rabbit-slide-kou-rubykaigi-takeout-2021 2021.9.11.0
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +7 -0
- data/.rabbit +1 -0
- data/README.rd +51 -0
- data/Rakefile +18 -0
- data/config.yaml +24 -0
- data/images/apache-arrow-commits-kou.png +0 -0
- data/images/clear-code-rubykaigi-takeout-2021-gold-sponsor.png +0 -0
- data/images/iris.png +0 -0
- data/pdf/rubykaigi-takeout-2021-red-arrow.pdf +0 -0
- data/red-arrow.rab +801 -0
- data/theme.rb +1 -0
- metadata +92 -0
checksums.yaml
ADDED
@@ -0,0 +1,7 @@
|
|
1
|
+
---
|
2
|
+
SHA256:
|
3
|
+
metadata.gz: 4e7819063a4ebcbedeb7a6ea8ffad85ca4e15a57ce9aa6dbcecd02f338610d7c
|
4
|
+
data.tar.gz: 6a9734a5a02321f2ce4c1e20676556c0c6efa9aa18649cfa263d1dd3832ce702
|
5
|
+
SHA512:
|
6
|
+
metadata.gz: a89c84882adff989423129df414b42cdc4e3f49bc61fb2651bb722105d1a4d06aa5271892cfcb790cc25a54cb6de2d11e1f335977fcf7ba59c436c97d2002eb8
|
7
|
+
data.tar.gz: 8a2d3ea6e38fda7c3972a8f31f5d5dd75c38ac94d852968133f27f1c99e24e0a7aa6a26155f2be330660a1012433310ca0d52bf3fe76395414cfa18b571f269c
|
data/.rabbit
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
--size=1920,1080 red-arrow.rab
|
data/README.rd
ADDED
@@ -0,0 +1,51 @@
|
|
1
|
+
= Red Arrow - Ruby and Apache Arrow
|
2
|
+
|
3
|
+
To use Ruby for data processing widely, Apache Arrow support is important. We can do the followings with Apache Arrow:
|
4
|
+
|
5
|
+
* Super fast large data interchange and processing
|
6
|
+
* Reading/writing data in several famous formats such as CSV and Apache Parquet
|
7
|
+
* Reading/writing partitioned large data on cloud storage such as Amazon S3
|
8
|
+
|
9
|
+
This talk describes the followings:
|
10
|
+
|
11
|
+
* What is Apache Arrow
|
12
|
+
* How to use Apache Arrow with Ruby
|
13
|
+
* How to integrate with Ruby 3.0 features such as MemoryView and Ractor
|
14
|
+
|
15
|
+
== License
|
16
|
+
|
17
|
+
=== Slide
|
18
|
+
|
19
|
+
CC BY-SA 4.0
|
20
|
+
|
21
|
+
Use the followings for notation of the author:
|
22
|
+
|
23
|
+
* Sutou Kouhei
|
24
|
+
|
25
|
+
==== ClearCode Inc. logo
|
26
|
+
|
27
|
+
CC BY-SA 4.0
|
28
|
+
|
29
|
+
Author: ClearCode Inc.
|
30
|
+
|
31
|
+
It is used in page header and some pages in the slide.
|
32
|
+
|
33
|
+
== For author
|
34
|
+
|
35
|
+
=== Show
|
36
|
+
|
37
|
+
rake
|
38
|
+
|
39
|
+
=== Publish
|
40
|
+
|
41
|
+
rake publish
|
42
|
+
|
43
|
+
== For viewers
|
44
|
+
|
45
|
+
=== Install
|
46
|
+
|
47
|
+
gem install rabbit-slide-kou-rubykaigi-takeout-2021
|
48
|
+
|
49
|
+
=== Show
|
50
|
+
|
51
|
+
rabbit rabbit-slide-kou-rubykaigi-takeout-2021.gem
|
data/Rakefile
ADDED
@@ -0,0 +1,18 @@
|
|
1
|
+
require "rabbit/task/slide"
|
2
|
+
|
3
|
+
# Edit ./config.yaml to customize meta data
|
4
|
+
|
5
|
+
spec = nil
|
6
|
+
Rabbit::Task::Slide.new do |task|
|
7
|
+
spec = task.spec
|
8
|
+
# spec.files += Dir.glob("doc/**/*.*")
|
9
|
+
spec.files += Dir.glob("images/**/*.*")
|
10
|
+
# spec.files -= Dir.glob("private/**/*.*")
|
11
|
+
spec.add_runtime_dependency("rabbit-theme-clear-code")
|
12
|
+
end
|
13
|
+
|
14
|
+
desc "Tag #{spec.version}"
|
15
|
+
task :tag do
|
16
|
+
sh("git", "tag", "-a", spec.version.to_s, "-m", "Publish #{spec.version}")
|
17
|
+
sh("git", "push", "--tags")
|
18
|
+
end
|
data/config.yaml
ADDED
@@ -0,0 +1,24 @@
|
|
1
|
+
---
|
2
|
+
id: rubykaigi-takeout-2021
|
3
|
+
base_name: red-arrow
|
4
|
+
tags:
|
5
|
+
- rabbit
|
6
|
+
- rubykaigi
|
7
|
+
- ruby
|
8
|
+
- apache_arrow
|
9
|
+
presentation_date: 2021-09-11
|
10
|
+
version: 2021.9.11.0
|
11
|
+
licenses:
|
12
|
+
- CC-BY-SA-4.0
|
13
|
+
slideshare_id:
|
14
|
+
speaker_deck_id:
|
15
|
+
ustream_id:
|
16
|
+
vimeo_id:
|
17
|
+
youtube_id:
|
18
|
+
author:
|
19
|
+
markup_language: :rd
|
20
|
+
name: Sutou Kouhei
|
21
|
+
email: kou@clear-code.com
|
22
|
+
rubygems_user: kou
|
23
|
+
slideshare_user: kou
|
24
|
+
speaker_deck_user:
|
Binary file
|
Binary file
|
data/images/iris.png
ADDED
Binary file
|
Binary file
|
data/red-arrow.rab
ADDED
@@ -0,0 +1,801 @@
|
|
1
|
+
= Red Arrow
|
2
|
+
|
3
|
+
: subtitle
|
4
|
+
((*Ruby*)) and ((*Apache Arrow*))
|
5
|
+
: author
|
6
|
+
Sutou Kouhei
|
7
|
+
: institution
|
8
|
+
ClearCode Inc.
