rails_ai 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.rspec_status +96 -0
- data/AGENT_GUIDE.md +513 -0
- data/Appraisals +49 -0
- data/COMMERCIAL_LICENSE_TEMPLATE.md +92 -0
- data/FEATURES.md +204 -0
- data/LEGAL_PROTECTION_GUIDE.md +222 -0
- data/LICENSE +62 -0
- data/LICENSE_SUMMARY.md +74 -0
- data/MIT-LICENSE +62 -0
- data/PERFORMANCE.md +300 -0
- data/PROVIDERS.md +495 -0
- data/README.md +454 -0
- data/Rakefile +11 -0
- data/SPEED_OPTIMIZATIONS.md +217 -0
- data/STRUCTURE.md +139 -0
- data/USAGE_GUIDE.md +288 -0
- data/app/channels/ai_stream_channel.rb +33 -0
- data/app/components/ai/prompt_component.rb +25 -0
- data/app/controllers/concerns/ai/context_aware.rb +77 -0
- data/app/controllers/concerns/ai/streaming.rb +41 -0
- data/app/helpers/ai_helper.rb +164 -0
- data/app/jobs/ai/generate_embedding_job.rb +25 -0
- data/app/jobs/ai/generate_summary_job.rb +25 -0
- data/app/models/concerns/ai/embeddable.rb +38 -0
- data/app/views/rails_ai/dashboard/index.html.erb +51 -0
- data/config/routes.rb +19 -0
- data/lib/generators/rails_ai/install/install_generator.rb +38 -0
- data/lib/rails_ai/agents/agent_manager.rb +258 -0
- data/lib/rails_ai/agents/agent_team.rb +243 -0
- data/lib/rails_ai/agents/base_agent.rb +331 -0
- data/lib/rails_ai/agents/collaboration.rb +238 -0
- data/lib/rails_ai/agents/memory.rb +116 -0
- data/lib/rails_ai/agents/message_bus.rb +95 -0
- data/lib/rails_ai/agents/specialized_agents.rb +391 -0
- data/lib/rails_ai/agents/task_queue.rb +111 -0
- data/lib/rails_ai/cache.rb +14 -0
- data/lib/rails_ai/config.rb +40 -0
- data/lib/rails_ai/context.rb +7 -0
- data/lib/rails_ai/context_analyzer.rb +86 -0
- data/lib/rails_ai/engine.rb +48 -0
- data/lib/rails_ai/events.rb +9 -0
- data/lib/rails_ai/image_context.rb +110 -0
- data/lib/rails_ai/performance.rb +231 -0
- data/lib/rails_ai/provider.rb +8 -0
- data/lib/rails_ai/providers/anthropic_adapter.rb +256 -0
- data/lib/rails_ai/providers/base.rb +60 -0
- data/lib/rails_ai/providers/dummy_adapter.rb +29 -0
- data/lib/rails_ai/providers/gemini_adapter.rb +509 -0
- data/lib/rails_ai/providers/openai_adapter.rb +535 -0
- data/lib/rails_ai/providers/secure_anthropic_adapter.rb +206 -0
- data/lib/rails_ai/providers/secure_openai_adapter.rb +284 -0
- data/lib/rails_ai/railtie.rb +48 -0
- data/lib/rails_ai/redactor.rb +12 -0
- data/lib/rails_ai/security/api_key_manager.rb +82 -0
- data/lib/rails_ai/security/audit_logger.rb +46 -0
- data/lib/rails_ai/security/error_handler.rb +62 -0
- data/lib/rails_ai/security/input_validator.rb +176 -0
- data/lib/rails_ai/security/secure_file_handler.rb +45 -0
- data/lib/rails_ai/security/secure_http_client.rb +177 -0
- data/lib/rails_ai/security.rb +0 -0
- data/lib/rails_ai/version.rb +5 -0
- data/lib/rails_ai/window_context.rb +103 -0
- data/lib/rails_ai.rb +502 -0
- data/monitoring/ci_setup_guide.md +214 -0
- data/monitoring/enhanced_monitoring_script.rb +237 -0
- data/monitoring/google_alerts_setup.md +42 -0
- data/monitoring_log_20250921.txt +0 -0
- data/monitoring_script.rb +161 -0
- data/rails_ai.gemspec +54 -0
- data/scripts/security_scanner.rb +353 -0
- data/setup_monitoring.sh +163 -0
- data/wiki/API-Documentation.md +734 -0
- data/wiki/Architecture-Overview.md +672 -0
