quickfix_ruby_ud 2.0.7

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (196) hide show
  1. checksums.yaml +7 -0
  2. data/ext/quickfix/Acceptor.cpp +257 -0
  3. data/ext/quickfix/Acceptor.h +127 -0
  4. data/ext/quickfix/Allocator.h +9 -0
  5. data/ext/quickfix/Application.h +137 -0
  6. data/ext/quickfix/DOMDocument.h +70 -0
  7. data/ext/quickfix/DataDictionary.cpp +679 -0
  8. data/ext/quickfix/DataDictionary.h +607 -0
  9. data/ext/quickfix/DataDictionaryProvider.cpp +66 -0
  10. data/ext/quickfix/DataDictionaryProvider.h +67 -0
  11. data/ext/quickfix/DatabaseConnectionID.h +98 -0
  12. data/ext/quickfix/DatabaseConnectionPool.h +84 -0
  13. data/ext/quickfix/Dictionary.cpp +157 -0
  14. data/ext/quickfix/Dictionary.h +89 -0
  15. data/ext/quickfix/Event.h +89 -0
  16. data/ext/quickfix/Except.h +39 -0
  17. data/ext/quickfix/Exceptions.h +257 -0
  18. data/ext/quickfix/Field.h +654 -0
  19. data/ext/quickfix/FieldConvertors.cpp +86 -0
  20. data/ext/quickfix/FieldConvertors.h +800 -0
  21. data/ext/quickfix/FieldMap.cpp +254 -0
  22. data/ext/quickfix/FieldMap.h +327 -0
  23. data/ext/quickfix/FieldNumbers.h +44 -0
  24. data/ext/quickfix/FieldTypes.cpp +62 -0
  25. data/ext/quickfix/FieldTypes.h +817 -0
  26. data/ext/quickfix/Fields.h +30 -0
  27. data/ext/quickfix/FileLog.cpp +176 -0
  28. data/ext/quickfix/FileLog.h +110 -0
  29. data/ext/quickfix/FileStore.cpp +369 -0
  30. data/ext/quickfix/FileStore.h +131 -0
  31. data/ext/quickfix/FixCommonFields.h +13 -0
  32. data/ext/quickfix/FixFieldNumbers.h +6132 -0
  33. data/ext/quickfix/FixFields.h +6133 -0
  34. data/ext/quickfix/FixValues.h +5790 -0
  35. data/ext/quickfix/Group.cpp +44 -0
  36. data/ext/quickfix/Group.h +78 -0
  37. data/ext/quickfix/HostDetailsProvider.cpp +79 -0
  38. data/ext/quickfix/HostDetailsProvider.h +44 -0
  39. data/ext/quickfix/HtmlBuilder.h +178 -0
  40. data/ext/quickfix/HttpConnection.cpp +914 -0
  41. data/ext/quickfix/HttpConnection.h +74 -0
  42. data/ext/quickfix/HttpMessage.cpp +229 -0
  43. data/ext/quickfix/HttpMessage.h +112 -0
  44. data/ext/quickfix/HttpParser.cpp +49 -0
  45. data/ext/quickfix/HttpParser.h +49 -0
  46. data/ext/quickfix/HttpServer.cpp +152 -0
  47. data/ext/quickfix/HttpServer.h +76 -0
  48. data/ext/quickfix/Initiator.cpp +310 -0
  49. data/ext/quickfix/Initiator.h +151 -0
  50. data/ext/quickfix/Log.cpp +71 -0
  51. data/ext/quickfix/Log.h +254 -0
  52. data/ext/quickfix/Message.cpp +617 -0
  53. data/ext/quickfix/Message.h +419 -0
  54. data/ext/quickfix/MessageCracker.h +171 -0
  55. data/ext/quickfix/MessageSorters.cpp +101 -0
  56. data/ext/quickfix/MessageSorters.h +185 -0
  57. data/ext/quickfix/MessageStore.cpp +182 -0
  58. data/ext/quickfix/MessageStore.h +164 -0
  59. data/ext/quickfix/Mutex.h +120 -0
  60. data/ext/quickfix/MySQLConnection.h +187 -0
  61. data/ext/quickfix/MySQLLog.cpp +262 -0
  62. data/ext/quickfix/MySQLLog.h +158 -0
  63. data/ext/quickfix/MySQLStore.cpp +323 -0
  64. data/ext/quickfix/MySQLStore.h +161 -0
  65. data/ext/quickfix/MySQLStubs.h +203 -0
  66. data/ext/quickfix/NullStore.cpp +40 -0
  67. data/ext/quickfix/NullStore.h +89 -0
  68. data/ext/quickfix/OdbcConnection.h +241 -0
  69. data/ext/quickfix/OdbcLog.cpp +230 -0
  70. data/ext/quickfix/OdbcLog.h +109 -0
  71. data/ext/quickfix/OdbcStore.cpp +313 -0
  72. data/ext/quickfix/OdbcStore.h +124 -0
  73. data/ext/quickfix/PUGIXML_DOMDocument.cpp +112 -0
  74. data/ext/quickfix/PUGIXML_DOMDocument.h +81 -0
  75. data/ext/quickfix/Parser.cpp +111 -0
  76. data/ext/quickfix/Parser.h +50 -0
  77. data/ext/quickfix/PostgreSQLConnection.h +163 -0
  78. data/ext/quickfix/PostgreSQLLog.cpp +263 -0
  79. data/ext/quickfix/PostgreSQLLog.h +157 -0
  80. data/ext/quickfix/PostgreSQLStore.cpp +327 -0
  81. data/ext/quickfix/PostgreSQLStore.h +160 -0
  82. data/ext/quickfix/PostgreSQLStubs.h +203 -0
  83. data/ext/quickfix/Queue.h +66 -0
  84. data/ext/quickfix/QuickfixRuby.cpp +131900 -0
  85. data/ext/quickfix/QuickfixRuby.h +56 -0
  86. data/ext/quickfix/Responder.h +41 -0
  87. data/ext/quickfix/SSLSocketAcceptor.cpp +409 -0
  88. data/ext/quickfix/SSLSocketAcceptor.h +186 -0
  89. data/ext/quickfix/SSLSocketConnection.cpp +434 -0