|
9
|
+
: content-source
|
10
|
+
RubyKaigi Takeout 2021
|
11
|
+
: date
|
12
|
+
2021-09-11
|
13
|
+
: start-time
|
14
|
+
2021-09-11T13:30:00+09:00
|
15
|
+
: end-time
|
16
|
+
2021-09-11T13:55:00+09:00
|
17
|
+
: theme
|
18
|
+
.
|
19
|
+
|
20
|
+
= Sutou Kouhei\nA president Rubyist
|
21
|
+
|
22
|
+
The president of ClearCode Inc.\n
|
23
|
+
(('note:クリアコードの社長'))
|
24
|
+
|
25
|
+
# img
|
26
|
+
# src = images/clear-code-rubykaigi-takeout-2021-gold-sponsor.png
|
27
|
+
# relative_height = 100
|
28
|
+
# reflect_ratio = 0.1
|
29
|
+
|
30
|
+
= Sutou Kouhei\nAn Apache Arrow contributor
|
31
|
+
|
32
|
+
* A member of PMC of Apache Arrow\n
|
33
|
+
(('note:PMC: Project Management Committee'))\n
|
34
|
+
(('note:Apache Arrowのプロジェクト管理委員会メンバー'))
|
35
|
+
* #2 commits(('note:(コミット数2位)'))
|
36
|
+
|
37
|
+
# img
|
38
|
+
# src = images/apache-arrow-commits-kou.png
|
39
|
+
# relative_height = 120
|
40
|
+
# reflect_ratio = 0.1
|
41
|
+
|
42
|
+
= Sutou Kouhei\nThe pioneer in Ruby and Arrow
|
43
|
+
|
44
|
+
* The author of Red Arrow\n
|
45
|
+
(('note:Red Arrowの作者'))
|
46
|
+
* Red Arrow:
|
47
|
+
* The official Apache Arrow library for Ruby\n
|
48
|
+
(('note:公式のRuby用のApache Arrowライブラリー'))
|
49
|
+
* GObject Introspection based bindings\n
|
50
|
+
(('note:GObject Introspectionベースのバインディング'))
|
51
|
+
* Apache Arrow GLib is developed for Red Arrow\n
|
52
|
+
(('note:Red ArrowのためにApache Arrow GLibも開発'))
|
53
|
+
|
54
|
+
= GObject Introspection?
|
55
|
+
|
56
|
+
(('tag:center'))
|
57
|
+
(('tag:margin-bottom * -0.3'))
|
58
|
+
A way to implement bindings\n
|
59
|
+
(('note:バインディングの実装方法の1つ'))
|
60
|
+
|
61
|
+
# img
|
62
|
+
# src = https://slide.rabbit-shocker.org/authors/kou/rubykaigi-2016/how-to-create-bindings-2016.pdf
|
63
|
+
# relative_height = 90
|
64
|
+
|
65
|
+
(('tag:center'))
|
66
|
+
(('note:((<URL:https://rubykaigi.org/2016/presentations/ktou.html>))'))
|
67
|
+
|
68
|
+
= Why do I work on Red Arrow?\n(('note:なぜRed Arrowの開発をしているか'))
|
69
|
+
|
70
|
+
* To use Ruby for data processing!\n
|
71
|
+
(('note:データ処理でRubyを使いたい!'))
|
72
|
+
* At least a part of data processing\n
|
73
|
+
(('note:データ処理の全部と言わず一部だけでも'))
|
74
|
+
* Results of my 5 years of work:\n
|
75
|
+
(('note:私のここ5年の仕事の成果'))
|
76
|
+
* We can use Ruby for some data processing!\n
|
77
|
+
(('note:いくつかのデータ処理でRubyを使える!'))
|
78
|
+
|
79
|
+
= Goal of this talk\n(('note:このトークのゴール'))
|
80
|
+
|
81
|
+
* You want to use Ruby\n
|
82
|
+
for some data processing\n
|
83
|
+
(('note:いくつかのデータ処理でRubyを使いたくなる'))
|
84
|
+
* You join Red Data Tools project\n
|
85
|
+
(('note:Red Data Toolsプロジェクトに参加する'))
|
86
|
+
|
87
|
+
= Red Data Tools project?
|
88
|
+
|
89
|
+
# blockquote
|
90
|
+
|
91
|
+
Red Data Tools is a project that provides data processing tools for Ruby
|
92
|
+
|
93
|
+
(('note:Red Data ToolsはRuby用のデータ処理ツールを提供するプロジェクト'))
|
94
|
+
|
95
|
+
(('note:((<URL:https://red-data-tools.github.io/>))'))
|
96
|
+
|
97
|
+
= Data processing?
|
98
|
+
|
99
|
+
... how?
|
100
|
+
|
101
|
+
= 0. Why do you want?\n(('note:0. データ処理の目的を明らかにする'))
|
102
|
+
|
103
|
+
* What problem do you want to resolve?\n
|
104
|
+
(('note:どんな問題を解決したい?'))
|
105
|
+
* What data is needed for it?\n
|
106
|
+
(('note:そのためにはどんなデータが必要?'))
|
107
|
+
* ...
|
108
|
+
|
109
|
+
No Red Arrow support in this area\n
|
110
|
+
(('note:このあたりにはRed Arrowを使えない'))
|
111
|
+
|
112
|
+
= 1. Collect data\n(('note:1. データ収集'))
|
113
|
+
|
114
|
+
* Where are data?\n
|
115
|
+
(('note:データはどこにある?'))
|
116
|
+
* Where are collected data stored?\n
|
117
|
+
(('note:集めたデータはどこに保存する?'))
|
118
|
+
* ...
