
1,1,1,2,R
|
69
|
+
1,1,1,3,R
|
70
|
+
1,1,1,4,R
|
71
|
+
1,1,1,5,R
|
72
|
+
1,1,2,1,R
|
73
|
+
1,1,2,2,R
|
74
|
+
1,1,2,3,R
|
75
|
+
1,1,2,4,R
|
76
|
+
1,1,2,5,R
|
77
|
+
1,1,3,1,R
|
78
|
+
1,1,3,2,R
|
79
|
+
1,1,3,3,R
|
80
|
+
1,1,3,4,R
|
81
|
+
1,1,3,5,R
|
82
|
+
1,1,4,1,R
|
83
|
+
1,1,4,2,R
|
84
|
+
1,1,4,3,R
|
85
|
+
1,1,4,4,R
|
86
|
+
1,1,4,5,R
|
87
|
+
1,1,5,1,R
|
88
|
+
1,1,5,2,R
|
89
|
+
1,1,5,3,R
|
90
|
+
1,1,5,4,R
|
91
|
+
1,1,5,5,R
|
92
|
+
1,2,1,1,L
|
93
|
+
1,2,1,2,B
|
94
|
+
1,2,1,3,R
|
95
|
+
1,2,1,4,R
|
96
|
+
1,2,1,5,R
|
97
|
+
1,2,2,1,B
|
98
|
+
1,2,2,2,R
|
99
|
+
1,2,2,3,R
|
100
|
+
1,2,2,4,R
|
101
|
+
1,2,2,5,R
|
102
|
+
1,2,3,1,R
|
103
|
+
1,2,3,2,R
|
104
|
+
1,2,3,3,R
|
105
|
+
1,2,3,4,R
|
106
|
+
1,2,3,5,R
|
107
|
+
1,2,4,1,R
|
108
|
+
1,2,4,2,R
|
109
|
+
1,2,4,3,R
|
110
|
+
1,2,4,4,R
|
111
|
+
1,2,4,5,R
|
112
|
+
1,2,5,1,R
|
113
|
+
1,2,5,2,R
|
114
|
+
1,2,5,3,R
|
115
|
+
1,2,5,4,R
|
116
|
+
1,2,5,5,R
|
117
|
+
1,3,1,1,L
|
118
|
+
1,3,1,2,L
|
119
|
+
1,3,1,3,B
|
120
|
+
1,3,1,4,R
|
121
|
+
1,3,1,5,R
|
122
|
+
1,3,2,1,L
|
123
|
+
1,3,2,2,R
|
124
|
+
1,3,2,3,R
|
125
|
+
1,3,2,4,R
|
126
|
+
1,3,2,5,R
|
127
|
+
1,3,3,1,B
|
128
|
+
1,3,3,2,R
|
129
|
+
1,3,3,3,R
|
130
|
+
1,3,3,4,R
|
131
|
+
1,3,3,5,R
|
132
|
+
1,3,4,1,R
|
133
|
+
1,3,4,2,R
|
134
|
+
1,3,4,3,R
|
135
|
+
1,3,4,4,R
|
136
|
+
1,3,4,5,R
|
137
|
+
1,3,5,1,R
|
138
|
+
1,3,5,2,R
|
139
|
+
1,3,5,3,R
|
140
|
+
1,3,5,4,R
|
141
|
+
1,3,5,5,R
|
142
|
+
1,4,1,1,L
|
143
|
+
1,4,1,2,L
|
144
|
+
1,4,1,3,L
|
145
|
+
1,4,1,4,B
|
146
|
+
1,4,1,5,R
|
147
|
+
1,4,2,1,L
|
148
|
+
1,4,2,2,B
|
149
|
+
1,4,2,3,R
|
150
|
+
1,4,2,4,R
|
151
|
+
1,4,2,5,R
|
152
|
+
1,4,3,1,L
|
153
|
+
1,4,3,2,R
|
154
|
+
1,4,3,3,R
|
155
|
+
1,4,3,4,R
|
156
|
+
1,4,3,5,R
|
157
|
+
1,4,4,1,B
|
158
|
+
1,4,4,2,R
|
