pspline 5.0.2
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +7 -0
- data/Gemfile +5 -0
- data/README.md +34 -0
- data/Rakefile +6 -0
- data/bin/console +14 -0
- data/bin/setup +8 -0
- data/ext/pspline/basis.cpp +351 -0
- data/ext/pspline/example/exbspline.ps +2194 -0
- data/ext/pspline/example/exbspline.rb +36 -0
- data/ext/pspline/example/excspline.ps +2985 -0
- data/ext/pspline/example/excspline.rb +36 -0
- data/ext/pspline/example/exdspline.ps +2846 -0
- data/ext/pspline/example/exdspline.rb +33 -0
- data/ext/pspline/example/exfspline.rb +66 -0
- data/ext/pspline/example/exfspline1.rb +40 -0
- data/ext/pspline/example/expspline.ps +3299 -0
- data/ext/pspline/example/expspline.rb +29 -0
- data/ext/pspline/example/expspline1.rb +29 -0
- data/ext/pspline/example/expspline2.rb +47 -0
- data/ext/pspline/example/exqspline.ps +2957 -0
- data/ext/pspline/example/exqspline.rb +31 -0
- data/ext/pspline/example/exqspline1.rb +31 -0
- data/ext/pspline/example/exqspline2.rb +50 -0
- data/ext/pspline/example/exqspline3.rb +51 -0
- data/ext/pspline/example/exrspline.ps +2812 -0
- data/ext/pspline/example/exrspline.rb +34 -0
- data/ext/pspline/example/exrspline1.rb +34 -0
- data/ext/pspline/example/exrspline2.rb +44 -0
- data/ext/pspline/example/exsspline.ps +1965 -0
- data/ext/pspline/example/exsspline.rb +35 -0
- data/ext/pspline/example/exsspline1.rb +35 -0
- data/ext/pspline/example/extspline.ps +2767 -0
- data/ext/pspline/example/extspline.rb +32 -0
- data/ext/pspline/extconf.rb +7 -0
- data/ext/pspline/fft.cpp +552 -0
- data/ext/pspline/include/basis/basis.h +137 -0
- data/ext/pspline/include/basis/fft.h +152 -0
- data/ext/pspline/include/basis/poly_array.h +1568 -0
- data/ext/pspline/include/basis/pspline.h +506 -0
- data/ext/pspline/include/basis/uspline.h +210 -0
- data/ext/pspline/include/basis/util.h +656 -0
- data/ext/pspline/include/bspline.h +377 -0
- data/ext/pspline/include/bspline_Config.h +2 -0
- data/ext/pspline/plotsub.cpp +132 -0
- data/ext/pspline/pspline.cpp +897 -0
- data/ext/pspline/util.cpp +483 -0
- data/lib/pspline.rb +6 -0
- data/lib/pspline/version.rb +3 -0
- data/pspline.gemspec +25 -0
- metadata +122 -0
|
@@ -0,0 +1,483 @@
|
|
|
1
|
+
#include <string.h>
|
|
2
|
+
#include <stdlib.h>
|
|
3
|
+
#include <stddef.h>
|
|
4
|
+
#include <stdio.h>
|
|
5
|
+
#include <float.h>
|
|
6
|
+
#include <math.h>
|
|
7
|
+
#include "basis/util.h"
|
|
8
|
+
|
|
9
|
+
class pascal
|
|
10
|
+
{
|
|
11
|
+
int *pas;
|
|
12
|
+
public:
|
|
13
|
+
pascal(int K) : pas(new int[K]) {}
|
|
14
|
+
~pascal() { delete pas; }
|
|
15
|
+
int* operator[](int j)
|
|
16
|
+
{
|
|
17
|
+
int a, b;
|
|
18
|
+
pas[0] = a = b = 1;
|
|
19
|
+
for (int i = 1; i <= j; ++i) {
|
|
20
|
+
a *= j - i + 1;
|
|
21
|
+
b *= i;
|
|
22
|
+
pas[i] = a / b;
|
|
23
|
+
}
|
|
24
|
+
return pas;
|
|
25
|
+
}
|
|
26
|
+
};
|
|
27
|
+
/*******************************************************************************
|
|
28
|
+
微分係数(differential coefficient)
|
|
29
|
+
N個の関数の積のJ階微分係数を求める。
|
|
30
|
+
data : 微分係数の配列 [[f(t),D1f(t),...,DJf(t)],...]