|
119
|
+
|
120
|
+
Some Red Arrow supports in this area\n
|
121
|
+
(('note:このあたりでは少しRed Arrowを使えない'))
|
122
|
+
|
123
|
+
= Common dataset\n(('note:よく使われるデータセット'))
|
124
|
+
|
125
|
+
# rouge ruby
|
126
|
+
|
127
|
+
require "datasets"
|
128
|
+
Datasets::Iris.new
|
129
|
+
Datasets::PostalCodeJapan.new
|
130
|
+
Datasets::Wikipedia.new
|
131
|
+
|
132
|
+
(('note:((<Red Datasets|URL:https://github.com/red-data-tools/red-datasets>))'))\n
|
133
|
+
(('note:((<URL:https://github.com/red-data-tools/red-datasets>))'))
|
134
|
+
|
135
|
+
= Output: Local file\n(('note:出力先:ローカルファイル'))
|
136
|
+
|
137
|
+
# rouge ruby
|
138
|
+
|
139
|
+
require "datasets-arrow"
|
140
|
+
dataset = Datasets::PostalCodeJapan.new
|
141
|
+
dataset.to_arrow.save("codes.csv")
|
142
|
+
dataset.to_arrow.save("codes.arrow")
|
143
|
+
|
144
|
+
(('note:((<Red Datasets Arrow|URL:https://github.com/red-data-tools/red-datasets-arrow>))'))\n
|
145
|
+
(('note:((<URL:https://github.com/red-data-tools/red-datasets-arrow>))'))
|
146
|
+
|
147
|
+
= (({#save}))
|
148
|
+
|
149
|
+
* General serialize API for table data\n
|
150
|
+
(('note:テーブルデータ用の汎用シリアライズAPI'))
|
151
|
+
* Serialize as the specified format\n
|
152
|
+
(('note:指定したフォーマットにシリアライズ'))
|
153
|
+
* If you use Red Arrow object for in-memory table data, you can serialize to many formats! Cool!\n
|
154
|
+
(('note:メモリー上のテーブルデータをRed Arrowオブジェクトにするといろんなフォーマットにシリアライズできる!かっこいい!'))
|
155
|
+
* Extensible!\n
|
156
|
+
(('note:拡張可能!'))
|
157
|
+
|
158
|
+
= (({#save})): Implementation
|
159
|
+
|
160
|
+
# rouge ruby
|
161
|
+
|
162
|
+
module Arrow
|
163
|
+
class Table
|
164
|
+
def save(output)
|
165
|
+
saver = TableSaver.new(self, output)
|
166
|
+
saver.save
|
167
|
+
end
|
168
|
+
end
|
169
|
+
end
|
170
|
+
|
171
|
+
= (({#save})): Implementation
|
172
|
+
|
173
|
+
# rouge ruby
|
174
|
+
|
175
|
+
class Arrow::TableSaver
|
176
|
+
def save
|
177
|
+
format = detect_format(@output)
|
178
|
+
__send__("save_as_#{format}")
|
179
|
+
end
|
180
|
+
def save_as_csv
|
181
|
+
end
|
182
|
+
end
|
183
|
+
|
184
|
+
= (({#save})): Extend by Red Parquet
|
185
|
+
|
186
|
+
# rouge ruby
|
187
|
+
|
188
|
+
module Parquet::ArrowTableSavable
|
189
|
+
def save_as_parquet
|
190
|
+
end
|
191
|
+
Arrow::TableSaver.include(self)
|
192
|
+
end
|
193
|
+
|
194
|
+
(('note:Red Parquet is a subproject of Red Arrow'))\n
|
195
|
+
(('note:Red ParquetはRed Arrowのサブプロジェクト'))
|
196
|
+
|
197
|
+
= (({#save})): Extended
|
198
|
+
|
199
|
+
# rouge ruby
|
200
|
+
|
201
|
+
require "datasets-arrow"
|
202
|
+
require "parquet"
|
203
|
+
dataset = Datasets::PostalCodeJapan.new
|
204
|
+
dataset.to_arrow.save("codes.parquet")
|
205
|
+
|
206
|
+
= Output: Online storage: Fluentd\n(('note:出力先:オンラインストレージ:Fluentd'))
|
207
|
+
|
208
|
+
* fluent-plugin-s3-arrow:
|
209
|
+
* Collect data by Fluentd\n
|
210
|
+
(('note:Fluentdでデータ収集'))
|
211
|
+
* Format data as Apache Parquet by ((*Red Arrow*))\n
|
212
|
+
(('note:((*Red Arrow*))でApache Parquet形式にデータを変換'))
|
213
|
+
* Store data to Amazon S3 by fluent-plugin-s3\n
|
214
|
+
(('note:fluent-plugin-s3でAmazon S3にデータを保存'))
|
215
|
+
* By @kanga33 at Speee/Red Data Tools\n
|
216
|
+
(('note:Speee/Red Data Toolsの香川さんが開発'))
|
217
|
+
|
218
|
+
(('note:((<URL:https://github.com/red-data-tools/fluent-plugin-s3-arrow/>))'))
|
219
|
+
|
220
|
+
= Output: Online storage: Red Arrow\n(('note:出力先:オンラインストレージ:Red Arrow'))
|
221
|
+
|
222
|
+
# rouge ruby
|
223
|
+
|
224
|
+
require "datasets-arrow"
|
225
|
+
require "arrow-dataset"
|
226
|
+
dataset = Datasets::PostalCodeJapan.new
|
227
|
+
url = URL("s3://mybucket/codes.parquet")
|
228
|
+
dataset.to_arrow.save(url)
|
229
|
+
|
230
|
+
(('Implementing...'))\n
|
231
|
+
(('note:実装中。。。'))
|
232
|
+
|
233
|
+
= (({#save})): Implementing...
|
234
|
+
|
235
|
+
# rouge ruby
|
236
|
+
|
237
|
+
class Arrow::TableSaver
|
238
|
+
def save
|
239
|
+
if @output.is_a?(URI)
|
240
|
+
__send__("save_to_uri")
|
241
|
+
else
|
242
|
+
__send__("save_to_file")
|
243
|
+
end
|
244
|
+
end
|
245
|
+
end
|
246
|
+
|
247
|
+
= Collect data w/ Red Arrow: Wrap up\n(('note:Red Arrowでデータ収集:まとめ'))
|
248
|
+
|
249
|
+
* Usable as serializer for common formats\n
|
250
|
+
(('note:よくあるフォーマットにシリアライズするツールとして使える'))
|
251
|
+
* Usable as writer to common locations\n
|
252
|
+
(('note:in the near future...'))\n
|
253
|
+
(('note:近いうちによくある出力先に書き出すツールとして使える'))
|
254
|
+
|
255
|
+
= 2. Read data\n(('note:2. データ読み込み'))
|
256
|
+
|
257
|
+
* What format is used?\n
|
258
|
+
(('note:どんなフォーマットで保存されている?'))
|
259
|
+
* Where are collected data?\n
|
260
|
+
(('note:収集したデータはどこ?'))
|
261
|
+
* How large is collected data?\n
|
262
|
+
(('note:データはどれかで大きい?'))
