pycall 1.0.1-x86-mingw32
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/.gitignore +13 -0
- data/.rspec +2 -0
- data/.travis.yml +41 -0
- data/CHANGES.md +39 -0
- data/Gemfile +4 -0
- data/LICENSE.txt +21 -0
- data/README.md +91 -0
- data/Rakefile +29 -0
- data/appveyor.yml +138 -0
- data/bin/console +10 -0
- data/bin/guard +17 -0
- data/bin/rspec +17 -0
- data/bin/runner +6 -0
- data/bin/setup +8 -0
- data/config/Guardfile +30 -0
- data/docker/Dockerfile +191 -0
- data/docker/Gemfile +12 -0
- data/docker/README.md +22 -0
- data/examples/classifier_comparison.rb +135 -0
- data/examples/datascience_rb_20170519.ipynb +4836 -0
- data/examples/hist.rb +32 -0
- data/examples/notebooks/classifier_comparison.ipynb +226 -0
- data/examples/notebooks/forest_importances.ipynb +238 -0
- data/examples/notebooks/iruby_integration.ipynb +183 -0
- data/examples/notebooks/lorenz_attractor.ipynb +214 -0
- data/examples/notebooks/polar_axes.ipynb +209 -0
- data/examples/notebooks/sum_benchmarking.ipynb +374 -0
- data/examples/notebooks/xkcd_style.ipynb +149 -0
- data/examples/plot_forest_importances_faces.rb +46 -0
- data/examples/sum_benchmarking.rb +49 -0
- data/ext/pycall/extconf.rb +3 -0
- data/ext/pycall/gc.c +74 -0
- data/ext/pycall/libpython.c +217 -0
- data/ext/pycall/pycall.c +2184 -0
- data/ext/pycall/pycall_internal.h +700 -0
- data/ext/pycall/range.c +69 -0
- data/ext/pycall/ruby_wrapper.c +432 -0
- data/lib/2.1/pycall.so +0 -0
- data/lib/2.2/pycall.so +0 -0
- data/lib/2.3/pycall.so +0 -0
- data/lib/2.4/pycall.so +0 -0
- data/lib/pycall/conversion.rb +173 -0
- data/lib/pycall/dict.rb +48 -0
- data/lib/pycall/error.rb +10 -0
- data/lib/pycall/gc_guard.rb +84 -0
- data/lib/pycall/import.rb +120 -0
- data/lib/pycall/init.rb +55 -0
- data/lib/pycall/iruby_helper.rb +40 -0
- data/lib/pycall/libpython/finder.rb +170 -0
- data/lib/pycall/libpython/pyobject_struct.rb +30 -0
- data/lib/pycall/libpython/pytypeobject_struct.rb +273 -0
- data/lib/pycall/libpython.rb +12 -0
- data/lib/pycall/list.rb +45 -0
- data/lib/pycall/pretty_print.rb +9 -0
- data/lib/pycall/pyerror.rb +30 -0
- data/lib/pycall/pyobject_wrapper.rb +212 -0
- data/lib/pycall/python/PyCall/__init__.py +1 -0
- data/lib/pycall/python/PyCall/six.py +23 -0
- data/lib/pycall/python/investigator.py +7 -0
- data/lib/pycall/pytypeobject_wrapper.rb +90 -0
- data/lib/pycall/set.rb +19 -0
- data/lib/pycall/slice.rb +8 -0
- data/lib/pycall/tuple.rb +46 -0
- data/lib/pycall/version.rb +3 -0
- data/lib/pycall/wrapper_object_cache.rb +61 -0
- data/lib/pycall.rb +91 -0
- data/pycall.gemspec +40 -0
- data/tasks/docker.rake +21 -0
- data/tasks/pycall.rake +7 -0
- metadata +228 -0
data/docker/Gemfile
ADDED
@@ -0,0 +1,12 @@
|
|
1
|
+
source 'https://rubygems.org'
|
2
|
+
|
3
|
+
# IRuby dependencies
|
4
|
+
gem 'pry'
|
5
|
+
gem 'pry-doc'
|
6
|
+
gem 'awesome_print'
|
7
|
+
gem 'cztop', '< 0.3.0'
|
8
|
+
gem 'iruby', github: 'sciruby/iruby'
|
9
|
+
|
10
|
+
# PyCall related gems
|
11
|
+
gem 'pycall', '>= 0.1.0.alpha.20170426'
|
12
|
+
gem 'matplotlib', '>= 0.1.0.alpha.20170426'
|
data/docker/README.md
ADDED
@@ -0,0 +1,22 @@
|
|
1
|
+
# How to use and build docker image
|
2
|
+
|
3
|
+
## Use
|
4
|
+
|
5
|
+
Execute the following command.
