pspline 5.0.5 → 5.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/Gemfile +5 -5
- data/README.md +44 -43
- data/Rakefile +6 -6
- data/bin/console +14 -14
- data/bin/setup +8 -8
- data/ext/pspline/basis.cpp +394 -351
- data/ext/pspline/example/exbspline.rb +57 -57
- data/ext/pspline/example/excspline.rb +57 -57
- data/ext/pspline/example/exdspline.rb +55 -55
- data/ext/pspline/example/exfspline.rb +44 -44
- data/ext/pspline/example/exfspline1.rb +40 -40
- data/ext/pspline/example/exfspline2.rb +68 -68
- data/ext/pspline/example/exfspline3.rb +64 -64
- data/ext/pspline/example/exmspline.rb +68 -68
- data/ext/pspline/example/expspline.rb +29 -29
- data/ext/pspline/example/expspline1.rb +29 -29
- data/ext/pspline/example/expspline2.rb +47 -47
- data/ext/pspline/example/exqspline.rb +31 -31
- data/ext/pspline/example/exqspline1.rb +31 -31
- data/ext/pspline/example/exqspline2.rb +50 -50
- data/ext/pspline/example/exqspline3.rb +51 -51
- data/ext/pspline/example/exqspline4.rb +35 -35
- data/ext/pspline/example/exrspline.rb +34 -34
- data/ext/pspline/example/exrspline1.rb +34 -34
- data/ext/pspline/example/exrspline2.rb +44 -44
- data/ext/pspline/example/exsspline.rb +35 -35
- data/ext/pspline/example/exsspline1.rb +35 -35
- data/ext/pspline/example/extspline.rb +54 -54
- data/ext/pspline/extconf.rb +7 -7
- data/ext/pspline/fft.cpp +27 -552
- data/ext/pspline/include/basis/basis.h +145 -137
- data/ext/pspline/include/basis/fft.h +188 -152
- data/ext/pspline/include/basis/fft_complex.h +215 -0
- data/ext/pspline/include/basis/fft_real.h +625 -0
- data/ext/pspline/include/basis/gabs.h +35 -0
- data/ext/pspline/include/basis/marray_class_ext.h +568 -0
- data/ext/pspline/include/basis/marray_ext.h +100 -0
- data/ext/pspline/include/basis/matrix_luc_ext.h +300 -0
- data/ext/pspline/include/basis/matrix_lud_ext.h +298 -0
- data/ext/pspline/include/basis/poly.h +454 -0
- data/ext/pspline/include/basis/poly_array.h +1030 -1568
- data/ext/pspline/include/basis/pspline.h +806 -642
- data/ext/pspline/include/basis/real.h +526 -0
- data/ext/pspline/include/basis/real_inline.h +442 -0
- data/ext/pspline/include/basis/spline.h +83 -0
- data/ext/pspline/include/basis/uspline.h +251 -210
- data/ext/pspline/include/basis/util.h +122 -656
- data/ext/pspline/include/bspline.h +71 -377
- data/ext/pspline/include/bspline_Config.h +8 -2
- data/ext/pspline/include/real_config.h +3 -0
- data/ext/pspline/pspline.cpp +1236 -1038
- data/ext/pspline/real.cpp +1607 -0
- data/ext/pspline/real_const.cpp +585 -0
- data/lib/pspline.rb +71 -71
- data/lib/pspline/version.rb +1 -1
- data/pspline.gemspec +25 -25
- metadata +17 -5
- data/ext/pspline/plotsub.cpp +0 -139
- data/ext/pspline/util.cpp +0 -483
data/ext/pspline/extconf.rb
CHANGED
|
@@ -1,7 +1,7 @@
|
|
|
1
|
-
require 'mkmf'
|
|
2
|
-
|
|
3
|
-
dir_config('PSPLINE','.')
|
|
4
|
-
$CPPFLAGS += " -std=c++11"
|
|
5
|
-
if have_header('bspline.h')
|
|
6
|
-
create_makefile('pspline')
|
|
7
|
-
end
|
|
1
|
+
require 'mkmf'
|
|
2
|
+
|
|
3
|
+
dir_config('PSPLINE','.')
