rails-data-explorer 0.0.1

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (61) hide show
  1. data/.gitignore +10 -0
  2. data/CHANGELOG.md +3 -0
  3. data/Gemfile +7 -0
  4. data/MIT-LICENSE +20 -0
  5. data/README.md +52 -0
  6. data/Rakefile +18 -0
  7. data/lib/rails-data-explorer.rb +44 -0
  8. data/lib/rails-data-explorer/action_view_extension.rb +12 -0
  9. data/lib/rails-data-explorer/active_record_extension.rb +14 -0
  10. data/lib/rails-data-explorer/chart.rb +52 -0
  11. data/lib/rails-data-explorer/chart/box_plot.rb +79 -0
  12. data/lib/rails-data-explorer/chart/box_plot_group.rb +109 -0
  13. data/lib/rails-data-explorer/chart/contingency_table.rb +189 -0
  14. data/lib/rails-data-explorer/chart/descriptive_statistics_table.rb +22 -0
  15. data/lib/rails-data-explorer/chart/descriptive_statistics_table_group.rb +0 -0
  16. data/lib/rails-data-explorer/chart/histogram_categorical.rb +73 -0
  17. data/lib/rails-data-explorer/chart/histogram_quantitative.rb +73 -0
  18. data/lib/rails-data-explorer/chart/histogram_temporal.rb +78 -0
  19. data/lib/rails-data-explorer/chart/multi_dimensional_charts.rb +1 -0
  20. data/lib/rails-data-explorer/chart/parallel_coordinates.rb +89 -0
  21. data/lib/rails-data-explorer/chart/parallel_set.rb +65 -0
  22. data/lib/rails-data-explorer/chart/pie_chart.rb +67 -0
  23. data/lib/rails-data-explorer/chart/scatterplot.rb +120 -0
  24. data/lib/rails-data-explorer/chart/scatterplot_matrix.rb +1 -0
  25. data/lib/rails-data-explorer/chart/stacked_bar_chart_categorical_percent.rb +120 -0
  26. data/lib/rails-data-explorer/data_series.rb +115 -0
  27. data/lib/rails-data-explorer/data_set.rb +127 -0
  28. data/lib/rails-data-explorer/data_type.rb +34 -0
  29. data/lib/rails-data-explorer/data_type/categorical.rb +117 -0
  30. data/lib/rails-data-explorer/data_type/geo.rb +1 -0
  31. data/lib/rails-data-explorer/data_type/quantitative.rb +109 -0
  32. data/lib/rails-data-explorer/data_type/quantitative/decimal.rb +13 -0
  33. data/lib/rails-data-explorer/data_type/quantitative/integer.rb +13 -0
  34. data/lib/rails-data-explorer/data_type/quantitative/temporal.rb +62 -0
  35. data/lib/rails-data-explorer/engine.rb +24 -0
  36. data/lib/rails-data-explorer/exploration.rb +89 -0
  37. data/lib/rails-data-explorer/statistics/pearsons_chi_squared_independence_test.rb +75 -0
  38. data/lib/rails-data-explorer/statistics/rng_category.rb +37 -0
  39. data/lib/rails-data-explorer/statistics/rng_gaussian.rb +24 -0
  40. data/lib/rails-data-explorer/statistics/rng_power_law.rb +21 -0
  41. data/lib/rails-data-explorer/utils/color_scale.rb +33 -0
  42. data/lib/rails-data-explorer/utils/data_binner.rb +8 -0
  43. data/lib/rails-data-explorer/utils/data_encoder.rb +2 -0
  44. data/lib/rails-data-explorer/utils/data_quantizer.rb +2 -0
  45. data/lib/rails-data-explorer/utils/value_formatter.rb +41 -0
  46. data/rails-data-explorer.gemspec +30 -0
  47. data/vendor/assets/javascripts/d3.boxplot.js +302 -0
  48. data/vendor/assets/javascripts/d3.parcoords.js +585 -0
  49. data/vendor/assets/javascripts/d3.parsets.js +663 -0
  50. data/vendor/assets/javascripts/d3.v3.js +9294 -0
  51. data/vendor/assets/javascripts/nv.d3.js +14369 -0
  52. data/vendor/assets/javascripts/rails-data-explorer.js +19 -0
  53. data/vendor/assets/stylesheets/bootstrap-theme.css +346 -0
  54. data/vendor/assets/stylesheets/bootstrap.css +1727 -0
  55. data/vendor/assets/stylesheets/d3.boxplot.css +20 -0
  56. data/vendor/assets/stylesheets/d3.parcoords.css +34 -0
  57. data/vendor/assets/stylesheets/d3.parsets.css +34 -0
  58. data/vendor/assets/stylesheets/nv.d3.css +769 -0
