random 0.2.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,91 @@
1
+ require 'test/unit'
2
+
3
+ require 'random'
4
+ include Random
5
+
6
+ class ATestWagnerCompare < Test::Unit::TestCase
7
+ # MTRand::uint32 bigSeed[4] = { 0x123, 0x234, 0x345, 0x456 };
8
+ BigSeed = [0x123, 0x234, 0x345, 0x456]
9
+
10
+ # MTRand::uint32 oneSeed = 4357UL;
11
+ OneSeed = 4357
12
+
13
+ def read_from_file_at(filename, start_line,
14
+ converter = :to_i,
15
+ num_numbers = 1000, num_on_each_line = 5)
16
+
17
+ read_nums, str_len, state = [], start_line.length, :seeking
18
+
19
+ fpath = File.join(File.dirname(__FILE__), filename)
20
+ IO.readlines(fpath).each do |line|
21
+ if state == :seeking && (line[0, str_len] == start_line)
22
+ state = :reading
23
+ elsif state == :reading
24
+ if line =~ /(\d+\s+)+/
25
+ read_nums.concat( line.split.map {|n| n.strip.send(converter)} )
26
+ else
27
+ # We are ready and can abort
28
+ break
29
+ end
30
+ end
31
+ end
32
+
33
+ if read_nums.length != num_numbers
34
+ raise "Expected #{num_numbers} numbers but found #{read_nums.length}"
35
+ else
36
+ return read_nums
37
+ end
38
+ end
39
+
40
+ def take_next(mt, num, &block)
41
+ block ||= proc {mt.next}
42
+ Array.new(num).map {block.call(mt)}
43
+ end
44
+
45
+ def assert_float_arrays_equal(expected, actual, delta)
46
+ assert_equal(expected.length, actual.length)
47
+ 0.upto(expected.length) do |i|
48
+ assert_in_delta(expected[i], actual[i], delta)
49
+ end
50
+ end
51
+
52
+ def test_01_wagner_big_seed
53
+ expected =
54
+ read_from_file_at("testWagner.out",
55
+ "Test of random integer generation:")
56
+
57
+ mt = MersenneTwister.new(BigSeed)
58
+ assert_equal(expected, take_next(mt, expected.length))
59
+
60
+ expected_floats =
61
+ read_from_file_at("testWagner.out",
62
+ "Test of random real number [0,1) generation:",
63
+ :to_f)
64
+ actual = take_next(mt, expected.length) {|m| m.rand_float_excl}
65
+ assert_float_arrays_equal(expected_floats, actual, 0.0000001)
66
+ end
67
+
68
+ def test_02_wagner_one_seed
69
+ expected_floats =
70
+ read_from_file_at("testWagner.out",
71
+ "Test of random real number [0,1] generation:",
72
+ :to_f)
73
+ mt = MersenneTwister.new(OneSeed)
74
+ actual = take_next(mt, expected_floats.length) {|m| m.rand_float}
75
+ assert_float_arrays_equal(expected_floats, actual, 0.0000001)
76
+ end
77
+
78
+ def test_03_wagner_integer_range_test
79
+ mt = MersenneTwister.new
80
+ 10000.times do
81
+ r = mt.rand_int_limited(17)
82
+ assert((0 <= r) && (r <= 17), "r = #{r}")
83
+ end
84
+ end
85
+
86
+ def test_04_autoseed_uniqueness_test
87
+ m1, m2, m3 = MersenneTwister.new, MersenneTwister.new, MersenneTwister.new
88
+ v1, v2, v3 = m1.rand_float, m2.rand_float, m3.rand_float
89
+ assert(v1 != v2 || v2 != v3 || v1 != v3)
90
+ end
91
+ end
@@ -0,0 +1,20 @@
1
+ require 'benchmark'
2
+ require 'rubygems'
3
+
4
+ require 'random'
5
+ include Random
6
+
7
+ NumInts = 1e6.to_i
8
+
9
+ Benchmark.bm(10) do |b|
10
+ b.report("Instantiating MTs") do
11
+ 1e4.to_i.times {mt = MersenneTwister.new(rand(1e5))}
12
+ end
13
+
14
+ mt = MersenneTwister.new(rand(1e6))
15
+ b.report("Gen'ing #{NumInts} ints") do
16
+ NumInts.times {mt.next}
17
+ end
18
+
19
+ #b.report("Generating #{NumInts} ints") {mt.next}
20
+ end
@@ -0,0 +1,190 @@
1
+ /*
2
+ A C-program for MT19937, with initialization improved 2002/1/26.
