random_value_sampler 0.1.2 → 0.1.3
Sign up to get free protection for your applications and to get access to all the features.
- data/.gitignore +17 -0
- data/Gemfile +4 -0
- data/LICENSE +22 -0
- data/README.md +100 -0
- data/Rakefile +7 -0
- data/lib/random_value_sampler/version.rb +3 -0
- data/lib/random_value_sampler.rb +4 -3
- data/random_value_sampler.gemspec +18 -0
- data/test/.svn/entries +62 -0
- data/test/.svn/text-base/random_value_sampler_test.rb.svn-base +890 -0
- data/test/random_value_sampler_test.rb +2 -5
- metadata +52 -38
- data/README +0 -79
@@ -0,0 +1,890 @@
|
|
1
|
+
require 'set'
|
2
|
+
require 'test/unit'
|
3
|
+
|
4
|
+
require 'random_value_sampler'
|
5
|
+
|
6
|
+
#
|
7
|
+
# rough outline of this file:
|
8
|
+
# * test cases: these just call helper methods to run tests on all of the
|
9
|
+
# data cases created below in the setup() method
|
10
|
+
# - error inputs
|
11
|
+
# - verifying distribution validity
|
12
|
+
# * helper methods: mostly verify_xxx() methods that are called by the
|
13
|
+
# test cases to compute test results (this is the code
|
14
|
+
# most important to review)
|
15
|
+
# * setup() method: the method called before each test case is run...to
|
16
|
+
# generate data for testing
|
17
|
+
#-------------------------------------------------------------------------------
|
18
|
+
#
|
19
|
+
# rough outline of tests:
|
20
|
+
#
|
21
|
+
# error inputs (invalid distribution specifications, invalid sample requests)
|
22
|
+
# for each valid input case, run the following tests:
|
23
|
+
# for EACH valid input case:
|
24
|
+
# confirm # values
|
25
|
+
# confirm the array of values returned meet specification
|
26
|
+
# confirm probability_of
|
27
|
+
# uniform:
|
28
|
+
# each value in set/array/range has the same value
|
29
|
+
# (and they sum to 1 or within v. small tolerance)
|
30
|
+
# non-uniform:
|
31
|
+
# each value matches that in the original specification
|
32
|
+
# values (just) outside values have probability zero
|
33
|
+
#-----------------------------------------------------------------------------
|
34
|
+
class RandomValueSamplerTest < Test::Unit::TestCase
|
35
|
+
|
36
|
+
###############
|
37
|
+
# ERROR INPUTS
|
38
|
+
###############
|
39
|
+
|
40
|
+
def test_uniform_error_inputs
|
41
|
+
# this line just makes sure that we're running the test on each data
|
42
|
+
# case we create in the setup() method. the idea is that if someone adds
|
43
|
+
# a new @uniform_xxxxxx case, then they'd add it to the
|
44
|
+
# @uniform_error_inputs array, and this assertion would fail...reminding
|
45
|
+
# them to add an assert_raises call here for the new data case. (this
|
46
|
+
# pattern is repeated throughout the test cases in this file)
|
47
|
+
assert_equal(@uniform_error_inputs.length, 4)
|
48
|
+
|
49
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform @uniform_set_error_empty }
|
50
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform @uniform_array_error_empty }
|
51
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform @uniform_range_error_empty }
|
52
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform @uniform_single_error_negative }
|
53
|
+
end
|
54
|
+
|
55
|
+
def test_non_uniform_error_inputs
|
56
|
+
assert_equal(@nonuniform_error_inputs.length, 6)
|
57
|
+
|
58
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_hash_error_empty }
|
59
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_hash_error_negative }
|
60
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_hash_error_all_zeros }
|
61
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_error_empty }
|
62
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_error_negative }
|
63
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_error_all_zeros }
|
64
|
+
end
|
65
|
+
|
66
|
+
def test_uniform_exception_on_too_many_sample_unique
|
67
|
+
# singleton set
|
68
|
+
assert_raises(RuntimeError) do
|
69
|
+
rsampler = RandomValueSampler.new_uniform @uniform_set_single_string
|
70
|
+
rsampler.sample_unique 2
|
71
|
+
end
|
72
|
+
|
73
|
+
# singleton array
|
74
|
+
assert_raises(RuntimeError) do
|
75
|
+
rsampler = RandomValueSampler.new_uniform @uniform_array_single_numeric
|
76
|
+
rsampler.sample_unique(@uniform_array_single_numeric.length + 1)
|
77
|
+
end
|
78
|
+
|
79
|
+
# singleton Range
|
80
|
+
assert_raises(RuntimeError) do
|
81
|
+
rsampler = RandomValueSampler.new_uniform @uniform_range_single_exclusive
|
82
|
+
rsampler.sample_unique(@uniform_range_single_exclusive.to_a.length + 1)
|
83
|
+
end
|
84
|
+
|
85
|
+
# singleton value
|
86
|
+
assert_raises(RuntimeError) do
|
87
|
+
rsampler = RandomValueSampler.new_uniform @uniform_single_zero
|
88
|
+
rsampler.sample_unique 2
|
89
|
+
end
|
90
|
+
|
91
|
+
# size N set
|
92
|
+
assert_raises(RuntimeError) do
|
93
|
+
rsampler = RandomValueSampler.new_uniform @uniform_set_10_string
|
94
|
+
rsampler.sample_unique(@uniform_set_10_string.length + 1)
|
95
|
+
end
|
96
|
+
|
97
|
+
# size N array
|
98
|
+
assert_raises(RuntimeError) do
|
99
|
+
rsampler = RandomValueSampler.new_uniform @uniform_array_10_numeric
|
100
|
+
rsampler.sample_unique(@uniform_array_10_numeric.length + 1)
|
101
|
+
end
|
102
|
+
|
103
|
+
# size N Range inclusive
|
104
|
+
assert_raises(RuntimeError) do
|
105
|
+
rsampler = RandomValueSampler.new_uniform @uniform_range_10_inclusive
|
106
|
+
rsampler.sample_unique(@uniform_range_10_inclusive.to_a.length + 1)
|
107
|
+
end
|
108
|
+
|
109
|
+
# size N Range exclusive
|
110
|
+
assert_raises(RuntimeError) do
|
111
|
+
rsampler = RandomValueSampler.new_uniform @uniform_range_10_exclusive
|
112
|
+
rsampler.sample_unique(@uniform_range_10_exclusive.to_a.length + 1)
|
113
|
+
end
|
114
|
+
|
115
|
+
# scalar defining Range size N
|
116
|
+
