radix 1.1.0 → 2.0.0

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,294 @@
1
+ = Radix Float
2
+
3
+ Radix provides a Float class for working with rational numbers in various bases.
4
+ Actually Radix's implementation of Float is a <i>fixed point</i>, not a
5
+ <i>floating point</i>.
6
+
7
+ require 'radix'
8
+
9
+ D = Radix::DOT
10
+
11
+ == Initialization
12
+
13
+ Radix::Float's initializer can accept either an Integer, Float, String or
14
+ Array as a value and an integer base.
15
+
16
+ Give a float value, it will automatically be converted to the base
17
+ specified.
18
+
19
+ check do |float, base, digits|
20
+ r = Radix::Float.new(float, base)
21
+ r.digits.assert == digits
22
+ end
23
+
24
+ ok 8.5, 2, [1,0,0,0,D,1]
25
+ ok 4.5, 2, [ 1,0,0,D,1]
26
+
27
+ ok 8.1, 10, [ 8,D,1]
28
+ ok 10.2, 10, [1,0,D,2]
29
+ #ok 8.1, 16, [ 8,D,1]
30
+ #ok 16.1, 16, [1,0,D,1]
31
+
32
+ Give an integer value, it will automatically be converted to the base
33
+ specified and given a fraction part set to zero.
34
+
35
+ check do |float, base, digits|
36
+ r = Radix::Float.new(float, base)
37
+ r.digits.assert == digits
38
+ end
39
+
40
+ ok 8, 2, [1,0,0,0,D,0]
41
+ ok 4, 2, [ 1,0,0,D,0]
42
+
43
+ ok 8, 10, [ 8,D,0]
44
+ ok 10, 10, [1,0,D,0]
45
+ ok 8, 16, [ 8,D,0]
46
+ ok 16, 16, [1,0,D,0]
47
+
48
+ Given a float, the same will occur.
49
+
50
+ ok 8.0, 2, [1,0,0,0,D,0]
51
+ ok 4.0, 2, [ 1,0,0,D,0]
52
+
53
+ ok 8.0, 10, [ 8,D,0]
54
+ ok 10.0, 10, [1,0,D,0]
55
+ ok 8.0, 16, [ 8,D,0]
56
+ ok 16.0, 16, [1,0,D,0]
57
+
58
+ Where as a String value is taken to already be in the base given.
59
+
60
+ ok "1000", 2, [1,0,0,0,D,0]
61
+ ok "100", 2, [ 1,0,0,D,0]
62
+
63
+ ok "8", 10, [ 8,D,0]
64
+ ok "10", 10, [1,0,D,0]
65
+ ok "8", 16, [ 8,D,0]
66
+ ok "10", 16, [1,0,D,0]
67
+
68
+ ok "1000.0", 2, [1,0,0,0,D,0]
69
+ ok "100.0", 2, [ 1,0,0,D,0]
70
+
71
+ ok "8.0", 10, [ 8,D,0]
72
+ ok "10.0", 10, [1,0,D,0]
73
+ ok "8.0", 16, [ 8,D,0]
74
+ ok "10.0", 16, [1,0,D,0]
75
+
76
+ And an Array is also taken to be in the base given.
77
+
78
+ ok %w[1 0 0 0], 2, [1,0,0,0,D,0]
79
+ ok %w[ 1 0 0], 2, [ 1,0,0,D,0]
80
+
81
+ ok %w[ 8], 10, [ 8,D,0]
82
+ ok %w[1 0], 10, [1,0,D,0]
83
+ ok %w[ 8], 16, [ 8,D,0]
84
+ ok %w[1 0], 16, [1,0,D,0]
85
+
86
+ Passing in an Array with a fraction part, either the DOT constant can be used,
87
+ which is simply the symbol :'.', or the string '.' can be used.
88
+
89
+ ok %w[1 0 0 0 . 0], 2, [1,0,0,0,D,0]
90
+ ok %w[ 1 0 0 . 0], 2, [ 1,0,0,D,0]
91
+
92
+ ok %w[ 8 . 0], 10, [ 8,D,0]
93
+ ok %w[1 0 . 0], 10, [1,0,D,0]
94
+ ok %w[ 8 . 0], 16, [ 8,D,0]
95
+ ok %w[1 0 . 0], 16, [1,0,D,0]
96
+
97
+ Integers can also be negative, rather than positive. In each case
98
+ just prepend the value with a minus sign.
99
+
100
+ check do |float, base, digits|
101
+ r = Radix::Float.new(float, base)
102
+ r.digits.assert = digits
103
+ r.assert.negative?