- data/wiki/Contributing-Guide.md +407 -0
- data/wiki/Development-Setup.md +532 -0
- data/wiki/Home.md +278 -0
- data/wiki/Installation-Guide.md +527 -0
- data/wiki/Quick-Start.md +186 -0
- data/wiki/README.md +135 -0
- data/wiki/Release-Process.md +467 -0
- metadata +385 -0
@@ -0,0 +1,9 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module RailsAi
|
4
|
+
module Events
|
5
|
+
def self.log!(kind:, name:, payload: {}, latency_ms: nil)
|
6
|
+
ActiveSupport::Notifications.instrument("rails_ai.#{kind}", {name:, payload:, latency_ms:, user_id: RailsAi::Context.user_id, request_id: RailsAi::Context.request_id})
|
7
|
+
end
|
8
|
+
end
|
9
|
+
end
|
@@ -0,0 +1,110 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module RailsAi
|
4
|
+
class ImageContext
|
5
|
+
attr_reader :metadata, :source, :dimensions, :file_size, :format, :created_at
|
6
|
+
|
7
|
+
def initialize(image_data, metadata: {})
|
8
|
+
@metadata = metadata || {}
|
9
|
+
@source = determine_source(image_data)
|
10
|
+
@dimensions = extract_dimensions(image_data)
|
11
|
+
@file_size = extract_file_size(image_data)
|
12
|
+
@format = extract_format(image_data)
|
13
|
+
@created_at = current_time
|
14
|
+
end
|
15
|
+
|
16
|
+
def to_h
|
17
|
+
{
|
18
|
+
source: source,
|
19
|
+
dimensions: dimensions,
|
20
|
+
file_size: file_size,
|
21
|
+
format: format,
|
22
|
+
created_at: created_at.iso8601,
|
23
|
+
metadata: metadata,
|
24
|
+
analysis_ready: analysis_ready?
|
25
|
+
}
|
26
|
+
end
|
27
|
+
|
28
|
+
def analysis_ready?
|
29
|
+
dimensions.present? && format.present?
|
30
|
+
end
|
31
|
+
|
32
|
+
def self.from_file(image_file)
|
33
|
+
new(image_file, metadata: extract_file_metadata(image_file))
|
34
|
+
end
|
35
|
+
|
36
|
+
def self.from_url(image_url)
|
37
|
+
new(image_url, metadata: { url: image_url })
|
38
|
+
end
|
39
|
+
|
40
|
+
def self.from_base64(image_data)
|
41
|
+
new(image_data, metadata: { encoding: 'base64' })
|
42
|
+
end
|
43
|
+
|
44
|
+
private
|
45
|
+
|
46
|
+
def current_time
|
47
|
+
if defined?(Time.current)
|
48
|
+
Time.current
|
49
|
+
else
|
50
|
+
Time.now
|
51
|
+
end
|
52
|
+
end
|
53
|
+
|
54
|
+
def determine_source(image_data)
|
55
|
+
case image_data
|
56
|
+
when String
|
57
|
+
if image_data.start_with?('data:')
|
58
|
+
'base64'
|
59
|
+
elsif image_data.start_with?('http')
|
60
|
+
'url'
|
61
|
+
else
|
62
|
+
'file_path'
|
63
|
+
end
|
64
|
+
when File, ActionDispatch::Http::UploadedFile
|
65
|
+
'uploaded_file'
|
66
|
+
else
|
67
|
+
'unknown'
|
68
|
+
end
|
69
|
+
end
|
70
|
+
|
71
|
+
def extract_dimensions(image_data)
|
72
|
+
# This would need to be implemented with image processing library
|
73
|
+
# For now, return placeholder
|
74
|
+
{ width: 'unknown', height: 'unknown' }
|
75
|
+
end
|
76
|
+
|
77
|
+
def extract_file_size(image_data)
|
78
|
+
case image_data
|
79
|
+
when String
|
80
|
+
image_data.bytesize
|
81
|
+
when File, ActionDispatch::Http::UploadedFile
|
82
|
+
image_data.size
|
83
|
+
else
|
84
|
+
'unknown'
|
85
|
+
end
|
86
|
+
end
|
87
|
+
|
88
|
+
def extract_format(image_data)
|
89
|
+
case image_data
|
90
|
+
when String
|
91
|
+
if image_data.start_with?('data:')
|
92
|
+
image_data.split(';')[0].split(':')[1]
|
93
|
+
else
|
94
|
+
File.extname(image_data).downcase[1..-1]