3
+ Coded by Takuji Nishimura and Makoto Matsumoto.
4
+
5
+ Before using, initialize the state by using init_genrand(seed)
6
+ or init_by_array(init_key, key_length).
7
+
8
+ Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
9
+ All rights reserved.
10
+
11
+ Redistribution and use in source and binary forms, with or without
12
+ modification, are permitted provided that the following conditions
13
+ are met:
14
+
15
+ 1. Redistributions of source code must retain the above copyright
16
+ notice, this list of conditions and the following disclaimer.
17
+
18
+ 2. Redistributions in binary form must reproduce the above copyright
19
+ notice, this list of conditions and the following disclaimer in the
20
+ documentation and/or other materials provided with the distribution.
21
+
22
+ 3. The names of its contributors may not be used to endorse or promote
23
+ products derived from this software without specific prior written
24
+ permission.
25
+
26
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
27
+ "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
28
+ LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
29
+ A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
30
+ CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
31
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
32
+ PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
33
+ PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
34
+ LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
35
+ NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
36
+ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
37
+
38
+
39
+ Any feedback is very welcome.
40
+ http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html
41
+ email: m-mat @ math.sci.hiroshima-u.ac.jp (remove space)
42
+ */
43
+
44
+ #include <stdio.h>
45
+
46
+ /* Period parameters */
47
+ #define N 624
48
+ #define M 397
49
+ #define MATRIX_A 0x9908b0dfUL /* constant vector a */
50
+ #define UPPER_MASK 0x80000000UL /* most significant w-r bits */
51
+ #define LOWER_MASK 0x7fffffffUL /* least significant r bits */
52
+
53
+ static unsigned long mt[N]; /* the array for the state vector */
54
+ static int mti=N+1; /* mti==N+1 means mt[N] is not initialized */
55
+
56
+ /* initializes mt[N] with a seed */
57
+ void init_genrand(unsigned long s)
58
+ {
59
+ mt[0]= s & 0xffffffffUL;
60
+ for (mti=1; mti<N; mti++) {
61
+ mt[mti] =
62
+ (1812433253UL * (mt[mti-1] ^ (mt[mti-1] >> 30)) + mti);
63
+ /* See Knuth TAOCP Vol2. 3rd Ed. P.106 for multiplier. */
64
+ /* In the previous versions, MSBs of the seed affect */
65
+ /* only MSBs of the array mt[]. */
66
+ /* 2002/01/09 modified by Makoto Matsumoto */
67
+ mt[mti] &= 0xffffffffUL;
68
+ /* for >32 bit machines */
69
+ }
70
+ }
71
+
72
+ /* initialize by an array with array-length */
73
+ /* init_key is the array for initializing keys */
74
+ /* key_length is its length */
75
+ /* slight change for C++, 2004/2/26 */
76
+ void init_by_array(unsigned long init_key[], int key_length)
77
+ {
78
+ int i, j, k;
79
+ init_genrand(19650218UL);
80
+ i=1; j=0;
81
+ k = (N>key_length ? N : key_length);
82
+ for (; k; k--) {
83
+ mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1664525UL))
84
+ + init_key[j] + j; /* non linear */
85
+ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
86
+ i++; j++;
87
+ if (i>=N) { mt[0] = mt[N-1]; i=1; }
88
+ if (j>=key_length) j=0;
89
+ }
90
+ for (k=N-1; k; k--) {
91
+ mt[i] = (mt[i] ^ ((mt[i-1] ^ (mt[i-1] >> 30)) * 1566083941UL))
92
+ - i; /* non linear */
93
+ mt[i] &= 0xffffffffUL; /* for WORDSIZE > 32 machines */
94
+ i++;
95
+ if (i>=N) { mt[0] = mt[N-1]; i=1; }
96
+ }
97