assert_raises(RuntimeError) do
|
117
|
+
rsampler = RandomValueSampler.new_uniform @uniform_single_nonzero
|
118
|
+
rsampler.sample_unique(@uniform_single_nonzero + 2)
|
119
|
+
end
|
120
|
+
end
|
121
|
+
|
122
|
+
def test_non_uniform_exception_on_too_many_sample_unique
|
123
|
+
assert_raises(RuntimeError) do
|
124
|
+
rsampler = RandomValueSampler.new_non_uniform @nonuniform_hash_single_string
|
125
|
+
rsampler.sample_unique 2
|
126
|
+
end
|
127
|
+
assert_raises(RuntimeError) do
|
128
|
+
rsampler = RandomValueSampler.new_non_uniform @nonuniform_hash_10_sum_to_1
|
129
|
+
rsampler.sample_unique(@nonuniform_hash_10_sum_to_1.length + 1)
|
130
|
+
end
|
131
|
+
assert_raises(RuntimeError) do
|
132
|
+
rsampler = RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_single_string
|
133
|
+
rsampler.sample_unique 2
|
134
|
+
end
|
135
|
+
assert_raises(RuntimeError) do
|
136
|
+
rsampler = RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_10_sum_to_1
|
137
|
+
rsampler.sample_unique(@nonuniform_arrayoftuples_10_sum_gt_1.length + 1)
|
138
|
+
end
|
139
|
+
end
|
140
|
+
|
141
|
+
def test_negative_num_samples
|
142
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform([1,2,3,4]).sample(-1) }
|
143
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform([1,2,3,4]).sample_unique(-1) }
|
144
|
+
end
|
145
|
+
|
146
|
+
###################################################
|
147
|
+
# VERIFYING VALIDITY, CONSISTENCY OF DISTRIBUTIONS
|
148
|
+
###################################################
|
149
|
+
|
150
|
+
def test_uniform_probability_of
|
151
|
+
assert_equal(@uniform_sets.length, 3)
|
152
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
153
|
+
@uniform_set_single_string)
|
154
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
155
|
+
@uniform_set_10_string)
|
156
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
157
|
+
@uniform_set_10_numeric)
|
158
|
+
|
159
|
+
assert_equal(@uniform_arrays.length, 3)
|
160
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
161
|
+
@uniform_array_single_numeric)
|
162
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
163
|
+
@uniform_array_10_string)
|
164
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
165
|
+
@uniform_array_10_numeric)
|
166
|
+
|
167
|
+
assert_equal(@uniform_ranges.length, 4)
|
168
|
+
|
169
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
170
|
+
@uniform_range_single_exclusive)
|
171
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
172
|
+
@uniform_range_single_inclusive)
|
173
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
174
|
+
@uniform_range_10_exclusive)
|
175
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
176
|
+
@uniform_range_10_inclusive)
|
177
|
+
|
178
|
+
assert_equal(@uniform_singles.length, 2)
|
179
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_single_zero),
|
180
|
+
@uniform_single_zero)
|
181
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_single_nonzero),
|
182
|
+
@uniform_single_nonzero)
|
183
|
+
end
|
184
|
+
|
185
|
+
def test_non_uniform_probability_of
|
186
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
187
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
188
|
+
@nonuniform_hash_single_string)
|
189
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1),
|
190
|
+
@nonuniform_hash_10_sum_to_1)
|
191
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1),
|
192
|
+
@nonuniform_hash_10_sum_gt_1)
|
193
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1),
|
194
|
+
@nonuniform_hash_10_sum_lt_1)
|
195
|
+
|
196
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
197
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
198
|
+
@nonuniform_arrayoftuples_single_string)
|
199
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1),
|
200
|
+
@nonuniform_arrayoftuples_10_sum_to_1)
|
201
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1),
|
202
|
+
@nonuniform_arrayoftuples_10_sum_gt_1)
|
203
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1),
|
204
|
+
@nonuniform_arrayoftuples_10_sum_lt_1)
|
205
|
+
end
|
206
|
+
|
207
|
+
def test_uniform_valid_distributions
|
208
|
+
assert_equal(@uniform_sets.length, 3)
|
209
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_set_single_string))
|
210
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_set_10_string))
|
211
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_set_10_numeric))
|
212
|
+
|
213
|
+
|
214
|
+
assert_equal(@uniform_arrays.length, 3)
|
215
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_array_single_numeric))
|
216
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_array_10_string))
|
217
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_array_10_numeric))
|
218
|
+
|
219
|
+
|
220
|
+
assert_equal(@uniform_ranges.length, 4)
|
221
|
+
|
222
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_range_single_exclusive))
|
223
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_range_single_inclusive))
|
224
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_range_10_exclusive))
|
225
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_range_10_inclusive))
|
226
|
+
|
227
|
+
|
228
|
+
assert_equal(@uniform_singles.length, 2)
|
229
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_single_zero))
|
230
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_single_nonzero))
|
231
|
+
end
|
232
|
+
|
233
|
+
def test_non_uniform_valid_distributions
|
234
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
235
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string))
|
236
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1))
|
237
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1))
|
238
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1))
|
239
|
+
|
240
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