|
95
|
+
end
|
96
|
+
when File, ActionDispatch::Http::UploadedFile
|
97
|
+
image_data.content_type&.split('/')&.last
|
98
|
+
else
|
99
|
+
'unknown'
|
100
|
+
end
|
101
|
+
end
|
102
|
+
|
103
|
+
def self.extract_file_metadata(image_file)
|
104
|
+
{
|
105
|
+
filename: image_file.respond_to?(:original_filename) ? image_file.original_filename : 'unknown',
|
106
|
+
content_type: image_file.respond_to?(:content_type) ? image_file.content_type : 'unknown'
|
107
|
+
}
|
108
|
+
end
|
109
|
+
end
|
110
|
+
end
|
@@ -0,0 +1,231 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module RailsAi
|
4
|
+
module Performance
|
5
|
+
# Connection pooling for HTTP clients
|
6
|
+
class ConnectionPool
|
7
|
+
def initialize(size: 10)
|
8
|
+
@pool = Concurrent::Array.new(size) { create_connection }
|
9
|
+
@semaphore = Concurrent::Semaphore.new(size)
|
10
|
+
end
|
11
|
+
|
12
|
+
def with_connection
|
13
|
+
@semaphore.acquire
|
14
|
+
connection = @pool.pop
|
15
|
+
yield(connection)
|
16
|
+
ensure
|
17
|
+
@pool.push(connection) if connection
|
18
|
+
@semaphore.release
|
19
|
+
end
|
20
|
+
|
21
|
+
private
|
22
|
+
|
23
|
+
def create_connection
|
24
|
+
# Simple connection object for now
|
25
|
+
Object.new
|
26
|
+
end
|
27
|
+
end
|
28
|
+
|
29
|
+
# Request batching for multiple operations
|
30
|
+
class BatchProcessor
|
31
|
+
def initialize(batch_size: 10, flush_interval: 0.1)
|
32
|
+
@batch_size = batch_size
|
33
|
+
@flush_interval = flush_interval
|
34
|
+
@queue = Concurrent::Array.new
|
35
|
+
@mutex = Mutex.new
|
36
|
+
@last_flush = Time.now
|
37
|
+
end
|
38
|
+
|
39
|
+
def add_operation(operation)
|
40
|
+
@mutex.synchronize do
|
41
|
+
@queue << operation
|
42
|
+
flush_if_needed
|
43
|
+
end
|
44
|
+
end
|
45
|
+
|
46
|
+
private
|
47
|
+
|
48
|
+
def flush_if_needed
|
49
|
+
return unless should_flush?
|
50
|
+
|
51
|
+
operations = @queue.shift(@batch_size)
|
52
|
+
process_batch(operations) if operations.any?
|
53
|
+
@last_flush = Time.now
|
54
|
+
end
|
55
|
+
|
56
|
+
def should_flush?
|
57
|
+
@queue.size >= @batch_size ||
|
58
|
+
(Time.now - @last_flush) > @flush_interval
|
59
|
+
end
|
60
|
+
|
61
|
+
def process_batch(operations)
|
62
|
+
# Process operations in parallel
|
63
|
+
operations.map do |operation|
|
64
|
+
Concurrent::Future.execute { operation.call }
|
65
|
+
end.each(&:value!)
|
66
|
+
end
|
67
|
+
end
|
68
|
+
|
69
|
+
# Memory-efficient streaming
|
70
|
+
class StreamProcessor
|
71
|
+
def initialize(chunk_size: 1024)
|
72
|
+
@chunk_size = chunk_size
|
73
|
+
end
|
74
|
+
|
75
|
+
def process_stream(stream, &block)
|
76
|
+
buffer = String.new(capacity: @chunk_size)
|
77
|
+
|
78
|
+
stream.each_chunk(@chunk_size) do |chunk|
|
79
|
+
buffer << chunk
|
80
|
+
|
81
|
+
if buffer.bytesize >= @chunk_size
|
82
|
+
yield(buffer.dup)
|
83
|
+
buffer.clear
|
84
|
+
end
|
85
|
+
end
|
86
|
+
|
87
|
+
yield(buffer) if buffer.bytesize > 0
|
88
|
+
end
|
89
|
+
end
|
90
|
+
|
91
|
+
# Smart caching with compression
|
92
|
+
class SmartCache
|
93
|
+
def initialize(compression_threshold: 1024)
|
94
|
+
@compression_threshold = compression_threshold
|
95
|
+
end
|
96
|
+
|
97
|
+
def fetch(key, **opts, &block)
|
98
|
+
return block.call unless block_given?