  90. data/ext/quickfix/SSLSocketConnection.h +221 -0
  91. data/ext/quickfix/SSLSocketInitiator.cpp +558 -0
  92. data/ext/quickfix/SSLSocketInitiator.h +203 -0
  93. data/ext/quickfix/SSLStubs.h +129 -0
  94. data/ext/quickfix/Session.cpp +1437 -0
  95. data/ext/quickfix/Session.h +343 -0
  96. data/ext/quickfix/SessionFactory.cpp +314 -0
  97. data/ext/quickfix/SessionFactory.h +84 -0
  98. data/ext/quickfix/SessionID.h +136 -0
  99. data/ext/quickfix/SessionSettings.cpp +165 -0
  100. data/ext/quickfix/SessionSettings.h +283 -0
  101. data/ext/quickfix/SessionState.h +260 -0
  102. data/ext/quickfix/Settings.cpp +160 -0
  103. data/ext/quickfix/Settings.h +56 -0
  104. data/ext/quickfix/SharedArray.h +274 -0
  105. data/ext/quickfix/SocketAcceptor.cpp +216 -0
  106. data/ext/quickfix/SocketAcceptor.h +77 -0
  107. data/ext/quickfix/SocketConnection.cpp +256 -0
  108. data/ext/quickfix/SocketConnection.h +102 -0
  109. data/ext/quickfix/SocketConnector.cpp +112 -0
  110. data/ext/quickfix/SocketConnector.h +76 -0
  111. data/ext/quickfix/SocketInitiator.cpp +241 -0
  112. data/ext/quickfix/SocketInitiator.h +76 -0
  113. data/ext/quickfix/SocketMonitor.h +26 -0
  114. data/ext/quickfix/SocketMonitor_UNIX.cpp +238 -0
  115. data/ext/quickfix/SocketMonitor_UNIX.h +101 -0
  116. data/ext/quickfix/SocketMonitor_WIN32.cpp +248 -0
  117. data/ext/quickfix/SocketMonitor_WIN32.h +99 -0
  118. data/ext/quickfix/SocketServer.cpp +163 -0
  119. data/ext/quickfix/SocketServer.h +100 -0
  120. data/ext/quickfix/ThreadedSSLSocketAcceptor.cpp +436 -0
  121. data/ext/quickfix/ThreadedSSLSocketAcceptor.h +209 -0
  122. data/ext/quickfix/ThreadedSSLSocketConnection.cpp +364 -0
  123. data/ext/quickfix/ThreadedSSLSocketConnection.h +191 -0
  124. data/ext/quickfix/ThreadedSSLSocketInitiator.cpp +434 -0
  125. data/ext/quickfix/ThreadedSSLSocketInitiator.h +193 -0
  126. data/ext/quickfix/ThreadedSocketAcceptor.cpp +242 -0
  127. data/ext/quickfix/ThreadedSocketAcceptor.h +95 -0
  128. data/ext/quickfix/ThreadedSocketConnection.cpp +227 -0
  129. data/ext/quickfix/ThreadedSocketConnection.h +89 -0
  130. data/ext/quickfix/ThreadedSocketInitiator.cpp +238 -0
  131. data/ext/quickfix/ThreadedSocketInitiator.h +78 -0
  132. data/ext/quickfix/TimeRange.cpp +227 -0
  133. data/ext/quickfix/TimeRange.h +215 -0
  134. data/ext/quickfix/Utility.cpp +639 -0
  135. data/ext/quickfix/Utility.h +255 -0
  136. data/ext/quickfix/UtilitySSL.cpp +1612 -0
  137. data/ext/quickfix/UtilitySSL.h +274 -0
  138. data/ext/quickfix/Values.h +63 -0
  139. data/ext/quickfix/config-all.h +10 -0
  140. data/ext/quickfix/config.h +10 -0
  141. data/ext/quickfix/config_unix.h +178 -0
  142. data/ext/quickfix/config_windows.h +0 -0
  143. data/ext/quickfix/dirent_windows.h +838 -0
  144. data/ext/quickfix/double-conversion/bignum-dtoa.cc +641 -0
  145. data/ext/quickfix/double-conversion/bignum-dtoa.h +84 -0
  146. data/ext/quickfix/double-conversion/bignum.cc +766 -0
  147. data/ext/quickfix/double-conversion/bignum.h +144 -0
  148. data/ext/quickfix/double-conversion/cached-powers.cc +176 -0
  149. data/ext/quickfix/double-conversion/cached-powers.h +64 -0
  150. data/ext/quickfix/double-conversion/diy-fp.cc +57 -0
  151. data/ext/quickfix/double-conversion/diy-fp.h +118 -0
  152. data/ext/quickfix/double-conversion/double-conversion.cc +994 -0
  153. data/ext/quickfix/double-conversion/double-conversion.h +543 -0
  154. data/ext/quickfix/double-conversion/fast-dtoa.cc +665 -0
  155. data/ext/quickfix/double-conversion/fast-dtoa.h +88 -0
  156. data/ext/quickfix/double-conversion/fixed-dtoa.cc +404 -0
  157. data/ext/quickfix/double-conversion/fixed-dtoa.h +56 -0
  158. data/ext/quickfix/double-conversion/ieee.h +402 -0
  159. data/ext/quickfix/double-conversion/strtod.cc +557 -0
  160. data/ext/quickfix/double-conversion/strtod.h +45 -0
  161. data/ext/quickfix/double-conversion/utils.h +374 -0
  162. data/ext/quickfix/extconf.rb +76 -0
  163. data/ext/quickfix/index.h +37 -0
  164. data/ext/quickfix/pugiconfig.hpp +77 -0
  165. data/ext/quickfix/pugixml.cpp +13237 -0
  166. data/ext/quickfix/pugixml.hpp +1516 -0
  167. data/ext/quickfix/scope_guard.hpp +215 -0