104
+ end
105
+
106
+ ok( -8, 2, ['-',1,0,0,0,D,0])
107
+ ok( "-1000", 2, ['-',1,0,0,0,D,0])
108
+ ok( %w[- 1 0 0 0], 2, ['-',1,0,0,0,D,0])
109
+
110
+ If a value has a digit outside of the range of the base an ArgumentError
111
+ will be raised.
112
+
113
+ expect ArgumentError do
114
+ Radix::Float.new('9', 2)
115
+ end
116
+
117
+ Radix provides a convenience extension method to Integer, String and Array
118
+ called #b, to more easily initialize a Radix numeric object. The method simply
119
+ passes the receiver on to `Radix::Integer#new`.
120
+
121
+ check do |float, base, digits|
122
+ r = float.b(base)
123
+ r.assert.is_a?(Radix::Float)
124
+ r.digits.assert = digits
125
+ end
126
+
127
+ ok 8.0, 2, [1,0,0,0,D,0]
128
+ ok 4.0, 2, [ 1,0,0,D,0]
129
+
130
+ ok "1000.0", 2, [1,0,0,0,D,0]
131
+ ok "100.0", 2, [ 1,0,0,D,0]
132
+
133
+ ok %w"1 0 0 0 . 0", 2, [1,0,0,0,D,0]
134
+ ok %w"1 0 0 . 0", 2, [ 1,0,0,D,0]
135
+
136
+ == Conversion
137
+
138
+ Radix integers can ve converted to other bases with the #convert method.
139
+
140
+ b = "1000.0".b(2)
141
+ d = b.convert(10)
142
+ d.digits.assert == [8,D,0]
143
+
144
+ We can convert a Radix::Float to a regular base-10 Float with the #to_f
145
+ method.
146
+
147
+ b = "1000.0".b(2)
148
+ d = b.to_f
149
+ d.assert == 8.0
150
+
151
+ We can convert a Radix::Float to a regular base-10 Integer with the #to_i
152
+ method.
153
+
154
+ b = "1000.0".b(2)
155
+ d = b.to_i
156
+ d.assert == 8
157
+
158
+ === Equality
159
+
160
+ Radix extend the Integer, String and Array classes with the #b method
161
+ which simplifies the creation of Radix::Float instances. The following
162
+ return the equivalent instance of Radix::Float.
163
+
164
+ a = 8.0.b(2)
165
+ b = "1000.0".b(2)
166
+ c = [1,0,0,0,'.',0].b(2)
167
+
168
+ a.assert = b
169
+ b.assert = c
170
+ c.assert = a
171
+
172
+ a.assert = 8.0
173
+ b.assert = 8.0
174
+ c.assert = 8.0
175
+
176
+ More stringent equality can be had from #eql?, in which the other integer
177
+ must be a Radix::Integer too.
178
+
179
+ a.assert.eql?(b)
180
+ a.refute.eql?(8.0)
181
+
182
+ == Operations
183
+
184
+ Radix::Float supports all the usual mathematical operators.
185
+
186
+ === Addition
187
+
188
+ check do |a, b, x|
189
+ (a + b).assert = x
190
+ end
191
+
192
+ ok "1000.0".b(2), "0010.0".b(2), "1010.0".b(2)
193
+ ok "1000.0".b(2), "2.0".b(8), "1010.0".b(2)
194
+ ok "1000.0".b(2), "2.0".b(8), "10.0".b(10)
195
+
196
+ A more complex example.
197
+
198
+ x = "AZ42.0".b(62) + "54.0".b(10)
199
+ x.assert == "2518124.0".b(10)
200
+ x.assert == 2518124.0
201
+
202
+ Adding negative integers will, of course, be akin to subtraction.
203
+
204
+ ok "1000.0".b(2), "-0010".b(2), "110.0".b(2)
205
+ ok "1000.0".b(2), "-2".b(8), "110.0".b(2)
206
+ ok "1000.0".b(2), "-2".b(8), "6.0".b(10)
207
+
208
+ ok "-1000.0".b(2), "0010".b(2), "-110.0".b(2)
209
+ ok "-1000.0".b(2), "2".b(8), "-110.0".b(2)
210
+ ok "-1000.0".b(2), "2".b(8), "-6.0".b(10)
211
+
212
+ ok "-1000.0".b(2), "-0010".b(2), "-1010.0".b(2)
213
+ ok "-1000.0".b(2), "-2".b(8), "-1010.0".b(2)
214
+ ok "-1000.0".b(2), "-2".b(8), "-10.0".b(10)
215
+
216
+ === Subtraction
217
+
218
+ check do |a, b, x|
219
+ (a - b).assert == x
220
+ end
221
+
222
+ ok "1000.0".b(2), "10".b(2), "110.0".b(2)
223
+ ok "1000.0".b(2), "2".b(8), "110.0".b(2)
224
+ ok "1000.0".b(2), "2".b(8), "6.0".b(8)
225
+ ok "1000.0".b(2), "2".b(8), "6.0".b(10)
226
+
227
+ A more complex example.