|
99
|
+
|
100
|
+
if defined?(Rails) && Rails.cache
|
101
|
+
compressed_key = compress_key(key)
|
102
|
+
Rails.cache.fetch(compressed_key, **opts) do
|
103
|
+
result = block.call
|
104
|
+
compress_if_needed(result)
|
105
|
+
end
|
106
|
+
else
|
107
|
+
block.call
|
108
|
+
end
|
109
|
+
end
|
110
|
+
|
111
|
+
private
|
112
|
+
|
113
|
+
def compress_key(key)
|
114
|
+
# Use consistent hashing for better distribution
|
115
|
+
Digest::MD5.hexdigest(key.inspect)
|
116
|
+
end
|
117
|
+
|
118
|
+
def compress_if_needed(data)
|
119
|
+
return data unless data.is_a?(String) && data.bytesize > @compression_threshold
|
120
|
+
|
121
|
+
compressed = Zlib::Deflate.deflate(data)
|
122
|
+
{ compressed: true, data: compressed }
|
123
|
+
end
|
124
|
+
|
125
|
+
def decompress_if_needed(data)
|
126
|
+
return data unless data.is_a?(Hash) && data[:compressed]
|
127
|
+
|
128
|
+
Zlib::Inflate.inflate(data[:data])
|
129
|
+
end
|
130
|
+
end
|
131
|
+
|
132
|
+
# Request deduplication
|
133
|
+
class RequestDeduplicator
|
134
|
+
def initialize
|
135
|
+
@pending_requests = Concurrent::Hash.new
|
136
|
+
@mutex = Mutex.new
|
137
|
+
end
|
138
|
+
|
139
|
+
def deduplicate(key, &block)
|
140
|
+
@mutex.synchronize do
|
141
|
+
if @pending_requests[key]
|
142
|
+
# Wait for existing request
|
143
|
+
@pending_requests[key].value
|
144
|
+
else
|
145
|
+
# Start new request
|
146
|
+
future = Concurrent::Future.execute(&block)
|
147
|
+
@pending_requests[key] = future
|
148
|
+
|
149
|
+
begin
|
150
|
+
future.value
|
151
|
+
ensure
|
152
|
+
@pending_requests.delete(key)
|
153
|
+
end
|
154
|
+
end
|
155
|
+
end
|
156
|
+
end
|
157
|
+
end
|
158
|
+
|
159
|
+
# Performance monitoring
|
160
|
+
class PerformanceMonitor
|
161
|
+
def initialize
|
162
|
+
@metrics = Concurrent::Hash.new
|
163
|
+
end
|
164
|
+
|
165
|
+
def measure(operation, &block)
|
166
|
+
start_time = Process.clock_gettime(Process::CLOCK_MONOTONIC)
|
167
|
+
memory_before = memory_usage
|
168
|
+
|
169
|
+
result = block.call
|
170
|
+
|
171
|
+
duration = Process.clock_gettime(Process::CLOCK_MONOTONIC) - start_time
|
172
|
+
memory_after = memory_usage
|
173
|
+
|
174
|
+
record_metric(operation, duration, memory_after - memory_before)
|
175
|
+
result
|
176
|
+
end
|
177
|
+
|
178
|
+
def metrics
|
179
|
+
@metrics.dup
|
180
|
+
end
|
181
|
+
|
182
|
+
private
|
183
|
+
|
184
|
+
def record_metric(operation, duration, memory_delta)
|
185
|
+
@metrics[operation] ||= {
|
186
|
+
count: 0,
|
187
|
+
total_duration: 0.0,
|
188
|
+
total_memory: 0,
|
189
|
+
min_duration: Float::INFINITY,
|
190
|
+
max_duration: 0.0
|
191
|
+
}
|
192
|
+
|
193
|
+
metric = @metrics[operation]
|
194
|
+
metric[:count] += 1
|
195
|
+
metric[:total_duration] += duration
|
196
|
+
metric[:total_memory] += memory_delta
|
197
|
+
metric[:min_duration] = [metric[:min_duration], duration].min
|
198
|
+
metric[:max_duration] = [metric[:max_duration], duration].max
|
199
|
+
end
|
200
|
+
|
201
|
+
def memory_usage
|
202
|
+
`ps -o rss= -p #{Process.pid}`.to_i * 1024
|
203
|
+
rescue
|
204
|
+
0
|
205
|
+
end
|
206
|
+
end
|
207
|
+
|
208
|
+
# Lazy loading for providers
|
209
|
+
class LazyProvider
|
210
|
+
def initialize(&provider_factory)
|
211
|
+
@provider_factory = provider_factory
|
212
|
+
@provider = nil
|
213
|
+
@mutex = Mutex.new
|
214
|
+
end
|
215
|
+
|
216
|
+
def method_missing(method, *args, **kwargs, &block)
|
217
|
+
@mutex.synchronize do
|
218
|
+
@provider ||= @provider_factory.call
|
219
|
+
end
|
220
|
+
@provider.public_send(method, *args, **kwargs, &block)
|
221
|
+
end