  59. data/vendor/assets/stylesheets/rails-data-explorer.css +21 -0
  60. data/vendor/assets/stylesheets/rde-default-style.css +42 -0
  61. metadata +250 -0
@@ -0,0 +1,75 @@
1
+ =begin
2
+
3
+ From http://en.wikipedia.org/wiki/Pearson's_chi-squared_test
4
+
5
+ Pearson's chi-squared test is used to assess whether paired observations on two
6
+ variables, expressed in a contingency table, are independent of each other.
7
+
8
+ An "observation" consists of the values of two outcomes and the null hypothesis
9
+ is that the occurrence of these outcomes is statistically independent. Each
10
+ observation is allocated to one cell of a two-dimensional array of cells (called
11
+ a contingency table) according to the values of the two outcomes.
12
+
13
+ Assumptions
14
+ -----------
15
+
16
+ The chi-squared test, when used with the standard approximation that a chi-
17
+ squared distribution is applicable, has the following assumptions:
18
+
19
+ * Simple random sample – The sample data is a random sampling from a fixed
20
+ distribution or population where every collection of members of the population
21
+ of the given sample size has an equal probability of selection. Variants of
22
+ the test have been developed for complex samples, such as where the data is
23
+ weighted. Other forms can be used such as purposive sampling.
24
+ * Sample size (whole table) – A sample with a sufficiently large size is assumed.
25
+ If a chi squared test is conducted on a sample with a smaller size, then the
26
+ chi squared test will yield an inaccurate inference. The researcher, by using
27
+ chi squared test on small samples, might end up committing a Type II error.
28
+ * Expected cell count – Adequate expected cell counts. Some require 5 or more,
29
+ and others require 10 or more. A common rule is 5 or more in all cells of a
30
+ 2-by-2 table, and 5 or more in 80% of cells in larger tables, but no cells
31
+ with zero expected count. When this assumption is not met, Yates's Correction
32
+ is applied.
33
+ * Independence – The observations are always assumed to be independent of each
34
+ other. This means chi-squared cannot be used to test correlated data
35
+ (like matched pairs or panel data). In those cases you might want to turn to
36
+ McNemar's test.
37
+
38
+ Problems
39
+ --------
40
+
41
+ The approximation to the chi-squared distribution breaks down if expected
42
+ frequencies are too low. It will normally be acceptable so long as no more than
43
+ 20% of the events have expected frequencies below 5. Where there is only 1
44
+ degree of freedom, the approximation is not reliable if expected frequencies are
45
+ below 10. In this case, a better approximation can be obtained by reducing the
46
+ absolute value of each difference between observed and expected frequencies by
47
+ 0.5 before squaring; this is called Yates's correction for continuity.
48
+
49
+ In cases where the expected value, E, is found to be small (indicating a small
50
+ underlying population probability, and/or a small number of observations), the
51
+ normal approximation of the multinomial distribution can fail, and in such cases
52
+ it is found to be more appropriate to use the G-test, a likelihood ratio-based
53
+ test statistic. Where the total sample size is small, it is necessary to use an
54
+ appropriate exact test, typically either the binomial test or (for contingency
55
+ tables) Fisher's exact test. This test uses the conditional distribution of the
56
+ test statistic given the marginal totals; however, it does not assume that the
57
+ data were generated from an experiment in which the marginal totals are fixed
58
+ and is valid whether or not that is the case.