228
+
229
+ x = "AZ42.0".b(62) - "54".b(10)
230
+ x.assert == "2518016.0".b(10)
231
+ x.assert == 2518016.0
232
+
233
+ === Multiplication
234
+
235
+ check do |a, b, x|
236
+ (a * b).assert = x
237
+ end
238
+
239
+ ok "1000.0".b(2), "10".b(2), "10000.0".b(2)
240
+ ok "1000.0".b(2), "2".b(8), "10000.0".b(2)
241
+ ok "1000.0".b(2), "2".b(8), "20.0".b(8)
242
+ ok "1000.0".b(2), "2".b(8), "16.0".b(10)
243
+
244
+ A more complex example.
245
+
246
+ x = "Z42.0".b(62) * "4.0".b(10)
247
+ x.assert == "539160.0".b(10)
248
+ x.assert == 539160.0
249
+
250
+ === Division
251
+
252
+ check do |a, b, x|
253
+ (a / b).assert = x
254
+ end
255
+
256
+ ok "1000.0".b(2), "10".b(2), "100.0".b(2)
257
+ ok "1000.0".b(2), "2".b(8), "100.0".b(2)
258
+ ok "1000.0".b(2), "2".b(8), "4.0".b(8)
259
+ ok "1000.0".b(2), "2".b(8), "4.0".b(10)
260
+
261
+ A more complex example.
262
+
263
+ x = "AZ40.0".b(62) / "62.0".b(10)
264
+ x.assert == "40614.0".b(10)
265
+ x.assert == 40614.0
266
+
267
+ === Power
268
+
269
+ check do |a, b, x|
270
+ (a ** b).assert == x
271
+ end
272
+
273
+ ok "1000.0".b(2), "10.0".b(2), 64.0
274
+
275
+ === Modulo
276
+
277
+ check do |a, b, x|
278
+ (a % b).assert == x
279
+ end
280
+
281
+ ok "1000.0".b(2), "10".b(2), 0
282
+ ok "1000.0".b(2), "11".b(2), 2
283
+
284
+ == Coerce
285
+
286
+ When a Radix::Integer is the operand in an operation against a regular
287
+ Ruby Integer, the calculation should still work via #coerce.
288
+
289
+ check do |a, b, x|
290
+ (a + b).assert == x
291
+ end
292
+
293
+ ok 10.0, "10".b(2), "12".b(10)
294
+
@@ -0,0 +1,84 @@
1
+ = Radix Rational
2
+
3
+ require 'radix'
4
+
5
+ == Initialization
6
+
7
+ Radix::Rational's initializer takes a numerator and a denominator,
8
+ either of which can be an Integer, Float, String or Array along witha
9
+ an integer base.
10
+
11
+ Give a integer value, it will automatically be converted to the base
12
+ specified.