|
263
|
+
|
264
|
+
= Format\n(('note:フォーマット'))
|
265
|
+
|
266
|
+
# rouge ruby
|
267
|
+
|
268
|
+
require "arrow"
|
269
|
+
table = Arrow::Table.load("data.csv")
|
270
|
+
table = Arrow::Table.load("data.json")
|
271
|
+
table = Arrow::Table.load("data.arrow")
|
272
|
+
table = Arrow::Table.load("data.orc")
|
273
|
+
|
274
|
+
= (({.load}))
|
275
|
+
|
276
|
+
* General deserialize API for table data\n
|
277
|
+
(('note:テーブルデータ用の汎用デシリアライズAPI'))
|
278
|
+
* Deserialize common formats\n
|
279
|
+
(('note:よく使われているフォーマットからデシリアライズ'))
|
280
|
+
* Extensible!\n
|
281
|
+
(('note:拡張可能!'))
|
282
|
+
|
283
|
+
= (({.load})): Implementation
|
284
|
+
|
285
|
+
# rouge ruby
|
286
|
+
|
287
|
+
module Arrow
|
288
|
+
def Table.load(input)
|
289
|
+
loader = TableLoader.new(self, input)
|
290
|
+
loader.load
|
291
|
+
end
|
292
|
+
end
|
293
|
+
|
294
|
+
= (({.load})): Implementation
|
295
|
+
|
296
|
+
# rouge ruby
|
297
|
+
|
298
|
+
class Arrow::TableLoader
|
299
|
+
def load
|
300
|
+
format = detect_format(@output)
|
301
|
+
__send__("load_as_#{format}")
|
302
|
+
end
|
303
|
+
def load_as_csv
|
304
|
+
end
|
305
|
+
end
|
306
|
+
|
307
|
+
= (({.load})): Extend by Red Parquet
|
308
|
+
|
309
|
+
# rouge ruby
|
310
|
+
|
311
|
+
module Parquet::ArrowTableLoadable
|
312
|
+
def load_as_parquet
|
313
|
+
end
|
314
|
+
Arrow::TableLoader.include(self)
|
315
|
+
end
|
316
|
+
|
317
|
+
(('note:Red Parquet is a subproject of Red Arrow'))\n
|
318
|
+
(('note:Red ParquetはRed Arrowのサブプロジェクト'))
|
319
|
+
|
320
|
+
= (({.load})): Extended
|
321
|
+
|
322
|
+
# rouge ruby
|
323
|
+
|
324
|
+
require "parquet"
|
325
|
+
table = Arrow::Table.load("data.parquet")
|
326
|
+
|
327
|
+
= (({.load})): More extensible
|
328
|
+
|
329
|
+
# rouge ruby
|
330
|
+
|
331
|
+
class Arrow::TableLoader
|
332
|
+
def load
|
333
|
+
if @output.is_a?(URI)
|
334
|
+
__send__("load_from_uri")
|
335
|
+
else
|
336
|
+
__send__("load_from_file")
|
337
|
+
end
|
338
|
+
end
|
339
|
+
end
|
340
|
+
|
341
|
+
= (({.load})): Extend by Red Arrow Dataset
|
342
|
+
|
343
|
+
# rouge ruby
|
344
|
+
|
345
|
+
module ArrowDataset::ArrowTableLoadable
|
346
|
+
def load_from_uri
|
347
|
+
end
|
348
|
+
Arrow::TableLoader.include(self)
|
349
|
+
end
|
350
|
+
|
351
|
+
(('note:Red Arrow Dataset is a subproject of Red Arrow'))\n
|
352
|
+
(('note:Red Arrow DatasetはRed Arrowのサブプロジェクト'))
|
353
|
+
|
354
|
+
= Location: Online storage\n(('note:場所:オンラインストレージ'))
|
355
|
+
|
356
|
+
# rouge ruby
|
357
|
+
|
358
|
+
require "arrow-dataset"
|
359
|
+
url = URI("s3://bucket/path...")
|
360
|
+
table = Arrow::Table.load(url)
|
361
|
+
|
362
|
+
= Location: RDBMS\n(('note:場所:RDBMS'))
|
363
|
+
|
364
|
+
# rouge ruby
|
365
|
+
|
366
|
+
require "arrow-activerecord"
|
367
|
+
User.all.to_arrow
|
368
|
+
|
369
|
+
(('note:((<Red Arrow Active Record|URL:https://github.com/red-data-tools/red-arrow-activerecord>))'))\n
|
370
|
+
(('note:((<URL:https://github.com/red-data-tools/red-arrow-activerecord>))'))
|
371
|
+
|
372
|
+
= Location: Network\n(('note:場所:ネットワーク'))
|
373
|
+
|
374
|
+
# rouge ruby
|
375
|
+
|
376
|
+
require "arrow-flight"
|
377
|
+
client = ArrowFlight::Client.new(url)
|
378
|
+
info = client.list_flights[0]
|
379
|
+
reader = client.do_get(info.endpoints[0].ticket)
|
380
|
+
table = reader.read_all
|
381
|
+
|
382
|
+
(('note:((<Introducing Apache Arrow Flight: A Framework for Fast Data Transport|URL:https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/>))'))\n
|
383
|
+
(('note:((<URL:https://arrow.apache.org/blog/2019/10/13/introducing-arrow-flight/>))'))
|
384
|
+
|
385
|
+
= Large data\n(('note:大規模データ'))
|
386
|
+
|
387
|
+
* Apache Arrow format
|
388
|
+
* Designed for large data\n
|
389
|
+
(('note:大規模データ用に設計されている'))
|
390
|
+
* For large data\n
|
391
|
+
(('note:大規模データ用に必要なもの'))
|
392
|
+
* Fast load\n
|
393
|
+
(('note:高速にロードできること'))
|
394
|
+
* ...