159
|
+
1,4,4,3,R
|
160
|
+
1,4,4,4,R
|
161
|
+
1,4,4,5,R
|
162
|
+
1,4,5,1,R
|
163
|
+
1,4,5,2,R
|
164
|
+
1,4,5,3,R
|
165
|
+
1,4,5,4,R
|
166
|
+
1,4,5,5,R
|
167
|
+
1,5,1,1,L
|
168
|
+
1,5,1,2,L
|
169
|
+
1,5,1,3,L
|
170
|
+
1,5,1,4,L
|
171
|
+
1,5,1,5,B
|
172
|
+
1,5,2,1,L
|
173
|
+
1,5,2,2,L
|
174
|
+
1,5,2,3,R
|
175
|
+
1,5,2,4,R
|
176
|
+
1,5,2,5,R
|
177
|
+
1,5,3,1,L
|
178
|
+
1,5,3,2,R
|
179
|
+
1,5,3,3,R
|
180
|
+
1,5,3,4,R
|
181
|
+
1,5,3,5,R
|
182
|
+
1,5,4,1,L
|
183
|
+
1,5,4,2,R
|
184
|
+
1,5,4,3,R
|
185
|
+
1,5,4,4,R
|
186
|
+
1,5,4,5,R
|
187
|
+
1,5,5,1,B
|
188
|
+
1,5,5,2,R
|
189
|
+
1,5,5,3,R
|
190
|
+
1,5,5,4,R
|
191
|
+
1,5,5,5,R
|
192
|
+
2,1,1,1,L
|
193
|
+
2,1,1,2,B
|
194
|
+
2,1,1,3,R
|
195
|
+
2,1,1,4,R
|
196
|
+
2,1,1,5,R
|
197
|
+
2,1,2,1,B
|
198
|
+
2,1,2,2,R
|
199
|
+
2,1,2,3,R
|
200
|
+
2,1,2,4,R
|
201
|
+
2,1,2,5,R
|
202
|
+
2,1,3,1,R
|
203
|
+
2,1,3,2,R
|
204
|
+
2,1,3,3,R
|
205
|
+
2,1,3,4,R
|
206
|
+
2,1,3,5,R
|
207
|
+
2,1,4,1,R
|
208
|
+
2,1,4,2,R
|
209
|
+
2,1,4,3,R
|
210
|
+
2,1,4,4,R
|
211
|
+
2,1,4,5,R
|
212
|
+
2,1,5,1,R
|
213
|
+
2,1,5,2,R
|
214
|
+
2,1,5,3,R
|
215
|
+
2,1,5,4,R
|
216
|
+
2,1,5,5,R
|
217
|
+
2,2,1,1,L
|
218
|
+
2,2,1,2,L
|
219
|
+
2,2,1,3,L
|
220
|
+
2,2,1,4,B
|
221
|
+
2,2,1,5,R
|
222
|
+
2,2,2,1,L
|
223
|
+
2,2,2,2,B
|
224
|
+
2,2,2,3,R
|
225
|
+
2,2,2,4,R
|
226
|
+
2,2,2,5,R
|
227
|
+
2,2,3,1,L
|
228
|
+
2,2,3,2,R
|
229
|
+
2,2,3,3,R
|
230
|
+
2,2,3,4,R
|
231
|
+
2,2,3,5,R
|
232
|
+
2,2,4,1,B
|
233
|
+
2,2,4,2,R
|
234
|
+
2,2,4,3,R
|
235
|
+
2,2,4,4,R
|
236
|
+
2,2,4,5,R
|
237
|
+
2,2,5,1,R
|
238
|
+
2,2,5,2,R
|
239
|
+
2,2,5,3,R
|
240
|
+
2,2,5,4,R
|
241
|
+
2,2,5,5,R
|
242
|
+
2,3,1,1,L
|
243
|
+
2,3,1,2,L
|
244
|
+
2,3,1,3,L
|
245
|
+
2,3,1,4,L
|
246
|
+
2,3,1,5,L
|
247
|
+
2,3,2,1,L
|
248