59
+
60
+ =end
61
+
62
+ class RailsDataExplorer
63
+ module Statistics
64
+ class PearsonsChiSquaredIndependenceTest
65
+
66
+ #
67
+ def initialize(data_matrix, min_probability = 0.05)
68
+ end
69
+
70
+ def compute
71
+ end
72
+
73
+ end
74
+ end
75
+ end
@@ -0,0 +1,37 @@
1
+ class RailsDataExplorer
2
+ module Statistics
3
+ class RngCategory
4
+
5
+ def initialize(categories, category_probabilities = nil, rng = lambda { Kernel.rand })
6
+ @categories, @category_probabilities, @rng = categories, category_probabilities, rng
7
+ @category_probabilities ||= @categories.map { |e| @rng.call }
8
+ @category_probabilities = normalize_category_probabilities
9
+ @category_order = compute_category_order
10
+ end
11
+
12
+ def rand
13
+ r_v = @rng.call
14
+ rnd = @category_order.detect { |e|
15
+ e[:threshold] >= r_v
16
+ }
17
+ rnd[:category]
18
+ end
19
+
20
+ def normalize_category_probabilities
21
+ total = @category_probabilities.inject(0) { |m,e| m += e }
22
+ @category_probabilities.map { |e| e / total.to_f }
23
+ end
24
+
25
+ def compute_category_order
26
+ category_order = []
27
+ running_sum = 0
28
+ @categories.each_with_index { |e, idx|
29
+ running_sum += @category_probabilities[idx]
30
+ category_order << { :category => e, :threshold => running_sum }
31
+ }
32
+ category_order
33
+ end
34
+
35
+ end
36
+ end
37
+ end
@@ -0,0 +1,24 @@
1
+ # From http://stackoverflow.com/a/9266488
2
+ class RailsDataExplorer
3
+ module Statistics
4
+ class RngGaussian
5
+ def initialize(mean = 0.0, sd = 1.0, rng = lambda { Kernel.rand })
6
+ @mean, @sd, @rng = mean, sd, rng
7
+ @compute_next_pair = false
8
+ end
9
+
10
+ def rand
11
+ if (@compute_next_pair = !@compute_next_pair)
12
+ # Compute a pair of random values with normal distribution.
13
+ # See http://en.wikipedia.org/wiki/Box-Muller_transform
14
+ theta = 2 * Math::PI * @rng.call
15
+ scale = @sd * Math.sqrt(-2 * Math.log(1 - @rng.call))
16
+ @g1 = @mean + scale * Math.sin(theta)
17
+ @g0 = @mean + scale * Math.cos(theta)
18
+ else
19
+ @g1
20
+ end
21
+ end
22
+ end
23
+ end
24
+ end
@@ -0,0 +1,21 @@
1
+ class RailsDataExplorer
2
+ module Statistics
3
+ class RngPowerLaw
4
+
5
+ def initialize(min = 1, max = 1000, pow = 2, rng = lambda { Kernel.rand })
6
+ @min, @max, @pow, @rng = min, max, pow, rng
7
+ @max += 1
8
+ end
9
+
10
+ def rand
11
+ y = (
12
+ (
13
+ (@max ** (@pow + 1) - @min ** (@pow + 1)) * @rng.call + @min ** (@pow + 1)
14
+ ) ** (1.0 / (@pow + 1))
15
+ ).to_i
16
+ (@max - 1 - y) + @min
17
+ end
18
+
19
+ end
20
+ end
21
+ end
@@ -0,0 +1,33 @@
1
+ class RailsDataExplorer
2
+ module Utils
3
+ class ColorScale
4
+
5
+ def initialize
6
+ @points = {
7
+ -1 => Color::RGB::Red,
8
+ -0.1 => Color::RGB::Black,
9
+ 0.1 => Color::RGB::Black,
10
+ 1 => Color::RGB::Green,
11
+ }
12
+ @gradient = Interpolate::Points.new(@points)
13
+ @gradient.blend_with {|color, other, balance|
14
+ other.mix_with(color, balance * 100.0)
15
+ }
16
+ end
17
+
18
+ def compute(input)
19
+ @gradient.at(input).html
20
+ end
21
+
22
+ def demo
23
+ "<ul>".html_safe +
24
+ (-1).step(1, 0.1).map { |e|
25
+ color = compute(e)
26
+ %(<li style="color: #{ color }">#{ e } (#{ color })</li>)
27
+ }.join.html_safe +
28
+ "</ul>".html_safe
29
+ end
30
+
31
+ end
32
+ end
33
+ end
@@ -0,0 +1,8 @@
1
+ # Convert quantitative data to categorical data.
