random_value_sampler 0.1.2 → 0.1.3
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- data/.gitignore +17 -0
- data/Gemfile +4 -0
- data/LICENSE +22 -0
- data/README.md +100 -0
- data/Rakefile +7 -0
- data/lib/random_value_sampler/version.rb +3 -0
- data/lib/random_value_sampler.rb +4 -3
- data/random_value_sampler.gemspec +18 -0
- data/test/.svn/entries +62 -0
- data/test/.svn/text-base/random_value_sampler_test.rb.svn-base +890 -0
- data/test/random_value_sampler_test.rb +2 -5
- metadata +52 -38
- data/README +0 -79
@@ -0,0 +1,890 @@
|
|
1
|
+
require 'set'
|
2
|
+
require 'test/unit'
|
3
|
+
|
4
|
+
require 'random_value_sampler'
|
5
|
+
|
6
|
+
#
|
7
|
+
# rough outline of this file:
|
8
|
+
# * test cases: these just call helper methods to run tests on all of the
|
9
|
+
# data cases created below in the setup() method
|
10
|
+
# - error inputs
|
11
|
+
# - verifying distribution validity
|
12
|
+
# * helper methods: mostly verify_xxx() methods that are called by the
|
13
|
+
# test cases to compute test results (this is the code
|
14
|
+
# most important to review)
|
15
|
+
# * setup() method: the method called before each test case is run...to
|
16
|
+
# generate data for testing
|
17
|
+
#-------------------------------------------------------------------------------
|
18
|
+
#
|
19
|
+
# rough outline of tests:
|
20
|
+
#
|
21
|
+
# error inputs (invalid distribution specifications, invalid sample requests)
|
22
|
+
# for each valid input case, run the following tests:
|
23
|
+
# for EACH valid input case:
|
24
|
+
# confirm # values
|
25
|
+
# confirm the array of values returned meet specification
|
26
|
+
# confirm probability_of
|
27
|
+
# uniform:
|
28
|
+
# each value in set/array/range has the same value
|
29
|
+
# (and they sum to 1 or within v. small tolerance)
|
30
|
+
# non-uniform:
|
31
|
+
# each value matches that in the original specification
|
32
|
+
# values (just) outside values have probability zero
|
33
|
+
#-----------------------------------------------------------------------------
|
34
|
+
class RandomValueSamplerTest < Test::Unit::TestCase
|
35
|
+
|
36
|
+
###############
|
37
|
+
# ERROR INPUTS
|
38
|
+
###############
|
39
|
+
|
40
|
+
def test_uniform_error_inputs
|
41
|
+
# this line just makes sure that we're running the test on each data
|
42
|
+
# case we create in the setup() method. the idea is that if someone adds
|
43
|
+
# a new @uniform_xxxxxx case, then they'd add it to the
|
44
|
+
# @uniform_error_inputs array, and this assertion would fail...reminding
|
45
|
+
# them to add an assert_raises call here for the new data case. (this
|
46
|
+
# pattern is repeated throughout the test cases in this file)
|
47
|
+
assert_equal(@uniform_error_inputs.length, 4)
|
48
|
+
|
49
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform @uniform_set_error_empty }
|
50
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform @uniform_array_error_empty }
|
51
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform @uniform_range_error_empty }
|
52
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform @uniform_single_error_negative }
|
53
|
+
end
|
54
|
+
|
55
|
+
def test_non_uniform_error_inputs
|
56
|
+
assert_equal(@nonuniform_error_inputs.length, 6)
|
57
|
+
|
58
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_hash_error_empty }
|
59
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_hash_error_negative }
|
60
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_hash_error_all_zeros }
|
61
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_error_empty }
|
62
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_error_negative }
|
63
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_error_all_zeros }
|
64
|
+
end
|
65
|
+
|
66
|
+
def test_uniform_exception_on_too_many_sample_unique
|
67
|
+
# singleton set
|
68
|
+
assert_raises(RuntimeError) do
|
69
|
+
rsampler = RandomValueSampler.new_uniform @uniform_set_single_string
|
70
|
+
rsampler.sample_unique 2
|
71
|
+
end
|
72
|
+
|
73
|
+
# singleton array
|
74
|
+
assert_raises(RuntimeError) do
|
75
|
+
rsampler = RandomValueSampler.new_uniform @uniform_array_single_numeric
|
76
|
+
rsampler.sample_unique(@uniform_array_single_numeric.length + 1)
|
77
|
+
end
|
78
|
+
|
79
|
+
# singleton Range
|
80
|
+
assert_raises(RuntimeError) do
|
81
|
+
rsampler = RandomValueSampler.new_uniform @uniform_range_single_exclusive
|
82
|
+
rsampler.sample_unique(@uniform_range_single_exclusive.to_a.length + 1)
|
83
|
+
end
|
84
|
+
|
85
|
+
# singleton value
|
86
|
+
assert_raises(RuntimeError) do
|
87
|
+
rsampler = RandomValueSampler.new_uniform @uniform_single_zero
|
88
|
+
rsampler.sample_unique 2
|
89
|
+
end
|
90
|
+
|
91
|
+
# size N set
|
92
|
+
assert_raises(RuntimeError) do
|
93
|
+
rsampler = RandomValueSampler.new_uniform @uniform_set_10_string
|
94
|
+
rsampler.sample_unique(@uniform_set_10_string.length + 1)
|
95
|
+
end
|
96
|
+
|
97
|
+
# size N array
|
98
|
+
assert_raises(RuntimeError) do
|
99
|
+
rsampler = RandomValueSampler.new_uniform @uniform_array_10_numeric
|
100
|
+
rsampler.sample_unique(@uniform_array_10_numeric.length + 1)
|
101
|
+
end
|
102
|
+
|
103
|
+
# size N Range inclusive
|
104
|
+
assert_raises(RuntimeError) do
|
105
|
+
rsampler = RandomValueSampler.new_uniform @uniform_range_10_inclusive
|
106
|
+
rsampler.sample_unique(@uniform_range_10_inclusive.to_a.length + 1)
|
107
|
+
end
|
108
|
+
|
109
|
+
# size N Range exclusive
|
110
|
+
assert_raises(RuntimeError) do
|
111
|
+
rsampler = RandomValueSampler.new_uniform @uniform_range_10_exclusive
|
112
|
+
rsampler.sample_unique(@uniform_range_10_exclusive.to_a.length + 1)
|
113
|
+
end
|
114
|
+
|
115
|
+
# scalar defining Range size N
|
116
|
+
assert_raises(RuntimeError) do
|
117
|
+
rsampler = RandomValueSampler.new_uniform @uniform_single_nonzero
|
118
|
+
rsampler.sample_unique(@uniform_single_nonzero + 2)