|
+
2,3,2,2,L
|
249
|
+
2,3,2,3,B
|
250
|
+
2,3,2,4,R
|
251
|
+
2,3,2,5,R
|
252
|
+
2,3,3,1,L
|
253
|
+
2,3,3,2,B
|
254
|
+
2,3,3,3,R
|
255
|
+
2,3,3,4,R
|
256
|
+
2,3,3,5,R
|
257
|
+
2,3,4,1,L
|
258
|
+
2,3,4,2,R
|
259
|
+
2,3,4,3,R
|
260
|
+
2,3,4,4,R
|
261
|
+
2,3,4,5,R
|
262
|
+
2,3,5,1,L
|
263
|
+
2,3,5,2,R
|
264
|
+
2,3,5,3,R
|
265
|
+
2,3,5,4,R
|
266
|
+
2,3,5,5,R
|
267
|
+
2,4,1,1,L
|
268
|
+
2,4,1,2,L
|
269
|
+
2,4,1,3,L
|
270
|
+
2,4,1,4,L
|
271
|
+
2,4,1,5,L
|
272
|
+
2,4,2,1,L
|
273
|
+
2,4,2,2,L
|
274
|
+
2,4,2,3,L
|
275
|
+
2,4,2,4,B
|
276
|
+
2,4,2,5,R
|
277
|
+
2,4,3,1,L
|
278
|
+
2,4,3,2,L
|
279
|
+
2,4,3,3,R
|
280
|
+
2,4,3,4,R
|
281
|
+
2,4,3,5,R
|
282
|
+
2,4,4,1,L
|
283
|
+
2,4,4,2,B
|
284
|
+
2,4,4,3,R
|
285
|
+
2,4,4,4,R
|
286
|
+
2,4,4,5,R
|
287
|
+
2,4,5,1,L
|
288
|
+
2,4,5,2,R
|
289
|
+
2,4,5,3,R
|
290
|
+
2,4,5,4,R
|
291
|
+
2,4,5,5,R
|
292
|
+
2,5,1,1,L
|
293
|
+
2,5,1,2,L
|
294
|
+
2,5,1,3,L
|
295
|
+
2,5,1,4,L
|
296
|
+
2,5,1,5,L
|
297
|
+
2,5,2,1,L
|
298
|
+
2,5,2,2,L
|
299
|
+
2,5,2,3,L
|
300
|
+
2,5,2,4,L
|
301
|
+
2,5,2,5,B
|
302
|
+
2,5,3,1,L
|
303
|
+
2,5,3,2,L
|
304
|
+
2,5,3,3,L
|
305
|
+
2,5,3,4,R
|
306
|
+
2,5,3,5,R
|
307
|
+
2,5,4,1,L
|
308
|
+
2,5,4,2,L
|
309
|
+
2,5,4,3,R
|
310
|
+
2,5,4,4,R
|
311
|
+
2,5,4,5,R
|
312
|
+
2,5,5,1,L
|
313
|
+
2,5,5,2,B
|
314
|
+
2,5,5,3,R
|
315
|
+
2,5,5,4,R
|
316
|
+
2,5,5,5,R
|
317
|
+
3,1,1,1,L
|
318
|
+
3,1,1,2,L
|
319
|
+
3,1,1,3,B
|
320
|
+
3,1,1,4,R
|
321
|
+
3,1,1,5,R
|
322
|
+
3,1,2,1,L
|
323
|
+
3,1,2,2,R
|
324
|
+
3,1,2,3,R
|
325
|
+
3,1,2,4,R
|
326
|
+
3,1,2,5,R
|
327
|
+
3,1,3,1,B
|
328
|
+
3,1,3,2,R
|
329
|
+
3,1,3,3,R
|
330
|
+
3,1,3,4,R
|
331
|
+
3,1,3,5,R
|
332
|
+
3,1,4,1,R
|
333
|
+
3,1,4,2,R
|
334
|
+
3,1,4,3,R
|
335
|
+
3,1,4,4,R
|
336
|
+
3,1,4,5,R
|
337
|