241
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string))
|
242
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1))
|
243
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1))
|
244
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1))
|
245
|
+
end
|
246
|
+
|
247
|
+
def test_uniform_values_match
|
248
|
+
assert_equal(@uniform_sets.length, 3)
|
249
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
250
|
+
@uniform_set_single_string)
|
251
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
252
|
+
@uniform_set_10_string)
|
253
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
254
|
+
@uniform_set_10_numeric)
|
255
|
+
|
256
|
+
assert_equal(@uniform_arrays.length, 3)
|
257
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
258
|
+
@uniform_array_single_numeric)
|
259
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
260
|
+
@uniform_array_10_string)
|
261
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
262
|
+
@uniform_array_10_numeric)
|
263
|
+
|
264
|
+
assert_equal(@uniform_ranges.length, 4)
|
265
|
+
|
266
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
267
|
+
@uniform_range_single_exclusive)
|
268
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
269
|
+
@uniform_range_single_inclusive)
|
270
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
271
|
+
@uniform_range_10_exclusive)
|
272
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
273
|
+
@uniform_range_10_inclusive)
|
274
|
+
|
275
|
+
assert_equal(@uniform_singles.length, 2)
|
276
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_single_zero),
|
277
|
+
@uniform_single_zero)
|
278
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_single_nonzero),
|
279
|
+
@uniform_single_nonzero)
|
280
|
+
end
|
281
|
+
|
282
|
+
def test_non_uniform_values_match
|
283
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
284
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
285
|
+
@nonuniform_hash_single_string)
|
286
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1),
|
287
|
+
@nonuniform_hash_10_sum_to_1)
|
288
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1),
|
289
|
+
@nonuniform_hash_10_sum_gt_1)
|
290
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1),
|
291
|
+
@nonuniform_hash_10_sum_lt_1)
|
292
|
+
|
293
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
294
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
295
|
+
@nonuniform_arrayoftuples_single_string)
|
296
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1),
|
297
|
+
@nonuniform_arrayoftuples_10_sum_to_1)
|
298
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1),
|
299
|
+
@nonuniform_arrayoftuples_10_sum_gt_1)
|
300
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1),
|
301
|
+
@nonuniform_arrayoftuples_10_sum_lt_1)
|
302
|
+
end
|
303
|
+
|
304
|
+
def test_uniform_num_values
|
305
|
+
assert_equal(@uniform_sets.length, 3)
|
306
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_set_single_string))
|
307
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_set_10_string))
|
308
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_set_10_numeric))
|
309
|
+
|
310
|
+
|
311
|
+
assert_equal(@uniform_arrays.length, 3)
|
312
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_array_single_numeric))
|
313
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_array_10_string))
|
314
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_array_10_numeric))
|
315
|
+
|
316
|
+
|
317
|
+
assert_equal(@uniform_ranges.length, 4)
|
318
|
+
|
319
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_range_single_exclusive))
|
320
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_range_single_inclusive))
|
321
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_range_10_exclusive))
|
322
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_range_10_inclusive))
|
323
|
+
|
324
|
+
|
325
|
+
assert_equal(@uniform_singles.length, 2)
|
326
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_single_zero))
|
327
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_single_nonzero))
|
328
|
+
end
|
329
|
+
|
330
|
+
def test_non_uniform_num_values
|
331
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
332
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string))
|
333
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1))
|
334
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1))
|
335
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1))
|
336
|
+
|
337
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
338
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string))
|
339
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1))
|
340
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1))
|
341
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1))
|
342
|
+
end
|
343
|
+
|
344
|
+
# sample a bunch of times and make sure that all of the values that come back
|
345
|
+
# are in the set of valid raw values
|
346
|
+
#-----------------------------------------------------------------------------
|
347
|
+
def test_uniform_sample_values_are_valid
|
348
|
+
assert_equal(@uniform_sets.length, 3)
|
349
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
350
|
+
@uniform_set_single_string)
|
351
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
352
|
+
@uniform_set_10_string)
|
353
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
354
|
+
@uniform_set_10_numeric)
|
355
|
+
|
356
|
+
assert_equal(@uniform_arrays.length, 3)
|
357
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
358
|
+
@uniform_array_single_numeric)
|
359
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
360
|
+
@uniform_array_10_string)
|
361
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
362
|
+
@uniform_array_10_numeric)
|
363