|
|
4
|
+
$CPPFLAGS += " -std=c++11"
|
|
5
|
+
if have_header('bspline.h')
|
|
6
|
+
create_makefile('pspline')
|
|
7
|
+
end
|
data/ext/pspline/fft.cpp
CHANGED
|
@@ -1,552 +1,27 @@
|
|
|
1
|
-
#
|
|
2
|
-
#
|
|
3
|
-
|
|
4
|
-
#include <
|
|
5
|
-
#include <
|
|
6
|
-
#include <
|
|
7
|
-
#include
|
|
8
|
-
|
|
9
|
-
#
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
|
|
21
|
-
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
yi = wtemp * xi + yi * xr + gi;
|
|
29
|
-
}
|
|
30
|
-
template <typename T>
|
|
31
|
-
inline void relat(T *xr, T *xi, T *yr, T *yi, T wr, T wi)
|
|
32
|
-
{
|
|
33
|
-
T tr = wr * (*yr) - wi * (*yi);
|
|
34
|
-
T ti = wr * (*yi) + wi * (*yr);
|
|
35
|
-
*yr = *xr - tr; *xr += tr;
|
|
36
|
-
*yi = *xi - ti; *xi += ti;
|
|
37
|
-
}
|
|
38
|
-
/*******************************************************************************
|
|
39
|
-
複素高速フーリエ変換(実数配列の引数)
|
|
40
|
-
Fast Fourier Transformation / Cooley-Tukey Method
|
|
41
|
-
*******************************************************************************/
|
|
42
|
-
template <typename T>
|
|
43
|
-
void cft2(T *data, size_t n, int f)
|
|
44
|
-
{
|
|
45
|
-
size_t mmax, m, j, istep, i, N = n >> 1;
|
|
46
|
-
T wr, wi, wpr, wpi, theta;
|
|
47
|
-
|
|
48
|
-
// ビット反転アルゴリズム
|
|
49
|
-
for (j = 1, i = 1; i < n; i += 2) {
|
|
50
|
-
if (j > i) { // 複素数を交換
|
|
51
|
-
wr = data[j-1]; data[j-1] = data[i-1]; data[i-1] = wr;
|
|
52
|
-
wi = data[ j ]; data[ j ] = data[ i ]; data[ i ] = wi;
|
|
53
|
-
}
|
|
54
|
-
m = N;
|
|
55
|
-
while(m >= 2 && j > m) { j -= m; m >>= 1; }
|
|
56
|
-
j += m;
|
|
57
|
-
}
|
|
58
|
-
T F = -f;
|
|
59
|
-
mmax = 2; theta = M_PI * F;
|
|
60
|
-
while (n > mmax) {
|
|
61
|
-
istep = mmax << 1;
|
|
62
|
-
wpr = cos(theta); wpi = sin(theta); // 三角関数の漸化式の初期値
|
|
63
|
-
wr = 1.0; wi = 0.0;
|
|
64
|
-
for (m = 1; m < mmax; m += 2) { // 2重の内側ループ
|
|
65
|
-
for (i = m; i <= n; i += istep) {
|
|
66
|
-
j = i + mmax;
|
|
67
|
-
relat<T>(&data[i-1], &data[i], &data[j-1], &data[j], wr, wi);
|
|
68
|
-
}
|
|
69
|
-
relat<T>(wr, wi, wpr, wpi); // 三角関数の漸化式
|
|
70
|
-
}
|
|
71
|
-
mmax = istep;
|
|
72
|
-
theta /= 2.0;
|
|
73
|
-
}
|
|
74
|
-
}
|
|
75
|
-
/*
|
|
76
|
-
任意基数のFFT
|
|
77
|
-
*/
|
|
78
|
-
template <typename T, size_t R>
|
|
79
|
-
void cft(T *data, size_t n, int f)
|
|
80
|
-
{
|
|
81
|
-
size_t h, i, j, k, L, m, mmax, istep;
|
|
82
|
-
size_t N = n >> 1, Nr = N / R;
|
|
83
|
-
T wr, wi, wpr, wpi, wqr, wqi, Xr, Xi, Yr, Yi, *gw;
|
|
84
|
-
gw = new T[R*2];
|
|
85
|
-
// R進数の桁反転
|
|
86
|
-
for (j = 1, i = 1; i < n; i += 2) {
|
|
87
|
-
if (i < j) {
|
|
88
|
-
wr = data[i-1]; data[i-1] = data[j-1]; data[j-1] = wr;
|
|
89
|
-
wi = data[ i ]; data[ i ] = data[ j ]; data[ j ] = wi;