  168. data/ext/quickfix/stdint_msvc.h +254 -0
  169. data/ext/quickfix/strptime.h +7 -0
  170. data/lib/quickfix40.rb +274 -0
  171. data/lib/quickfix41.rb +351 -0
  172. data/lib/quickfix42.rb +1184 -0
  173. data/lib/quickfix43.rb +3504 -0
  174. data/lib/quickfix44.rb +14040 -0
  175. data/lib/quickfix50.rb +20051 -0
  176. data/lib/quickfix50sp1.rb +23596 -0
  177. data/lib/quickfix50sp2.rb +412444 -0
  178. data/lib/quickfix_fields.rb +79393 -0
  179. data/lib/quickfix_ruby.rb +82 -0
  180. data/lib/quickfixt11.rb +65 -0
  181. data/spec/FIX40.xml +862 -0
  182. data/spec/FIX41.xml +1282 -0
  183. data/spec/FIX42.xml +2743 -0
  184. data/spec/FIX43.xml +4230 -0
  185. data/spec/FIX44.xml +6600 -0
  186. data/spec/FIX50.xml +8142 -0
  187. data/spec/FIX50SP1.xml +9506 -0
  188. data/spec/FIX50SP2.xml +26069 -0
  189. data/spec/FIXT11.xml +252 -0
  190. data/test/DataDictionaryTestCase.rb +268 -0
  191. data/test/DictionaryTestCase.rb +112 -0
  192. data/test/FieldBaseTestCase.rb +24 -0
  193. data/test/MessageStoreTestCase.rb +19 -0
  194. data/test/MessageTestCase.rb +368 -0
  195. data/test/SessionSettingsTestCase.rb +41 -0
  196. metadata +236 -0
@@ -0,0 +1,665 @@
1
+ // Copyright 2012 the V8 project authors. All rights reserved.
2
+ // Redistribution and use in source and binary forms, with or without
3
+ // modification, are permitted provided that the following conditions are
4
+ // met:
5
+ //
6
+ // * Redistributions of source code must retain the above copyright
7
+ // notice, this list of conditions and the following disclaimer.
8
+ // * Redistributions in binary form must reproduce the above
9
+ // copyright notice, this list of conditions and the following
10
+ // disclaimer in the documentation and/or other materials provided
11
+ // with the distribution.
12
+ // * Neither the name of Google Inc. nor the names of its
13
+ // contributors may be used to endorse or promote products derived
14
+ // from this software without specific prior written permission.
15
+ //
16
+ // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17
+ // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18
+ // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19
+ // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20
+ // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21
+ // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22
+ // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23
+ // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24
+ // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25
+ // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26
+ // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
+
28
+ #include "fast-dtoa.h"
29
+
30
+ #include "cached-powers.h"
31
+ #include "diy-fp.h"
32
+ #include "ieee.h"
33
+
34
+ namespace double_conversion {
35
+
36
+ // The minimal and maximal target exponent define the range of w's binary
37
+ // exponent, where 'w' is the result of multiplying the input by a cached power
38
+ // of ten.
39
+ //
40
+ // A different range might be chosen on a different platform, to optimize digit
41
+ // generation, but a smaller range requires more powers of ten to be cached.
42
+ static const int kMinimalTargetExponent = -60;
43
+ static const int kMaximalTargetExponent = -32;
44
+
45
+
46
+ // Adjusts the last digit of the generated number, and screens out generated
47
+ // solutions that may be inaccurate. A solution may be inaccurate if it is
48
+ // outside the safe interval, or if we cannot prove that it is closer to the
49
+ // input than a neighboring representation of the same length.
50
+ //
51
+ // Input: * buffer containing the digits of too_high / 10^kappa
52
+ // * the buffer's length
53
+ // * distance_too_high_w == (too_high - w).f() * unit
54
+ // * unsafe_interval == (too_high - too_low).f() * unit
55
+ // * rest = (too_high - buffer * 10^kappa).f() * unit
56
+ // * ten_kappa = 10^kappa * unit
57
+ // * unit = the common multiplier
58
+ // Output: returns true if the buffer is guaranteed to contain the closest
59
+ // representable number to the input.
60
+ // Modifies the generated digits in the buffer to approach (round towards) w.