|
119
|
+
end
|
120
|
+
end
|
121
|
+
|
122
|
+
def test_non_uniform_exception_on_too_many_sample_unique
|
123
|
+
assert_raises(RuntimeError) do
|
124
|
+
rsampler = RandomValueSampler.new_non_uniform @nonuniform_hash_single_string
|
125
|
+
rsampler.sample_unique 2
|
126
|
+
end
|
127
|
+
assert_raises(RuntimeError) do
|
128
|
+
rsampler = RandomValueSampler.new_non_uniform @nonuniform_hash_10_sum_to_1
|
129
|
+
rsampler.sample_unique(@nonuniform_hash_10_sum_to_1.length + 1)
|
130
|
+
end
|
131
|
+
assert_raises(RuntimeError) do
|
132
|
+
rsampler = RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_single_string
|
133
|
+
rsampler.sample_unique 2
|
134
|
+
end
|
135
|
+
assert_raises(RuntimeError) do
|
136
|
+
rsampler = RandomValueSampler.new_non_uniform @nonuniform_arrayoftuples_10_sum_to_1
|
137
|
+
rsampler.sample_unique(@nonuniform_arrayoftuples_10_sum_gt_1.length + 1)
|
138
|
+
end
|
139
|
+
end
|
140
|
+
|
141
|
+
def test_negative_num_samples
|
142
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform([1,2,3,4]).sample(-1) }
|
143
|
+
assert_raises(RuntimeError) { RandomValueSampler.new_uniform([1,2,3,4]).sample_unique(-1) }
|
144
|
+
end
|
145
|
+
|
146
|
+
###################################################
|
147
|
+
# VERIFYING VALIDITY, CONSISTENCY OF DISTRIBUTIONS
|
148
|
+
###################################################
|
149
|
+
|
150
|
+
def test_uniform_probability_of
|
151
|
+
assert_equal(@uniform_sets.length, 3)
|
152
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
153
|
+
@uniform_set_single_string)
|
154
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
155
|
+
@uniform_set_10_string)
|
156
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
157
|
+
@uniform_set_10_numeric)
|
158
|
+
|
159
|
+
assert_equal(@uniform_arrays.length, 3)
|
160
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
161
|
+
@uniform_array_single_numeric)
|
162
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
163
|
+
@uniform_array_10_string)
|
164
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
165
|
+
@uniform_array_10_numeric)
|
166
|
+
|
167
|
+
assert_equal(@uniform_ranges.length, 4)
|
168
|
+
|
169
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
170
|
+
@uniform_range_single_exclusive)
|
171
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
172
|
+
@uniform_range_single_inclusive)
|
173
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
174
|
+
@uniform_range_10_exclusive)
|
175
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
176
|
+
@uniform_range_10_inclusive)
|
177
|
+
|
178
|
+
assert_equal(@uniform_singles.length, 2)
|
179
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_single_zero),
|
180
|
+
@uniform_single_zero)
|
181
|
+
verify_probability_of(RandomValueSampler.new_uniform(@uniform_single_nonzero),
|
182
|
+
@uniform_single_nonzero)
|
183
|
+
end
|
184
|
+
|
185
|
+
def test_non_uniform_probability_of
|
186
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
187
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
188
|
+
@nonuniform_hash_single_string)
|
189
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1),
|
190
|
+
@nonuniform_hash_10_sum_to_1)
|
191
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1),
|
192
|
+
@nonuniform_hash_10_sum_gt_1)
|
193
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1),
|
194
|
+
@nonuniform_hash_10_sum_lt_1)
|
195
|
+
|
196
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
197
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
198
|
+
@nonuniform_arrayoftuples_single_string)
|
199
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1),
|
200
|
+
@nonuniform_arrayoftuples_10_sum_to_1)
|
201
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1),
|
202
|
+
@nonuniform_arrayoftuples_10_sum_gt_1)
|
203
|
+
verify_probability_of(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1),
|
204
|
+
@nonuniform_arrayoftuples_10_sum_lt_1)
|
205
|
+
end
|
206
|
+
|
207
|
+
def test_uniform_valid_distributions
|
208
|
+
assert_equal(@uniform_sets.length, 3)
|
209
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_set_single_string))
|
210
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_set_10_string))
|
211
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_set_10_numeric))
|
212
|
+
|
213
|
+
|
214
|
+
assert_equal(@uniform_arrays.length, 3)
|
215
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_array_single_numeric))
|
216
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_array_10_string))
|
217
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_array_10_numeric))
|
218
|
+
|
219
|
+
|
220
|
+
assert_equal(@uniform_ranges.length, 4)
|
221
|
+
|
222
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_range_single_exclusive))
|
223
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_range_single_inclusive))
|
224
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_range_10_exclusive))
|
225
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_range_10_inclusive))
|
226
|
+
|
227
|
+
|
228
|
+
assert_equal(@uniform_singles.length, 2)
|
229
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_single_zero))
|
230
|
+
verify_distribution(RandomValueSampler.new_uniform(@uniform_single_nonzero))
|
231
|
+
end
|
232
|
+
|
233
|
+
def test_non_uniform_valid_distributions
|
234
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
235
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string))
|
236
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1))
|
237
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1))
|
238
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1))
|
239
|
+
|
240
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
241
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string))
|
242
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1))
|
243
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1))