|
|
90
|
-
}
|
|
91
|
-
m = (R-1) * (Nr << 1);
|
|
92
|
-
while (m >= 2 && j > m) {j -= m; m /= R;}
|
|
93
|
-
j += m / (R-1);
|
|
94
|
-
}
|
|
95
|
-
T F = -f;
|
|
96
|
-
T theta = 2 * M_PI * F / (T)R;
|
|
97
|
-
wqr = cos(theta); wqi = sin(theta);
|
|
98
|
-
mmax = 2;
|
|
99
|
-
while (n > mmax) {
|
|
100
|
-
istep = mmax * R;
|
|
101
|
-
wpr = cos(theta); wpi = sin(theta);
|
|
102
|
-
wr = 1.0; wi = 0.0;
|
|
103
|
-
for (m = 1; m < mmax; m += 2) {
|
|
104
|
-
for (i = m; i <= n; i += istep) {
|
|
105
|
-
for (j = i, L = 0; L < R; L++, j += mmax) {
|
|
106
|
-
h = (L << 1) + 1;
|
|
107
|
-
gw[h-1] = data[j-1]; gw[h] = data[j];
|
|
108
|
-
}
|
|
109
|
-
// バタフライ演算
|
|
110
|
-
Xr = wr; Xi = wi;
|
|
111
|
-
for (j = i, L = 0; L < R; L++, j += mmax) {
|
|
112
|
-
Yr = Yi = 0;
|
|
113
|
-
for (k = R; k > 0; --k) {
|
|
114
|
-
h = (k << 1) - 1;
|
|
115
|
-
relat<T>(Yr, Yi, Xr, Xi, gw[h-1], gw[h]);
|
|
116
|
-
} data[j-1] = Yr; data[j] = Yi;
|
|
117
|
-
relat<T>(Xr, Xi, wqr, wqi);
|
|
118
|
-
}
|
|
119
|
-
}
|
|
120
|
-
relat<T>(wr, wi, wpr, wpi);
|
|
121
|
-
}
|
|
122
|
-
mmax = istep;
|
|
123
|
-
theta /= R;
|
|
124
|
-
}
|
|
125
|
-
delete[] gw;
|
|
126
|
-
}
|
|
127
|
-
/*
|
|
128
|
-
複数基数のFFT subroutine
|
|
129
|
-
*/
|
|
130
|
-
template <typename T>
|
|
131
|
-
void cft(size_t r, T *data, size_t n, int f, size_t stride = 1)
|
|
132
|
-
{
|
|
133
|
-
size_t h, i, j, k, L, Li, Lj;
|
|
134
|
-
T xr, xi, yr, yi, *gw;
|
|
135
|
-
size_t N = n >> 1, Nr = N / r; // N = r**M;
|
|
136
|
-
gw = new T[r*2];
|
|
137
|
-
// r進数の桁反転
|
|
138
|
-
for (j = Nr, i = 1; i < N - 1; ++i) {
|
|
139
|
-
if (i < j) {
|
|
140
|
-
size_t ki = (i * stride) << 1;
|
|
141
|
-
size_t kj = (j * stride) << 1;
|
|
142
|
-
xr = data[ ki ]; data[ ki ] = data[ kj ]; data[ kj ] = xr;
|
|
143
|
-
xi = data[ki+1]; data[ki+1] = data[kj+1]; data[kj+1] = xi;
|
|
144
|
-
}
|
|
145
|
-
size_t m = (r-1) * Nr;
|
|
146
|
-
while (m > 0 && j >= m) {j -= m; m /= r;}
|
|
147
|
-
j += m / (r-1);
|
|
148
|
-
}
|
|
149
|
-
T F = -f;
|
|
150
|
-
T theta = 2 * M_PI * F / r;
|
|
151
|
-
T wqr = cos(theta), wqi = sin(theta);
|
|
152
|
-
size_t Nj = 1;
|
|
153
|
-
while (Nj < N) {
|
|
154
|
-
size_t step = Nj * r;
|
|
155
|
-
T wpr = cos(theta), wpi = sin(theta);
|
|
156
|
-
T wr = 1.0, wi = 0.0;
|
|
157
|
-
for (L = 0; L < Nj; ++L) {
|
|
158
|
-
for (h = L; h < N; h += step) {
|
|
159
|
-
size_t m = h * stride;
|
|
160
|
-
for (Li = m, Lj = 0; Lj < r; ++Lj, Li += Nj * stride) {
|
|
161
|
-
i = Li << 1; j = Lj << 1;
|
|
162
|
-
gw[j] = data[i]; gw[j+1] = data[i+1];
|
|
163
|
-
}
|
|
164
|
-
// バタフライ演算
|
|
165
|
-
xr = wr; xi = wi;
|
|
166
|
-
for (Li = m, Lj = 0; Lj < r; Lj++, Li += Nj * stride) {
|
|
167
|
-