|
+
|
364
|
+
assert_equal(@uniform_ranges.length, 4)
|
365
|
+
|
366
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
367
|
+
@uniform_range_single_exclusive)
|
368
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
369
|
+
@uniform_range_single_inclusive)
|
370
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
371
|
+
@uniform_range_10_exclusive)
|
372
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
373
|
+
@uniform_range_10_inclusive)
|
374
|
+
|
375
|
+
assert_equal(@uniform_singles.length, 2)
|
376
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_single_zero),
|
377
|
+
@uniform_single_zero)
|
378
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_single_nonzero),
|
379
|
+
@uniform_single_nonzero)
|
380
|
+
end
|
381
|
+
|
382
|
+
def test_non_uniform_sample_values_are_valid
|
383
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
384
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
385
|
+
@nonuniform_hash_single_string)
|
386
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1),
|
387
|
+
@nonuniform_hash_10_sum_to_1)
|
388
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1),
|
389
|
+
@nonuniform_hash_10_sum_gt_1)
|
390
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1),
|
391
|
+
@nonuniform_hash_10_sum_lt_1)
|
392
|
+
|
393
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
394
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
395
|
+
@nonuniform_arrayoftuples_single_string)
|
396
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1),
|
397
|
+
@nonuniform_arrayoftuples_10_sum_to_1)
|
398
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1),
|
399
|
+
@nonuniform_arrayoftuples_10_sum_gt_1)
|
400
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1),
|
401
|
+
@nonuniform_arrayoftuples_10_sum_lt_1)
|
402
|
+
end
|
403
|
+
|
404
|
+
def test_uniform_sample_values_are_valid
|
405
|
+
assert_equal(@uniform_sets.length, 3)
|
406
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
407
|
+
@uniform_set_single_string)
|
408
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
409
|
+
@uniform_set_10_string)
|
410
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
411
|
+
@uniform_set_10_numeric)
|
412
|
+
|
413
|
+
assert_equal(@uniform_arrays.length, 3)
|
414
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
415
|
+
@uniform_array_single_numeric)
|
416
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
417
|
+
@uniform_array_10_string)
|
418
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
419
|
+
@uniform_array_10_numeric)
|
420
|
+
|
421
|
+
assert_equal(@uniform_ranges.length, 4)
|
422
|
+
|
423
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
424
|
+
@uniform_range_single_exclusive)
|
425
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
426
|
+
@uniform_range_single_inclusive)
|
427
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
428
|
+
@uniform_range_10_exclusive)
|
429
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
430
|
+
@uniform_range_10_inclusive)
|
431
|
+
|
432
|
+
assert_equal(@uniform_singles.length, 2)
|
433
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_single_zero),
|
434
|
+
@uniform_single_zero)
|
435
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_single_nonzero),
|
436
|
+
@uniform_single_nonzero)
|
437
|
+
end
|
438
|
+
|
439
|
+
def test_non_uniform_sample_values_are_valid
|
440
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
441
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
442
|
+
@nonuniform_hash_single_string)
|
443
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1),
|
444
|
+
@nonuniform_hash_10_sum_to_1)
|
445
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1),
|
446
|
+
@nonuniform_hash_10_sum_gt_1)
|
447
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1),
|
448
|
+
@nonuniform_hash_10_sum_lt_1)
|
449
|
+
|
450
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
451
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
452
|
+
@nonuniform_arrayoftuples_single_string)
|
453
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1),
|
454
|
+
@nonuniform_arrayoftuples_10_sum_to_1)
|
455
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1),
|
456
|
+
@nonuniform_arrayoftuples_10_sum_gt_1)
|
457
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1),
|
458
|
+
@nonuniform_arrayoftuples_10_sum_lt_1)
|
459
|
+
end
|
460
|
+
|
461
|
+
####################
|
462
|
+
# SAMPLING ACCURACY
|
463
|
+
####################
|
464
|
+
|
465
|
+
def test_uniform_sampling_accuracy
|
466
|
+
assert_equal(@uniform_sets.length, 3)
|
467
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
468
|
+
@uniform_set_single_string)
|
469
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
470
|
+
@uniform_set_10_string)
|
471
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
472
|
+
@uniform_set_10_numeric)
|
473
|
+
|
474
|
+
assert_equal(@uniform_arrays.length, 3)
|
475
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
476
|
+
@uniform_array_single_numeric)
|
477
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
478
|
+
@uniform_array_10_string)
|
479
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
480
|
+
@uniform_array_10_numeric)
|
481
|
+
|
482
|
+
assert_equal(@uniform_ranges.length, 4)
|
483
|
+
|
484
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
485
|
+
@uniform_range_single_exclusive)
|
486
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
487
|
+
@uniform_range_single_inclusive)
|
488
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
489
|
+
@uniform_range_10_exclusive)
|
490
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
491
|
+
@uniform_range_10_inclusive)
|
492
|
+
|
493
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_single_zero),
|
494
|
+
@uniform_single_zero)