|
6
|
+
|
7
|
+
```
|
8
|
+
rake docker:run [port=<PORT>] [attach_local=<DIRECTORY>]
|
9
|
+
```
|
10
|
+
|
11
|
+
The `port` option is for specifying the port number connecting to iruby notebook.
|
12
|
+
|
13
|
+
You can access to a local directory from jupyter notebook in the container by attaching the local directory to `/notebooks/local` in the container using `attach_local` option. The default value is the current directory, that should be pycall directory.
|
14
|
+
|
15
|
+
## Build
|
16
|
+
|
17
|
+
You can build your own docker image if you modify pycall.
|
18
|
+
Execute the following command to build it.
|
19
|
+
|
20
|
+
```
|
21
|
+
rake docker:build
|
22
|
+
```
|
@@ -0,0 +1,135 @@
|
|
1
|
+
require 'pycall/import'
|
2
|
+
include PyCall::Import
|
3
|
+
|
4
|
+
pyimport 'numpy', as: :np
|
5
|
+
pyfrom 'sklearn.cross_validation', import: :train_test_split
|
6
|
+
pyfrom 'sklearn.preprocessing', import: :StandardScaler
|
7
|
+
pyfrom 'sklearn.datasets', import: %i(make_moons make_circles make_classification)
|
8
|
+
pyfrom 'sklearn.neighbors', import: :KNeighborsClassifier
|
9
|
+
pyfrom 'sklearn.svm', import: :SVC
|
10
|
+
pyfrom 'sklearn.tree', import: :DecisionTreeClassifier
|
11
|
+
pyfrom 'sklearn.ensemble', import: %i(RandomForestClassifier AdaBoostClassifier)
|
12
|
+
pyfrom 'sklearn.naive_bayes', import: :GaussianNB
|
13
|
+
pyfrom 'sklearn.discriminant_analysis', import: %i(LinearDiscriminantAnalysis QuadraticDiscriminantAnalysis)
|
14
|
+
|
15
|
+
# FIXME: MacOSX backend is not usable through pycall. I want to fix this issue but the reason is unclear.
|
16
|
+
pyimport 'matplotlib', as: :mp
|
17
|
+
mp.rcParams[:backend] = 'TkAgg' if mp.rcParams[:backend] == 'MacOSX'
|
18
|
+
|
19
|
+
pyimport 'matplotlib.pyplot', as: :plt
|
20
|
+
pyimport 'matplotlib.colors', as: :mplc
|
21
|
+
|
22
|
+
h = 0.02 # step size in the mesh
|
23
|
+
|
24
|
+
names = [
|
25
|
+
'Nearest Neighbors',
|
26
|
+
'Linear SVM',
|
27
|
+
'RBF SVM',
|
28
|
+
'Decision Tree',
|
29
|
+
'Random Forest',
|
30
|
+
'AdaBoost',
|
31
|
+
'Naive Bayes',
|
32
|
+
'Linear Discriminant Analysis',
|
33
|
+
'Quadratic Discriminant Analysis'
|
34
|
+
]
|
35
|
+
|
36
|
+
classifiers = [
|
37
|
+
KNeighborsClassifier.new(3),
|
38
|
+
SVC.new(kernel: 'linear', C: 0.025),
|
39
|
+
SVC.new(gamma: 2, C: 1),
|
40
|
+
DecisionTreeClassifier.new(max_depth: 5),
|
41
|
+
RandomForestClassifier.new(max_depth: 5, n_estimators: 10, max_features: 1),
|
42
|
+
AdaBoostClassifier.new(),
|
43
|
+
GaussianNB.new(),
|
44
|
+
LinearDiscriminantAnalysis.new(),
|
45
|
+
QuadraticDiscriminantAnalysis.new()
|
46
|
+
]
|
47
|
+
|
48
|
+
x, y = *make_classification(
|
49
|
+
n_features: 2,
|
50
|
+
n_redundant: 0,
|
51
|
+
n_informative: 2,
|
52
|
+
random_state: 1,
|
53
|
+
n_clusters_per_class: 1
|
54
|
+
)
|
55
|
+
|
56
|
+
np.random.seed(42)
|
57
|
+
x += 2 * np.random.random_sample(x.shape)
|
58
|
+
linearly_separable = PyCall.tuple([x, y]) # FIXME: allow PyCall.tuple(x, y)