|
395
|
+
|
396
|
+
= Fast load: Benchmark\n(('note:高速ロード:ベンチマーク'))
|
397
|
+
|
398
|
+
# rouge ruby
|
399
|
+
|
400
|
+
require "datasets-arrow"
|
401
|
+
dataset = Datasets::PostalCodeJapan.new
|
402
|
+
table = dataset.to_arrow # 124271 records
|
403
|
+
n = 5
|
404
|
+
n.times do |i|
|
405
|
+
table.save("codes.#{i}.csv")
|
406
|
+
table.save("codes.#{i}.arrow")
|
407
|
+
CSV.read("codes.#{i}.csv")
|
408
|
+
Arrow::Table.load("codes.#{i}.csv")
|
409
|
+
Arrow::Table.load("codes.#{i}.arrow")
|
410
|
+
table = table.concatenate([table])
|
411
|
+
end
|
412
|
+
|
413
|
+
= Fast load: Benchmark: All\n(('note:高速ロード:ベンチマーク:すべて'))
|
414
|
+
|
415
|
+
# charty
|
416
|
+
# backend = pyplot
|
417
|
+
# type = line
|
418
|
+
# x = N (times)
|
419
|
+
# y = Elapsed time (sec)
|
420
|
+
# color = Approach
|
421
|
+
# markers = true
|
422
|
+
# relative_height = 100
|
423
|
+
Approach,N (times),Elapsed time (sec)
|
424
|
+
Apache Arrow,1,0.000437
|
425
|
+
Apache Arrow,2,0.000421
|
426
|
+
Apache Arrow,3,0.000472
|
427
|
+
Apache Arrow,4,0.000573
|
428
|
+
Apache Arrow,5,0.000899
|
429
|
+
CSV: Red Arrow,1,0.012443
|
430
|
+
CSV: Red Arrow,2,0.021403
|
431
|
+
CSV: Red Arrow,3,0.040435
|
432
|
+
CSV: Red Arrow,4,0.074629
|
433
|
+
CSV: Red Arrow,5,0.138448
|
434
|
+
CSV: Ruby,1,0.828678
|
435
|
+
CSV: Ruby,2,1.840314
|
436
|
+
CSV: Ruby,3,3.797536
|
437
|
+
CSV: Ruby,4,8.205680
|
438
|
+
CSV: Ruby,5,19.850910
|
439
|
+
|
440
|
+
== Slide properties
|
441
|
+
|
442
|
+
: enable-title-on-image
|
443
|
+
false
|
444
|
+
|
445
|
+
= Fast load: Benchmark: Red Arrow\n(('note:高速ロード:ベンチマーク:Red Arrow'))
|
446
|
+
|
447
|
+
# charty
|
448
|
+
# backend = pyplot
|
449
|
+
# type = line
|
450
|
+
# x = N (times)
|
451
|
+
# y = Elapsed time (sec)
|
452
|
+
# color = Approach
|
453
|
+
# markers = true
|
454
|
+
# relative_height = 100
|
455
|
+
Approach,N (times),Elapsed time (sec)
|
456
|
+
Apache Arrow,1,0.000437
|
457
|
+
Apache Arrow,2,0.000421
|
458
|
+
Apache Arrow,3,0.000472
|
459
|
+
Apache Arrow,4,0.000573
|
460
|
+
Apache Arrow,5,0.000899
|
461
|
+
CSV: Red Arrow,1,0.012443
|
462
|
+
CSV: Red Arrow,2,0.021403
|
463
|
+
CSV: Red Arrow,3,0.040435
|
464
|
+
CSV: Red Arrow,4,0.074629
|
465
|
+
CSV: Red Arrow,5,0.138448
|
466
|
+
|
467
|
+
== Slide properties
|
468
|
+
|
469
|
+
: enable-title-on-image
|
470
|
+
false
|
471
|
+
|
472
|
+
= How to implement fast load\n(('note:高速ロードの実装方法'))
|
473
|
+
|
474
|
+
# img
|
475
|
+
# src = https://slide.rabbit-shocker.org/authors/kou/db-tech-showcase-online-2020/why-apache-arrow-format-is-fast.pdf
|
476
|
+
# relative_height = 80
|
477
|
+
|
478
|
+
(('tag:center'))
|
479
|
+
(('note:((<URL:https://slide.rabbit-shocker.org/authors/kou/db-tech-showcase-online-2020/>))'))
|
480
|
+
|
481
|
+
= Read data with Red Arrow: Wrap up\n(('note:Red Arrowでデータ読み込み:まとめ'))
|
482
|
+
|
483
|
+
* Easy to read common formats\n
|
484
|
+
(('note:よくあるフォーマットのデータを簡単に読める'))
|
485
|
+
* Easy to read from common locations\n
|
486
|
+
(('note:よくある場所にあるデータを簡単に読める'))
|
487
|
+
* Large data ready\n
|
488
|
+
(('note:大規模データも扱える'))
|
489
|
+
|
490
|
+
= 3. Explore data\n(('note:3. データ探索'))
|
491
|
+
|
492
|
+
* Preprocess data(('note:(データを前処理)'))
|
493
|
+
* Filter out needless data(('note:(不要なデータを除去)'))
|
494
|
+
* ...
|
495
|
+
* Summarize data and visualize them\n
|
496
|
+
(('note:(データを要約して可視化)'))
|
497
|
+
* ...
|
498
|
+
|
499
|
+
Red Arrow can be used for some operations\n
|
500
|
+
(('note:いくつかの操作でRed Arrowを使える'))
|
501
|
+
|
502
|
+
= Filter: Red Arrow\n(('note:絞り込み:Red Arrow'))
|
503
|
+
|
504
|
+
# rouge ruby
|
505
|
+
|
506
|
+
table = Datasets::PostalCodeJapan.new.to_arrow
|
507
|
+
table.n_rows # 124271
|
508
|
+
filtered_table = table.slice do |slicer|
|
509
|
+
slicer.prefecture == "東京都" # Tokyo
|
510
|
+
end
|
511
|
+
filtered_table.n_rows # 3887
|
512
|
+
|
513
|
+
= Filter: Performance\n(('note:絞り込み:性能'))
|
514
|
+
|
515
|
+
# rouge ruby
|
516
|
+
|
517
|
+
dataset = Datasets::PostalCodeJapan.new
|
518
|
+
arrow_dataset = dataset.to_arrow
|
519
|
+
dataset.find_all do |row|
|
520
|
+
row.prefecture == "東京都" # Tokyo
|
521
|
+
end # 1.256s
|
522
|
+
arrow_dataset.slice do |slicer|
|
523
|
+
slicer.prefecture == "東京都" # Tokyo
|
524
|
+
end # 0.001s
|
525
|
+
|
526
|
+
= Filter: Performance\n(('note:絞り込み:性能'))
|
527
|
+
|
528
|
+
# charty
|
529
|
+
# backend = pyplot
|
530
|
+
# type = bar
|
531
|
+
# x = Elapsed time (sec)
|
532
|
+
# y = Implementation
|
533
|
+