|
222
|
+
|
223
|
+
def respond_to_missing?(method, include_private = false)
|
224
|
+
@mutex.synchronize do
|
225
|
+
@provider ||= @provider_factory.call
|
226
|
+
end
|
227
|
+
@provider.respond_to?(method, include_private)
|
228
|
+
end
|
229
|
+
end
|
230
|
+
end
|
231
|
+
end
|
@@ -0,0 +1,256 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
require "net/http"
|
4
|
+
require "json"
|
5
|
+
require "base64"
|
6
|
+
|
7
|
+
module RailsAi
|
8
|
+
module Providers
|
9
|
+
class AnthropicAdapter < Base
|
10
|
+
ANTHROPIC_API_BASE = "https://api.anthropic.com/v1"
|
11
|
+
|
12
|
+
def initialize
|
13
|
+
@api_key = ENV.fetch("ANTHROPIC_API_KEY")
|
14
|
+
super
|
15
|
+
end
|
16
|
+
|
17
|
+
# Text-based operations
|
18
|
+
def chat!(messages:, model:, **opts)
|
19
|
+
return "(stubbed) #{messages.last[:content]}" if RailsAi.config.stub_responses
|
20
|
+
|
21
|
+
# Convert OpenAI format to Anthropic format
|
22
|
+
anthropic_messages = convert_messages_to_anthropic(messages)
|
23
|
+
|
24
|
+
response = make_request(
|
25
|
+
"messages",
|
26
|
+
{
|
27
|
+
model: model,
|
28
|
+
max_tokens: opts[:max_tokens] || RailsAi.config.token_limit,
|
29
|
+
messages: anthropic_messages,
|
30
|
+
temperature: opts[:temperature] || 1.0,
|
31
|
+
top_p: opts[:top_p] || 1.0,
|
32
|
+
top_k: opts[:top_k] || 0,
|
33
|
+
stop_sequences: opts[:stop_sequences] || [],
|
34
|
+
**opts.except(:max_tokens, :temperature, :top_p, :top_k, :stop_sequences)
|
35
|
+
}
|
36
|
+
)
|
37
|
+
|
38
|
+
response.dig("content", 0, "text")
|
39
|
+
end
|
40
|
+
|
41
|
+
def stream_chat!(messages:, model:, **opts, &on_token)
|
42
|
+
return on_token.call("(stubbed stream)") if RailsAi.config.stub_responses
|
43
|
+
|
44
|
+
# Convert OpenAI format to Anthropic format
|
45
|
+
anthropic_messages = convert_messages_to_anthropic(messages)
|
46
|
+
|
47
|
+
make_streaming_request(
|
48
|
+
"messages",
|
49
|
+
{
|
50
|
+
model: model,
|
51
|
+
max_tokens: opts[:max_tokens] || RailsAi.config.token_limit,
|
52
|
+
messages: anthropic_messages,
|
53
|
+
temperature: opts[:temperature] || 1.0,
|
54
|
+
top_p: opts[:top_p] || 1.0,
|
55
|
+
top_k: opts[:top_k] || 0,
|
56
|
+
stop_sequences: opts[:stop_sequences] || [],
|
57
|
+
stream: true,
|
58
|
+
**opts.except(:max_tokens, :temperature, :top_p, :top_k, :stop_sequences, :stream)
|
59
|
+
}
|
60
|
+
) do |chunk|
|
61
|
+
text = chunk.dig("delta", "text")
|
62
|
+
on_token.call(text) if text
|
63
|
+
end
|
64
|
+
end
|
65
|
+
|
66
|
+
def embed!(texts:, model:, **opts)
|
67
|
+
return Array.new(texts.length) { [0.0] * 1024 } if RailsAi.config.stub_responses
|
68
|
+
|
69
|
+
# Anthropic doesn't have a direct embedding API, but we can use their models
|
70
|
+
# This is a placeholder implementation that could be enhanced
|
71
|
+
texts.map do |text|
|
72
|
+
# In a real implementation, you might use a different service for embeddings
|
73
|
+
# or implement a workaround using Claude's text understanding
|
74
|
+
Array.new(1024) { rand(-1.0..1.0) }
|
75
|
+
end
|
76
|
+
end
|
77
|
+
|
78
|
+
# Image generation - Anthropic doesn't have image generation
|
79
|
+
def generate_image!(prompt:, model:, **opts)
|
80
|
+
return "" if RailsAi.config.stub_responses
|
81
|
+
raise NotImplementedError, "Anthropic doesn't support image generation. Use OpenAI or Gemini for image generation."
|
82
|
+
end
|
83
|
+
|
84
|
+
def edit_image!(image:, prompt:, **opts)
|
85
|
+
return "" if RailsAi.config.stub_responses
|
86
|
+
raise NotImplementedError, "Anthropic doesn't support image editing. Use OpenAI or Gemini for image editing."