+
3,1,5,1,R
|
338
|
+
3,1,5,2,R
|
339
|
+
3,1,5,3,R
|
340
|
+
3,1,5,4,R
|
341
|
+
3,1,5,5,R
|
342
|
+
3,2,1,1,L
|
343
|
+
3,2,1,2,L
|
344
|
+
3,2,1,3,L
|
345
|
+
3,2,1,4,L
|
346
|
+
3,2,1,5,L
|
347
|
+
3,2,2,1,L
|
348
|
+
3,2,2,2,L
|
349
|
+
3,2,2,3,B
|
350
|
+
3,2,2,4,R
|
351
|
+
3,2,2,5,R
|
352
|
+
3,2,3,1,L
|
353
|
+
3,2,3,2,B
|
354
|
+
3,2,3,3,R
|
355
|
+
3,2,3,4,R
|
356
|
+
3,2,3,5,R
|
357
|
+
3,2,4,1,L
|
358
|
+
3,2,4,2,R
|
359
|
+
3,2,4,3,R
|
360
|
+
3,2,4,4,R
|
361
|
+
3,2,4,5,R
|
362
|
+
3,2,5,1,L
|
363
|
+
3,2,5,2,R
|
364
|
+
3,2,5,3,R
|
365
|
+
3,2,5,4,R
|
366
|
+
3,2,5,5,R
|
367
|
+
3,3,1,1,L
|
368
|
+
3,3,1,2,L
|
369
|
+
3,3,1,3,L
|
370
|
+
3,3,1,4,L
|
371
|
+
3,3,1,5,L
|
372
|
+
3,3,2,1,L
|
373
|
+
3,3,2,2,L
|
374
|
+
3,3,2,3,L
|
375
|
+
3,3,2,4,L
|
376
|
+
3,3,2,5,R
|
377
|
+
3,3,3,1,L
|
378
|
+
3,3,3,2,L
|
379
|
+
3,3,3,3,B
|
380
|
+
3,3,3,4,R
|
381
|
+
3,3,3,5,R
|
382
|
+
3,3,4,1,L
|
383
|
+
3,3,4,2,L
|
384
|
+
3,3,4,3,R
|
385
|
+
3,3,4,4,R
|
386
|
+
3,3,4,5,R
|
387
|
+
3,3,5,1,L
|
388
|
+
3,3,5,2,R
|
389
|
+
3,3,5,3,R
|
390
|
+
3,3,5,4,R
|
391
|
+
3,3,5,5,R
|
392
|
+
3,4,1,1,L
|
393
|
+
3,4,1,2,L
|
394
|
+
3,4,1,3,L
|
395
|
+
3,4,1,4,L
|
396
|
+
3,4,1,5,L
|
397
|
+
3,4,2,1,L
|
398
|
+
3,4,2,2,L
|
399
|
+
3,4,2,3,L
|
400
|
+
3,4,2,4,L
|
401
|
+
3,4,2,5,L
|
402
|
+
3,4,3,1,L
|
403
|
+
3,4,3,2,L
|
404
|
+
3,4,3,3,L
|
405
|
+
3,4,3,4,B
|
406
|
+
3,4,3,5,R
|
407
|
+
3,4,4,1,L
|
408
|
+
3,4,4,2,L
|
409
|
+
3,4,4,3,B
|
410
|
+
3,4,4,4,R
|
411
|
+
3,4,4,5,R
|
412
|
+
3,4,5,1,L
|
413
|
+
3,4,5,2,L
|
414
|
+
3,4,5,3,R
|
415
|
+
3,4,5,4,R
|
416
|
+
3,4,5,5,R
|
417
|
+
3,5,1,1,L
|
418
|
+
3,5,1,2,L
|
419
|
+
3,5,1,3,L
|
420
|
+
3,5,1,4,L
|
421
|
+
3,5,1,5,L
|
422
|
+
3,5,2,1,L
|
423
|
+
3,5,2,2,L
|
424
|
+
3,5,2,3,L
|
425
|
+
3,5,2,4,L
|
426
|
+