|
495
|
+
# avoiding low probability of single_nonzero...
|
496
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(9), 9)
|
497
|
+
|
498
|
+
end
|
499
|
+
|
500
|
+
# avoid super low probabilities cause they can easily cause "errors" when
|
501
|
+
# assessing distribution accuracy
|
502
|
+
def test_non_uniform_sampling_accuracy
|
503
|
+
verify_distribution_accuracy(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
504
|
+
@nonuniform_hash_single_string)
|
505
|
+
verify_distribution_accuracy(RandomValueSampler.new_non_uniform( { "one" => 1, "two" => 2, "three" => 3 } ),
|
506
|
+
{ "one" => 1, "two" => 2, "three" => 3 } )
|
507
|
+
|
508
|
+
verify_distribution_accuracy(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
509
|
+
@nonuniform_arrayoftuples_single_string)
|
510
|
+
verify_distribution_accuracy(RandomValueSampler.new_non_uniform( [["heavy", 90], ["light", 10]]),
|
511
|
+
[["heavy", 90], ["light", 10]])
|
512
|
+
end
|
513
|
+
|
514
|
+
#################
|
515
|
+
# HELPER METHODS
|
516
|
+
#################
|
517
|
+
|
518
|
+
# verifies that probability_of returns correct results for values in and out
|
519
|
+
# of pmf values set (should return 0 if outside set)
|
520
|
+
#-----------------------------------------------------------------------------
|
521
|
+
def verify_probability_of(rsampler, values)
|
522
|
+
vals_and_probs = extract_hash_of_vals_and_probs(values)
|
523
|
+
|
524
|
+
vals_and_probs.each_pair do |val, prob|
|
525
|
+
assert_in_delta(prob, rsampler.probability_of(val), 2e-4)
|
526
|
+
end
|
527
|
+
end
|
528
|
+
|
529
|
+
# verify that a distribution is represented (sum of probability mass is
|
530
|
+
# (very, very, very, very close to) 1
|
531
|
+
#-----------------------------------------------------------------------------
|
532
|
+
def verify_distribution(rsampler)
|
533
|
+
total_mass = 0
|
534
|
+
rsampler.all_values.each do |val|
|
535
|
+
total_mass += rsampler.probability_of(val)
|
536
|
+
end
|
537
|
+
|
538
|
+
assert_in_delta(1.0, total_mass, 2e-4)
|
539
|
+
end
|
540
|
+
|
541
|
+
# verifies the list of values returned by rsampler are in the values passed
|
542
|
+
# in as raw values
|
543
|
+
#-----------------------------------------------------------------------------
|
544
|
+
def verify_values(rsampler, values)
|
545
|
+
raw_val_set = Set.new(extract_array_of_values(values))
|
546
|
+
rsampler_val_set = Set.new(rsampler.all_values)
|
547
|
+
|
548
|
+
assert_equal(raw_val_set, rsampler_val_set)
|
549
|
+
end
|
550
|
+
|
551
|
+
# verifies the number of values indicated by rsampler. kinda dumb, just checks
|
552
|
+
# that it matches the length of the array returned by values (might catch
|
553
|
+
# some errors when using Ranges, for example)
|
554
|
+
#-----------------------------------------------------------------------------
|
555
|
+
def verify_num_values(rsampler)
|
556
|
+
assert_equal(rsampler.all_values.length, rsampler.num_values)
|
557
|
+
end
|
558
|
+
|
559
|
+
# verify after many iterations that all values returned by sampling are
|
560
|
+
# valid values for the rsampler. covers single and multiple samples.
|
561
|
+
#-----------------------------------------------------------------------------
|
562
|
+
def verify_sample_values_are_valid(rsampler, values)
|
563
|
+
vals_and_probs = extract_hash_of_vals_and_probs(values)
|
564
|
+
vals_and_probs.delete_if { |val, prob| prob == 0 }
|
565
|
+
|
566
|
+
valid_value_set = Set.new(vals_and_probs.keys)
|
567
|
+
|
568
|
+
(1..1000).each do
|
569
|
+
sample = rsampler.sample
|
570
|
+
assert(valid_value_set.include?(sample),
|
571
|
+
"<#{sample}> is not a valid sample in raw values: <#{values}>")
|
572
|
+
end
|
573
|
+
|
574
|
+
(1..1000).each do
|
575
|
+
rsampler.sample(10).each do |s|
|
576
|
+
assert(valid_value_set.include?(s),
|
577
|
+
"<#{s}> is not a valid multi-sample in raw values: <#{values}>")