|
87
|
+
end
|
88
|
+
|
89
|
+
def create_variation!(image:, **opts)
|
90
|
+
return "" if RailsAi.config.stub_responses
|
91
|
+
raise NotImplementedError, "Anthropic doesn't support image variations. Use OpenAI or Gemini for image variations."
|
92
|
+
end
|
93
|
+
|
94
|
+
# Video generation - Anthropic doesn't have video generation
|
95
|
+
def generate_video!(prompt:, model:, **opts)
|
96
|
+
return "data:video/mp4;base64,AAAAIGZ0eXBpc29tAAACAGlzb21pc28yYXZjMW1wNDEAAAAIZnJlZQAAAB1tZGF0AQAAARxtYXNrAAAAAG1wNDEAAAAAIG1kYXQ=" if RailsAi.config.stub_responses
|
97
|
+
raise NotImplementedError, "Anthropic doesn't support video generation. Use OpenAI or Gemini for video generation."
|
98
|
+
end
|
99
|
+
|
100
|
+
def edit_video!(video:, prompt:, **opts)
|
101
|
+
return "data:video/mp4;base64,AAAAIGZ0eXBpc29tAAACAGlzb21pc28yYXZjMW1wNDEAAAAIZnJlZQAAAB1tZGF0AQAAARxtYXNrAAAAAG1wNDEAAAAAIG1kYXQ=" if RailsAi.config.stub_responses
|
102
|
+
raise NotImplementedError, "Anthropic doesn't support video editing. Use OpenAI or Gemini for video editing."
|
103
|
+
end
|
104
|
+
|
105
|
+
# Audio generation - Anthropic doesn't have audio generation
|
106
|
+
def generate_speech!(text:, model:, **opts)
|
107
|
+
return "data:audio/mp3;base64,SUQzBAAAAAAAI1RTU0UAAAAPAAADTGF2ZjU4Ljc2LjEwMAAAAAAAAAAAAAAA//tQxAADB8AhSmAhIIEVWWWU" if RailsAi.config.stub_responses
|
108
|
+
raise NotImplementedError, "Anthropic doesn't support speech generation. Use OpenAI or Gemini for speech generation."
|
109
|
+
end
|
110
|
+
|
111
|
+
def transcribe_audio!(audio:, model:, **opts)
|
112
|
+
return "[stubbed transcription]" if RailsAi.config.stub_responses
|
113
|
+
raise NotImplementedError, "Anthropic doesn't support audio transcription. Use OpenAI or Gemini for audio transcription."
|
114
|
+
end
|
115
|
+
|
116
|
+
# Multimodal analysis - Anthropic supports image analysis with Claude 3 Vision
|
117
|
+
def analyze_image!(image:, prompt:, model: "claude-3-5-sonnet-20241022", **opts)
|
118
|
+
return "[stubbed] Image analysis: #{prompt}" if RailsAi.config.stub_responses
|
119
|
+
|
120
|
+
# Anthropic supports image analysis with Claude 3 Vision models
|
121
|
+
messages = [
|
122
|
+
{
|
123
|
+
role: "user",
|
124
|
+
content: [
|
125
|
+
{
|
126
|
+
type: "image",
|
127
|
+
source: {
|
128
|
+
type: "base64",
|
129
|
+
media_type: detect_image_type(image),
|
130
|
+
data: extract_base64_data(image)
|
131
|
+
}
|
132
|
+
},
|
133
|
+
{
|
134
|
+
type: "text",
|
135
|
+
text: prompt
|
136
|
+
}
|
137
|
+
]
|
138
|
+
}
|
139
|
+
]
|
140
|
+
|
141
|
+
response = make_request(
|
142
|
+
"messages",
|
143
|
+
{
|
144
|
+
model: model,
|
145
|
+
max_tokens: opts[:max_tokens] || RailsAi.config.token_limit,
|
146
|
+
messages: messages,
|
147
|
+
temperature: opts[:temperature] || 1.0,
|
148
|
+
top_p: opts[:top_p] || 1.0,
|
149
|
+
top_k: opts[:top_k] || 0,
|
150
|
+
**opts.except(:max_tokens, :temperature, :top_p, :top_k)
|
151
|
+
}
|
152
|
+
)
|
153
|
+
|
154
|
+
response.dig("content", 0, "text")
|
155
|
+
end
|
156
|
+
|
157
|
+
def analyze_video!(video:, prompt:, model:, **opts)
|
158
|
+
return "[stubbed] Video analysis: #{prompt}" if RailsAi.config.stub_responses
|
159
|
+
raise NotImplementedError, "Anthropic doesn't support video analysis. Use OpenAI or Gemini for video analysis."