3,5,2,5,L
|
427
|
+
3,5,3,1,L
|
428
|
+
3,5,3,2,L
|
429
|
+
3,5,3,3,L
|
430
|
+
3,5,3,4,L
|
431
|
+
3,5,3,5,B
|
432
|
+
3,5,4,1,L
|
433
|
+
3,5,4,2,L
|
434
|
+
3,5,4,3,L
|
435
|
+
3,5,4,4,R
|
436
|
+
3,5,4,5,R
|
437
|
+
3,5,5,1,L
|
438
|
+
3,5,5,2,L
|
439
|
+
3,5,5,3,B
|
440
|
+
3,5,5,4,R
|
441
|
+
3,5,5,5,R
|
442
|
+
4,1,1,1,L
|
443
|
+
4,1,1,2,L
|
444
|
+
4,1,1,3,L
|
445
|
+
4,1,1,4,B
|
446
|
+
4,1,1,5,R
|
447
|
+
4,1,2,1,L
|
448
|
+
4,1,2,2,B
|
449
|
+
4,1,2,3,R
|
450
|
+
4,1,2,4,R
|
451
|
+
4,1,2,5,R
|
452
|
+
4,1,3,1,L
|
453
|
+
4,1,3,2,R
|
454
|
+
4,1,3,3,R
|
455
|
+
4,1,3,4,R
|
456
|
+
4,1,3,5,R
|
457
|
+
4,1,4,1,B
|
458
|
+
4,1,4,2,R
|
459
|
+
4,1,4,3,R
|
460
|
+
4,1,4,4,R
|
461
|
+
4,1,4,5,R
|
462
|
+
4,1,5,1,R
|
463
|
+
4,1,5,2,R
|
464
|
+
4,1,5,3,R
|
465
|
+
4,1,5,4,R
|
466
|
+
4,1,5,5,R
|
467
|
+
4,2,1,1,L
|
468
|
+
4,2,1,2,L
|
469
|
+
4,2,1,3,L
|
470
|
+
4,2,1,4,L
|
471
|
+
4,2,1,5,L
|
472
|
+
4,2,2,1,L
|
473
|
+
4,2,2,2,L
|
474
|
+
4,2,2,3,L
|
475
|
+
4,2,2,4,B
|
476
|
+
4,2,2,5,R
|
477
|
+
4,2,3,1,L
|
478
|
+
4,2,3,2,L
|
479
|
+
4,2,3,3,R
|
480
|
+
4,2,3,4,R
|
481
|
+
4,2,3,5,R
|
482
|
+
4,2,4,1,L
|
483
|
+
4,2,4,2,B
|
484
|
+
4,2,4,3,R
|
485
|
+
4,2,4,4,R
|
486
|
+
4,2,4,5,R
|
487
|
+
4,2,5,1,L
|
488
|
+
4,2,5,2,R
|
489
|
+
4,2,5,3,R
|
490
|
+
4,2,5,4,R
|
491
|
+
4,2,5,5,R
|
492
|
+
4,3,1,1,L
|
493
|
+
4,3,1,2,L
|
494
|
+
4,3,1,3,L
|
495
|
+
4,3,1,4,L
|
496
|
+
4,3,1,5,L
|
497
|
+
4,3,2,1,L
|
498
|
+
4,3,2,2,L
|
499
|
+
4,3,2,3,L
|
500
|
+
4,3,2,4,L
|
501
|
+
4,3,2,5,L
|
502
|
+
4,3,3,1,L
|
503
|
+
4,3,3,2,L
|
504
|
+
4,3,3,3,L
|
505
|
+
4,3,3,4,B
|
506
|
+
4,3,3,5,R
|
507
|
+
4,3,4,1,L
|
508
|
+
4,3,4,2,L
|
509
|
+
4,3,4,3,B
|
510
|
+
4,3,4,4,R
|
511
|
+
4,3,4,5,R
|
512
|
+
4,3,5,1,L
|
513
|
+
4,3,5,2,L
|
514
|
+
4,3,5,3,R
|
515
|
+