+
98
+ mt[0] = 0x80000000UL; /* MSB is 1; assuring non-zero initial array */
99
+ }
100
+
101
+ /* generates a random number on [0,0xffffffff]-interval */
102
+ unsigned long genrand_int32(void)
103
+ {
104
+ unsigned long y;
105
+ static unsigned long mag01[2]={0x0UL, MATRIX_A};
106
+ /* mag01[x] = x * MATRIX_A for x=0,1 */
107
+
108
+ if (mti >= N) { /* generate N words at one time */
109
+ int kk;
110
+
111
+ if (mti == N+1) /* if init_genrand() has not been called, */
112
+ init_genrand(5489UL); /* a default initial seed is used */
113
+
114
+ for (kk=0;kk<N-M;kk++) {
115
+ y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
116
+ mt[kk] = mt[kk+M] ^ (y >> 1) ^ mag01[y & 0x1UL];
117
+ }
118
+ for (;kk<N-1;kk++) {
119
+ y = (mt[kk]&UPPER_MASK)|(mt[kk+1]&LOWER_MASK);
120
+ mt[kk] = mt[kk+(M-N)] ^ (y >> 1) ^ mag01[y & 0x1UL];
121
+ }
122
+ y = (mt[N-1]&UPPER_MASK)|(mt[0]&LOWER_MASK);
123
+ mt[N-1] = mt[M-1] ^ (y >> 1) ^ mag01[y & 0x1UL];
124
+
125
+ mti = 0;
126
+ }
127
+
128
+ y = mt[mti++];
129
+
130
+ /* Tempering */
131
+ y ^= (y >> 11);
132
+ y ^= (y << 7) & 0x9d2c5680UL;
133
+ y ^= (y << 15) & 0xefc60000UL;
134
+ y ^= (y >> 18);
135
+
136
+ return y;
137
+ }
138
+
139
+ /* generates a random number on [0,0x7fffffff]-interval */
140
+ long genrand_int31(void)
141
+ {
142
+ return (long)(genrand_int32()>>1);
143
+ }
144
+
145
+ /* generates a random number on [0,1]-real-interval */
146
+ double genrand_real1(void)
147
+ {
148
+ return genrand_int32()*(1.0/4294967295.0);
149
+ /* divided by 2^32-1 */
150
+ }
151
+
152
+ /* generates a random number on [0,1)-real-interval */
153
+ double genrand_real2(void)
154
+ {
155
+ return genrand_int32()*(1.0/4294967296.0);
156
+ /* divided by 2^32 */
157
+ }
158
+
159
+ /* generates a random number on (0,1)-real-interval */
160
+ double genrand_real3(void)
161
+ {
162
+ return (((double)genrand_int32()) + 0.5)*(1.0/4294967296.0);
163
+ /* divided by 2^32 */
164
+ }
165
+
166
+ /* generates a random number on [0,1) with 53-bit resolution*/
167
+ double genrand_res53(void)
168
+ {
169
+ unsigned long a=genrand_int32()>>5, b=genrand_int32()>>6;
170
+ return(a*67108864.0+b)*(1.0/9007199254740992.0);
171
+ }
172
+ /* These real versions are due to Isaku Wada, 2002/01/09 added */
173
+
174
+ int main(void)
175
+ {
176
+ int i;
177
+ unsigned long init[4]={0x123, 0x234, 0x345, 0x456}, length=4;
178
+ init_by_array(init, length);
179
+ printf("1000 outputs of genrand_int32()\n");
180
+ for (i=0; i<1000; i++) {
181
+ printf("%10lu ", genrand_int32());
182
+ if (i%5==4) printf("\n");
183
+ }
184
+ printf("\n1000 outputs of genrand_real2()\n");
185
+ for (i=0; i<1000; i++) {
186
+ printf("%10.8f ", genrand_real2());
187
+ if (i%5==4) printf("\n");
188
+ }
189
+ return 0;
190
+ }
@@ -0,0 +1,200 @@
1
+ 2867219139 1585203162 3113124129 2953900839 2463794868
2
+ 3482265796 1164297043 3598195569 589972756 4112233867
3
+ 767115311 4093075447 1322433849 3357085324 3300048468
4
+ 3649464345 3676604632 1475054104 2601934239 3420804864
5
+ 2492391180 28597038 1901037238 1209433535 3580317774
6
+ 2488297452 79873538 3308484072 2913896343 4166196021
7
+ 1930853421 3313543893 2603730014 2827553081 1952080899
8
+ 1405101208 1959413290 2221997165 4110132150 1025637693
9
+ 3670222467 3930802957 2581008338 1350592177 3907543700
10
+ 4014701607 935323183 1742076441 3183014990 3775329649
11
+ 2670402585 631538770 3348109412 2875142640 1153190187
12
+ 1034841106 4215431531 3369145821 2443967621 489641649
13
+ 1500338112 3753983456 714552875 1260890119 2952668397
14
+ 3337192800 555421782 74804828 1151768793 1410928776
15
+ 1120209439 2228198263 4057501661 3114914981 2544059595