|
244
|
+
verify_distribution(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1))
|
245
|
+
end
|
246
|
+
|
247
|
+
def test_uniform_values_match
|
248
|
+
assert_equal(@uniform_sets.length, 3)
|
249
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
250
|
+
@uniform_set_single_string)
|
251
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
252
|
+
@uniform_set_10_string)
|
253
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
254
|
+
@uniform_set_10_numeric)
|
255
|
+
|
256
|
+
assert_equal(@uniform_arrays.length, 3)
|
257
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
258
|
+
@uniform_array_single_numeric)
|
259
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
260
|
+
@uniform_array_10_string)
|
261
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
262
|
+
@uniform_array_10_numeric)
|
263
|
+
|
264
|
+
assert_equal(@uniform_ranges.length, 4)
|
265
|
+
|
266
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
267
|
+
@uniform_range_single_exclusive)
|
268
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
269
|
+
@uniform_range_single_inclusive)
|
270
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
271
|
+
@uniform_range_10_exclusive)
|
272
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
273
|
+
@uniform_range_10_inclusive)
|
274
|
+
|
275
|
+
assert_equal(@uniform_singles.length, 2)
|
276
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_single_zero),
|
277
|
+
@uniform_single_zero)
|
278
|
+
verify_values(RandomValueSampler.new_uniform(@uniform_single_nonzero),
|
279
|
+
@uniform_single_nonzero)
|
280
|
+
end
|
281
|
+
|
282
|
+
def test_non_uniform_values_match
|
283
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
284
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
285
|
+
@nonuniform_hash_single_string)
|
286
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1),
|
287
|
+
@nonuniform_hash_10_sum_to_1)
|
288
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1),
|
289
|
+
@nonuniform_hash_10_sum_gt_1)
|
290
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1),
|
291
|
+
@nonuniform_hash_10_sum_lt_1)
|
292
|
+
|
293
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
294
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
295
|
+
@nonuniform_arrayoftuples_single_string)
|
296
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1),
|
297
|
+
@nonuniform_arrayoftuples_10_sum_to_1)
|
298
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1),
|
299
|
+
@nonuniform_arrayoftuples_10_sum_gt_1)
|
300
|
+
verify_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1),
|
301
|
+
@nonuniform_arrayoftuples_10_sum_lt_1)
|
302
|
+
end
|
303
|
+
|
304
|
+
def test_uniform_num_values
|
305
|
+
assert_equal(@uniform_sets.length, 3)
|
306
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_set_single_string))
|
307
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_set_10_string))
|
308
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_set_10_numeric))
|
309
|
+
|
310
|
+
|
311
|
+
assert_equal(@uniform_arrays.length, 3)
|
312
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_array_single_numeric))
|
313
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_array_10_string))
|
314
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_array_10_numeric))
|
315
|
+
|
316
|
+
|
317
|
+
assert_equal(@uniform_ranges.length, 4)
|
318
|
+
|
319
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_range_single_exclusive))
|
320
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_range_single_inclusive))
|
321
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_range_10_exclusive))
|
322
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_range_10_inclusive))
|
323
|
+
|
324
|
+
|
325
|
+
assert_equal(@uniform_singles.length, 2)
|
326
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_single_zero))
|
327
|
+
verify_num_values(RandomValueSampler.new_uniform(@uniform_single_nonzero))
|
328
|
+
end
|
329
|
+
|
330
|
+
def test_non_uniform_num_values
|
331
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
332
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string))
|
333
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1))
|
334
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1))
|
335
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1))
|
336
|
+
|
337
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
338
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string))
|
339
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1))
|
340
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1))
|
341
|
+
verify_num_values(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1))
|
342
|
+
end
|
343
|
+
|
344
|
+
# sample a bunch of times and make sure that all of the values that come back
|
345
|
+
# are in the set of valid raw values
|
346
|
+
#-----------------------------------------------------------------------------
|
347
|
+
def test_uniform_sample_values_are_valid
|
348
|
+
assert_equal(@uniform_sets.length, 3)
|
349
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
350
|
+
@uniform_set_single_string)
|
351
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
352
|
+
@uniform_set_10_string)
|
353
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
354
|
+
@uniform_set_10_numeric)
|
355
|
+
|
356
|
+
assert_equal(@uniform_arrays.length, 3)
|
357
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
358
|
+
@uniform_array_single_numeric)
|
359
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
360
|
+
@uniform_array_10_string)
|
361
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
362
|
+
@uniform_array_10_numeric)
|
363
|
+
|
364
|
+
assert_equal(@uniform_ranges.length, 4)
|
365
|
+
|
366
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
367
|
+
@uniform_range_single_exclusive)
|
368
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
369
|
+
@uniform_range_single_inclusive)
