pycall 1.0.1-x86-mingw32

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. checksums.yaml +7 -0
  2. data/.gitignore +13 -0
  3. data/.rspec +2 -0
  4. data/.travis.yml +41 -0
  5. data/CHANGES.md +39 -0
  6. data/Gemfile +4 -0
  7. data/LICENSE.txt +21 -0
  8. data/README.md +91 -0
  9. data/Rakefile +29 -0
  10. data/appveyor.yml +138 -0
  11. data/bin/console +10 -0
  12. data/bin/guard +17 -0
  13. data/bin/rspec +17 -0
  14. data/bin/runner +6 -0
  15. data/bin/setup +8 -0
  16. data/config/Guardfile +30 -0
  17. data/docker/Dockerfile +191 -0
  18. data/docker/Gemfile +12 -0
  19. data/docker/README.md +22 -0
  20. data/examples/classifier_comparison.rb +135 -0
  21. data/examples/datascience_rb_20170519.ipynb +4836 -0
  22. data/examples/hist.rb +32 -0
  23. data/examples/notebooks/classifier_comparison.ipynb +226 -0
  24. data/examples/notebooks/forest_importances.ipynb +238 -0
  25. data/examples/notebooks/iruby_integration.ipynb +183 -0
  26. data/examples/notebooks/lorenz_attractor.ipynb +214 -0
  27. data/examples/notebooks/polar_axes.ipynb +209 -0
  28. data/examples/notebooks/sum_benchmarking.ipynb +374 -0
  29. data/examples/notebooks/xkcd_style.ipynb +149 -0
  30. data/examples/plot_forest_importances_faces.rb +46 -0
  31. data/examples/sum_benchmarking.rb +49 -0
  32. data/ext/pycall/extconf.rb +3 -0
  33. data/ext/pycall/gc.c +74 -0
  34. data/ext/pycall/libpython.c +217 -0
  35. data/ext/pycall/pycall.c +2184 -0
  36. data/ext/pycall/pycall_internal.h +700 -0
  37. data/ext/pycall/range.c +69 -0
  38. data/ext/pycall/ruby_wrapper.c +432 -0
  39. data/lib/2.1/pycall.so +0 -0
  40. data/lib/2.2/pycall.so +0 -0
  41. data/lib/2.3/pycall.so +0 -0
  42. data/lib/2.4/pycall.so +0 -0
  43. data/lib/pycall/conversion.rb +173 -0
  44. data/lib/pycall/dict.rb +48 -0
  45. data/lib/pycall/error.rb +10 -0
  46. data/lib/pycall/gc_guard.rb +84 -0
  47. data/lib/pycall/import.rb +120 -0
  48. data/lib/pycall/init.rb +55 -0
  49. data/lib/pycall/iruby_helper.rb +40 -0
  50. data/lib/pycall/libpython/finder.rb +170 -0
  51. data/lib/pycall/libpython/pyobject_struct.rb +30 -0
  52. data/lib/pycall/libpython/pytypeobject_struct.rb +273 -0
  53. data/lib/pycall/libpython.rb +12 -0
  54. data/lib/pycall/list.rb +45 -0
  55. data/lib/pycall/pretty_print.rb +9 -0
  56. data/lib/pycall/pyerror.rb +30 -0
  57. data/lib/pycall/pyobject_wrapper.rb +212 -0
  58. data/lib/pycall/python/PyCall/__init__.py +1 -0
  59. data/lib/pycall/python/PyCall/six.py +23 -0
  60. data/lib/pycall/python/investigator.py +7 -0
  61. data/lib/pycall/pytypeobject_wrapper.rb +90 -0
  62. data/lib/pycall/set.rb +19 -0
  63. data/lib/pycall/slice.rb +8 -0
  64. data/lib/pycall/tuple.rb +46 -0
  65. data/lib/pycall/version.rb +3 -0
  66. data/lib/pycall/wrapper_object_cache.rb +61 -0
  67. data/lib/pycall.rb +91 -0
  68. data/pycall.gemspec +40 -0
  69. data/tasks/docker.rake +21 -0
  70. data/tasks/pycall.rake +7 -0
  71. metadata +228 -0
data/docker/Gemfile ADDED
@@ -0,0 +1,12 @@
1
+ source 'https://rubygems.org'
2
+
3
+ # IRuby dependencies
4
+ gem 'pry'
5
+ gem 'pry-doc'
6
+ gem 'awesome_print'
7
+ gem 'cztop', '< 0.3.0'
8
+ gem 'iruby', github: 'sciruby/iruby'
9
+
10
+ # PyCall related gems
11
+ gem 'pycall', '>= 0.1.0.alpha.20170426'
12
+ gem 'matplotlib', '>= 0.1.0.alpha.20170426'
data/docker/README.md ADDED
@@ -0,0 +1,22 @@
1
+ # How to use and build docker image
2
+
3
+ ## Use
4
+
5
+ Execute the following command.