|
578
|
+
end
|
579
|
+
end
|
580
|
+
end
|
581
|
+
|
582
|
+
# verify after many iterations that all values returned by sampling unique are
|
583
|
+
# valid values for the rsampler. covers single and multiple samples.
|
584
|
+
#-----------------------------------------------------------------------------
|
585
|
+
def verify_sample_unique_values_are_valid(rsampler, values)
|
586
|
+
vals_and_probs = extract_hash_of_vals_and_probs(values)
|
587
|
+
vals_and_probs.delete_if { |val, prob| prob == 0 }
|
588
|
+
|
589
|
+
valid_value_set = Set.new(vals_and_probs.keys)
|
590
|
+
|
591
|
+
num_multi_samples = [valid_value_set.length, 5].min
|
592
|
+
|
593
|
+
(1..1000).each do
|
594
|
+
test_rsampler = Marshal.load(Marshal.dump(rsampler))
|
595
|
+
|
596
|
+
sample = test_rsampler.sample_unique
|
597
|
+
assert(valid_value_set.include?(sample),
|
598
|
+
"<#{sample}> is not a valid sample in raw values: <#{values.inspect}>")
|
599
|
+
end
|
600
|
+
|
601
|
+
(1..1000).each do
|
602
|
+
test_rsampler = Marshal.load(Marshal.dump(rsampler))
|
603
|
+
|
604
|
+
if num_multi_samples > 1
|
605
|
+
test_rsampler.sample_unique(num_multi_samples).each do |s|
|
606
|
+
assert(valid_value_set.include?(s),
|
607
|
+
"<#{s}> is not a valid multi-sample in raw values: <#{values.inspect}>")
|
608
|
+
end
|
609
|
+
else
|
610
|
+
sample = test_rsampler.sample_unique(num_multi_samples)
|
611
|
+
assert(valid_value_set.include?(sample),
|
612
|
+
"<#{sample}> is not a valid multi-sample in raw values: <#{values.inspect}>")
|
613
|
+
end
|
614
|
+
end
|
615
|
+
end
|
616
|
+
|
617
|
+
# helper to convert whatever original data type we had into an array
|
618
|
+
#-----------------------------------------------------------------------------
|
619
|
+
def extract_array_of_values(values)
|
620
|
+
if values.is_a?(Set) || values.is_a?(Range)
|
621
|
+
values = values.to_a
|
622
|
+
elsif values.is_a?(Array)
|
623
|
+
if values.first.is_a?(Array)
|
624
|
+
# don't overwrite object, overwrite reference so that original object remains
|
625
|
+
# intact if needed
|
626
|
+
values = values.map { |val_and_pm| val_and_pm.first }
|
627
|
+
end # otherwise, don't need to do anything; already an array
|
628
|
+
elsif values.is_a?(Hash)
|
629
|
+
values = values.keys
|
630
|
+
else
|
631
|
+
values = (0..values).to_a
|
632
|
+
end
|
633
|
+
|
634
|
+
values
|
635
|
+
end
|
636
|
+
|
637
|
+
# generate a hash of values => probabilities from raw data
|
638
|
+
#-----------------------------------------------------------------------------
|
639
|
+
def extract_hash_of_vals_and_probs(values)
|
640
|
+
vals_and_probs = {}
|
641
|
+
|
642
|
+
# convert the single scalar case to a Range
|
643
|
+
if !values.is_a?(Hash) &&
|
644
|
+
!values.is_a?(Array) &&
|
645
|
+
!values.is_a?(Range) &&
|
646
|
+
!values.is_a?(Set)
|
647
|
+
|
648
|
+
values = 0..values
|
649
|
+
end
|
650
|
+
|
651
|
+
if values.is_a?(Hash)
|
652
|
+
vals_and_probs = values
|
653
|
+
elsif values.is_a?(Array) && values.first.is_a?(Array)
|
654
|
+
vals_and_probs = Hash[*(values.flatten)]
|
655
|
+
elsif values.is_a?(Range)
|
656
|
+
prob = 1.0 / values.to_a.length.to_f
|
657
|
+
values.each { |v| vals_and_probs.merge! v => prob }
|
658
|
+
elsif values.is_a?(Set) || values.is_a?(Array)