2
+ # http://saedsayad.com/binning.htm
3
+ # E.g., ages in years to 5 groups:
4
+ # * < 10
5
+ # * 11 - 20
6
+ # * 21 - 30
7
+ # * 31 - 40
8
+ # * > 40
@@ -0,0 +1,2 @@
1
+ # Convert categorical data to quantitative data.
2
+ # http://saedsayad.com/encoding.htm
@@ -0,0 +1,2 @@
1
+ # Map a large set of quantitative/temporal/geo input values to a (countable)
2
+ # smaller set – such as rounding values to some unit of precision.
@@ -0,0 +1,41 @@
1
+ # Add ValueFormat to DataSeries and to individual data points
2
+ # Good resource on significant figures:
3
+ # * http://www.edu.pe.ca/gray/class_pages/krcutcliffe/physics521/sigfigs/sigfigRULES.htm
4
+ # * http://en.wikipedia.org/wiki/Significant_figures
5
+ class RailsDataExplorer
6
+ module Utils
7
+ class ValueFormatter
8
+
9
+ attr_accessor :d3_format, :ruby_formatter, :significant_figures
10
+
11
+ # @param[Object] context
12
+ def initialize(context)
13
+ case context
14
+ when DataSeries
15
+ initialize_from_data_series(context)
16
+ when Hash
17
+ initialize_from_options(context)
18
+ when Numeric
19
+ initialize_from_single_value(context)
20
+ else
21
+ raise "Handle this context: #{ context.inspect }"
22
+ end
23
+ end
24
+
25
+ private
26
+
27
+ def initialize_from_data_series(data_series)
28
+ end
29
+
30
+ def initialize_from_options(options)
31
+ @d3_format = options[:d3_format]
32
+ @significant_figures = options[:significant_figures]
33
+ @ruby_formatter = options[:ruby_formatter]
34
+ end
35
+
36
+ def initialize_from_single_value(options)
37
+ end
38
+
39
+ end
40
+ end
41
+ end
@@ -0,0 +1,30 @@
1
+ # -*- encoding: utf-8 -*-
2
+ $:.push File.expand_path('../lib', __FILE__)
3
+
4
+ Gem::Specification.new do |gem|
5
+ gem.name = 'rails-data-explorer'
6
+ gem.version = '0.0.1'
7
+ gem.platform = Gem::Platform::RUBY
8
+
9
+ gem.authors = ['Jo Hund']
10
+ gem.email = 'jhund@clearcove.ca'
11
+ gem.homepage = 'http://rails-data-explorer.clearcove.ca'
12
+ gem.licenses = ['MIT']
13
+ gem.summary = 'A Rails engine plugin for exploring data in your app with charts and statistics.'
14
+ gem.description = %(rails-data-explorer is a Rails Engine plugin that makes it easy to explore the data in your app using charts and statistics.)