|
160
|
+
end
|
161
|
+
|
162
|
+
private
|
163
|
+
|
164
|
+
def make_request(endpoint, payload)
|
165
|
+
uri = URI("#{ANTHROPIC_API_BASE}/#{endpoint}")
|
166
|
+
|
167
|
+
http = Net::HTTP.new(uri.host, uri.port)
|
168
|
+
http.use_ssl = true
|
169
|
+
|
170
|
+
request = Net::HTTP::Post.new(uri)
|
171
|
+
request["x-api-key"] = @api_key
|
172
|
+
request["Content-Type"] = "application/json"
|
173
|
+
request["anthropic-version"] = "2023-06-01"
|
174
|
+
request.body = payload.to_json
|
175
|
+
|
176
|
+
response = http.request(request)
|
177
|
+
|
178
|
+
if response.code == "200"
|
179
|
+
JSON.parse(response.body)
|
180
|
+
else
|
181
|
+
error_body = JSON.parse(response.body) rescue response.body
|
182
|
+
raise "Anthropic API error (#{response.code}): #{error_body}"
|
183
|
+
end
|
184
|
+
end
|
185
|
+
|
186
|
+
def make_streaming_request(endpoint, payload, &block)
|
187
|
+
uri = URI("#{ANTHROPIC_API_BASE}/#{endpoint}")
|
188
|
+
|
189
|
+
http = Net::HTTP.new(uri.host, uri.port)
|
190
|
+
http.use_ssl = true
|
191
|
+
|
192
|
+
request = Net::HTTP::Post.new(uri)
|
193
|
+
request["x-api-key"] = @api_key
|
194
|
+
request["Content-Type"] = "application/json"
|
195
|
+
request["anthropic-version"] = "2023-06-01"
|
196
|
+
request.body = payload.to_json
|
197
|
+
|
198
|
+
http.request(request) do |response|
|
199
|
+
if response.code == "200"
|
200
|
+
response.read_body do |chunk|
|
201
|
+
# Parse streaming response chunks
|
202
|
+
chunk.split("\n").each do |line|
|
203
|
+
next if line.empty?
|
204
|
+
next unless line.start_with?("data: ")
|
205
|
+
|
206
|
+
data = line[6..-1] # Remove "data: " prefix
|
207
|
+
next if data == "[DONE]"
|
208
|
+
|
209
|
+
begin
|
210
|
+
parsed = JSON.parse(data)
|
211
|
+
block.call(parsed)
|
212
|
+
rescue JSON::ParserError
|
213
|
+
# Skip invalid JSON chunks
|
214
|
+
next
|
215
|
+
end
|
216
|
+
end
|
217
|
+
end
|
218
|
+
else
|
219
|
+
error_body = JSON.parse(response.body) rescue response.body
|
220
|
+
raise "Anthropic API error (#{response.code}): #{error_body}"
|
221
|
+
end
|
222
|
+
end
|
223
|
+
end
|
224
|
+
|
225
|
+
def convert_messages_to_anthropic(messages)
|
226
|
+
messages.map do |message|
|
227
|
+
{
|
228
|
+
role: message[:role] == "assistant" ? "assistant" : "user",
|
229
|
+
content: message[:content]
|
230
|
+
}
|
231
|
+
end
|
232
|
+
end
|
233
|
+
|
234
|
+
def detect_image_type(image)
|
235
|
+
if image.is_a?(String)
|
236
|
+
if image.start_with?("data:image/")
|
237
|
+
image.split(";")[0].split(":")[1]
|
238
|
+
else
|
239
|
+
"image/png" # default
|
240
|
+
end
|
241
|
+
else
|
242
|
+
"image/png" # default for file objects
|
243
|
+
end
|
244
|
+
end
|
245
|
+
|
246
|
+
def extract_base64_data(image)
|
247
|
+
if image.is_a?(String) && image.include?("base64,")
|
248
|
+
image.split("base64,")[1]
|
249
|
+
else
|
250
|
+
# For file objects, read and encode
|
251
|
+
Base64.strict_encode64(image.read)
|
252
|
+
end
|
253
|
+
end
|
254
|
+
end
|
255
|
+
end
|
256
|
+
end
|
@@ -0,0 +1,60 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module RailsAi
|
4
|
+
module Providers
|
5
|
+
class Base
|
6
|
+
# Text-based AI operations
|
7
|
+
def chat!(messages:, model:, **opts)
|
8
|
+
raise NotImplementedError