16
+ 3532152016 2287564919 2032846052 1496843742 3333090545
17
+ 1817300007 250812909 1159923179 685307794 3541764804
18
+ 461984834 3147015419 3371051674 740493100 1639766659
19
+ 890836426 1816610558 740465142 185885280 4259873427
20
+ 3958263241 4265440603 921638366 4154579172 805230647
21
+ 3014407950 1805221957 561367725 2705796996 1548190021
22
+ 2511308322 1037370857 3468383218 2263520462 100585698
23
+ 1357493989 3614308996 171284736 2282220711 3523042469
24
+ 2348826997 107252578 4276234757 3467471468 226242558
25
+ 1135756939 1172828762 1603997125 2391541156 3151990464
26
+ 1103261409 3154811332 1113077002 3536625341 2952420703
27
+ 1239175044 2568687405 2847842220 3298739581 3765822280
28
+ 1818781797 1788591806 1276077776 949399679 539881640
29
+ 2515373476 3278313288 2195264511 3140718958 2245786462
30
+ 3972928638 927276666 511152533 2786021231 3889288448
31
+ 1460095448 3481321755 2645725544 2557599731 3008353305
32
+ 2338169325 3715786542 2327664598 1670522570 398515741
33
+ 3912248287 1871479044 819271481 1603628159 2242972174
34
+ 3206947715 2994316262 3479367748 2428416502 3005191888
35
+ 596767713 4276386271 629871933 1632138881 2115083989
36
+ 801211500 3827872169 1960552366 1795052222 2979479912
37
+ 87338528 3149244595 643926064 3517042602 2067922190
38
+ 2800708034 196411345 1750850708 1469706228 2911845443
39
+ 1988965279 2800355451 2805480064 2192011017 3674906385
40
+ 2681712455 4227392471 2728849226 3329705101 1906618821
41
+ 3142299622 1154270206 4163694621 1798769436 4013849691
42
+ 2028970854 2216068645 1849210321 4107229332 2515252953
43
+ 3522279734 1983720317 2024886240 3537672193 3930217610
44
+ 72039252 1780891549 3528367504 251685934 1188909432
45
+ 1947153461 370404364 3813997465 162450456 3817237392
46
+ 3024813148 114391043 3190750639 2737018031 1006449521
47
+ 3646726966 287956073 1149908372 487404965 2110874122
48
+ 4169788922 2708120708 1662089132 509477256 1099251950
49
+ 2939553466 4116915810 2237150968 2532635264 1924974342
50
+ 2275083438 2001527850 85819681 1193976695 2861341617
51
+ 1014135054 996772449 4164228014 1090591843 2130489362
52
+ 769151670 995393661 930169499 53462752 966539569
53
+ 1906551696 3460997327 3881239157 2276159353 119179965
54
+ 1765229953 2268172609 1085009887 2675771386 458208333
55
+ 1454994770 1017850103 2649434515 2999463338 388687986
56
+ 3415289788 3023627127 1525959519 2452400350 2054320272
57
+ 3631689268 2249184966 2108263178 2566643186 614451766
58
+ 1697197121 1906804322 1965059615 3685123413 1808965526
59
+ 3338843213 3764537527 3904177263 654414333 3369183195
60
+ 172707682 1789534658 99114865 197192909 1307666933
61
+ 3275439681 3162223316 2159224432 2431824578 479324619
62
+ 1925592859 2627879461 792010626 472668456 4177737701
63
+ 2599283126 3434190900 1904530818 1875549291 2782382323
64
+ 1854703958 335047755 782741003 3349774673 2070491163
65
+ 1444691247 4133539299 3021083499 2858372993 4249693401
66
+ 3115492149 2825785659 3224153798 4151435371 4286292998
67
+ 1256416790 1517863100 745532812 2757126489 4013428350
68
+ 2423548174 2188411943 3829463160 1559482295 745669519
69
+ 3439972168 161134094 3704705522 2092939826 3727766120
70
+ 1109991787 3566213491 1293706699 1909349236 2420196524
71
+ 2304746689 3635143867 3551959793 4288618652 669034647
72
+ 3741111948 2199915868 2168112271 1697649112 1070896705
73
+ 2790677773 929567277 3818265352 1552321291 1984195592
74
+ 2012174866 3313686631 3187267079 3743463291 3456016892
75
+ 3700547177 673536746 3681166837 639979024 908071910
76
+ 285351138 3480863067 2726064042 3433216772 4179945392
77
+ 3619009940 2905120322 1106151469 2104819134 3436744154
78