61
+ static bool RoundWeed(Vector<char> buffer,
62
+ int length,
63
+ uint64_t distance_too_high_w,
64
+ uint64_t unsafe_interval,
65
+ uint64_t rest,
66
+ uint64_t ten_kappa,
67
+ uint64_t unit) {
68
+ uint64_t small_distance = distance_too_high_w - unit;
69
+ uint64_t big_distance = distance_too_high_w + unit;
70
+ // Let w_low = too_high - big_distance, and
71
+ // w_high = too_high - small_distance.
72
+ // Note: w_low < w < w_high
73
+ //
74
+ // The real w (* unit) must lie somewhere inside the interval
75
+ // ]w_low; w_high[ (often written as "(w_low; w_high)")
76
+
77
+ // Basically the buffer currently contains a number in the unsafe interval
78
+ // ]too_low; too_high[ with too_low < w < too_high
79
+ //
80
+ // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
81
+ // ^v 1 unit ^ ^ ^ ^
82
+ // boundary_high --------------------- . . . .
83
+ // ^v 1 unit . . . .
84
+ // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
85
+ // . . ^ . .
86
+ // . big_distance . . .
87
+ // . . . . rest
88
+ // small_distance . . . .
89
+ // v . . . .
90
+ // w_high - - - - - - - - - - - - - - - - - - . . . .
91
+ // ^v 1 unit . . . .
92
+ // w ---------------------------------------- . . . .
93
+ // ^v 1 unit v . . .
94
+ // w_low - - - - - - - - - - - - - - - - - - - - - . . .
95
+ // . . v
96
+ // buffer --------------------------------------------------+-------+--------
97
+ // . .
98
+ // safe_interval .
99
+ // v .
100
+ // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
101
+ // ^v 1 unit .
102
+ // boundary_low ------------------------- unsafe_interval
103
+ // ^v 1 unit v
104
+ // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
105
+ //
106
+ //
107
+ // Note that the value of buffer could lie anywhere inside the range too_low
108
+ // to too_high.
109
+ //
110
+ // boundary_low, boundary_high and w are approximations of the real boundaries
111
+ // and v (the input number). They are guaranteed to be precise up to one unit.
112
+ // In fact the error is guaranteed to be strictly less than one unit.
113
+ //
114
+ // Anything that lies outside the unsafe interval is guaranteed not to round
115
+ // to v when read again.
116
+ // Anything that lies inside the safe interval is guaranteed to round to v
117
+ // when read again.
118
+ // If the number inside the buffer lies inside the unsafe interval but not
119
+ // inside the safe interval then we simply do not know and bail out (returning
120
+ // false).
121
+ //
122
+ // Similarly we have to take into account the imprecision of 'w' when finding
123
+ // the closest representation of 'w'. If we have two potential
124
+ // representations, and one is closer to both w_low and w_high, then we know
125
+ // it is closer to the actual value v.
126
+ //
127
+ // By generating the digits of too_high we got the largest (closest to
128
+ // too_high) buffer that is still in the unsafe interval. In the case where
129
+ // w_high < buffer < too_high we try to decrement the buffer.
130
+ // This way the buffer approaches (rounds towards) w.
131
+ // There are 3 conditions that stop the decrementation process:
132
+ // 1) the buffer is already below w_high
133
+ // 2) decrementing the buffer would make it leave the unsafe interval
134
+ // 3) decrementing the buffer would yield a number below w_high and farther
135
+ // away than the current number. In other words:
136
+ // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
137
+ // Instead of using the buffer directly we use its distance to too_high.
138
+ // Conceptually rest ~= too_high - buffer
139
+ // We need to do the following tests in this order to avoid over- and
140
+ // underflows.
141
+ ASSERT(rest <= unsafe_interval);
142
+ while (rest < small_distance && // Negated condition 1
143
+ unsafe_interval - rest >= ten_kappa && // Negated condition 2
144
+ (rest + ten_kappa < small_distance || // buffer{-1} > w_high
145
+ small_distance - rest >= rest + ten_kappa - small_distance)) {
146
+ buffer[length - 1]--;
147
+ rest += ten_kappa;
148
+ }
149
+
150
+ // We have approached w+ as much as possible. We now test if approaching w-
151
+ // would require changing the buffer. If yes, then we have two possible
152
+ // representations close to w, but we cannot decide which one is closer.
153
+ if (rest < big_distance &&
154
+ unsafe_interval - rest >= ten_kappa &&
155
+ (rest + ten_kappa < big_distance ||
156
+ big_distance - rest > rest + ten_kappa - big_distance)) {
157
+ return false;
158
+ }
159
+
160
+ // Weeding test.
161
+ // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
162
+ // Since too_low = too_high - unsafe_interval this is equivalent to
163
+ // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
164
+ // Conceptually we have: rest ~= too_high - buffer
165
+ return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
166
+ }
167
+
168
+
169
+ // Rounds the buffer upwards if the result is closer to v by possibly adding
170
+ // 1 to the buffer. If the precision of the calculation is not sufficient to
171
+ // round correctly, return false.
172
+ // The rounding might shift the whole buffer in which case the kappa is
173
+ // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
174
+ //
175
+ // If 2*rest > ten_kappa then the buffer needs to be round up.
176
+ // rest can have an error of +/- 1 unit. This function accounts for the
177
+ // imprecision and returns false, if the rounding direction cannot be
178
+ // unambiguously determined.
179
+ //
180
+ // Precondition: rest < ten_kappa.