6
+
7
+ ```
8
+ rake docker:run [port=<PORT>] [attach_local=<DIRECTORY>]
9
+ ```
10
+
11
+ The `port` option is for specifying the port number connecting to iruby notebook.
12
+
13
+ You can access to a local directory from jupyter notebook in the container by attaching the local directory to `/notebooks/local` in the container using `attach_local` option. The default value is the current directory, that should be pycall directory.
14
+
15
+ ## Build
16
+
17
+ You can build your own docker image if you modify pycall.
18
+ Execute the following command to build it.
19
+
20
+ ```
21
+ rake docker:build
22
+ ```
@@ -0,0 +1,135 @@
1
+ require 'pycall/import'
2
+ include PyCall::Import
3
+
4
+ pyimport 'numpy', as: :np
5
+ pyfrom 'sklearn.cross_validation', import: :train_test_split
6
+ pyfrom 'sklearn.preprocessing', import: :StandardScaler
7
+ pyfrom 'sklearn.datasets', import: %i(make_moons make_circles make_classification)
8
+ pyfrom 'sklearn.neighbors', import: :KNeighborsClassifier
9
+ pyfrom 'sklearn.svm', import: :SVC
10
+ pyfrom 'sklearn.tree', import: :DecisionTreeClassifier
11
+ pyfrom 'sklearn.ensemble', import: %i(RandomForestClassifier AdaBoostClassifier)
12
+ pyfrom 'sklearn.naive_bayes', import: :GaussianNB
13
+ pyfrom 'sklearn.discriminant_analysis', import: %i(LinearDiscriminantAnalysis QuadraticDiscriminantAnalysis)
14
+
15
+ # FIXME: MacOSX backend is not usable through pycall. I want to fix this issue but the reason is unclear.
16
+ pyimport 'matplotlib', as: :mp
17
+ mp.rcParams[:backend] = 'TkAgg' if mp.rcParams[:backend] == 'MacOSX'
18
+
19
+ pyimport 'matplotlib.pyplot', as: :plt
20
+ pyimport 'matplotlib.colors', as: :mplc
21
+
22
+ h = 0.02 # step size in the mesh
23
+
24
+ names = [
25
+ 'Nearest Neighbors',
26
+ 'Linear SVM',
27
+ 'RBF SVM',
28
+ 'Decision Tree',
29
+ 'Random Forest',
30
+ 'AdaBoost',
31
+ 'Naive Bayes',
32
+ 'Linear Discriminant Analysis',
33
+ 'Quadratic Discriminant Analysis'
34
+ ]
35
+
36
+ classifiers = [
37
+ KNeighborsClassifier.new(3),
38
+ SVC.new(kernel: 'linear', C: 0.025),
39
+ SVC.new(gamma: 2, C: 1),
40
+ DecisionTreeClassifier.new(max_depth: 5),
41
+ RandomForestClassifier.new(max_depth: 5, n_estimators: 10, max_features: 1),
42
+ AdaBoostClassifier.new(),
43
+ GaussianNB.new(),
44
+ LinearDiscriminantAnalysis.new(),
45
+ QuadraticDiscriminantAnalysis.new()
46
+ ]
47
+
48
+ x, y = *make_classification(
49
+ n_features: 2,
50
+ n_redundant: 0,
51
+ n_informative: 2,
52
+ random_state: 1,
53
+ n_clusters_per_class: 1
54
+ )
55
+
56
+ np.random.seed(42)
57
+ x += 2 * np.random.random_sample(x.shape)
58
+ linearly_separable = PyCall.tuple([x, y]) # FIXME: allow PyCall.tuple(x, y)