+ 2515523866 2371838050 1019585697 3627952443 875737047
79
+ 370873717 2940893797 685464258 748098950 3797185507
80
+ 1051282146 2282833018 477323378 4052824808 3410768817
81
+ 2708164210 3910080099 801512007 3165259863 3098921372
82
+ 202576730 3056859886 3173659693 1703200672 1431918718
83
+ 1548107888 4098890898 4025128517 1676726643 3185240256
84
+ 1377418328 682127434 229406958 536272508 1302848757
85
+ 2222642426 3401319609 342519951 3491817370 880356224
86
+ 2288503572 2560186828 904726294 2902811194 2239545174
87
+ 1380829270 1525997083 799156132 3864212205 768044736
88
+ 2575515908 3700396389 1384921240 1784666717 2072282702
89
+ 2273112071 73034983 1893910430 554586922 1002452453
90
+ 244890730 1914712138 3103142789 4100378990 15082512
91
+ 4138839635 286473904 28127927 4285718216 3253349861
92
+ 848606688 751913560 2912664004 4265187531 3287406403
93
+ 3072476689 1465740219 1119222960 1706572418 1637696965
94
+ 1301369982 994855959 3172254721 2787055691 4037606898
95
+ 2001758001 3068451101 1913702326 164846220 3386718455
96
+ 2360582776 538955390 1122472306 2163787896 3820825269
97
+ 473138414 403084459 780682841 1916392897 2137309162
98
+ 2973130398 1560974537 383098889 2823811259 95656605
99
+ 1100898974 2054803549 1432869091 39447374 3865802542
100
+ 2243381851 326718209 3764656818 3855400005 3824649153
101
+ 1760031250 3890102346 38307054 3248874532 997675099
102
+ 1302054089 1134435193 3758588966 3856615910 3995873394
103
+ 1997896248 2341490681 4139020774 4219325865 2880626819
104
+ 1553845962 739906589 2668272545 1218350904 1726725379
105
+ 3948906843 1266205878 3012873230 2240549028 377137844
106
+ 907277693 2560807557 211027090 1865109379 1680481889
107
+ 3006556199 1195935070 538932664 781359924 1623787727
108
+ 2139406835 695091061 1267298086 644554442 2677351606
109
+ 1079279370 2545101579 536974673 3409890995 328220108
110
+ 3828121455 2972265230 2639000446 208138402 3320584784
111
+ 3363876703 2161783108 3027769253 2818364264 1836513581
112
+ 2700089162 3711109606 2707396532 2252522835 542106924
113
+ 290861120 65506152 4196413643 358020078 911900450
114
+ 2802065405 3188834047 616484753 4176172380 3492813945
115
+ 795652043 342823405 3851175499 2477619202 974180631
116
+ 2070155077 3048615955 3495083384 650122283 14857981
117
+ 1511525369 1296338035 240671856 4168080735 2161570494
118
+ 148980922 962978395 1307706563 3324956171 1322718131
119
+ 1734073640 2389532755 382604108 432552756 311652177
120
+ 2123865787 4157917041 3154366327 2978207584 1290868994
121
+ 2007821863 3260860131 2640548616 3404112149 1612513188
122
+ 3058779399 4287633829 2922820044 3033015498 3511571915
123
+ 991947766 643957286 2436721391 3576617627 2376996434
124
+ 1222099653 3675388593 1992634707 2782662035 1200611853
125
+ 159589769 679751733 3161948893 589403970 1044672925
126
+ 1965277612 1713774522 1215426812 1813238647 3046834204
127
+ 1409105205 3251078319 3532268691 2616009849 1386097548
128
+ 174492254 3978807460 2821108637 2107299989 3461277028
129
+ 491302117 2132304916 4182289785 2030842100 926165801
130
+ 1843009221 4893907 1091318508 2578976004 3429416159
131
+ 3465002536 4047073710 3470663786 489006494 1589495825
132
+ 2487643370 50052787 4184895002 478354171 4082727190
133
+ 2983387324 3988219089 2947112381 2737973843 650841551
134
+ 207036108 469279577 2683578043 3017632501 163011627
135
+ 1693305508 3903975904 3023727891 2966166673 1330783281
136
+ 714904080 487395952 3194176556 132096950 3471991421
137
+ 3333279298 964375359 1852875757 3398189707 1367148533
138
+ 3028366754 1975064118 1410547156 930454876 1797368724
139
+ 1024933376 4216347534 2926795400 2780961322 2950171792