|
370
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
371
|
+
@uniform_range_10_exclusive)
|
372
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
373
|
+
@uniform_range_10_inclusive)
|
374
|
+
|
375
|
+
assert_equal(@uniform_singles.length, 2)
|
376
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_single_zero),
|
377
|
+
@uniform_single_zero)
|
378
|
+
verify_sample_values_are_valid(RandomValueSampler.new_uniform(@uniform_single_nonzero),
|
379
|
+
@uniform_single_nonzero)
|
380
|
+
end
|
381
|
+
|
382
|
+
def test_non_uniform_sample_values_are_valid
|
383
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
384
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
385
|
+
@nonuniform_hash_single_string)
|
386
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1),
|
387
|
+
@nonuniform_hash_10_sum_to_1)
|
388
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1),
|
389
|
+
@nonuniform_hash_10_sum_gt_1)
|
390
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1),
|
391
|
+
@nonuniform_hash_10_sum_lt_1)
|
392
|
+
|
393
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
394
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
395
|
+
@nonuniform_arrayoftuples_single_string)
|
396
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1),
|
397
|
+
@nonuniform_arrayoftuples_10_sum_to_1)
|
398
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1),
|
399
|
+
@nonuniform_arrayoftuples_10_sum_gt_1)
|
400
|
+
verify_sample_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1),
|
401
|
+
@nonuniform_arrayoftuples_10_sum_lt_1)
|
402
|
+
end
|
403
|
+
|
404
|
+
def test_uniform_sample_values_are_valid
|
405
|
+
assert_equal(@uniform_sets.length, 3)
|
406
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
407
|
+
@uniform_set_single_string)
|
408
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
409
|
+
@uniform_set_10_string)
|
410
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
411
|
+
@uniform_set_10_numeric)
|
412
|
+
|
413
|
+
assert_equal(@uniform_arrays.length, 3)
|
414
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
415
|
+
@uniform_array_single_numeric)
|
416
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
417
|
+
@uniform_array_10_string)
|
418
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
419
|
+
@uniform_array_10_numeric)
|
420
|
+
|
421
|
+
assert_equal(@uniform_ranges.length, 4)
|
422
|
+
|
423
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
424
|
+
@uniform_range_single_exclusive)
|
425
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
426
|
+
@uniform_range_single_inclusive)
|
427
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
428
|
+
@uniform_range_10_exclusive)
|
429
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
430
|
+
@uniform_range_10_inclusive)
|
431
|
+
|
432
|
+
assert_equal(@uniform_singles.length, 2)
|
433
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_single_zero),
|
434
|
+
@uniform_single_zero)
|
435
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_uniform(@uniform_single_nonzero),
|
436
|
+
@uniform_single_nonzero)
|
437
|
+
end
|
438
|
+
|
439
|
+
def test_non_uniform_sample_values_are_valid
|
440
|
+
assert_equal(@nonuniform_hashes.length, 4)
|
441
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
442
|
+
@nonuniform_hash_single_string)
|
443
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_to_1),
|
444
|
+
@nonuniform_hash_10_sum_to_1)
|
445
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_gt_1),
|
446
|
+
@nonuniform_hash_10_sum_gt_1)
|
447
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_hash_10_sum_lt_1),
|
448
|
+
@nonuniform_hash_10_sum_lt_1)
|
449
|
+
|
450
|
+
assert_equal(@nonuniform_arrayoftuples.length, 4)
|
451
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
452
|
+
@nonuniform_arrayoftuples_single_string)
|
453
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_to_1),
|
454
|
+
@nonuniform_arrayoftuples_10_sum_to_1)
|
455
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_gt_1),
|
456
|
+
@nonuniform_arrayoftuples_10_sum_gt_1)
|
457
|
+
verify_sample_unique_values_are_valid(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_10_sum_lt_1),
|
458
|
+
@nonuniform_arrayoftuples_10_sum_lt_1)
|
459
|
+
end
|
460
|
+
|
461
|
+
####################
|
462
|
+
# SAMPLING ACCURACY
|
463
|
+
####################
|
464
|
+
|
465
|
+
def test_uniform_sampling_accuracy
|
466
|
+
assert_equal(@uniform_sets.length, 3)
|
467
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_set_single_string),
|
468
|
+
@uniform_set_single_string)
|
469
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_set_10_string),
|
470
|
+
@uniform_set_10_string)
|
471
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_set_10_numeric),
|
472
|
+
@uniform_set_10_numeric)
|
473
|
+
|
474
|
+
assert_equal(@uniform_arrays.length, 3)
|
475
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_array_single_numeric),
|
476
|
+
@uniform_array_single_numeric)
|
477
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_array_10_string),
|
478
|
+
@uniform_array_10_string)
|
479
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_array_10_numeric),
|
480
|
+
@uniform_array_10_numeric)
|
481
|
+
|
482
|
+
assert_equal(@uniform_ranges.length, 4)
|
483
|
+
|
484
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_range_single_exclusive),
|
485
|
+
@uniform_range_single_exclusive)
|
486
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_range_single_inclusive),
|
487
|
+
@uniform_range_single_inclusive)
|
488
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_range_10_exclusive),
|
489
|
+
@uniform_range_10_exclusive)
|
490
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_range_10_inclusive),
|
491
|
+
@uniform_range_10_inclusive)
|
492
|
+
|
493
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(@uniform_single_zero),
|
494
|
+
@uniform_single_zero)