yr = yi = 0;
|
|
168
|
-
for (k = r; k > 0; --k) {
|
|
169
|
-
j = (k << 1) - 1;
|
|
170
|
-
relat<T>(yr, yi, xr, xi, gw[j-1], gw[j]);
|
|
171
|
-
} i = Li << 1;
|
|
172
|
-
data[i] = yr; data[i+1] = yi;
|
|
173
|
-
relat<T>(xr, xi, wqr, wqi);
|
|
174
|
-
}
|
|
175
|
-
}
|
|
176
|
-
relat<T>(wr, wi, wpr, wpi);
|
|
177
|
-
}
|
|
178
|
-
theta /= r;
|
|
179
|
-
Nj = step;
|
|
180
|
-
}
|
|
181
|
-
delete[] gw;
|
|
182
|
-
}
|
|
183
|
-
/*
|
|
184
|
-
複数基数のFFT main routine
|
|
185
|
-
g : データ配列
|
|
186
|
-
N : データ個数
|
|
187
|
-
f : 1 forward, 0 backword, -1 invert
|
|
188
|
-
*/
|
|
189
|
-
template <typename T>
|
|
190
|
-
bool cft(T *data, size_t n, int f)
|
|
191
|
-
{
|
|
192
|
-
size_t N = n >> 1, Nres = N, s = 0, k;
|
|
193
|
-
size_t Ni[SDIM], ni[SDIM], M[SDIM], r[SDIM] = {2};
|
|
194
|
-
// Chinese Remainder Theorem
|
|
195
|
-
do {
|
|
196
|
-
M[s] = 0; ni[s] = 1; Ni[s] = N;
|
|
197
|
-
while (Ni[s] % r[s] == 0) {
|
|
198
|
-
M[s]++;
|
|
199
|
-
ni[s] *= r[s]; // ni = r**M;
|
|
200
|
-
Ni[s] /= r[s];
|
|
201
|
-
} Nres /= ni[s];
|
|
202
|
-
int rnew;
|
|
203
|
-
if (Nres != 1) {
|
|
204
|
-
rnew = r[s] + (r[s] == 2 ? 1 : 2);
|
|
205
|
-
if (M[s] > 0) s++;
|
|
206
|
-
if (s < SDIM) {
|
|
207
|
-
// 素因数分解
|
|
208
|
-
while (Nres % rnew != 0) rnew += 2;
|
|
209
|
-
r[s] = rnew;
|
|
210
|
-
}
|
|
211
|
-
}
|
|
212
|
-
} while (Nres > 1 && s < SDIM);
|
|
213
|
-
int F = (f > 0) ? 1 : -1;
|
|
214
|
-
if (s >= SDIM) return false; else
|
|
215
|
-
if (s == 0) {
|
|
216
|
-
switch (r[s]) {
|
|
217
|
-
case 2: cft2<T>(data, n, F); break;
|
|
218
|
-
case 3: cft<T,3>(data, n, F); break;
|
|
219
|
-
case 5: cft<T,5>(data, n, F); break;
|
|
220
|
-
case 7: cft<T,7>(data, n, F); break;
|
|
221
|
-
default: cft<T>(r[s], data, n, F);
|
|
222
|
-
}
|
|
223
|
-
} else {
|
|
224
|
-
size_t smax = s + 1;
|
|
225
|
-
T gw[n];
|
|
226
|
-
// 最初の並び替え
|
|
227
|
-
for (k = 0; k < N; ++k) {
|
|
228
|
-
size_t ks, kk = 0;
|
|
229
|
-
for (s = 0; s < smax; ++s)
|
|
230
|
-
kk = kk * ni[s] + k % ni[s];
|
|
231
|
-
kk <<= 1; ks = k << 1;
|
|
232
|
-
gw[kk] = data[ks]; gw[kk+1] = data[ks+1];
|
|
233
|
-
}
|
|
234
|
-
size_t step, stride = 1;
|
|
235
|
-
// フーリエ変換
|
|
236
|
-
for (k = smax; k > 0; --k) {
|
|
237
|
-
s = k - 1;
|
|
238
|
-
step = stride * ni[s];
|
|
239
|
-
for (size_t k1 = 0; k1 < stride; ++k1)
|
|
240
|
-
for (size_t k0 = k1; k0 < N; k0 += step)
|
|
241
|
-
cft(r[s], &gw[k0<<1], ni[s] << 1, F, stride);
|
|
242
|
-
stride = step;
|
|
243
|
-
}
|
|
244
|
-
// 最終の並び替え
|
|
245
|
-
for (k = 0; k < N; ++k) {
|
|
246
|
-
size_t Ls, Lu, L = 0, LL = 0;
|
|
247
|
-
for (s = 0; s < smax; ++s) {
|
|
248
|
-
Ls = k % ni[s];
|
|
249
|
-
LL = LL * ni[s] + Ls;
|
|
250
|
-
L += Ni[s] * Ls;
|