181
+ static bool RoundWeedCounted(Vector<char> buffer,
182
+ int length,
183
+ uint64_t rest,
184
+ uint64_t ten_kappa,
185
+ uint64_t unit,
186
+ int* kappa) {
187
+ ASSERT(rest < ten_kappa);
188
+ // The following tests are done in a specific order to avoid overflows. They
189
+ // will work correctly with any uint64 values of rest < ten_kappa and unit.
190
+ //
191
+ // If the unit is too big, then we don't know which way to round. For example
192
+ // a unit of 50 means that the real number lies within rest +/- 50. If
193
+ // 10^kappa == 40 then there is no way to tell which way to round.
194
+ if (unit >= ten_kappa) return false;
195
+ // Even if unit is just half the size of 10^kappa we are already completely
196
+ // lost. (And after the previous test we know that the expression will not
197
+ // over/underflow.)
198
+ if (ten_kappa - unit <= unit) return false;
199
+ // If 2 * (rest + unit) <= 10^kappa we can safely round down.
200
+ if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
201
+ return true;
202
+ }
203
+ // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
204
+ if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
205
+ // Increment the last digit recursively until we find a non '9' digit.
206
+ buffer[length - 1]++;
207
+ for (int i = length - 1; i > 0; --i) {
208
+ if (buffer[i] != '0' + 10) break;
209
+ buffer[i] = '0';
210
+ buffer[i - 1]++;
211
+ }
212
+ // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
213
+ // exception of the first digit all digits are now '0'. Simply switch the
214
+ // first digit to '1' and adjust the kappa. Example: "99" becomes "10" and
215
+ // the power (the kappa) is increased.
216
+ if (buffer[0] == '0' + 10) {
217
+ buffer[0] = '1';
218
+ (*kappa) += 1;
219
+ }
220
+ return true;
221
+ }
222
+ return false;
223
+ }
224
+
225
+ // Returns the biggest power of ten that is less than or equal to the given
226
+ // number. We furthermore receive the maximum number of bits 'number' has.
227
+ //
228
+ // Returns power == 10^(exponent_plus_one-1) such that
229
+ // power <= number < power * 10.
230
+ // If number_bits == 0 then 0^(0-1) is returned.
231
+ // The number of bits must be <= 32.
232
+ // Precondition: number < (1 << (number_bits + 1)).
233
+
234
+ // Inspired by the method for finding an integer log base 10 from here:
235
+ // http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
236
+ static unsigned int const kSmallPowersOfTen[] =
237
+ {0, 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000,
238
+ 1000000000};
239
+
240
+ static void BiggestPowerTen(uint32_t number,
241
+ int number_bits,
242
+ uint32_t* power,
243
+ int* exponent_plus_one) {
244
+ ASSERT(number < (1u << (number_bits + 1)));
245
+ // 1233/4096 is approximately 1/lg(10).
246
+ int exponent_plus_one_guess = ((number_bits + 1) * 1233 >> 12);
247
+ // We increment to skip over the first entry in the kPowersOf10 table.
248
+ // Note: kPowersOf10[i] == 10^(i-1).
249
+ exponent_plus_one_guess++;
250
+ // We don't have any guarantees that 2^number_bits <= number.
251
+ if (number < kSmallPowersOfTen[exponent_plus_one_guess]) {
252
+ exponent_plus_one_guess--;
253
+ }
254
+ *power = kSmallPowersOfTen[exponent_plus_one_guess];
255
+ *exponent_plus_one = exponent_plus_one_guess;
256
+ }
257
+
258
+ // Generates the digits of input number w.
259
+ // w is a floating-point number (DiyFp), consisting of a significand and an
260
+ // exponent. Its exponent is bounded by kMinimalTargetExponent and
261
+ // kMaximalTargetExponent.
262
+ // Hence -60 <= w.e() <= -32.
263
+ //
264
+ // Returns false if it fails, in which case the generated digits in the buffer
265
+ // should not be used.
266
+ // Preconditions:
267
+ // * low, w and high are correct up to 1 ulp (unit in the last place). That
268
+ // is, their error must be less than a unit of their last digits.
269
+ // * low.e() == w.e() == high.e()
270
+ // * low < w < high, and taking into account their error: low~ <= high~
271
+ // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
272
+ // Postconditions: returns false if procedure fails.
273
+ // otherwise:
274
+ // * buffer is not null-terminated, but len contains the number of digits.
275
+ // * buffer contains the shortest possible decimal digit-sequence
276
+ // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are the
277
+ // correct values of low and high (without their error).
278
+ // * if more than one decimal representation gives the minimal number of
279
+ // decimal digits then the one closest to W (where W is the correct value
280
+ // of w) is chosen.
281
+ // Remark: this procedure takes into account the imprecision of its input
282
+ // numbers. If the precision is not enough to guarantee all the postconditions
283
+ // then false is returned. This usually happens rarely (~0.5%).
284
+ //
285
+ // Say, for the sake of example, that
286
+ // w.e() == -48, and w.f() == 0x1234567890abcdef
287
+ // w's value can be computed by w.f() * 2^w.e()
288
+ // We can obtain w's integral digits by simply shifting w.f() by -w.e().
289
+ // -> w's integral part is 0x1234
290
+ // w's fractional part is therefore 0x567890abcdef.
291
+ // Printing w's integral part is easy (simply print 0x1234 in decimal).