|
495
|
+
# avoiding low probability of single_nonzero...
|
496
|
+
verify_distribution_accuracy(RandomValueSampler.new_uniform(9), 9)
|
497
|
+
|
498
|
+
end
|
499
|
+
|
500
|
+
# avoid super low probabilities cause they can easily cause "errors" when
|
501
|
+
# assessing distribution accuracy
|
502
|
+
def test_non_uniform_sampling_accuracy
|
503
|
+
verify_distribution_accuracy(RandomValueSampler.new_non_uniform(@nonuniform_hash_single_string),
|
504
|
+
@nonuniform_hash_single_string)
|
505
|
+
verify_distribution_accuracy(RandomValueSampler.new_non_uniform( { "one" => 1, "two" => 2, "three" => 3 } ),
|
506
|
+
{ "one" => 1, "two" => 2, "three" => 3 } )
|
507
|
+
|
508
|
+
verify_distribution_accuracy(RandomValueSampler.new_non_uniform(@nonuniform_arrayoftuples_single_string),
|
509
|
+
@nonuniform_arrayoftuples_single_string)
|
510
|
+
verify_distribution_accuracy(RandomValueSampler.new_non_uniform( [["heavy", 90], ["light", 10]]),
|
511
|
+
[["heavy", 90], ["light", 10]])
|
512
|
+
end
|
513
|
+
|
514
|
+
#################
|
515
|
+
# HELPER METHODS
|
516
|
+
#################
|
517
|
+
|
518
|
+
# verifies that probability_of returns correct results for values in and out
|
519
|
+
# of pmf values set (should return 0 if outside set)
|
520
|
+
#-----------------------------------------------------------------------------
|
521
|
+
def verify_probability_of(rsampler, values)
|
522
|
+
vals_and_probs = extract_hash_of_vals_and_probs(values)
|
523
|
+
|
524
|
+
vals_and_probs.each_pair do |val, prob|
|
525
|
+
assert_in_delta(prob, rsampler.probability_of(val), 2e-4)
|
526
|
+
end
|
527
|
+
end
|
528
|
+
|
529
|
+
# verify that a distribution is represented (sum of probability mass is
|
530
|
+
# (very, very, very, very close to) 1
|
531
|
+
#-----------------------------------------------------------------------------
|
532
|
+
def verify_distribution(rsampler)
|
533
|
+
total_mass = 0
|
534
|
+
rsampler.all_values.each do |val|
|
535
|
+
total_mass += rsampler.probability_of(val)
|
536
|
+
end
|
537
|
+
|
538
|
+
assert_in_delta(1.0, total_mass, 2e-4)
|
539
|
+
end
|
540
|
+
|
541
|
+
# verifies the list of values returned by rsampler are in the values passed
|
542
|
+
# in as raw values
|
543
|
+
#-----------------------------------------------------------------------------
|
544
|
+
def verify_values(rsampler, values)
|
545
|
+
raw_val_set = Set.new(extract_array_of_values(values))
|
546
|
+
rsampler_val_set = Set.new(rsampler.all_values)
|
547
|
+
|
548
|
+
assert_equal(raw_val_set, rsampler_val_set)
|
549
|
+
end
|
550
|
+
|
551
|
+
# verifies the number of values indicated by rsampler. kinda dumb, just checks
|
552
|
+
# that it matches the length of the array returned by values (might catch
|
553
|
+
# some errors when using Ranges, for example)
|
554
|
+
#-----------------------------------------------------------------------------
|
555
|
+
def verify_num_values(rsampler)
|
556
|
+
assert_equal(rsampler.all_values.length, rsampler.num_values)
|
557
|
+
end
|
558
|
+
|
559
|
+
# verify after many iterations that all values returned by sampling are
|
560
|
+
# valid values for the rsampler. covers single and multiple samples.
|
561
|
+
#-----------------------------------------------------------------------------
|
562
|
+
def verify_sample_values_are_valid(rsampler, values)
|
563
|
+
vals_and_probs = extract_hash_of_vals_and_probs(values)
|
564
|
+
vals_and_probs.delete_if { |val, prob| prob == 0 }
|
565
|
+
|
566
|
+
valid_value_set = Set.new(vals_and_probs.keys)
|
567
|
+
|
568
|
+
(1..1000).each do
|
569
|
+
sample = rsampler.sample
|
570
|
+
assert(valid_value_set.include?(sample),
|
571
|
+
"<#{sample}> is not a valid sample in raw values: <#{values}>")
|
572
|
+
end
|
573
|
+
|
574
|
+
(1..1000).each do
|
575
|
+
rsampler.sample(10).each do |s|
|
576
|
+
assert(valid_value_set.include?(s),
|
577
|
+
"<#{s}> is not a valid multi-sample in raw values: <#{values}>")