|
|
31
|
+
s : 配列のストライド [st1,...,stN,K] (K = J+1)
|
|
32
|
+
N : 関数の積の項数
|
|
33
|
+
*******************************************************************************/
|
|
34
|
+
template<typename T> T *diff(T **data, const int *s, int N)
|
|
35
|
+
{
|
|
36
|
+
int K = s[N];
|
|
37
|
+
T *W = T_ALLOC(T,K);
|
|
38
|
+
if (N == 1)
|
|
39
|
+
for (int i = 0; i < K; ++i) W[i] = (*data)[(*s)*i];
|
|
40
|
+
else {
|
|
41
|
+
const T *b = *data;
|
|
42
|
+
T *c = diff(&data[1], &s[1], N-1);
|
|
43
|
+
pascal pas(K);
|
|
44
|
+
for (int j = 0; j < K; ++j) {
|
|
45
|
+
int *a = pas[j];
|
|
46
|
+
W[j] = 0;
|
|
47
|
+
for (int k = 0; k <= j; ++k)
|
|
48
|
+
W[j] += a[k] * b[(*s)*k] * c[j-k];
|
|
49
|
+
}
|
|
50
|
+
FREE(c);
|
|
51
|
+
}
|
|
52
|
+
return W;
|
|
53
|
+
}
|
|
54
|
+
template<typename T> T coeff(T **data, const int *s, int N, int jbn)
|
|
55
|
+
{
|
|
56
|
+
T *W = diff(data, s, N);
|
|
57
|
+
T result = W[jbn];
|
|
58
|
+
FREE(W);
|
|
59
|
+
return result;
|
|
60
|
+
}
|
|
61
|
+
/*******************************************************************************
|
|
62
|
+
全微分(Total derivative)
|
|
63
|
+
N個の関数の積のJ階全微分を求める。
|
|
64
|
+
data : 微分係数の配列 [[f(t),D1f(t),...,DJf(t)],...]
|
|
65
|
+
s : 配列のストライド [st1,...,stN,K] (K = J+1)
|
|
66
|
+
N : 関数の積の項数
|
|
67
|
+
ds : 方向ベクトルの成分の配列 [d1,...dN]
|
|
68
|
+
*******************************************************************************/
|
|
69
|
+
template<typename T>
|
|
70
|
+
static T *sub_derive(T **data, const int *s, int N, const T *ds)
|
|
71
|
+
{
|
|
72
|
+
int k, K = s[N];
|
|
73
|
+
T dt, *W = T_ALLOC(T,K);
|
|
74
|
+
if (N == 1)
|
|
75
|
+
for (dt = 1.0, k = 0; k < K; ++k, dt *= (*ds)) W[k] = (*data)[(*s)*k] * dt;
|
|
76
|
+
else {
|
|
77
|
+
const T *b = *data;
|
|
78
|
+
T *c = sub_derive(&data[1], &s[1], N-1, &ds[1]);
|
|
79
|
+
pascal pas(K);
|
|
80
|
+
for (int j = 0; j < K; ++j) {
|
|
81
|
+
int *a = pas[j];
|
|
82
|
+
W[j] = 0;
|
|
83
|
+
for (dt = 1.0, k = 0; k <= j; ++k, dt *= (*ds))
|
|
84
|
+
W[j] += a[k] * b[(*s)*k] * c[j-k] * dt;
|
|
85
|
+
}
|
|
86
|
+
FREE(c);
|
|
87
|
+
}
|
|
88
|
+
return W;
|
|
89
|
+
}
|
|
90
|
+
template<typename T> T total_derive(T **data, const int *s, int N, int jbn, const T *ds)
|
|
91
|
+
{
|
|
92
|
+
T *W = sub_derive(data, s, N, ds);
|
|
93
|
+
T result = W[jbn];
|
|
94
|
+
FREE(W);
|
|
95
|
+
return result;
|
|
96
|
+
}
|
|
97
|
+
|
|
98
|
+
/*******************************************************************************
|
|
99
|
+
Matrix operation
|
|
100
|
+
*******************************************************************************/
|
|
101
|
+
/*
|
|
102
|
+
Doolittle : LU分解 ドゥーリトル法
|
|
103
|
+
|
|
104
|
+
Li0 = ai0; i = 0,...,n-1
|
|
105
|
+