292
+ // In order to print its fraction we repeatedly multiply the fraction by 10 and
293
+ // get each digit. Example the first digit after the point would be computed by
294
+ // (0x567890abcdef * 10) >> 48. -> 3
295
+ // The whole thing becomes slightly more complicated because we want to stop
296
+ // once we have enough digits. That is, once the digits inside the buffer
297
+ // represent 'w' we can stop. Everything inside the interval low - high
298
+ // represents w. However we have to pay attention to low, high and w's
299
+ // imprecision.
300
+ static bool DigitGen(DiyFp low,
301
+ DiyFp w,
302
+ DiyFp high,
303
+ Vector<char> buffer,
304
+ int* length,
305
+ int* kappa) {
306
+ ASSERT(low.e() == w.e() && w.e() == high.e());
307
+ ASSERT(low.f() + 1 <= high.f() - 1);
308
+ ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
309
+ // low, w and high are imprecise, but by less than one ulp (unit in the last
310
+ // place).
311
+ // If we remove (resp. add) 1 ulp from low (resp. high) we are certain that
312
+ // the new numbers are outside of the interval we want the final
313
+ // representation to lie in.
314
+ // Inversely adding (resp. removing) 1 ulp from low (resp. high) would yield
315
+ // numbers that are certain to lie in the interval. We will use this fact
316
+ // later on.
317
+ // We will now start by generating the digits within the uncertain
318
+ // interval. Later we will weed out representations that lie outside the safe
319
+ // interval and thus _might_ lie outside the correct interval.
320
+ uint64_t unit = 1;
321
+ DiyFp too_low = DiyFp(low.f() - unit, low.e());
322
+ DiyFp too_high = DiyFp(high.f() + unit, high.e());
323
+ // too_low and too_high are guaranteed to lie outside the interval we want the
324
+ // generated number in.
325
+ DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
326
+ // We now cut the input number into two parts: the integral digits and the
327
+ // fractionals. We will not write any decimal separator though, but adapt
328
+ // kappa instead.
329
+ // Reminder: we are currently computing the digits (stored inside the buffer)
330
+ // such that: too_low < buffer * 10^kappa < too_high
331
+ // We use too_high for the digit_generation and stop as soon as possible.
332
+ // If we stop early we effectively round down.
333
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
334
+ // Division by one is a shift.
335
+ uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
336
+ // Modulo by one is an and.
337
+ uint64_t fractionals = too_high.f() & (one.f() - 1);
338
+ uint32_t divisor;
339
+ int divisor_exponent_plus_one;
340
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
341
+ &divisor, &divisor_exponent_plus_one);
342
+ *kappa = divisor_exponent_plus_one;
343
+ *length = 0;
344
+ // Loop invariant: buffer = too_high / 10^kappa (integer division)
345
+ // The invariant holds for the first iteration: kappa has been initialized
346
+ // with the divisor exponent + 1. And the divisor is the biggest power of ten
347
+ // that is smaller than integrals.
348
+ while (*kappa > 0) {
349
+ int digit = integrals / divisor;
350
+ ASSERT(digit <= 9);
351
+ buffer[*length] = static_cast<char>('0' + digit);
352
+ (*length)++;
353
+ integrals %= divisor;
354
+ (*kappa)--;
355
+ // Note that kappa now equals the exponent of the divisor and that the
356
+ // invariant thus holds again.
357
+ uint64_t rest =
358
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
359
+ // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
360
+ // Reminder: unsafe_interval.e() == one.e()
361
+ if (rest < unsafe_interval.f()) {
362
+ // Rounding down (by not emitting the remaining digits) yields a number
363
+ // that lies within the unsafe interval.
364
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
365
+ unsafe_interval.f(), rest,
366
+ static_cast<uint64_t>(divisor) << -one.e(), unit);
367
+ }
368
+ divisor /= 10;
369
+ }
370
+
371
+ // The integrals have been generated. We are at the point of the decimal
372
+ // separator. In the following loop we simply multiply the remaining digits by
373
+ // 10 and divide by one. We just need to pay attention to multiply associated
374
+ // data (like the interval or 'unit'), too.
375
+ // Note that the multiplication by 10 does not overflow, because w.e >= -60
376
+ // and thus one.e >= -60.
377
+ ASSERT(one.e() >= -60);
378
+ ASSERT(fractionals < one.f());
379
+ ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
380
+ for (;;) {
381
+ fractionals *= 10;
382
+ unit *= 10;
383
+ unsafe_interval.set_f(unsafe_interval.f() * 10);
384
+ // Integer division by one.
385
+ int digit = static_cast<int>(fractionals >> -one.e());
386
+ ASSERT(digit <= 9);
387
+ buffer[*length] = static_cast<char>('0' + digit);
388
+ (*length)++;
389
+ fractionals &= one.f() - 1; // Modulo by one.
390
+ (*kappa)--;
391
+ if (fractionals < unsafe_interval.f()) {
392
+ return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
393
+ unsafe_interval.f(), fractionals, one.f(), unit);
394
+ }
395
+ }
396
+ }
397
+
398
+
399
+
400
+ // Generates (at most) requested_digits digits of input number w.
401
+ // w is a floating-point number (DiyFp), consisting of a significand and an
402
+ // exponent. Its exponent is bounded by kMinimalTargetExponent and
403
+ // kMaximalTargetExponent.
404
+ // Hence -60 <= w.e() <= -32.
405
+ //
406
+ // Returns false if it fails, in which case the generated digits in the buffer
407
+ // should not be used.
408
+ // Preconditions:
409
+ // * w is correct up to 1 ulp (unit in the last place). That
410
+ // is, its error must be strictly less than a unit of its last digit.