|
578
|
+
end
|
579
|
+
end
|
580
|
+
end
|
581
|
+
|
582
|
+
# verify after many iterations that all values returned by sampling unique are
|
583
|
+
# valid values for the rsampler. covers single and multiple samples.
|
584
|
+
#-----------------------------------------------------------------------------
|
585
|
+
def verify_sample_unique_values_are_valid(rsampler, values)
|
586
|
+
vals_and_probs = extract_hash_of_vals_and_probs(values)
|
587
|
+
vals_and_probs.delete_if { |val, prob| prob == 0 }
|
588
|
+
|
589
|
+
valid_value_set = Set.new(vals_and_probs.keys)
|
590
|
+
|
591
|
+
num_multi_samples = [valid_value_set.length, 5].min
|
592
|
+
|
593
|
+
(1..1000).each do
|
594
|
+
test_rsampler = Marshal.load(Marshal.dump(rsampler))
|
595
|
+
|
596
|
+
sample = test_rsampler.sample_unique
|
597
|
+
assert(valid_value_set.include?(sample),
|
598
|
+
"<#{sample}> is not a valid sample in raw values: <#{values.inspect}>")
|
599
|
+
end
|
600
|
+
|
601
|
+
(1..1000).each do
|
602
|
+
test_rsampler = Marshal.load(Marshal.dump(rsampler))
|
603
|
+
|
604
|
+
if num_multi_samples > 1
|
605
|
+
test_rsampler.sample_unique(num_multi_samples).each do |s|
|
606
|
+
assert(valid_value_set.include?(s),
|
607
|
+
"<#{s}> is not a valid multi-sample in raw values: <#{values.inspect}>")
|
608
|
+
end
|
609
|
+
else
|
610
|
+
sample = test_rsampler.sample_unique(num_multi_samples)
|
611
|
+
assert(valid_value_set.include?(sample),
|
612
|
+
"<#{sample}> is not a valid multi-sample in raw values: <#{values.inspect}>")
|
613
|
+
end
|
614
|
+
end
|
615
|
+
end
|
616
|
+
|
617
|
+
# helper to convert whatever original data type we had into an array
|
618
|
+
#-----------------------------------------------------------------------------
|
619
|
+
def extract_array_of_values(values)
|
620
|
+
if values.is_a?(Set) || values.is_a?(Range)
|
621
|
+
values = values.to_a
|
622
|
+
elsif values.is_a?(Array)
|
623
|
+
if values.first.is_a?(Array)
|
624
|
+
# don't overwrite object, overwrite reference so that original object remains
|
625
|
+
# intact if needed
|
626
|
+
values = values.map { |val_and_pm| val_and_pm.first }
|
627
|
+
end # otherwise, don't need to do anything; already an array
|
628
|
+
elsif values.is_a?(Hash)
|
629
|
+
values = values.keys
|
630
|
+
else
|
631
|
+
values = (0..values).to_a
|
632
|
+
end
|
633
|
+
|
634
|
+
values
|
635
|
+
end
|
636
|
+
|
637
|
+
# generate a hash of values => probabilities from raw data
|
638
|
+
#-----------------------------------------------------------------------------
|
639
|
+
def extract_hash_of_vals_and_probs(values)
|
640
|
+
vals_and_probs = {}
|
641
|
+
|
642
|
+
# convert the single scalar case to a Range
|
643
|
+
if !values.is_a?(Hash) &&
|
644
|
+
!values.is_a?(Array) &&
|
645
|
+
!values.is_a?(Range) &&
|
646
|
+
!values.is_a?(Set)
|
647
|
+
|
648
|
+
values = 0..values
|
649
|
+
end
|
650
|
+
|
651
|
+
if values.is_a?(Hash)
|
652
|
+
vals_and_probs = values
|
653
|
+
elsif values.is_a?(Array) && values.first.is_a?(Array)
|
654
|
+
vals_and_probs = Hash[*(values.flatten)]
|
655
|
+
elsif values.is_a?(Range)
|
656
|
+
prob = 1.0 / values.to_a.length.to_f
|
657
|
+
values.each { |v| vals_and_probs.merge! v => prob }
|
658
|
+
elsif values.is_a?(Set) || values.is_a?(Array)