|
251
|
-
} Ls = (L % N) << 1;
|
|
252
|
-
Lu = LL << 1;
|
|
253
|
-
data[Ls] = gw[Lu]; data[Ls+1] = gw[Lu+1];
|
|
254
|
-
}
|
|
255
|
-
}
|
|
256
|
-
if (f < 0) for (k = 0; k < n; ++k) data[k] /= N;
|
|
257
|
-
return true;
|
|
258
|
-
}
|
|
259
|
-
/*******************************************************************************
|
|
260
|
-
実数値高速フーリエ変換
|
|
261
|
-
Fast Fourier Transformation / Cooley-Tukey Method
|
|
262
|
-
*******************************************************************************/
|
|
263
|
-
/*
|
|
264
|
-
基数2のFFT
|
|
265
|
-
*/
|
|
266
|
-
template <typename T>
|
|
267
|
-
void rft2(T *data, size_t N, int f)
|
|
268
|
-
{
|
|
269
|
-
size_t i, j, NH = N >> 1;
|
|
270
|
-
T c, g1r, g1i, g2r, g2i, temp;
|
|
271
|
-
T wr, wi, wpr, wpi, wtemp;
|
|
272
|
-
T F = -f, theta = M_PI * F / (T)NH;
|
|
273
|
-
|
|
274
|
-
wpr = cos(theta); wpi = sin(theta);
|
|
275
|
-
if (f < 0) {
|
|
276
|
-
wr = data[0]; wi = data[N-1];
|
|
277
|
-
data[0] = wr + wi; wtemp = wr - wi;
|
|
278
|
-
wr = 0.0; wi = 1.0;
|
|
279
|
-
for (i = 2; i <= NH; i += 2) {
|
|
280
|
-
relat<T>(wr, wi, wpr, wpi);
|
|
281
|
-
j = N - i; temp = data[i-1]; data[i-1] = wtemp;
|
|
282
|
-
g1r = (temp + data[j-1]); g1i = (data[i] - data[j]);
|
|
283
|
-
g2r = (temp - data[j-1]); g2i = (data[i] + data[j]);
|
|
284
|
-
relat<T>(g2r, g2i, wr, wi);
|
|
285
|
-
if (i < j) {
|
|
286
|
-
data[i] = g1r + g2r; wtemp = g1i + g2i;
|
|
287
|
-
}
|
|
288
|
-
data[j] = g1r - g2r; data[j+1] = g2i - g1i;
|
|
289
|
-
}
|
|
290
|
-
}
|
|
291
|
-
cft2(data, N, f);
|
|
292
|
-
if (f > 0) {
|
|
293
|
-
c = 0.5;
|
|
294
|
-
wr = data[0]; wi = data[1];
|
|
295
|
-
data[0] = wr + wi; wtemp = wr - wi;
|
|
296
|
-
wr = 0.0; wi = -1.0;
|
|
297
|
-
for (i = 2; i <= NH; i += 2) {
|
|
298
|
-
relat<T>(wr, wi, wpr, wpi);
|
|
299
|
-
j = N - i; temp = data[j+1]; data[j+1] = wtemp;
|
|
300
|
-
g1r = c*(data[i] + data[j]); g1i = c*(data[i+1] - temp);
|
|
301
|
-
g2r = c*(data[i] - data[j]); g2i = c*(data[i+1] + temp);
|
|
302
|
-
relat<T>(g2r, g2i, wr, wi);
|
|
303
|
-
data[i-1] = g1r + g2r; data[i] = g1i + g2i;
|
|
304
|
-
if (i < j) {
|
|
305
|
-
wtemp = g1r - g2r; data[j] = g2i - g1i;
|
|
306
|
-
}
|
|
307
|
-
}
|
|
308
|
-
}
|
|
309
|
-
}
|
|
310
|
-
/*
|
|
311
|
-
任意基数のFFT
|
|
312
|
-
*/
|
|
313
|
-
template <typename T, size_t R>
|
|
314
|
-
void rft(T *data, size_t N, int f)
|
|
315
|
-
{
|
|
316
|
-
size_t h, i, j, k, L, m, mmax, istep;
|
|
317
|
-
size_t n = N << 1, Nr = N / R;
|
|
318
|
-
T wr, wi, wpr, wpi, wqr, wqi, *temp;
|
|
319
|
-
T xr, xi, yr, yi, *gw;
|
|
320
|
-
temp = new T[n]; gw = new T[R*2];
|
|
321
|
-
// R進数の桁反転
|
|
322
|
-
for (j = 1, i = 0; i < n; i += 2) {
|
|
323
|
-
if (f > 0) {
|
|
324
|