|
59
|
+
|
60
|
+
datasets = [
|
61
|
+
make_moons(noise: 0.3, random_state: 0),
|
62
|
+
make_circles(noise: 0.2, factor: 0.5, random_state: 1),
|
63
|
+
linearly_separable
|
64
|
+
]
|
65
|
+
|
66
|
+
fig = plt.figure(figsize: [27, 9])
|
67
|
+
i = 1
|
68
|
+
all = 0..-1
|
69
|
+
datasets.each do |ds|
|
70
|
+
x, y = *ds
|
71
|
+
x = StandardScaler.new.fit_transform(x)
|
72
|
+
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size: 0.4)
|
73
|
+
|
74
|
+
x_min, x_max = np.min(x[all, 0]) - 0.5, np.max(x[all, 0]) + 0.5
|
75
|
+
y_min, y_max = np.min(x[all, 1]) - 0.5, np.max(x[all, 1]) + 0.5
|
76
|
+
|
77
|
+
xx, yy = np.meshgrid(
|
78
|
+
np.linspace(x_min, x_max, ((x_max - x_min)/h).round),
|
79
|
+
np.linspace(y_min, y_max, ((y_max - y_min)/h).round),
|
80
|
+
)
|
81
|
+
mesh_points = np.dstack(PyCall.tuple([xx.ravel(), yy.ravel()]))[0, all, all]
|
82
|
+
|
83
|
+
# just plot the dataset first
|
84
|
+
cm = plt.cm.__dict__[:RdBu]
|
85
|
+
cm_bright = mplc.ListedColormap.new(["#FF0000", "#0000FF"])
|
86
|
+
ax = plt.subplot(datasets.length, classifiers.length + 1, i)
|
87
|
+
# plot the training points
|
88
|
+
ax.scatter(x_train[all, 0], x_train[all, 1], c: y_train, cmap: cm_bright)
|
89
|
+
# and testing points
|
90
|
+
ax.scatter(x_test[all, 0], x_test[all, 1], c: y_test, cmap: cm_bright, alpha: 0.6)
|
91
|
+
|
92
|
+
ax.set_xlim(np.min(xx), np.max(xx))
|
93
|
+
ax.set_ylim(np.min(yy), np.max(yy))
|
94
|
+
ax.set_xticks(PyCall.tuple())
|
95
|
+
ax.set_yticks(PyCall.tuple())
|
96
|
+
i += 1
|
97
|
+
|
98
|
+
# iterate over classifiers
|
99
|
+
names.zip(classifiers).each do |name, clf|
|
100
|
+
ax = plt.subplot(datasets.length, classifiers.length + 1, i)
|
101
|
+
clf.fit(x_train, y_train)
|
102
|
+
scor = clf.score(x_test, y_test)
|
103
|
+
|
104
|
+
# Plot the decision boundary. For that, we will assign a color to each
|
105
|
+
# point in the mesh [x_min, x_max]x[y_min, y_max]
|
106
|
+
begin
|
107
|
+
# not implemented for some
|
108
|
+
z = clf.decision_function(mesh_points)
|
109
|
+
rescue
|
110
|
+
z = clf.predict_proba(mesh_points)[all, 1]
|
111
|
+
end
|
112
|
+
|
113
|
+
# Put the result into a color plot
|
114
|
+
z = z.reshape(xx.shape)
|
115
|
+
ax.contourf(xx, yy, z, cmap: cm, alpha: 0.8)
|
116
|
+
|
117
|
+
# Plot also the training points
|
118
|
+
ax.scatter(x_train[all, 0], x_train[all, 1], c: y_train, cmap: cm_bright)
|
119
|
+
# and testing points
|
120
|
+
ax.scatter(x_test[all, 0], x_test[all, 1], c: y_test, cmap: cm_bright, alpha: 0.6)
|
121
|
+
|
122
|
+
ax.set_xlim(np.min(xx), np.max(xx))
|
123
|
+
ax.set_ylim(np.min(yy), np.max(yy))
|
124
|
+
ax.set_xticks(PyCall.tuple())
|
125
|
+
ax.set_yticks(PyCall.tuple())
|
126
|
+
ax.set_title(name)
|
127
|
+
|
128
|
+
ax.text(np.max(xx) - 0.3, np.min(yy) + 0.3, "%.2f" % scor, size: 15, horizontalalignment: 'right')
|
129
|
+
|
130
|
+
i += 1
|
131
|
+
end
|
132
|
+
end
|
133
|
+
|
134
|
+
fig.subplots_adjust(left: 0.02, right: 0.98)
|
135
|
+
plt.show()
|