4,3,5,4,R
|
516
|
+
4,3,5,5,R
|
517
|
+
4,4,1,1,L
|
518
|
+
4,4,1,2,L
|
519
|
+
4,4,1,3,L
|
520
|
+
4,4,1,4,L
|
521
|
+
4,4,1,5,L
|
522
|
+
4,4,2,1,L
|
523
|
+
4,4,2,2,L
|
524
|
+
4,4,2,3,L
|
525
|
+
4,4,2,4,L
|
526
|
+
4,4,2,5,L
|
527
|
+
4,4,3,1,L
|
528
|
+
4,4,3,2,L
|
529
|
+
4,4,3,3,L
|
530
|
+
4,4,3,4,L
|
531
|
+
4,4,3,5,L
|
532
|
+
4,4,4,1,L
|
533
|
+
4,4,4,2,L
|
534
|
+
4,4,4,3,L
|
535
|
+
4,4,4,4,B
|
536
|
+
4,4,4,5,R
|
537
|
+
4,4,5,1,L
|
538
|
+
4,4,5,2,L
|
539
|
+
4,4,5,3,L
|
540
|
+
4,4,5,4,R
|
541
|
+
4,4,5,5,R
|
542
|
+
4,5,1,1,L
|
543
|
+
4,5,1,2,L
|
544
|
+
4,5,1,3,L
|
545
|
+
4,5,1,4,L
|
546
|
+
4,5,1,5,L
|
547
|
+
4,5,2,1,L
|
548
|
+
4,5,2,2,L
|
549
|
+
4,5,2,3,L
|
550
|
+
4,5,2,4,L
|
551
|
+
4,5,2,5,L
|
552
|
+
4,5,3,1,L
|
553
|
+
4,5,3,2,L
|
554
|
+
4,5,3,3,L
|
555
|
+
4,5,3,4,L
|
556
|
+
4,5,3,5,L
|
557
|
+
4,5,4,1,L
|
558
|
+
4,5,4,2,L
|
559
|
+
4,5,4,3,L
|
560
|
+
4,5,4,4,L
|
561
|
+
4,5,4,5,B
|
562
|
+
4,5,5,1,L
|
563
|
+
4,5,5,2,L
|
564
|
+
4,5,5,3,L
|
565
|
+
4,5,5,4,B
|
566
|
+
4,5,5,5,R
|
567
|
+
5,1,1,1,L
|
568
|
+
5,1,1,2,L
|
569
|
+
5,1,1,3,L
|
570
|
+
5,1,1,4,L
|
571
|
+
5,1,1,5,B
|
572
|
+
5,1,2,1,L
|
573
|
+
5,1,2,2,L
|
574
|
+
5,1,2,3,R
|
575
|
+
5,1,2,4,R
|
576
|
+
5,1,2,5,R
|
577
|
+
5,1,3,1,L
|
578
|
+
5,1,3,2,R
|
579
|
+
5,1,3,3,R
|
580
|
+
5,1,3,4,R
|
581
|
+
5,1,3,5,R
|
582
|
+
5,1,4,1,L
|
583
|
+
5,1,4,2,R
|
584
|
+
5,1,4,3,R
|
585
|
+
5,1,4,4,R
|
586
|
+
5,1,4,5,R
|
587
|
+
5,1,5,1,B
|
588
|
+
5,1,5,2,R
|
589
|
+
5,1,5,3,R
|
590
|
+
5,1,5,4,R
|
591
|
+
5,1,5,5,R
|
592
|
+
5,2,1,1,L
|
593
|
+
5,2,1,2,L
|
594
|
+
5,2,1,3,L
|
595
|
+
5,2,1,4,L
|
596
|
+
5,2,1,5,L
|
597
|
+
5,2,2,1,L
|
598
|
+
5,2,2,2,L
|
599
|
+
5,2,2,3,L
|
600
|
+
5,2,2,4,L
|
601
|
+
5,2,2,5,B
|
602
|
+
5,2,3,1,L
|
603
|
+
5,2,3,2,L
|
604
|
+