Lij = aij - ΣLik*Ukj; i >= j, k = 0,...,j-1
|
|
106
|
+
Uij =(aij - ΣLik*Ukj)/Lii; i < j, k = 0,...,i-1
|
|
107
|
+
*/
|
|
108
|
+
template <class T> void lud_decomp(T * a, size_t n, size_t * p, int & s)
|
|
109
|
+
{
|
|
110
|
+
size_t i, j, k, l, L;
|
|
111
|
+
|
|
112
|
+
s = 1;
|
|
113
|
+
for (i = 0; i < n; i++) {
|
|
114
|
+
T *ai = &a[i*n];
|
|
115
|
+
T aii = ai[i]; L = i;
|
|
116
|
+
for (j = 1; j < n; j++) {
|
|
117
|
+
l = i < j ? i : j;
|
|
118
|
+
T aij = ai[j];
|
|
119
|
+
for (k = 0; k < l; k++) aij -= ai[k] * a[k*n+j];
|
|
120
|
+
ai[j] = aij;
|
|
121
|
+
// ピボット選択
|
|
122
|
+
if ((j == i) || ((j > i) && (gabs(aii) < gabs(aij)))) { L = j; aii = aij; }
|
|
123
|
+
}
|
|
124
|
+
// ピボット列交換
|
|
125
|
+
if (L != i) {
|
|
126
|
+
for (k = 0; k < n; ++k) {
|
|
127
|
+
T *au = &a[k*n];
|
|
128
|
+
T av = au[i]; au[i] = au[L]; au[L] = av; // a[*,i] <=> a[*,L]
|
|
129
|
+
} s *= -1;
|
|
130
|
+
} p[i] = L;
|
|
131
|
+
if (i < n-1) for (j = i+1; j < n; j++) ai[j] /= aii;
|
|
132
|
+
}
|
|
133
|
+
}
|
|
134
|
+
|
|
135
|
+
template <class T, class S> void lud_subst(T * a, size_t n, size_t * p, S * b)
|
|
136
|
+
{
|
|
137
|
+
size_t i, j, k, js = n; S sum;
|
|
138
|
+
// 前進代入
|
|
139
|
+
for (i = 0; i < n; ++i) {
|
|
140
|
+
T *lu = &a[i*n];
|
|
141
|
+
sum = b[i];
|
|
142
|
+
if (js < n)
|
|
143
|
+
for (j = js; j < i; ++j) sum -= lu[j] * b[j];
|
|
144
|
+
else if (sum != 0.0) js = i;
|
|
145
|
+
b[i] = sum / lu[i];
|
|
146
|
+
}
|
|
147
|
+
// 後退代入
|
|
148
|
+
for (k = n-1; k > 0; --k) {
|
|
149
|
+
i = k - 1;
|
|
150
|
+
T *lu = &a[i*n];
|
|
151
|
+
sum = b[i];
|
|
152
|
+
for (j = n-1; j > i; --j) sum -= lu[j] * b[j];
|
|
153
|
+
b[i] = sum;
|
|
154
|
+
}
|
|
155
|
+
// 解の保存
|
|
156
|
+
for (k = n-1; k > 0; --k) {
|
|
157
|
+
i = k - 1; j = p[i];
|
|
158
|
+
if (i != j) { sum = b[j]; b[j] = b[i]; b[i] = sum; }
|
|
159
|
+
}
|
|
160
|
+
}
|
|
161
|
+
|
|
162
|
+
template <class T, class S> void lud_subst(T * a, size_t n, size_t * p, S * b, int K)
|
|
163
|
+
{
|
|
164
|
+
size_t i, j, k, l, js = n; S sum;
|
|
165
|
+
// 前進代入
|
|
166
|
+
for (i = 0; i < n; ++i) {
|
|
167
|
+
T *lu = &a[i*n];
|
|
168
|
+
for (l = 0; l < size_t(K); ++l) {
|
|
169
|
+
sum = b[i*K+l];
|
|
170
|
+
if (js < n)
|
|
171
|
+
for (j = js; j < i; ++j) sum -= lu[j] * b[j*K+l];
|
|
172
|
+
else if (sum != 0.0) js = i;
|
|
173
|
+
b[i*K+l] = sum / lu[i];
|
|
174
|
+
}
|
|
175
|
+
}
|
|
176
|
+
// 後退代入
|
|
177
|
+
for (k = n-1; k > 0; --k) {
|
|
178
|
+
i = k - 1;
|
|
179
|
+
T *lu = &a[i*n];
|
|
180
|
+
for (l = 0; l < size_t(K); ++l) {
|
|
181
|
+
sum = b[i*K+l];
|
|
182
|
+
for (j = n-1; j > i; --j) sum -= lu[j] * b[j*K+l];
|
|
183
|
+
b[i*K+l] = sum;
|
|
184
|
+
}
|
|
185
|
+
}
|
|
186