15
+
16
+ gem.files = `git ls-files`.split("\n")
17
+ gem.test_files = `git ls-files -- {test,spec,features}/*`.split("\n")
18
+
19
+ # really it's only ActiveSupport and ActionView
20
+ gem.add_dependency 'actionview', '>= 3.0.0'
21
+ gem.add_dependency 'color'
22
+ gem.add_dependency 'descriptive-statistics'
23
+ gem.add_dependency 'distribution'
24
+ gem.add_dependency 'interpolate'
25
+
26
+ gem.add_development_dependency 'bundler', ['>= 1.0.0']
27
+ gem.add_development_dependency 'rake', ['>= 0']
28
+ gem.add_development_dependency 'minitest'
29
+ gem.add_development_dependency 'minitest-spec-expect'
30
+ end
@@ -0,0 +1,302 @@
1
+ // From http://bl.ocks.org/mbostock/4061502
2
+ (function() {
3
+
4
+ // Inspired by http://informationandvisualization.de/blog/box-plot
5
+ d3.box = function() {
6
+ var width = 1,
7
+ height = 1,
8
+ duration = 0,
9
+ domain = null,
10
+ value = Number,
11
+ whiskers = boxWhiskers,
12
+ quartiles = boxQuartiles,
13
+ tickFormat = null;
14
+
15
+ // For each small multiple…
16
+ function box(g) {
17
+ g.each(function(d, i) {
18
+ d = d.map(value).sort(d3.ascending);
19
+ var g = d3.select(this),
20
+ n = d.length,
21
+ min = d[0],
22
+ max = d[n - 1];
23
+
24
+ // Compute quartiles. Must return exactly 3 elements.
25
+ var quartileData = d.quartiles = quartiles(d);
26
+
27
+ // Compute whiskers. Must return exactly 2 elements, or null.
28
+ var whiskerIndices = whiskers && whiskers.call(this, d, i),
29
+ whiskerData = whiskerIndices && whiskerIndices.map(function(i) { return d[i]; });
30
+
31
+ // Compute outliers. If no whiskers are specified, all data are "outliers".
32
+ // We compute the outliers as indices, so that we can join across transitions!
33
+ var outlierIndices = whiskerIndices
34
+ ? d3.range(0, whiskerIndices[0]).concat(d3.range(whiskerIndices[1] + 1, n))
35
+ : d3.range(n);
36
+
37
+ // Compute the new x-scale.
38
+ var x1 = d3.scale.linear()
39
+ .domain(domain && domain.call(this, d, i) || [min, max])
40
+ .range([height, 0]);
41
+
42
+ // Retrieve the old x-scale, if this is an update.
43
+ var x0 = this.__chart__ || d3.scale.linear()
44
+ .domain([0, Infinity])
45
+ .range(x1.range());
46
+
47
+ // Stash the new scale.
48
+ this.__chart__ = x1;
49
+
50
+ // Note: the box, median, and box tick elements are fixed in number,
51
+ // so we only have to handle enter and update. In contrast, the outliers
52
+ // and other elements are variable, so we need to exit them! Variable
53
+ // elements also fade in and out.
54
+
55
+ // Update center line: the vertical line spanning the whiskers.
56
+ var center = g.selectAll("line.center")
57
+ .data(whiskerData ? [whiskerData] : []);
58
+
59
+ center.enter().insert("line", "rect")
60
+ .attr("class", "center")
61
+ .attr("x1", width / 2)
62
+ .attr("y1", function(d) { return x0(d[0]); })
63
+ .attr("x2", width / 2)
64
+ .attr("y2", function(d) { return x0(d[1]); })
65
+ .style("opacity", 1e-6)
66
+ .transition()
67
+ .duration(duration)
68
+ .style("opacity", 1)
69
+ .attr("y1", function(d) { return x1(d[0]); })
70
+ .attr("y2", function(d) { return x1(d[1]); });
71
+
72
+ center.transition()
73
+ .duration(duration)
74
+ .style("opacity", 1)
75
+ .attr("y1", function(d) { return x1(d[0]); })
76
+ .attr("y2", function(d) { return x1(d[1]); });
77
+
78
+ center.exit().transition()
79
+ .duration(duration)
80
+ .style("opacity", 1e-6)
81
+ .attr("y1", function(d) { return x1(d[0]); })
82
+ .attr("y2", function(d) { return x1(d[1]); })
83
+ .remove();
84
+
85
+ // Update innerquartile box.