5,2,3,3,L
|
605
|
+
5,2,3,4,R
|
606
|
+
5,2,3,5,R
|
607
|
+
5,2,4,1,L
|
608
|
+
5,2,4,2,L
|
609
|
+
5,2,4,3,R
|
610
|
+
5,2,4,4,R
|
611
|
+
5,2,4,5,R
|
612
|
+
5,2,5,1,L
|
613
|
+
5,2,5,2,B
|
614
|
+
5,2,5,3,R
|
615
|
+
5,2,5,4,R
|
616
|
+
5,2,5,5,R
|
617
|
+
5,3,1,1,L
|
618
|
+
5,3,1,2,L
|
619
|
+
5,3,1,3,L
|
620
|
+
5,3,1,4,L
|
621
|
+
5,3,1,5,L
|
622
|
+
5,3,2,1,L
|
623
|
+
5,3,2,2,L
|
624
|
+
5,3,2,3,L
|
625
|
+
5,3,2,4,L
|
626
|
+
5,3,2,5,L
|
627
|
+
5,3,3,1,L
|
628
|
+
5,3,3,2,L
|
629
|
+
5,3,3,3,L
|
630
|
+
5,3,3,4,L
|
631
|
+
5,3,3,5,B
|
632
|
+
5,3,4,1,L
|
633
|
+
5,3,4,2,L
|
634
|
+
5,3,4,3,L
|
635
|
+
5,3,4,4,R
|
636
|
+
5,3,4,5,R
|
637
|
+
5,3,5,1,L
|
638
|
+
5,3,5,2,L
|
639
|
+
5,3,5,3,B
|
640
|
+
5,3,5,4,R
|
641
|
+
5,3,5,5,R
|
642
|
+
5,4,1,1,L
|
643
|
+
5,4,1,2,L
|
644
|
+
5,4,1,3,L
|
645
|
+
5,4,1,4,L
|
646
|
+
5,4,1,5,L
|
647
|
+
5,4,2,1,L
|
648
|
+
5,4,2,2,L
|
649
|
+
5,4,2,3,L
|
650
|
+
5,4,2,4,L
|
651
|
+
5,4,2,5,L
|
652
|
+
5,4,3,1,L
|
653
|
+
5,4,3,2,L
|
654
|
+
5,4,3,3,L
|
655
|
+
5,4,3,4,L
|
656
|
+
5,4,3,5,L
|
657
|
+
5,4,4,1,L
|
658
|
+
5,4,4,2,L
|
659
|
+
5,4,4,3,L
|
660
|
+
5,4,4,4,L
|
661
|
+
5,4,4,5,B
|
662
|
+
5,4,5,1,L
|
663
|
+
5,4,5,2,L
|
664
|
+
5,4,5,3,L
|
665
|
+
5,4,5,4,B
|
666
|
+
5,4,5,5,R
|
667
|
+
5,5,1,1,L
|
668
|
+
5,5,1,2,L
|
669
|
+
5,5,1,3,L
|
670
|
+
5,5,1,4,L
|
671
|
+
5,5,1,5,L
|
672
|
+
5,5,2,1,L
|
673
|
+
5,5,2,2,L
|
674
|
+
5,5,2,3,L
|
675
|
+
5,5,2,4,L
|
676
|
+
5,5,2,5,L
|
677
|
+
5,5,3,1,L
|
678
|
+
5,5,3,2,L
|
679
|
+
5,5,3,3,L
|
680
|
+
5,5,3,4,L
|
681
|
+
5,5,3,5,L
|
682
|
+
5,5,4,1,L
|
683
|
+
5,5,4,2,L
|
684
|
+
5,5,4,3,L
|
685
|
+
5,5,4,4,L
|
686
|
+
5,5,4,5,L
|
687
|
+
5,5,5,1,L
|
688
|
+
5,5,5,2,L
|
689
|
+
5,5,5,3,L
|
690
|
+
5,5,5,4,L
|
691
|
+
5,5,5,5,B
|
692
|
+
%
|
693
|
+
%
|
694
|
+
%
|