411
+ // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
412
+ //
413
+ // Postconditions: returns false if procedure fails.
414
+ // otherwise:
415
+ // * buffer is not null-terminated, but length contains the number of
416
+ // digits.
417
+ // * the representation in buffer is the most precise representation of
418
+ // requested_digits digits.
419
+ // * buffer contains at most requested_digits digits of w. If there are less
420
+ // than requested_digits digits then some trailing '0's have been removed.
421
+ // * kappa is such that
422
+ // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
423
+ //
424
+ // Remark: This procedure takes into account the imprecision of its input
425
+ // numbers. If the precision is not enough to guarantee all the postconditions
426
+ // then false is returned. This usually happens rarely, but the failure-rate
427
+ // increases with higher requested_digits.
428
+ static bool DigitGenCounted(DiyFp w,
429
+ int requested_digits,
430
+ Vector<char> buffer,
431
+ int* length,
432
+ int* kappa) {
433
+ ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponent);
434
+ ASSERT(kMinimalTargetExponent >= -60);
435
+ ASSERT(kMaximalTargetExponent <= -32);
436
+ // w is assumed to have an error less than 1 unit. Whenever w is scaled we
437
+ // also scale its error.
438
+ uint64_t w_error = 1;
439
+ // We cut the input number into two parts: the integral digits and the
440
+ // fractional digits. We don't emit any decimal separator, but adapt kappa
441
+ // instead. Example: instead of writing "1.2" we put "12" into the buffer and
442
+ // increase kappa by 1.
443
+ DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
444
+ // Division by one is a shift.
445
+ uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
446
+ // Modulo by one is an and.
447
+ uint64_t fractionals = w.f() & (one.f() - 1);
448
+ uint32_t divisor;
449
+ int divisor_exponent_plus_one;
450
+ BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
451
+ &divisor, &divisor_exponent_plus_one);
452
+ *kappa = divisor_exponent_plus_one;
453
+ *length = 0;
454
+
455
+ // Loop invariant: buffer = w / 10^kappa (integer division)
456
+ // The invariant holds for the first iteration: kappa has been initialized
457
+ // with the divisor exponent + 1. And the divisor is the biggest power of ten
458
+ // that is smaller than 'integrals'.
459
+ while (*kappa > 0) {
460
+ int digit = integrals / divisor;
461
+ ASSERT(digit <= 9);
462
+ buffer[*length] = static_cast<char>('0' + digit);
463
+ (*length)++;
464
+ requested_digits--;
465
+ integrals %= divisor;
466
+ (*kappa)--;
467
+ // Note that kappa now equals the exponent of the divisor and that the
468
+ // invariant thus holds again.
469
+ if (requested_digits == 0) break;
470
+ divisor /= 10;
471
+ }
472
+
473
+ if (requested_digits == 0) {
474
+ uint64_t rest =
475
+ (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
476
+ return RoundWeedCounted(buffer, *length, rest,
477
+ static_cast<uint64_t>(divisor) << -one.e(), w_error,
478
+ kappa);
479
+ }
480
+
481
+ // The integrals have been generated. We are at the point of the decimal
482
+ // separator. In the following loop we simply multiply the remaining digits by
483
+ // 10 and divide by one. We just need to pay attention to multiply associated
484
+ // data (the 'unit'), too.
485
+ // Note that the multiplication by 10 does not overflow, because w.e >= -60
486
+ // and thus one.e >= -60.
487
+ ASSERT(one.e() >= -60);
488
+ ASSERT(fractionals < one.f());
489
+ ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
490
+ while (requested_digits > 0 && fractionals > w_error) {
491
+ fractionals *= 10;
492
+ w_error *= 10;
493
+ // Integer division by one.
494
+ int digit = static_cast<int>(fractionals >> -one.e());
495
+ ASSERT(digit <= 9);
496
+ buffer[*length] = static_cast<char>('0' + digit);
497
+ (*length)++;
498
+ requested_digits--;
499
+ fractionals &= one.f() - 1; // Modulo by one.
500
+ (*kappa)--;
501
+ }
502
+ if (requested_digits != 0) return false;
503
+ return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
504
+ kappa);
505
+ }
506
+
507
+
508
+ // Provides a decimal representation of v.
509
+ // Returns true if it succeeds, otherwise the result cannot be trusted.
510
+ // There will be *length digits inside the buffer (not null-terminated).
511
+ // If the function returns true then
512
+ // v == (double) (buffer * 10^decimal_exponent).
513
+ // The digits in the buffer are the shortest representation possible: no
514
+ // 0.09999999999999999 instead of 0.1. The shorter representation will even be
515
+ // chosen even if the longer one would be closer to v.
516
+ // The last digit will be closest to the actual v. That is, even if several
517
+ // digits might correctly yield 'v' when read again, the closest will be
518
+ // computed.
519
+ static bool Grisu3(double v,
520
+ FastDtoaMode mode,
521
+ Vector<char> buffer,
522
+ int* length,
523
+ int* decimal_exponent) {
524
+ DiyFp w = Double(v).AsNormalizedDiyFp();
525
+ // boundary_minus and boundary_plus are the boundaries between v and its
526
+ // closest floating-point neighbors. Any number strictly between
527
+ // boundary_minus and boundary_plus will round to v when convert to a double.
528
+ // Grisu3 will never output representations that lie exactly on a boundary.