86
+ var box = g.selectAll("rect.box")
87
+ .data([quartileData]);
88
+
89
+ box.enter().append("rect")
90
+ .attr("class", "box")
91
+ .attr("x", 0)
92
+ .attr("y", function(d) { return x0(d[2]); })
93
+ .attr("width", width)
94
+ .attr("height", function(d) { return x0(d[0]) - x0(d[2]); })
95
+ .transition()
96
+ .duration(duration)
97
+ .attr("y", function(d) { return x1(d[2]); })
98
+ .attr("height", function(d) { return x1(d[0]) - x1(d[2]); });
99
+
100
+ box.transition()
101
+ .duration(duration)
102
+ .attr("y", function(d) { return x1(d[2]); })
103
+ .attr("height", function(d) { return x1(d[0]) - x1(d[2]); });
104
+
105
+ // Update median line.
106
+ var medianLine = g.selectAll("line.median")
107
+ .data([quartileData[1]]);
108
+
109
+ medianLine.enter().append("line")
110
+ .attr("class", "median")
111
+ .attr("x1", 0)
112
+ .attr("y1", x0)
113
+ .attr("x2", width)
114
+ .attr("y2", x0)
115
+ .transition()
116
+ .duration(duration)
117
+ .attr("y1", x1)
118
+ .attr("y2", x1);
119
+
120
+ medianLine.transition()
121
+ .duration(duration)
122
+ .attr("y1", x1)
123
+ .attr("y2", x1);
124
+
125
+ // Update whiskers.
126
+ var whisker = g.selectAll("line.whisker")
127
+ .data(whiskerData || []);
128
+
129
+ whisker.enter().insert("line", "circle, text")
130
+ .attr("class", "whisker")
131
+ .attr("x1", 0)
132
+ .attr("y1", x0)
133
+ .attr("x2", width)
134
+ .attr("y2", x0)
135
+ .style("opacity", 1e-6)
136
+ .transition()
137
+ .duration(duration)
138
+ .attr("y1", x1)
139
+ .attr("y2", x1)
140
+ .style("opacity", 1);
141
+
142
+ whisker.transition()
143
+ .duration(duration)
144
+ .attr("y1", x1)
145
+ .attr("y2", x1)
146
+ .style("opacity", 1);
147
+
148
+ whisker.exit().transition()
149
+ .duration(duration)
150
+ .attr("y1", x1)
151
+ .attr("y2", x1)
152
+ .style("opacity", 1e-6)
153
+ .remove();
154
+
155
+ // Update outliers.
156
+ var outlier = g.selectAll("circle.outlier")
157
+ .data(outlierIndices, Number);
158
+
159
+ outlier.enter().insert("circle", "text")
160
+ .attr("class", "outlier")
161
+ .attr("r", 5)
162
+ .attr("cx", width / 2)
163
+ .attr("cy", function(i) { return x0(d[i]); })
164
+ .style("opacity", 1e-6)
165
+ .transition()
166
+ .duration(duration)
167
+ .attr("cy", function(i) { return x1(d[i]); })
168
+ .style("opacity", 1);
169
+
170
+ outlier.transition()
171
+ .duration(duration)
172
+ .attr("cy", function(i) { return x1(d[i]); })
173
+ .style("opacity", 1);
174
+
175
+ outlier.exit().transition()
176
+ .duration(duration)
177
+ .attr("cy", function(i) { return x1(d[i]); })
178
+ .style("opacity", 1e-6)
179
+ .remove();
180
+
181
+ // Compute the tick format.