|
659
|
+
prob = 1.0 / values.length.to_f
|
660
|
+
values.each { |v| vals_and_probs.merge! v => prob }
|
661
|
+
end
|
662
|
+
|
663
|
+
total_mass = 0
|
664
|
+
vals_and_probs.each_pair { |val, prob| total_mass += prob }
|
665
|
+
vals_and_probs.each_pair do |val, prob|
|
666
|
+
vals_and_probs.merge! val => prob / total_mass.to_f
|
667
|
+
end
|
668
|
+
|
669
|
+
vals_and_probs
|
670
|
+
end
|
671
|
+
|
672
|
+
# sample a bunch from the distribution and compare the result to
|
673
|
+
# the original distribution. try sampling many times and making sure
|
674
|
+
# that the resulting frequencies are accurate within 30% ???
|
675
|
+
# this is VERY approximate, and is really only able to catch
|
676
|
+
# egregious errors...and is a little susceptible to noise on small
|
677
|
+
# probabilities.
|
678
|
+
#
|
679
|
+
# NOTE: this only works if theere are no duplicate values in the
|
680
|
+
# distribution, as this method uses a hash to store counts of samples.
|
681
|
+
#-----------------------------------------------------------------------------
|
682
|
+
def verify_distribution_accuracy(rsampler, values)
|
683
|
+
vals_and_probs = extract_hash_of_vals_and_probs(values)
|
684
|
+
|
685
|
+
val_counts = {}
|
686
|
+
vals_and_probs.keys.each { |val, prob| val_counts.merge! val => 0 }
|
687
|
+
|
688
|
+
# sample a bunch and count frequency of each value
|
689
|
+
num_samples = 50000
|
690
|
+
rsampler.sample(num_samples).each { |v| val_counts[v] = val_counts[v] + 1 }
|
691
|
+
|
692
|
+
# convert counts to probabilities
|
693
|
+
val_counts.each_pair do |val, count|
|
694
|
+
val_counts.merge! val => (count.to_f / num_samples.to_f)
|
695
|
+
end
|
696
|
+
|
697
|
+
vals_and_probs.each_pair do |val, true_prob|
|
698
|
+
assert_in_delta( (true_prob - val_counts[val]) / true_prob,
|
699
|
+
0.0,
|
700
|
+
0.1,
|
701
|
+
"observed sample frequency (<#{val_counts[val]}>) of " +
|
702
|
+
"<#{val}> doesn't appear to match true distribution " +
|
703
|
+
"(prob of <#{true_prob}>. It's possible that this was " +
|
704
|
+
"noise, so try again before assuming something's wrong")
|
705
|
+
end
|
706
|
+
|
707
|
+
end
|
708
|
+
|
709
|
+
# cases to test:
|
710
|
+
# -------------
|
711
|
+
#
|
712
|
+
# uniform
|
713
|
+
# valid inputs
|
714
|
+
# Set
|
715
|
+
# array
|
716
|
+
# Range inclusive
|
717
|
+
# Range exclusive
|
718
|
+
# scalar
|
719
|
+
# edge cases
|
720
|
+
# single value
|
721
|
+
# set
|
722
|
+
# array
|
723
|
+
# 1..1
|
724
|
+
# 1...2
|
725
|
+
# 0 (converted to 0..0)
|
726
|
+
# invalid inputs
|
727
|
+
# empty set
|
728
|
+
# empty array
|
729
|
+
# nil
|
730
|
+
# string
|
731
|
+
# NOTE: though it should work fine in the class itself, to avoid having to handle
|
732
|
+
# lots of cases in the test code, we're not using arrays as the possible values
|
733
|
+
# in the distribution (makes it hard to distinguish between the array of tuples
|
734
|
+
# (non-uniform) and the array of values (uniform) cases.
|
735
|
+
#
|
736
|
+
# non-uniform
|
737
|
+
# valid inputs
|
738
|
+
# hash
|
739
|
+
# array of arrays
|
740
|
+
# edge case
|
741
|
+
# 1 entry
|
742
|
+
# for EACH case above:
|
743
|
+
#
|
744
|
+
# invalid inputs
|
745
|
+
# empty hash
|
746
|
+
# empty array
|
747
|
+
# array of scalars
|
748
|
+
# negative frequency count
|
749
|
+
# hash
|
750
|
+
# array
|
751
|
+
# non-empty but all counts == 0
|
752
|
+
# hash
|
753
|
+
# array
|
754
|
+
|
755
|
+
# create a set of test data to play with for each test
|
756
|
+
#
|
757
|
+
# naming conventions:
|
758
|
+
# <pmftype>_<datatype>_<case>
|
759
|
+
#
|
760
|
+
# where:
|
761
|
+
# pmftype is "uniform" or "nonuniform"
|
762
|
+
# datatype is "set", "array", "range", "scalar", "arrayoftuples", or "hash"
|
763
|
+
#
|
764
|
+
# where: case is one of the following:
|
765
|
+
# error_<condition>
|
766
|
+
# single_<type>
|
767
|
+
# 10_<type>
|
768
|
+
#
|
769
|
+
# where:
|
770
|
+
# condition is a description of the error case (e.g. "empty", "allzero"...)
|
771
|
+
# type is "numeric", "string" or "mixed"
|
772
|
+
#-----------------------------------------------------------------------------
|
773
|
+
def setup
|
774
|
+
##########
|
775
|
+
# UNIFORM
|
776
|
+
##########