# relative_height = 100
|
534
|
+
Implementation,Elapsed time (sec)
|
535
|
+
Ruby,1.2567864
|
536
|
+
Arrow,0.001395
|
537
|
+
|
538
|
+
== Slide properties
|
539
|
+
|
540
|
+
: enable-title-on-image
|
541
|
+
false
|
542
|
+
|
543
|
+
= Apache Arrow data: Interchangeable\n(('note:Apache Arrow data:交換可能'))
|
544
|
+
|
545
|
+
* With low cost thanks to fast load\n
|
546
|
+
(('note:高速ロードできるので低コスト'))
|
547
|
+
* Apache Arrow data ready systems are increasing\n
|
548
|
+
(('note:Apache Arrowデータを扱えるシステムは増加中'))
|
549
|
+
* e.g. DuckDB: in-process SQL OLAP DBMS\n
|
550
|
+
(('note:(SQLite like DBMS for OLAP)'))\n
|
551
|
+
(('note:OLAP: OnLine Analytical Processing'))\n
|
552
|
+
(('note:例:DuckDB:同一プロセス内で動くデータ分析用SQL DB管理システム'))
|
553
|
+
|
554
|
+
= Filter: DuckDB\n(('note:絞り込み:DuckDB'))
|
555
|
+
|
556
|
+
# rouge ruby
|
557
|
+
|
558
|
+
require "arrow-duckdb"
|
559
|
+
codes = Datasets::PostalCodeJapan.new.to_arrow
|
560
|
+
db = DuckDB::Database.open
|
561
|
+
c = db.connect
|
562
|
+
c.register("codes", codes) do # Use codes without copy
|
563
|
+
c.query("SELECT * FROM codes WHERE prefecture = ?",
|
564
|
+
"東京都", # Tokyo
|
565
|
+
output: :arrow) # Output as Apache Arrow data
|
566
|
+
.to_table.n_rows # 3887
|
567
|
+
end
|
568
|
+
|
569
|
+
= Summarize: Group + aggregation\n(('note:要約:グループ化して集計'))
|
570
|
+
|
571
|
+
# rouge ruby
|
572
|
+
|
573
|
+
iris = Datasets::Iris.new.to_arrow
|
574
|
+
iris.group(:label).count(:sepal_length)
|
575
|
+
# count(sepal_length) label
|
576
|
+
# 0 50 Iris-setosa
|
577
|
+
# 1 50 Iris-versicolor
|
578
|
+
# 2 50 Iris-virginica
|
579
|
+
|
580
|
+
= Visualize: Charty\n(('note:可視化:Charty'))
|
581
|
+
|
582
|
+
# rouge ruby
|
583
|
+
|
584
|
+
require "charty"
|
585
|
+
Charty.backends.use("pyplot")
|
586
|
+
Charty.scatter_plot(data: iris,
|
587
|
+
x: :sepal_length,
|
588
|
+
y: :sepal_width,
|
589
|
+
color: :label)
|
590
|
+
.save("iris.png")
|
591
|
+
|
592
|
+
= Visualize: Charty: Result\n(('note:可視化:Charty:結果'))
|
593
|
+
|
594
|
+
# img
|
595
|
+
# src = images/iris.png
|
596
|
+
# relative_height = 100
|
597
|
+
|
598
|
+
== Slide properties
|
599
|
+
|
600
|
+
: enable-title-on-image
|
601
|
+
false
|
602
|
+
|
603
|
+
= 4. Use insight\n(('note:4. 知見を活用'))
|
604
|
+
|
605
|
+
* Write report\n(('note:(レポートにまとめたり)'))
|
606
|
+
* Build a model\n(('note:(モデルを作ったり)'))
|
607
|
+
* ...
|
608
|
+
|
609
|
+
No Red Arrow support in this area for now\n
|
610
|
+
(('note:Can be used for passing data to other tools like DuckDB and Charty'))\n
|
611
|
+
(('note:今のところこのあたりにはRed Arrowを使えない'))\n
|
612
|
+
(('note:DuckDBやChartyにデータを渡すように他のツールにデータを渡すためには使える'))
|
613
|
+
|
614
|
+
= Data processing and Red Arrow\n(('note:Red Arrowでデータ処理'))
|
615
|
+
|
616
|
+
* Red Arrow helps us in some areas\n
|
617
|
+
(('note:いくつかの領域ではRed Arrowを使える'))
|
618
|
+
* Collect, read and explore data\n
|
619
|
+
(('note:データを収集して読み込んで探索するとか'))
|
620
|
+
* Some tools can integrate with Red Arrow\n
|
621
|
+
(('note:いくつかのツールはRed Arrowと連携できる'))
|
622
|
+
* Fluentd, DuckDB, Charty, ...
|
623
|
+
|
624
|
+
= Red Arrow and Ruby 3.0
|
625
|
+
|
626
|
+
* MemoryView support
|
627
|
+
* Ractor support
|
628
|
+
|
629
|
+
= MemoryView
|
630
|
+
|
631
|
+
# blockquote
|
632
|
+
|
633
|
+
MemoryView provides the features to share multidimensional homogeneous arrays of fixed-size element on memory among extension libraries.
|
634
|
+
|
635
|
+
(('note:MemoryViewは多次元数値配列(数値はすべて同じ型)を共有する機能を提供します。'))
|
636
|
+
|
637
|
+
(('note:((<URL:https://docs.ruby-lang.org/en/master/doc/memory_view_md.html>))'))\n
|
638
|
+
(('note:((<URL:https://tech.speee.jp/entry/2020/12/24/093131>)) (Japanese)'))
|
639
|
+
|
640
|
+
= Numeric arrays in Red Arrow\n(('note:Red Arrow内の数値配列'))
|
641
|
+
|
642
|
+
* (({Arrow::NumericArray})) family
|
643
|
+
* 1-dimensional numeric array\n
|
644
|
+
(('note:1次元数値配列'))
|
645
|
+
* (({Arrow::Tensor}))
|
646
|
+
* Multidimensional homogeneous numeric arrays\n
|
647
|
+
(('note:多次元数値配列'))
|
648
|
+
|
649
|
+
= MemoryView: Red Arrow
|
650
|
+
|
651
|
+
* (({Arrow::NumericArray})) family
|
652
|
+
* Export as MemoryView: Support\n
|
653
|
+
(('note:MemoryViewとしてエクスポート:対応済み'))
|
654
|
+
* Import from MemoryView: Not yet\n
|
655
|
+
(('note:MemoryViewをインポート:未対応'))
|
656
|
+
* (({Arrow::Tensor}))
|
657
|
+
* Export/Import: Not yet\n
|
658
|
+
(('note:エクスポート・インポート:未対応'))
|
659
|
+
|
660
|
+
(('note:Join Red Data Tools to work on this!'))\n
|
661
|
+
(('note:対応を進めたい人はRed Data Toolsに来てね!'))