-
xr = data[i>>1];
|
|
325
|
-
xi = 0;
|
|
326
|
-
} else if (i == 0) {
|
|
327
|
-
xr = data[0];
|
|
328
|
-
xi = 0;
|
|
329
|
-
} else if (i < n/2) {
|
|
330
|
-
xr = data[i-1];
|
|
331
|
-
xi = data[ i ];
|
|
332
|
-
} else if (i == n/2) {
|
|
333
|
-
xr = data[i-1];
|
|
334
|
-
xi = 0;
|
|
335
|
-
} else {
|
|
336
|
-
xr = data[n-i-1];
|
|
337
|
-
xi =-data[ n-i ];
|
|
338
|
-
}
|
|
339
|
-
temp[j-1] = xr; temp[j] = xi;
|
|
340
|
-
m = (R-1) * (Nr << 1);
|
|
341
|
-
while (m >= 2 && j > m) {j -= m; m /= R;}
|
|
342
|
-
j += m / (R-1);
|
|
343
|
-
}
|
|
344
|
-
T F = -f;
|
|
345
|
-
T theta = 2.0 * M_PI * F / (T)R;
|
|
346
|
-
wqr = cos(theta); wqi = sin(theta);
|
|
347
|
-
mmax = 2;
|
|
348
|
-
while (n > mmax) {
|
|
349
|
-
istep = mmax * R;
|
|
350
|
-
wpr = cos(theta); wpi = sin(theta);
|
|
351
|
-
wr = 1.0; wi = 0.0;
|
|
352
|
-
for (m = 1; m < mmax; m += 2) {
|
|
353
|
-
for (i = m; i <= n; i += istep) {
|
|
354
|
-
for (j = i, L = 0; L < R; L++, j += mmax) {
|
|
355
|
-
h = (L << 1) + 1;
|
|
356
|
-
gw[h-1] = temp[j-1]; gw[h] = temp[j];
|
|
357
|
-
}
|
|
358
|
-
// バタフライ演算
|
|
359
|
-
xr = wr; xi = wi;
|
|
360
|
-
for (j = i, L = 0; L < R; L++, j += mmax) {
|
|
361
|
-
yr = yi = 0;
|
|
362
|
-
for (k = R; k > 0; --k) {
|
|
363
|
-
h = (k << 1) - 1;
|
|
364
|
-
relat<T>(yr, yi, xr, xi, gw[h-1], gw[h]);
|
|
365
|
-
} temp[j-1] = yr; temp[j] = yi;
|
|
366
|
-
relat<T>(xr, xi, wqr, wqi);
|
|
367
|
-
}
|
|
368
|
-
}
|
|
369
|
-
relat<T>(wr, wi, wpr, wpi);
|
|
370
|
-
}
|
|
371
|
-
mmax = istep;
|
|
372
|
-
theta /= R;
|
|
373
|
-
}
|
|
374
|
-
data[0] = temp[0];
|
|
375
|
-
for (i = 1; i < N; ++i) data[i] = temp[f > 0 ? i + 1 : i << 1];
|
|
376
|
-
delete[] gw; delete[] temp;
|
|
377
|
-
}
|
|
378
|
-
/*
|
|
379
|
-
複数基数のFFT subroutine
|
|
380
|
-
*/
|
|
381
|
-
template <typename T>
|
|
382
|
-
void rft(size_t r, T *data, size_t N, int f)
|
|
383
|
-
{
|
|
384
|
-
size_t h, i, j, k, L, m, mmax, istep;
|
|
385
|
-
size_t n = N << 1, Nr = N / r;
|
|
386
|
-
T wr, wi, wpr, wpi, wqr, wqi, *temp;
|
|
387
|
-
T xr, xi, yr, yi, *gw;
|
|
388
|
-
temp = new T[n]; gw = new T[r*2];
|
|
389
|
-
// r進数の桁反転
|
|
390
|
-
for (j = 1, i = 0; i < n; i += 2) {
|
|
391
|
-
if (f > 0) {
|
|
392
|
-
xr = data[i>>1];
|
|
393
|
-
xi = 0;
|
|
394
|
-
} else if (i == 0) {
|
|
395
|
-
xr = data[0];
|
|
396
|
-
xi = 0;
|
|
397
|
-
} else if (i < N) {
|
|
398
|
-
xr = data[i-1];
|
|
399
|
-
xi = data[ i ];
|
|
400
|
-
} else if (i == N) {
|
|
401
|
-
xr = data[i-1];
|
|
402
|
-
xi = 0;
|
|
403
|
-
} else {
|
|
404
|
-
xr = data[n-i-1];
|
|
405
|
-
xi =-data[ n-i ];
|
|
406
|
-
}
|
|
407
|
-
temp[j-1] = xr; temp[j] = xi;
|
|
408
|
-
m = (r-1) * (Nr << 1);
|
|
409
|
-
while (m >= 2 && j > m) {j -= m; m /= r;}