|
659
|
+
prob = 1.0 / values.length.to_f
|
660
|
+
values.each { |v| vals_and_probs.merge! v => prob }
|
661
|
+
end
|
662
|
+
|
663
|
+
total_mass = 0
|
664
|
+
vals_and_probs.each_pair { |val, prob| total_mass += prob }
|
665
|
+
vals_and_probs.each_pair do |val, prob|
|
666
|
+
vals_and_probs.merge! val => prob / total_mass.to_f
|
667
|
+
end
|
668
|
+
|
669
|
+
vals_and_probs
|
670
|
+
end
|
671
|
+
|
672
|
+
# sample a bunch from the distribution and compare the result to
|
673
|
+
# the original distribution. try sampling many times and making sure
|
674
|
+
# that the resulting frequencies are accurate within 30% ???
|
675
|
+
# this is VERY approximate, and is really only able to catch
|
676
|
+
# egregious errors...and is a little susceptible to noise on small
|
677
|
+
# probabilities.
|
678
|
+
#
|
679
|
+
# NOTE: this only works if theere are no duplicate values in the
|
680
|
+
# distribution, as this method uses a hash to store counts of samples.
|
681
|
+
#-----------------------------------------------------------------------------
|
682
|
+
def verify_distribution_accuracy(rsampler, values)
|
683
|
+
vals_and_probs = extract_hash_of_vals_and_probs(values)
|
684
|
+
|
685
|
+
val_counts = {}
|
686
|
+
vals_and_probs.keys.each { |val, prob| val_counts.merge! val => 0 }
|
687
|
+
|
688
|
+
# sample a bunch and count frequency of each value
|
689
|
+
num_samples = 50000
|
690
|
+
rsampler.sample(num_samples).each { |v| val_counts[v] = val_counts[v] + 1 }
|
691
|
+
|
692
|
+
# convert counts to probabilities
|
693
|
+
val_counts.each_pair do |val, count|
|
694
|
+
val_counts.merge! val => (count.to_f / num_samples.to_f)
|
695
|
+
end
|
696
|
+
|
697
|
+
vals_and_probs.each_pair do |val, true_prob|
|
698
|
+
assert_in_delta( (true_prob - val_counts[val]) / true_prob,
|
699
|
+
0.0,
|
700
|
+
0.1,
|
701
|
+
"observed sample frequency (<#{val_counts[val]}>) of " +
|
702
|
+
"<#{val}> doesn't appear to match true distribution " +
|
703
|
+
"(prob of <#{true_prob}>. It's possible that this was " +
|
704
|
+
"noise, so try again before assuming something's wrong")