|
9
|
+
end
|
10
|
+
|
11
|
+
def stream_chat!(messages:, model:, **opts, &on_token)
|
12
|
+
raise NotImplementedError
|
13
|
+
end
|
14
|
+
|
15
|
+
def embed!(texts:, model:, **opts)
|
16
|
+
raise NotImplementedError
|
17
|
+
end
|
18
|
+
|
19
|
+
# Image generation
|
20
|
+
def generate_image!(prompt:, model: "dall-e-3", size: "1024x1024", quality: "standard", **opts)
|
21
|
+
raise NotImplementedError
|
22
|
+
end
|
23
|
+
|
24
|
+
def edit_image!(image:, prompt:, mask: nil, size: "1024x1024", **opts)
|
25
|
+
raise NotImplementedError
|
26
|
+
end
|
27
|
+
|
28
|
+
def create_variation!(image:, size: "1024x1024", **opts)
|
29
|
+
raise NotImplementedError
|
30
|
+
end
|
31
|
+
|
32
|
+
# Video generation
|
33
|
+
def generate_video!(prompt:, model: "sora", duration: 5, **opts)
|
34
|
+
raise NotImplementedError
|
35
|
+
end
|
36
|
+
|
37
|
+
def edit_video!(video:, prompt:, **opts)
|
38
|
+
raise NotImplementedError
|
39
|
+
end
|
40
|
+
|
41
|
+
# Audio generation
|
42
|
+
def generate_speech!(text:, model: "tts-1", voice: "alloy", **opts)
|
43
|
+
raise NotImplementedError
|
44
|
+
end
|
45
|
+
|
46
|
+
def transcribe_audio!(audio:, model: "whisper-1", **opts)
|
47
|
+
raise NotImplementedError
|
48
|
+
end
|
49
|
+
|
50
|
+
# Multimodal operations
|
51
|
+
def analyze_image!(image:, prompt:, model: "gpt-4-vision-preview", **opts)
|
52
|
+
raise NotImplementedError
|
53
|
+
end
|
54
|
+
|
55
|
+
def analyze_video!(video:, prompt:, model: "gpt-4-vision-preview", **opts)
|
56
|
+
raise NotImplementedError
|
57
|
+
end
|
58
|
+
end
|
59
|
+
end
|
60
|
+
end
|
@@ -0,0 +1,29 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module RailsAi
|
4
|
+
module Providers
|
5
|
+
class DummyAdapter < Base
|
6
|
+
# Text-based operations
|
7
|
+
def chat!(messages:, model:, **opts) = "[dummy] #{messages.last[:content].to_s.reverse}"
|
8
|
+
def stream_chat!(messages:, model:, **opts, &on_token) = messages.last[:content].chars.each { |c| on_token.call(c) }
|
9
|
+
def embed!(texts:, model:, **opts) = texts.map { |t| [t.length.to_f] }
|
10
|
+
|
11
|
+
# Image generation
|
12
|
+
def generate_image!(prompt:, model:, **opts) = ""
|
13
|
+
def edit_image!(image:, prompt:, **opts) = ""
|
14
|
+
def create_variation!(image:, **opts) = ""
|
15
|
+
|
16
|
+
# Video generation
|
17
|
+
def generate_video!(prompt:, model:, **opts) = "data:video/mp4;base64,AAAAIGZ0eXBpc29tAAACAGlzb21pc28yYXZjMW1wNDEAAAAIZnJlZQAAAB1tZGF0AQAAARxtYXNrAAAAAG1wNDEAAAAAIG1kYXQ="
|
18
|
+
def edit_video!(video:, prompt:, **opts) = "data:video/mp4;base64,AAAAIGZ0eXBpc29tAAACAGlzb21pc28yYXZjMW1wNDEAAAAIZnJlZQAAAB1tZGF0AQAAARxtYXNrAAAAAG1wNDEAAAAAIG1kYXQ="
|
19
|
+
|
20
|
+
# Audio generation
|
21
|
+
def generate_speech!(text:, model:, **opts) = "data:audio/mp3;base64,SUQzBAAAAAAAI1RTU0UAAAAPAAADTGF2ZjU4Ljc2LjEwMAAAAAAAAAAAAAAA//tQxAADB8AhSmAhIIEVWWWU"
|
22
|
+
def transcribe_audio!(audio:, model:, **opts) = "[dummy transcription] #{audio.class.name}"
|
23
|
+
|
24
|
+
# Multimodal analysis
|
25
|
+
def analyze_image!(image:, prompt:, model:, **opts) = "[dummy] Image analysis: #{prompt}"
|
26
|
+
def analyze_video!(video:, prompt:, model:, **opts) = "[dummy] Video analysis: #{prompt}"
|
27
|
+
end
|
28
|
+
end
|
29
|
+
end
|