140
+ 254604891 2461064346 3101055432 4066457036 2276047585
141
+ 2005729740 702724217 352362105 4032003380 3868709967
142
+ 3062450037 1984810322 1122228626 1836441070 3049160795
143
+ 3505191268 1416228722 3011433267 3618970400 2634380746
144
+ 521960665 1258860577 3646964245 482700194 576607559
145
+ 1025672363 1619715344 2931841378 2383672736 4168420462
146
+ 3899810386 2725154884 1643576117 4113444955 1695213625
147
+ 929397946 4130386425 3278249905 338698100 2621561873
148
+ 760291850 1827462673 2953977437 2802490860 952114118
149
+ 1564374766 1510012037 2517230207 2879255110 1376858550
150
+ 545337582 275466025 1766675460 841474537 2279046836
151
+ 160777324 1685578416 97066962 70420376 2697708528
152
+ 1312050661 277966306 2512268326 3560039935 3707673740
153
+ 1802069091 2214309607 3679963423 2799689014 2064212423
154
+ 2518670131 1071037431 3289103113 2832242556 626819162
155
+ 2821900349 4205402301 3092543042 1327800001 2111287012
156
+ 3356990396 2106560895 980585039 2374462023 3972980985
157
+ 1815212590 2934114838 2466983682 2647086546 1917133448
158
+ 757801743 2800426440 3462078459 1864979383 3711607473
159
+ 3244474925 1082752058 1953813482 3572643973 1845637828
160
+ 1693567413 1911166886 13616514 1527215536 944105697
161
+ 3720955806 3011125828 3659854035 3491170189 1206734392
162
+ 2464190967 259012728 351640621 348063345 237157049
163
+ 2592736807 3472084471 967215995 1941684155 3333469178
164
+ 4243822747 2837898655 2173645309 2144297387 4085774723
165
+ 2739089063 1721981340 1029091741 3863714757 3169542690
166
+ 1736267037 1087293093 3741407119 3003360275 4039152624
167
+ 965607200 1494605756 2700809461 1862970278 2060187203
168
+ 2636522014 2296966448 2138904618 830770044 2409839298
169
+ 946077889 676163933 2337773259 1967578486 1364110453
170
+ 1120981439 1505148538 3176892430 3788500489 2221440449
171
+ 2877805945 1848017526 1060239654 2981107887 394732496
172
+ 775694702 2465430652 256035109 672200319 4034366090
173
+ 652227015 224664253 2832534389 2590752268 1616461983
174
+ 474981047 1729743343 1033065486 3679817635 1945677673
175
+ 4142123708 3441705395 3623363652 2888854797 3848994849
176
+ 2774468965 733621242 1559397411 610848083 1861857918
177
+ 290039215 1969085557 2949458979 4146721138 1709209040
178
+ 3104641793 2414678267 3702112927 1922014713 3006301085
179
+ 2557432695 1953275956 3475362527 3440824021 1879890923
180
+ 4118996054 524339283 2248075324 1608569809 1946682979
181
+ 1598268490 3463673619 456566908 1513321122 1918511241
182
+ 3005439161 1218124360 2614200732 1479017575 2505142496
183
+ 3134113721 2091183380 2232940223 1740181808 2202332383
184
+ 2146620821 2123780007 3400091025 3142337592 1128001831
185
+ 3655589806 3699941203 871253103 1532083500 883298808
186
+ 2042462485 1141767415 3305182865 2246327140 1481051047
187
+ 2467236685 1053025675 1128030915 579308527 4094341357
188
+ 3312590487 2638764195 4224606959 975347930 2780688281
189
+ 3249107391 1737859059 562230366 3107238138 1630808317
190
+ 3323952099 2688243612 1676966491 1391319909 1149056605
191
+ 160522031 1888652620 1204167962 2599816629 4096616603
192
+ 2153451204 2234463327 2254107492 2798858945 1904589021
193
+ 3082279528 618798780 3162900214 746972615 4152315314
194
+ 3641376911 347959902 847266746 3443266042 4212579027
195
+ 2141521991 2369733694 4051999217 2434367934 2274132668
196
+ 3939258516 365865295 1762948411 3765297135 4284895923
197
+ 1178072377 1164762067 2304673964 2601931087 660951723
198
+ 324246673 1237854749 1390986182 3123416686 3229473430
199
+ 647145616 2228556457 3484897681 3854370955 3714649568
200
+ 1924448690 275933853 3254129074 1742363440 1030650439