|
705
|
+
end
|
706
|
+
|
707
|
+
end
|
708
|
+
|
709
|
+
# cases to test:
|
710
|
+
# -------------
|
711
|
+
#
|
712
|
+
# uniform
|
713
|
+
# valid inputs
|
714
|
+
# Set
|
715
|
+
# array
|
716
|
+
# Range inclusive
|
717
|
+
# Range exclusive
|
718
|
+
# scalar
|
719
|
+
# edge cases
|
720
|
+
# single value
|
721
|
+
# set
|
722
|
+
# array
|
723
|
+
# 1..1
|
724
|
+
# 1...2
|
725
|
+
# 0 (converted to 0..0)
|
726
|
+
# invalid inputs
|
727
|
+
# empty set
|
728
|
+
# empty array
|
729
|
+
# nil
|
730
|
+
# string
|
731
|
+
# NOTE: though it should work fine in the class itself, to avoid having to handle
|
732
|
+
# lots of cases in the test code, we're not using arrays as the possible values
|
733
|
+
# in the distribution (makes it hard to distinguish between the array of tuples
|
734
|
+
# (non-uniform) and the array of values (uniform) cases.
|
735
|
+
#
|
736
|
+
# non-uniform
|
737
|
+
# valid inputs
|
738
|
+
# hash
|
739
|
+
# array of arrays
|
740
|
+
# edge case
|
741
|
+
# 1 entry
|
742
|
+
# for EACH case above:
|
743
|
+
#
|
744
|
+
# invalid inputs
|
745
|
+
# empty hash
|
746
|
+
# empty array
|
747
|
+
# array of scalars
|
748
|
+
# negative frequency count
|
749
|
+
# hash
|
750
|
+
# array
|
751
|
+
# non-empty but all counts == 0
|
752
|
+
# hash
|
753
|
+
# array
|
754
|
+
|
755
|
+
# create a set of test data to play with for each test
|
756
|
+
#
|
757
|
+
# naming conventions:
|
758
|
+
# <pmftype>_<datatype>_<case>
|
759
|
+
#
|
760
|
+
# where:
|
761
|
+
# pmftype is "uniform" or "nonuniform"
|
762
|
+
# datatype is "set", "array", "range", "scalar", "arrayoftuples", or "hash"
|
763
|
+
#
|
764
|
+
# where: case is one of the following:
|
765
|
+
# error_<condition>
|
766
|
+
# single_<type>
|
767
|
+
# 10_<type>
|
768
|
+
#
|
769
|
+
# where:
|
770
|
+
# condition is a description of the error case (e.g. "empty", "allzero"...)
|
771
|
+
# type is "numeric", "string" or "mixed"
|
772
|
+
#-----------------------------------------------------------------------------
|
773
|
+
def setup
|
774
|
+
##########
|
775
|
+
# UNIFORM
|
776
|
+
##########
|
777
|
+
array_of_ten_string = ['a','b','c','d','e','f','g','h','i','j']
|
778
|
+
|
779
|
+
# valid inputs
|
780
|
+
|
781
|
+
@uniform_set_single_string = Set.new("one")
|
782
|
+
@uniform_set_10_string = Set.new(array_of_ten_string)
|
783
|
+
@uniform_set_10_numeric = Set.new(3..12)
|
784
|
+
|
785
|
+
@uniform_array_single_numeric = [22]
|
786
|
+
@uniform_array_10_string = array_of_ten_string
|
787
|
+
@uniform_array_10_numeric = (101...111).to_a
|
788
|
+
|
789
|
+
@uniform_range_single_exclusive = 1...2
|
790
|
+
@uniform_range_single_inclusive = 2..2
|
791
|
+
@uniform_range_10_exclusive = 1...11
|
792
|
+
@uniform_range_10_inclusive = -2..7
|
793
|
+
|
794
|
+
@uniform_single_zero = 0
|
795
|
+
@uniform_single_nonzero = 22
|
796
|
+
|
797
|
+
@uniform_sets = [
|
798
|
+
@uniform_set_single_string,
|
799
|
+
@uniform_set_10_string,
|
800
|
+
@uniform_set_10_numeric
|
801
|
+
]
|
802
|
+
@uniform_arrays = [
|
803
|
+
@uniform_array_single_numeric,
|
804
|
+
@uniform_array_10_string,
|
805
|
+
@uniform_array_10_numeric
|
806
|
+
]
|
807
|
+
@uniform_ranges = [
|
808
|
+
@uniform_range_single_exclusive,
|
809
|
+
@uniform_range_single_inclusive,
|
810
|
+
@uniform_range_10_exclusive,
|
811
|
+
@uniform_range_10_inclusive
|
812
|
+
]
|
813
|
+
@uniform_singles = [
|
814
|
+
@uniform_single_zero,
|
815
|
+
@uniform_single_nonzero
|
816
|
+
]
|
817
|
+
|
818
|
+
# error inputs
|
819
|
+
|
820
|
+
@uniform_set_error_empty = Set.new
|
821
|
+
@uniform_array_error_empty = []
|
822
|
+
@uniform_range_error_empty = 0..-1
|
823
|
+
@uniform_single_error_negative = -1
|
824
|
+
|
825
|
+
@uniform_error_inputs = [
|
826
|
+
@uniform_set_error_empty,
|
827
|
+
@uniform_array_error_empty,
|
828
|
+
@uniform_range_error_empty,
|
829
|
+
@uniform_single_error_negative
|
830
|
+
]
|
831
|
+
|
832
|
+
##############
|
833
|
+
# NON-UNIFORM
|
834
|
+
##############
|
835
|
+
|
836
|
+
hash_10_sum_to_1 = {}
|
837
|
+
(-9..-1).each { |exp| hash_10_sum_to_1.merge! exp => 2**exp }
|
838
|
+
hash_10_sum_to_1.merge! "the end" => 2**-9
|
839
|
+
|
840
|
+
hash_10_sum_gt_1 = hash_10_sum_to_1.clone
|
841
|
+
hash_10_sum_gt_1.each_pair { |k,v| hash_10_sum_gt_1[k] = v*10 }
|
842
|
+
|
843
|
+
hash_10_sum_lt_1 = hash_10_sum_to_1.clone
|
844
|
+
hash_10_sum_lt_1.each_pair { |k,v| hash_10_sum_gt_1[k] = v/10 }
|
845
|
+
|
846
|
+
@nonuniform_hash_single_string = { "one_and_only" => 13 }
|
847
|
+
@nonuniform_hash_10_sum_to_1 = hash_10_sum_to_1
|
848
|
+
@nonuniform_hash_10_sum_gt_1 = hash_10_sum_gt_1
|
849
|
+
@nonuniform_hash_10_sum_lt_1 = hash_10_sum_lt_1
|
850
|
+
|
851
|
+
@nonuniform_arrayoftuples_single_string = { "one_and_only" => 13 }.to_a
|
852
|
+
@nonuniform_arrayoftuples_10_sum_to_1 = hash_10_sum_to_1.to_a
|
853
|
+
@nonuniform_arrayoftuples_10_sum_gt_1 = hash_10_sum_gt_1.to_a
|
854
|
+
@nonuniform_arrayoftuples_10_sum_lt_1 = hash_10_sum_lt_1.to_a
|
855
|
+
|
856
|
+
@nonuniform_hashes = [
|
857
|
+
@nonuniform_hash_single_string,
|
858
|
+
@nonuniform_hash_10_sum_to_1,
|
859
|
+
@nonuniform_hash_10_sum_gt_1,
|
860
|
+
@nonuniform_hash_10_sum_lt_1
|
861
|
+
]
|
862
|
+
|
863
|
+
@nonuniform_arrayoftuples = [
|
864
|
+
@nonuniform_arrayoftuples_single_string,
|
865
|
+
@nonuniform_arrayoftuples_10_sum_to_1,
|
866
|
+
@nonuniform_arrayoftuples_10_sum_gt_1,
|
867
|
+
@nonuniform_arrayoftuples_10_sum_lt_1
|
868
|
+
]
|
869
|
+
|
870
|
+
# error inputs
|
871
|
+
|
872
|
+
@nonuniform_hash_error_empty = {}
|
873
|
+
@nonuniform_hash_error_negative = { "negative" => -1 }
|
874
|
+
@nonuniform_hash_error_all_zeros = { :one => 0, :two => 0, :three => 0 }
|
875
|
+
|
876
|
+
@nonuniform_arrayoftuples_error_empty = {}.to_a
|
877
|
+
@nonuniform_arrayoftuples_error_negative = { "negative" => -1 }.to_a
|
878
|
+
@nonuniform_arrayoftuples_error_all_zeros = { :one => 0, :two => 0, :three => 0 }.to_a
|
879
|
+
|
880
|
+
@nonuniform_error_inputs = [
|
881
|
+
@nonuniform_hash_error_empty,
|
882
|
+
@nonuniform_hash_error_negative,
|
883
|
+
@nonuniform_hash_error_all_zeros,
|
884
|
+
@nonuniform_arrayoftuples_error_empty,
|
885
|
+
@nonuniform_arrayoftuples_error_negative,
|
886
|
+
@nonuniform_arrayoftuples_error_all_zeros
|
887
|
+
]
|
888
|
+
end
|
889
|
+
|
890
|
+
end
|