13
+
14
+ check do |num, dem, base, eqf|
15
+ r = Radix::Rational.new(num, dem, base)
16
+ r.assert == eqf
17
+ end
18
+
19
+ ok 1, 2, 2, 0.5
20
+ ok 1, 1, 2, 1.0
21
+
22
+ ok 8, 1, 10, 8.0
23
+ ok 8, 5, 10, 1.6
24
+ ok 8, 8, 10, 1.0
25
+
26
+ ok 10, 1, 10, 10.0
27
+ ok 10, 2, 10, 5.0
28
+ ok 10, 5, 10, 2.0
29
+
30
+ ok 8, 1, 16, 8.0
31
+ ok 16, 1, 16, 16.0
32
+
33
+ == Reduction
34
+
35
+ check do |a, x|
36
+ r = a.reduce
37
+ r.assert == x
38
+ end
39
+
40
+ ok [10,5].br(10), [2,1].br(10)
41
+ ok [30,3].br(10), [10,1].br(10)
42
+
43
+ == Operations
44
+
45
+ === Addition
46
+
47
+ check do |a, b, x|
48
+ r = a + b
49
+ r.assert == x
50
+ end
51
+
52
+ ok [8,5].br(10), [1,2].br(10), [21,10].br(10)
53
+
54
+ ok [8,5].br(10), 1, [13,5].br(10)
55
+
56
+ ok [8,5].br(10), 0.5, [21,10].br(10)
57
+
58
+ === Subtraction
59
+
60
+ check do |a, b, x|
61
+ r = a - b
62
+ r.assert == x
63
+ end
64
+
65
+ ok [8,5].br(10), [1,2].br(10), [11,10].br(10)
66
+
67
+ === Multiplication
68
+
69
+ check do |a, b, x|
70
+ r = a * b
71
+ r.assert == x
72
+ end
73
+
74
+ ok [8,5].br(10), [1,2].br(10), [8,10].br(10)
75
+
76
+ === Division
77
+
78
+ check do |a, b, x|
79
+ r = a / b
80
+ r.assert == x
81
+ end
82
+
83
+ ok [8,5].br(10), [1,2].br(10), [16,5].br(10)
84
+
@@ -0,0 +1,78 @@
1
+ = Radix::Base
2
+
3
+ The Radix::Base class is an encapsulatin of a numeric base. By creating
4
+ an instance of Base one can convert numbers to and from other bases.
5
+
6
+ require 'radix/base'
7
+
8
+ == Base Instance
9
+
10
+ First let's try something we all know, converting decimal to hexideciaml.
11
+ To do this we setup the radix base objects for each base.
12
+
13
+ b10 = Radix::Base.new(Radix::BASE::B10)
14
+ b16 = Radix::Base.new(Radix::BASE::B16)
15
+
16
+ Now we can covert from one base to the other.
17
+
18
+ b16.convert("16" , b10).should == "10"
19
+ b16.convert("160", b10).should == "A0"
20
+ b16.convert("255", b10).should == "FF"
21
+
22
+ To confirm, lets convert from hexidecimal back to decimal.
23
+
24
+ b10.convert("10", b16).should == "16"
25
+ b10.convert("A0", b16).should == "160"
26
+ b10.convert("FF", b16).should == "255"
27
+
28
+ If we are happy with standard encodings then we can simply provide an
29
+ integer base, rather than a Radix::Base object.
30
+
31
+ b10.convert("10", 16).should == "16"
32
+ b10.convert("A0", 16).should == "160"
33
+ b10.convert("FF", 16).should == "255"
34
+
35
+ Now let's try a more down to earth base, my favorite,
36
+ senary, or base six.
37
+
38
+ b6 = Radix::Base.new(0..5)
39
+ b6.convert("39", 10).should == "103"
40
+
41
+ And the notations need not be in ASCII order. Odd alternate notations
42
+ can be used as well.
43
+
44
+ b10 = Radix::Base.new([:Q, :W, :E, :R, :T, :Y, :U, :I, :O, :U])
45
+ b10.convert("FF", 16) #=> "EYY"
46
+
47
+ == Encoding and Decoding
48
+
49
+ Radix::Base instances can also be used to encode and decode strings.
50
+
51
+ b16.encode("CHARLIE").should == "434841524C4945"
52
+ b16.decode("434841524C4945").should == "CHARLIE"
53
+
54
+ == Module Methods
55
+
56
+ For further convenience, Radix::base provides functions to convert to and from
57
+ standard notations upto 62 without creating an instance of Radix::Base.
58
+
59
+ Radix.convert("10", 16, 10).should == "16"
60
+ Radix.convert("A0", 16, 10).should == "160"
61
+ Radix.convert("FF", 16, 10).should == "255"
62
+
63
+ Let's try that again with the maximum base supported.
64
+
65
+ Radix.convert( "62", 10, 62).should == "10"
66
+ Radix.convert("8814542", 10, 62).should == "az42"
67
+
68
+ Radix.convert( "10", 62, 10).should == "62"
69
+ Radix.convert( "az42", 62, 10).should == "8814542"
70
+
71
+ Finally, we will demonstrate how to convert bases larger than 62.
72
+ These can only be represented as arrays since there are not enough
73
+ latin characters to represent them.
74
+
75
+ Radix.convert_base([100, 10], 256, 10).should == [2, 5, 6, 1, 0]
76
+ Radix.convert_base([2, 5, 6, 1, 0], 10, 256).should == [100, 10]
77
+ Radix.convert_base([1, 0, 1, 0, 1], 2, 10).should == [2, 1]
78
+