|
|
410
|
-
j += m / (r-1);
|
|
411
|
-
}
|
|
412
|
-
T F = -f;
|
|
413
|
-
T theta = 2.0 * M_PI * F / (T)r;
|
|
414
|
-
wqr = cos(theta); wqi = sin(theta);
|
|
415
|
-
mmax = 2;
|
|
416
|
-
while (n > mmax) {
|
|
417
|
-
istep = mmax * r;
|
|
418
|
-
wpr = cos(theta); wpi = sin(theta);
|
|
419
|
-
wr = 1.0; wi = 0.0;
|
|
420
|
-
for (m = 1; m < mmax; m += 2) {
|
|
421
|
-
for (i = m; i <= n; i += istep) {
|
|
422
|
-
for (j = i, L = 0; L < r; L++, j += mmax) {
|
|
423
|
-
h = (L << 1) + 1;
|
|
424
|
-
gw[h-1] = temp[j-1]; gw[h] = temp[j];
|
|
425
|
-
}
|
|
426
|
-
// バタフライ演算
|
|
427
|
-
xr = wr; xi = wi;
|
|
428
|
-
for (j = i, L = 0; L < r; L++, j += mmax) {
|
|
429
|
-
yr = yi = 0;
|
|
430
|
-
for (k = r; k > 0; --k) {
|
|
431
|
-
h = (k << 1) - 1;
|
|
432
|
-
relat<T>(yr, yi, xr, xi, gw[h-1], gw[h]);
|
|
433
|
-
} temp[j-1] = yr; temp[j] = yi;
|
|
434
|
-
relat<T>(xr, xi, wqr, wqi);
|
|
435
|
-
}
|
|
436
|
-
}
|
|
437
|
-
relat<T>(wr, wi, wpr, wpi);
|
|
438
|
-
}
|
|
439
|
-
mmax = istep;
|
|
440
|
-
theta /= r;
|
|
441
|
-
}
|
|
442
|
-
data[0] = temp[0];
|
|
443
|
-
for (i = 1; i < N; ++i) data[i] = temp[f > 0 ? i + 1 : i << 1];
|
|
444
|
-
delete[] gw; delete[] temp;
|
|
445
|
-
}
|
|
446
|
-
/*
|
|
447
|
-
複数基数のFFT main routine
|
|
448
|
-
g : データ配列
|
|
449
|
-
N : データ個数
|
|
450
|
-
f : 1 forward, 0 backword, -1 invert
|
|
451
|
-
*/
|
|
452
|
-
template <typename T>
|
|
453
|
-
bool rft(T *data, size_t N, int f)
|
|
454
|
-
{
|
|
455
|
-
size_t Nres = N, s = 0, k, n = N << 1;
|
|
456
|
-
size_t Ni[SDIM], ni[SDIM], M[SDIM], r[SDIM]; r[0] = 2;
|
|
457
|
-
// Chinese Remainder Theorem
|
|
458
|
-
do {
|
|
459
|
-
M[s] = 0; ni[s] = 1; Ni[s] = N;
|
|
460
|
-
while (Ni[s] % r[s] == 0) {
|
|
461
|
-
M[s]++;
|
|
462
|
-
ni[s] *= r[s]; // ni = r**M;
|
|
463
|
-
Ni[s] /= r[s];
|
|
464
|
-
} Nres /= ni[s];
|
|
465
|
-
int rnew;
|
|
466
|
-
if (Nres != 1) {
|
|
467
|
-
rnew = r[s] + (r[s] == 2 ? 1 : 2);
|
|
468
|
-
if (M[s] > 0) s++;
|
|
469
|
-
if (s < SDIM) {
|
|
470
|
-
// 素因数分解
|
|
471
|
-
while (Nres % rnew != 0) rnew += 2;
|
|
472
|
-
r[s] = rnew;
|
|
473
|
-
}
|
|
474
|
-
}
|
|
475
|
-
} while (Nres > 1 && s < SDIM);
|
|
476
|
-
int F = (f > 0) ? 1 : -1;
|
|
477
|
-
if (s >= SDIM) return false; else
|
|
478
|
-
if (s == 0) {
|
|
479
|
-
switch (r[s]) {
|
|
480
|
-
case 2: rft2<T>(data, N, F); break;
|
|
481
|
-
case 3: rft<T,3>(data, N, F); break;
|
|
482
|
-
case 5: rft<T,5>(data, N, F); break;
|
|
483
|
-
case 7: rft<T,7>(data, N, F); break;
|
|
484
|
-
default: rft<T>(r[s], data, N, F);
|
|
485
|
-
}
|
|
486
|
-
} else {
|
|
487
|
-
size_t smax = s + 1;
|
|
488
|
-
T gw[n];
|
|
489
|
-
// 最初の並び替え
|
|
490
|
-
for (k = 0; k < N; ++k) {
|
|
491