182
+ var format = tickFormat || x1.tickFormat(8);
183
+
184
+ // Update box ticks.
185
+ var boxTick = g.selectAll("text.box")
186
+ .data(quartileData);
187
+
188
+ boxTick.enter().append("text")
189
+ .attr("class", "box")
190
+ .attr("dy", ".3em")
191
+ .attr("dx", function(d, i) { return i & 1 ? 6 : -6 })
192
+ .attr("x", function(d, i) { return i & 1 ? width : 0 })
193
+ .attr("y", x0)
194
+ .attr("text-anchor", function(d, i) { return i & 1 ? "start" : "end"; })
195
+ .text(format)
196
+ .transition()
197
+ .duration(duration)
198
+ .attr("y", x1);
199
+
200
+ boxTick.transition()
201
+ .duration(duration)
202
+ .text(format)
203
+ .attr("y", x1);
204
+
205
+ // Update whisker ticks. These are handled separately from the box
206
+ // ticks because they may or may not exist, and we want don't want
207
+ // to join box ticks pre-transition with whisker ticks post-.
208
+ var whiskerTick = g.selectAll("text.whisker")
209
+ .data(whiskerData || []);
210
+
211
+ whiskerTick.enter().append("text")
212
+ .attr("class", "whisker")
213
+ .attr("dy", ".3em")
214
+ .attr("dx", 6)
215
+ .attr("x", width)
216
+ .attr("y", x0)
217
+ .text(format)
218
+ .style("opacity", 1e-6)
219
+ .transition()
220
+ .duration(duration)
221
+ .attr("y", x1)
222
+ .style("opacity", 1);
223
+
224
+ whiskerTick.transition()
225
+ .duration(duration)
226
+ .text(format)
227
+ .attr("y", x1)
228
+ .style("opacity", 1);
229
+
230
+ whiskerTick.exit().transition()
231
+ .duration(duration)
232
+ .attr("y", x1)
233
+ .style("opacity", 1e-6)
234
+ .remove();
235
+ });
236
+ d3.timer.flush();
237
+ }
238
+
239
+ box.width = function(x) {
240
+ if (!arguments.length) return width;
241
+ width = x;
242
+ return box;
243
+ };
244
+
245
+ box.height = function(x) {
246
+ if (!arguments.length) return height;
247
+ height = x;
248
+ return box;
249
+ };
250
+
251
+ box.tickFormat = function(x) {
252
+ if (!arguments.length) return tickFormat;
253
+ tickFormat = x;
254
+ return box;
255
+ };
256
+
257
+ box.duration = function(x) {
258
+ if (!arguments.length) return duration;
259
+ duration = x;
260
+ return box;
261
+ };
262
+
263
+ box.domain = function(x) {
264
+ if (!arguments.length) return domain;
265
+ domain = x == null ? x : d3.functor(x);
266
+ return box;
267
+ };
268
+
269
+ box.value = function(x) {
270
+ if (!arguments.length) return value;
271
+ value = x;
272
+ return box;
273
+ };
274
+
275
+ box.whiskers = function(x) {
276
+ if (!arguments.length) return whiskers;
277
+ whiskers = x;
278
+ return box;
279
+ };
280
+
281
+ box.quartiles = function(x) {
282
+ if (!arguments.length) return quartiles;
283
+ quartiles = x;
284
+ return box;
285
+ };
286
+
287
+ return box;
288
+ };
289
+
290
+ function boxWhiskers(d) {
291
+ return [0, d.length - 1];
292
+ }
293
+
294
+ function boxQuartiles(d) {
295
+ return [
296
+ d3.quantile(d, .25),
297
+ d3.quantile(d, .5),
298
+ d3.quantile(d, .75)
299
+ ];
300
+ }
301
+
302
+ })();