|
662
|
+
|
663
|
+
= MemoryView: C++
|
664
|
+
|
665
|
+
* Some problems are found by this work\n
|
666
|
+
(('note:Red Arrowの対応作業でいくつかの問題が見つかった'))
|
667
|
+
* Can't use (({private})) as member name\n
|
668
|
+
(('note:メンバー名に(({private}))を使えない'))
|
669
|
+
* Can't assign to (({const})) variable with cast\n
|
670
|
+
(('note:キャストしても(({const}))変数に代入できない'))
|
671
|
+
* Ruby 3.1 will fix them\n
|
672
|
+
(('note:Ruby 3.1では直っているはず'))
|
673
|
+
|
674
|
+
= Ractor
|
675
|
+
|
676
|
+
# blockquote
|
677
|
+
|
678
|
+
Ractor is designed to provide a parallel execution feature of Ruby without thread-safety concerns.
|
679
|
+
|
680
|
+
(('note:Ractorはスレッドセーフかどうかを気にせずに並列実行するための機能です。'))
|
681
|
+
|
682
|
+
(('note:((<URL:https://docs.ruby-lang.org/en/master/doc/ractor_md.html>))'))\n
|
683
|
+
(('note:((<URL:https://techlife.cookpad.com/entry/2020/12/26/131858>)) (Japanese)'))
|
684
|
+
|
685
|
+
= Red Arrow and concurrency\n(('note:Red Arrowと並列性'))
|
686
|
+
|
687
|
+
* Red Arrow data are immutable\n
|
688
|
+
(('note:Red Arrowデータは変更不可'))
|
689
|
+
* Ractor can share frozen objects\n
|
690
|
+
(('note:Ractorはfrozenなオブジェクトを共有可能'))
|
691
|
+
|
692
|
+
= Ractor: Red Arrow
|
693
|
+
|
694
|
+
# rouge ruby
|
695
|
+
|
696
|
+
require "datasets-arrow"
|
697
|
+
table = Datasets::PostalCodeJapan.new.to_arrow
|
698
|
+
Ractor.make_shareable(table)
|
699
|
+
Ractor.new(table) do |t|
|
700
|
+
t.slice do |slicer|
|
701
|
+
slicer.prefecture == "東京都" # Tokyo
|
702
|
+
end
|
703
|
+
end
|
704
|
+
|
705
|
+
= Ractor: Red Arrow: Benchmark
|
706
|
+
|
707
|
+
# rouge ruby
|
708
|
+
|
709
|
+
n_ractors = 4
|
710
|
+
n_jobs_per_ractor = 1000
|
711
|
+
n_jobs = n_ractors * n_jobs_per_ractor
|
712
|
+
n_jobs.times do
|
713
|
+
table.slice {|s| s.prefecture == "東京都"}
|
714
|
+
end
|
715
|
+
n_ractors.times.collect do
|
716
|
+
Ractor.new(table, n_jobs_per_ractor) do |t, n|
|
717
|
+
n.times {t.slice {|s| s.prefecture == "東京都"}}
|
718
|
+
end
|
719
|
+
end.each(&:take)
|
720
|
+
|
721
|
+
= Ractor: Red Arrow: Benchmark
|
722
|
+
|
723
|
+
# charty
|
724
|
+
# backend = pyplot
|
725
|
+
# type = bar
|
726
|
+
# x = Elapsed time (sec)
|
727
|
+
# y = Approach
|
728
|
+
# relative_height = 100
|
729
|
+
Approach,Elapsed time (sec)
|
730
|
+
Sequential,4.573742
|
731
|
+
Ractor,1.454987
|
732
|
+
|
733
|
+
== Slide properties
|
734
|
+
|
735
|
+
: enable-title-on-image
|
736
|
+
false
|
737
|
+
|
738
|
+
= Wrap up\n(('note:まとめ'))
|
739
|
+
|
740
|
+
* Ruby can be used\n
|
741
|
+
in some data processing work\n
|
742
|
+
(('note:いくつかのデータ処理作業にRubyを使える'))
|
743
|
+
* Red Arrow helps you!\n
|
744
|
+
(('note:Red Arrowが有用なケースがあるはず!'))
|
745
|
+
* Ruby 3.0 has useful features for data processing work\n
|
746
|
+
(('note:Ruby 3.0にはデータ処理作業に有用な機能があるよ'))
|
747
|
+
* Red Arrow starts supporting them\n
|
748
|
+
(('note:Red Arrowはそれらのサポートを進めている'))
|
749
|
+
|
750
|
+
= Goal of this talk\n(('note:このトークのゴール'))
|
751
|
+
|
752
|
+
* You want to use Ruby\n
|
753
|
+
for some data processing\n
|
754
|
+
(('note:いくつかのデータ処理でRubyを使いたくなる'))
|
755
|
+
* You join Red Data Tools project\n
|
756
|
+
(('note:あなたがRed Data Toolsプロジェクトに参加する'))
|
757
|
+
|
758
|
+
= Feature work\n(('note:今後の仕事'))
|
759
|
+
|
760
|
+
* Implement DataFusion bindings by adding C API to DataFusion\n
|
761
|
+
(('note:DataFusionにC APIを追加してバインディングを実装'))
|
762
|
+
* DataFusion: Apache Arrow native query execution framework written in Rust\n
|
763
|
+
(('note:((<URL:https://github.com/apache/arrow-datafusion/>))'))\n
|
764
|
+
(('note:DataFusion:Rust実装のApache Arrowベースのクエリー実行フレームワーク'))
|
765
|
+
* Add Active Record like API to Red Arrow\n
|
766
|
+
(('note:Red ArrowにActive Record風のAPIを追加'))
|
767
|
+
* Improve MemoryView/Ractor support\n
|
768
|
+
(('note:MemoryView/Ractorサポートを進める'))
|
769
|
+
|
770
|
+
= Red Data Tools
|
771
|
+
|
772
|
+
(('tag:center'))
|
773
|
+
(('tag:x-large'))
|
774
|
+
Join us!