59
+
60
+ datasets = [
61
+ make_moons(noise: 0.3, random_state: 0),
62
+ make_circles(noise: 0.2, factor: 0.5, random_state: 1),
63
+ linearly_separable
64
+ ]
65
+
66
+ fig = plt.figure(figsize: [27, 9])
67
+ i = 1
68
+ all = 0..-1
69
+ datasets.each do |ds|
70
+ x, y = *ds
71
+ x = StandardScaler.new.fit_transform(x)
72
+ x_train, x_test, y_train, y_test = train_test_split(x, y, test_size: 0.4)
73
+
74
+ x_min, x_max = np.min(x[all, 0]) - 0.5, np.max(x[all, 0]) + 0.5
75
+ y_min, y_max = np.min(x[all, 1]) - 0.5, np.max(x[all, 1]) + 0.5
76
+
77
+ xx, yy = np.meshgrid(
78
+ np.linspace(x_min, x_max, ((x_max - x_min)/h).round),
79
+ np.linspace(y_min, y_max, ((y_max - y_min)/h).round),
80
+ )
81
+ mesh_points = np.dstack(PyCall.tuple([xx.ravel(), yy.ravel()]))[0, all, all]
82
+
83
+ # just plot the dataset first
84
+ cm = plt.cm.__dict__[:RdBu]
85
+ cm_bright = mplc.ListedColormap.new(["#FF0000", "#0000FF"])
86
+ ax = plt.subplot(datasets.length, classifiers.length + 1, i)
87
+ # plot the training points
88
+ ax.scatter(x_train[all, 0], x_train[all, 1], c: y_train, cmap: cm_bright)
89
+ # and testing points
90
+ ax.scatter(x_test[all, 0], x_test[all, 1], c: y_test, cmap: cm_bright, alpha: 0.6)
91
+
92
+ ax.set_xlim(np.min(xx), np.max(xx))
93
+ ax.set_ylim(np.min(yy), np.max(yy))
94
+ ax.set_xticks(PyCall.tuple())
95
+ ax.set_yticks(PyCall.tuple())
96
+ i += 1
97
+
98
+ # iterate over classifiers
99
+ names.zip(classifiers).each do |name, clf|
100
+ ax = plt.subplot(datasets.length, classifiers.length + 1, i)
101
+ clf.fit(x_train, y_train)
102
+ scor = clf.score(x_test, y_test)
103
+
104
+ # Plot the decision boundary. For that, we will assign a color to each
105
+ # point in the mesh [x_min, x_max]x[y_min, y_max]
106
+ begin
107
+ # not implemented for some
108
+ z = clf.decision_function(mesh_points)
109
+ rescue
110
+ z = clf.predict_proba(mesh_points)[all, 1]
111
+ end
112
+
113
+ # Put the result into a color plot
114
+ z = z.reshape(xx.shape)
115
+ ax.contourf(xx, yy, z, cmap: cm, alpha: 0.8)
116
+
117
+ # Plot also the training points
118
+ ax.scatter(x_train[all, 0], x_train[all, 1], c: y_train, cmap: cm_bright)
119
+ # and testing points
120
+ ax.scatter(x_test[all, 0], x_test[all, 1], c: y_test, cmap: cm_bright, alpha: 0.6)
121
+
122
+ ax.set_xlim(np.min(xx), np.max(xx))
123
+ ax.set_ylim(np.min(yy), np.max(yy))
124
+ ax.set_xticks(PyCall.tuple())
125
+ ax.set_yticks(PyCall.tuple())
126
+ ax.set_title(name)
127
+
128
+ ax.text(np.max(xx) - 0.3, np.min(yy) + 0.3, "%.2f" % scor, size: 15, horizontalalignment: 'right')
129
+
130
+ i += 1
131
+ end
132
+ end
133
+
134
+ fig.subplots_adjust(left: 0.02, right: 0.98)
135
+ plt.show()