|
-
size_t ks, kk = 0;
|
|
492
|
-
T wr, wi;
|
|
493
|
-
for (s = 0; s < smax; ++s)
|
|
494
|
-
kk = kk * ni[s] + k % ni[s];
|
|
495
|
-
kk <<= 1; ks = k << 1;
|
|
496
|
-
if (F > 0) {
|
|
497
|
-
wr = data[k];
|
|
498
|
-
wi = 0;
|
|
499
|
-
} else if (ks == 0) {
|
|
500
|
-
wr = data[0];
|
|
501
|
-
wi = 0;
|
|
502
|
-
} else if (ks == N) {
|
|
503
|
-
wr = data[N-1];
|
|
504
|
-
wi = 0;
|
|
505
|
-
} else if (ks < N) {
|
|
506
|
-
wr = data[ks-1];
|
|
507
|
-
wi = data[ ks ];
|
|
508
|
-
} else {
|
|
509
|
-
ks = (N-k) << 1;
|
|
510
|
-
wr = data[ks-1];
|
|
511
|
-
wi =-data[ ks ];
|
|
512
|
-
}
|
|
513
|
-
gw[kk] = wr; gw[kk+1] = wi;
|
|
514
|
-
}
|
|
515
|
-
size_t step, stride = 1;
|
|
516
|
-
// フーリエ変換
|
|
517
|
-
for (k = smax; k > 0; --k) {
|
|
518
|
-
s = k - 1;
|
|
519
|
-
step = stride * ni[s];
|
|
520
|
-
for (size_t k1 = 0; k1 < stride; ++k1)
|
|
521
|
-
for (size_t k0 = k1; k0 < N; k0 += step)
|
|
522
|
-
cft(r[s], &gw[k0<<1], ni[s] << 1, F, stride);
|
|
523
|
-
stride = step;
|
|
524
|
-
}
|
|
525
|
-
// 最終の並び替え
|
|
526
|
-
for (k = 0; k < N; ++k) {
|
|
527
|
-
size_t Ls, Lu, L = 0, LL = 0;
|
|
528
|
-
for (s = 0; s < smax; ++s) {
|
|
529
|
-
Ls = k % ni[s];
|
|
530
|
-
LL = LL * ni[s] + Ls;
|
|
531
|
-
L += Ni[s] * Ls;
|
|
532
|
-
} Ls = (L % N);
|
|
533
|
-
Lu = LL << 1;
|
|
534
|
-
if (F > 0) {
|
|
535
|
-
Ls <<= 1;
|
|
536
|
-
if (Ls == 0) data[Ls] = gw[Lu];
|
|
537
|
-
else
|
|
538
|
-
if (Ls == N) data[Ls-1] = gw[Lu];
|
|
539
|
-
else
|
|
540
|
-
if (Ls < N) {
|
|
541
|
-
data[Ls-1] = gw[ Lu ];
|
|
542
|
-
data[ Ls ] = gw[Lu+1];
|
|
543
|
-
}
|
|
544
|
-
} else data[ Ls ] = gw[ Lu ];
|
|
545
|
-
}
|
|
546
|
-
}
|
|
547
|
-
if (f < 0) for (k = 0; k < N; ++k) data[k] /= N;
|
|
548
|
-
return true;
|
|
549
|
-
}
|
|
550
|
-
|
|
551
|
-
template bool cft<double>(double *, size_t, int);
|
|
552
|
-
template bool rft<double>(double *, size_t, int);
|
|
1
|
+
#define SLOPPY
|
|
2
|
+
#define IEEE
|
|
3
|
+
|
|
4
|
+
#include <cstdlib>
|
|
5
|
+
#include <cmath>
|
|
6
|
+
#include <cstring>
|
|
7
|
+
#include <cassert>
|
|
8
|
+
#include <functional>
|
|
9
|
+
#include "basis/fft.h"
|
|
10
|
+
|
|
11
|
+
template <typename T>
|
|
12
|
+
inline void relat(real<T>& xr, real<T>& xi, const real<T>& wqr, const real<T>& wqi)
|
|
13
|
+
{
|
|
14
|
+
real<T> wtemp = xr;
|
|
15
|
+
xr = wtemp * wqr - xi * wqi;
|
|
16
|
+
xi = wtemp * wqi + xi * wqr;
|
|
17
|
+
}
|
|
18
|
+
|
|
19
|
+
#include "basis/fft_complex.h"
|
|
20
|
+
|
|
21
|
+
#define FFTPACK
|
|
22
|
+
|
|
23
|
+
#include "basis/fft_real.h"
|
|
24
|
+
|
|
25
|
+
template bool cfft<double>(varray<double>&, size_t, int);
|
|
26
|
+
template bool rfft<double>(varray<double>&, size_t, int);
|
|
27
|
+
|