|
777
|
+
array_of_ten_string = ['a','b','c','d','e','f','g','h','i','j']
|
778
|
+
|
779
|
+
# valid inputs
|
780
|
+
|
781
|
+
@uniform_set_single_string = Set.new("one")
|
782
|
+
@uniform_set_10_string = Set.new(array_of_ten_string)
|
783
|
+
@uniform_set_10_numeric = Set.new(3..12)
|
784
|
+
|
785
|
+
@uniform_array_single_numeric = [22]
|
786
|
+
@uniform_array_10_string = array_of_ten_string
|
787
|
+
@uniform_array_10_numeric = (101...111).to_a
|
788
|
+
|
789
|
+
@uniform_range_single_exclusive = 1...2
|
790
|
+
@uniform_range_single_inclusive = 2..2
|
791
|
+
@uniform_range_10_exclusive = 1...11
|
792
|
+
@uniform_range_10_inclusive = -2..7
|
793
|
+
|
794
|
+
@uniform_single_zero = 0
|
795
|
+
@uniform_single_nonzero = 22
|
796
|
+
|
797
|
+
@uniform_sets = [
|
798
|
+
@uniform_set_single_string,
|
799
|
+
@uniform_set_10_string,
|
800
|
+
@uniform_set_10_numeric
|
801
|
+
]
|
802
|
+
@uniform_arrays = [
|
803
|
+
@uniform_array_single_numeric,
|
804
|
+
@uniform_array_10_string,
|
805
|
+
@uniform_array_10_numeric
|
806
|
+
]
|
807
|
+
@uniform_ranges = [
|
808
|
+
@uniform_range_single_exclusive,
|
809
|
+
@uniform_range_single_inclusive,
|
810
|
+
@uniform_range_10_exclusive,
|
811
|
+
@uniform_range_10_inclusive
|
812
|
+
]
|
813
|
+
@uniform_singles = [
|
814
|
+
@uniform_single_zero,
|
815
|
+
@uniform_single_nonzero
|
816
|
+
]
|
817
|
+
|
818
|
+
# error inputs
|
819
|
+
|
820
|
+
@uniform_set_error_empty = Set.new
|
821
|
+
@uniform_array_error_empty = []
|
822
|
+
@uniform_range_error_empty = 0..-1
|
823
|
+
@uniform_single_error_negative = -1
|
824
|
+
|
825
|
+
@uniform_error_inputs = [
|
826
|
+
@uniform_set_error_empty,
|
827
|
+
@uniform_array_error_empty,
|
828
|
+
@uniform_range_error_empty,
|
829
|
+
@uniform_single_error_negative
|
830
|
+
]
|
831
|
+
|
832
|
+
##############
|
833
|
+
# NON-UNIFORM
|
834
|
+
##############
|
835
|
+
|
836
|
+
hash_10_sum_to_1 = {}
|
837
|
+
(-9..-1).each { |exp| hash_10_sum_to_1.merge! exp => 2**exp }
|
838
|
+
hash_10_sum_to_1.merge! "the end" => 2**-9
|
839
|
+
|
840
|
+
hash_10_sum_gt_1 = hash_10_sum_to_1.clone
|
841
|
+
hash_10_sum_gt_1.each_pair { |k,v| hash_10_sum_gt_1[k] = v*10 }
|
842
|
+
|
843
|
+
hash_10_sum_lt_1 = hash_10_sum_to_1.clone
|
844
|
+
hash_10_sum_lt_1.each_pair { |k,v| hash_10_sum_gt_1[k] = v/10 }
|
845
|
+
|
846
|
+
@nonuniform_hash_single_string = { "one_and_only" => 13 }
|
847
|
+
@nonuniform_hash_10_sum_to_1 = hash_10_sum_to_1
|
848
|
+
@nonuniform_hash_10_sum_gt_1 = hash_10_sum_gt_1
|
849
|
+
@nonuniform_hash_10_sum_lt_1 = hash_10_sum_lt_1
|
850
|
+
|
851
|
+
@nonuniform_arrayoftuples_single_string = { "one_and_only" => 13 }.to_a
|
852
|
+
@nonuniform_arrayoftuples_10_sum_to_1 = hash_10_sum_to_1.to_a
|
853
|
+
@nonuniform_arrayoftuples_10_sum_gt_1 = hash_10_sum_gt_1.to_a
|
854
|
+
@nonuniform_arrayoftuples_10_sum_lt_1 = hash_10_sum_lt_1.to_a
|
855
|
+
|
856
|
+
@nonuniform_hashes = [
|
857
|
+
@nonuniform_hash_single_string,
|
858
|
+
@nonuniform_hash_10_sum_to_1,
|
859
|
+
@nonuniform_hash_10_sum_gt_1,
|
860
|
+
@nonuniform_hash_10_sum_lt_1
|
861
|
+
]
|
862
|
+
|
863
|
+
@nonuniform_arrayoftuples = [
|
864
|
+
@nonuniform_arrayoftuples_single_string,
|
865
|
+
@nonuniform_arrayoftuples_10_sum_to_1,
|
866
|
+
@nonuniform_arrayoftuples_10_sum_gt_1,
|
867
|
+
@nonuniform_arrayoftuples_10_sum_lt_1
|
868
|
+
]
|
869
|
+
|
870
|
+
# error inputs
|
871
|
+
|
872
|
+
@nonuniform_hash_error_empty = {}
|
873
|
+
@nonuniform_hash_error_negative = { "negative" => -1 }
|
874
|
+
@nonuniform_hash_error_all_zeros = { :one => 0, :two => 0, :three => 0 }
|
875
|
+
|
876
|
+
@nonuniform_arrayoftuples_error_empty = {}.to_a
|
877
|
+
@nonuniform_arrayoftuples_error_negative = { "negative" => -1 }.to_a
|
878
|
+
@nonuniform_arrayoftuples_error_all_zeros = { :one => 0, :two => 0, :three => 0 }.to_a
|
879
|
+
|
880
|
+
@nonuniform_error_inputs = [
|
881
|
+
@nonuniform_hash_error_empty,
|
882
|
+
@nonuniform_hash_error_negative,
|
883
|
+
@nonuniform_hash_error_all_zeros,
|
884
|
+
@nonuniform_arrayoftuples_error_empty,
|
885
|
+
@nonuniform_arrayoftuples_error_negative,
|
886
|
+
@nonuniform_arrayoftuples_error_all_zeros
|
887
|
+
]
|
888
|
+
end
|
889
|
+
|
890
|
+
end
|