|
775
|
+
|
776
|
+
(('note:((<URL:https://red-data-tools.github.io/>))'))\n
|
777
|
+
(('note:((<URL:https://gitter.im/red-data-tools/en>))'))
|
778
|
+
|
779
|
+
(('note:((<URL:https://red-data-tools.github.io/ja/>))'))\n
|
780
|
+
(('note:((<URL:https://gitter.im/red-data-tools/ja>))'))
|
781
|
+
|
782
|
+
= OSS Gate on-boarding\n(('note:OSS Gateオンボーディング'))
|
783
|
+
|
784
|
+
* Supports accepting newcomers by OSS projects such as Ruby & Red Arrow\n
|
785
|
+
(('note:RubyやRed ArrowといったOSSプロジェクトが新人を受け入れることを支援'))
|
786
|
+
* Contact me!(('note:興味がある人は私に教えて!'))
|
787
|
+
* (('tag:x-small'))OSS project members who want to accept newcomers\n
|
788
|
+
(('note:新人を受け入れたいOSSプロジェクトのメンバー'))
|
789
|
+
* (('tag:x-small'))Companies which want to support OSS Gate on-boarding\n
|
790
|
+
(('note:OSS Gateオンボーディングを支援したい会社'))
|
791
|
+
|
792
|
+
(('note:((<URL:https://oss-gate.github.io/on-boarding/>))'))
|
793
|
+
|
794
|
+
= ClearCode Inc.
|
795
|
+
|
796
|
+
* Recruitment: Developer to work on Red Arrow related business\n
|
797
|
+
(('note:採用情報:Red Arrow関連のビジネスをする開発者'))
|
798
|
+
* (('note:((<URL:https://www.clear-code.com/recruitment/>))'))
|
799
|
+
* Business: Apache Arrow/Red Arrow related technical support/consulting:\n
|
800
|
+
(('note:仕事:Apache Arrow/Red Arrow関連の技術サポート・コンサルティング'))
|
801
|
+
* (('note:((<URL:https://www.clear-code.com/contact/>))'))
|
data/theme.rb
ADDED
@@ -0,0 +1 @@
|
|
1
|
+
include_theme("clear-code")
|
metadata
ADDED
@@ -0,0 +1,92 @@
|
|
1
|
+
--- !ruby/object:Gem::Specification
|
2
|
+
name: rabbit-slide-kou-rubykaigi-takeout-2021
|
3
|
+
version: !ruby/object:Gem::Version
|
4
|
+
version: 2021.9.11.0
|
5
|
+
platform: ruby
|
6
|
+
authors:
|
7
|
+
- Sutou Kouhei
|
8
|
+
autorequire:
|
9
|
+
bindir: bin
|
10
|
+
cert_chain: []
|
11
|
+
date: 2021-08-23 00:00:00.000000000 Z
|
12
|
+
dependencies:
|
13
|
+
- !ruby/object:Gem::Dependency
|
14
|
+
name: rabbit
|
15
|
+
requirement: !ruby/object:Gem::Requirement
|
16
|
+
requirements:
|
17
|
+
- - ">="
|
18
|
+
- !ruby/object:Gem::Version
|
19
|
+
version: 2.0.2
|
20
|
+
type: :runtime
|
21
|
+
prerelease: false
|
22
|
+
version_requirements: !ruby/object:Gem::Requirement
|
23
|
+
requirements:
|
24
|
+
- - ">="
|
25
|
+
- !ruby/object:Gem::Version
|
26
|
+
version: 2.0.2
|
27
|
+
- !ruby/object:Gem::Dependency
|
28
|
+
name: rabbit-theme-clear-code
|
29
|
+
requirement: !ruby/object:Gem::Requirement
|
30
|
+
requirements:
|
31
|
+
- - ">="
|
32
|
+
- !ruby/object:Gem::Version
|
33
|
+
version: '0'
|
34
|
+
type: :runtime
|
35
|
+
prerelease: false
|
36
|
+
version_requirements: !ruby/object:Gem::Requirement
|
37
|
+
requirements:
|
38
|
+
- - ">="
|
39
|
+
- !ruby/object:Gem::Version
|
40
|
+
version: '0'
|
41
|
+
description: |-
|
42
|
+
To use Ruby for data processing widely, Apache Arrow support is important. We can do the followings with Apache Arrow:
|
43
|
+
|
44
|
+
* Super fast large data interchange and processing
|
45
|
+
* Reading/writing data in several famous formats such as CSV and Apache Parquet
|
46
|
+
* Reading/writing partitioned large data on cloud storage such as Amazon S3
|
47
|
+
|
48
|
+
This talk describes the followings:
|
49
|
+
|
50
|
+
* What is Apache Arrow
|
51
|
+
* How to use Apache Arrow with Ruby
|
52
|
+
* How to integrate with Ruby 3.0 features such as MemoryView and Ractor
|
53
|
+
email:
|
54
|
+
- kou@clear-code.com
|
55
|
+
executables: []
|
56
|
+
extensions: []
|
57
|
+
extra_rdoc_files: []
|
58
|
+
files:
|
59
|
+
- ".rabbit"
|
60
|
+
- README.rd
|
61
|
+
- Rakefile
|
62
|
+
- config.yaml
|
63
|
+
- images/apache-arrow-commits-kou.png
|
64
|
+
- images/clear-code-rubykaigi-takeout-2021-gold-sponsor.png
|
65
|
+
- images/iris.png
|
66
|
+
- pdf/rubykaigi-takeout-2021-red-arrow.pdf
|
67
|
+
- red-arrow.rab
|
68
|
+
- theme.rb
|
69
|
+
homepage: https://slide.rabbit-shocker.org/authors/kou/rubykaigi-takeout-2021/
|
70
|
+
licenses:
|
71
|
+
- CC-BY-SA-4.0
|
72
|
+
metadata: {}
|
73
|
+
post_install_message:
|
74
|
+
rdoc_options: []
|
75
|
+
require_paths:
|
76
|
+
- lib
|
77
|
+
required_ruby_version: !ruby/object:Gem::Requirement
|
78
|
+
requirements:
|
79
|
+
- - ">="
|
80
|
+
- !ruby/object:Gem::Version
|
81
|
+
version: '0'
|
82
|
+
required_rubygems_version: !ruby/object:Gem::Requirement
|
83
|
+
requirements:
|
84
|
+
- - ">="
|
85
|
+
- !ruby/object:Gem::Version
|
86
|
+
version: '0'
|
87
|
+
requirements: []
|
88
|
+
rubygems_version: 3.3.0.dev
|
89
|
+
signing_key:
|
90
|
+
specification_version: 4
|
91
|
+
summary: Red Arrow - Ruby and Apache Arrow
|
92
|
+
test_files: []
|