529
+ DiyFp boundary_minus, boundary_plus;
530
+ if (mode == FAST_DTOA_SHORTEST) {
531
+ Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
532
+ } else {
533
+ ASSERT(mode == FAST_DTOA_SHORTEST_SINGLE);
534
+ float single_v = static_cast<float>(v);
535
+ Single(single_v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
536
+ }
537
+ ASSERT(boundary_plus.e() == w.e());
538
+ DiyFp ten_mk; // Cached power of ten: 10^-k
539
+ int mk; // -k
540
+ int ten_mk_minimal_binary_exponent =
541
+ kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
542
+ int ten_mk_maximal_binary_exponent =
543
+ kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
544
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
545
+ ten_mk_minimal_binary_exponent,
546
+ ten_mk_maximal_binary_exponent,
547
+ &ten_mk, &mk);
548
+ ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
549
+ DiyFp::kSignificandSize) &&
550
+ (kMaximalTargetExponent >= w.e() + ten_mk.e() +
551
+ DiyFp::kSignificandSize));
552
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
553
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits.
554
+
555
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
556
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
557
+ // off by a small amount.
558
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
559
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
560
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e
561
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk);
562
+ ASSERT(scaled_w.e() ==
563
+ boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
564
+ // In theory it would be possible to avoid some recomputations by computing
565
+ // the difference between w and boundary_minus/plus (a power of 2) and to
566
+ // compute scaled_boundary_minus/plus by subtracting/adding from
567
+ // scaled_w. However the code becomes much less readable and the speed
568
+ // enhancements are not terriffic.
569
+ DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
570
+ DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
571
+
572
+ // DigitGen will generate the digits of scaled_w. Therefore we have
573
+ // v == (double) (scaled_w * 10^-mk).
574
+ // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is not an
575
+ // integer than it will be updated. For instance if scaled_w == 1.23 then
576
+ // the buffer will be filled with "123" und the decimal_exponent will be
577
+ // decreased by 2.
578
+ int kappa;
579
+ bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_plus,
580
+ buffer, length, &kappa);
581
+ *decimal_exponent = -mk + kappa;
582
+ return result;
583
+ }
584
+
585
+
586
+ // The "counted" version of grisu3 (see above) only generates requested_digits
587
+ // number of digits. This version does not generate the shortest representation,
588
+ // and with enough requested digits 0.1 will at some point print as 0.9999999...
589
+ // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
590
+ // therefore the rounding strategy for halfway cases is irrelevant.
591
+ static bool Grisu3Counted(double v,
592
+ int requested_digits,
593
+ Vector<char> buffer,
594
+ int* length,
595
+ int* decimal_exponent) {
596
+ DiyFp w = Double(v).AsNormalizedDiyFp();
597
+ DiyFp ten_mk; // Cached power of ten: 10^-k
598
+ int mk; // -k
599
+ int ten_mk_minimal_binary_exponent =
600
+ kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
601
+ int ten_mk_maximal_binary_exponent =
602
+ kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
603
+ PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
604
+ ten_mk_minimal_binary_exponent,
605
+ ten_mk_maximal_binary_exponent,
606
+ &ten_mk, &mk);
607
+ ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
608
+ DiyFp::kSignificandSize) &&
609
+ (kMaximalTargetExponent >= w.e() + ten_mk.e() +
610
+ DiyFp::kSignificandSize));
611
+ // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
612
+ // 64 bit significand and ten_mk is thus only precise up to 64 bits.
613
+
614
+ // The DiyFp::Times procedure rounds its result, and ten_mk is approximated
615
+ // too. The variable scaled_w (as well as scaled_boundary_minus/plus) are now
616
+ // off by a small amount.
617
+ // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_w.
618
+ // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
619
+ // (f-1) * 2^e < w*10^k < (f+1) * 2^e
620
+ DiyFp scaled_w = DiyFp::Times(w, ten_mk);
621
+
622
+ // We now have (double) (scaled_w * 10^-mk).
623
+ // DigitGen will generate the first requested_digits digits of scaled_w and
624
+ // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
625
+ // will not always be exactly the same since DigitGenCounted only produces a
626
+ // limited number of digits.)
627
+ int kappa;
628
+ bool result = DigitGenCounted(scaled_w, requested_digits,
629
+ buffer, length, &kappa);
630
+ *decimal_exponent = -mk + kappa;
631
+ return result;
632
+ }
633
+
634
+
635
+ bool FastDtoa(double v,
636
+ FastDtoaMode mode,
637
+ int requested_digits,
638
+ Vector<char> buffer,
639
+ int* length,
640
+ int* decimal_point) {
641
+ ASSERT(v > 0);
642
+ ASSERT(!Double(v).IsSpecial());
643
+
644
+ bool result = false;
645
+ int decimal_exponent = 0;
646
+ switch (mode) {
647
+ case FAST_DTOA_SHORTEST:
648
+ case FAST_DTOA_SHORTEST_SINGLE:
649
+ result = Grisu3(v, mode, buffer, length, &decimal_exponent);
650
+ break;
651
+ case FAST_DTOA_PRECISION:
652
+ result = Grisu3Counted(v, requested_digits,
653
+ buffer, length, &decimal_exponent);
654
+ break;
655
+ default:
656
+ UNREACHABLE();
657
+ }
658
+ if (result) {
659
+ *decimal_point = *length + decimal_exponent;
660
+ buffer[*length] = '\0';
661
+ }
662
+ return result;
663
+ }
664
+
665
+ } // namespace double_conversion