|
+
// 解の保存
|
|
187
|
+
for (k = n-1; k > 0; --k) {
|
|
188
|
+
i = k - 1; j = p[i];
|
|
189
|
+
if (i != j) for (l = 0; l < size_t(K); ++l) {
|
|
190
|
+
sum = b[j*K+l]; b[j*K+l] = b[i*K+l]; b[i*K+l] = sum;
|
|
191
|
+
}
|
|
192
|
+
}
|
|
193
|
+
}
|
|
194
|
+
|
|
195
|
+
template<class T> void lud_decomp(T ** a, size_t n, size_t * p, int & s)
|
|
196
|
+
{
|
|
197
|
+
size_t i, j, k, L;
|
|
198
|
+
double big, tmp, *v = new double[n];
|
|
199
|
+
|
|
200
|
+
s = 1;
|
|
201
|
+
for (i = 0; i < n; ++i) {
|
|
202
|
+
big = 0.0;
|
|
203
|
+
for (j = 0; j < n; ++j)
|
|
204
|
+
if ((tmp = gabs(a[i][j])) > big) big = tmp;
|
|
205
|
+
if (big == 0.0)
|
|
206
|
+
throw "Singular matrix in routine lud_decomp";
|
|
207
|
+
v[i] = 1.0 / big;
|
|
208
|
+
}
|
|
209
|
+
for (k = 0; k < n-1; ++k) {
|
|
210
|
+
// 陰的ピボット選択
|
|
211
|
+
L = k; big = 0.0;
|
|
212
|
+
for (i = k+1; i < n; ++i)
|
|
213
|
+
if ((tmp = gabs(a[i][k]) * v[i]) > big ) {
|
|
214
|
+
big = tmp; L = i;
|
|
215
|
+
}
|
|
216
|
+
// ピボット行交換
|
|
217
|
+
if (L != k) {
|
|
218
|
+
T *w = a[k]; a[k] = a[L]; a[L] = w; // a[k,*] <=> a[L,*]
|
|
219
|
+
v[L] = v[k];
|
|
220
|
+
s *= -1;
|
|
221
|
+
} p[k] = L;
|
|
222
|
+
// 前進消去
|
|
223
|
+
T akk = a[k][k];
|
|
224
|
+
for (j = k+1; j < n; ++j) {
|
|
225
|
+
T akj = a[k][j] / akk;
|
|
226
|
+
for (i = k+1; i < n; ++i) a[i][j] -= a[i][k] * akj;
|
|
227
|
+
a[k][j] = akj;
|
|
228
|
+
}
|
|
229
|
+
}
|
|
230
|
+
delete[] v;
|
|
231
|
+
}
|
|
232
|
+
|
|
233
|
+
template<class T, class S> void lud_subst(T ** a, size_t n, size_t * p, S * b)
|
|
234
|
+
{
|
|
235
|
+
size_t i, j, k, js = n; S sum;
|
|
236
|
+
// 前進代入
|
|
237
|
+
for (i=0;i<n;++i) {
|
|
238
|
+
T *lu = a[i];
|
|
239
|
+
k = (i < n-1) ? p[i] : i;
|
|
240
|
+
sum = b[k]; if (i != k) b[k] = b[i];
|
|
241
|
+
if (js < n)
|
|
242
|
+
for (j=js;j<i;++j) sum -= lu[j] * b[j];
|
|
243
|
+
else if (sum != 0.0) js = i;
|
|
244
|
+
b[i] = sum / lu[i];
|
|
245
|
+
}
|
|
246
|
+
// 後退代入
|
|
247
|
+
for (k=n-1;k>0;--k) {
|
|
248
|
+
i = k - 1;
|
|
249
|
+
T *lu = a[i];
|
|
250
|
+
sum = b[i];
|
|
251
|
+
for (j=n-1;j>i;--j) sum -= lu[j] * b[j];
|
|
252
|
+
b[i] = sum;
|
|
253
|
+
}
|
|
254
|
+
}
|
|
255
|
+
|
|
256
|
+
template <class T, class S> void lud_subst(T ** a, size_t n, size_t * p, S * x, int K)
|
|
257
|
+
{
|
|
258
|
+
S sum, *su, *sv, **b = create_marray_view(n, K, x);
|
|
259
|
+
size_t i, j, k, l, js = n;
|
|
260
|
+
for (i=0;i<n;++i)
|
|
261
|
+
{
|
|
262
|
+
T *lu = a[i];
|
|
263
|
+
k = (i<n-1) ? p[i] : i;
|
|
264
|
+
su = b[k]; sv = b[i];
|
|
265
|
+
for (l=0;l<size_t(K);++l) {
|
|
266
|
+
sum = su[l]; if (i != k) su[l] = sv[l];
|
|
267
|
+
if (js < n)
|
|
268
|
+
for (j=js;j<i;++j) sum -= lu[j] * b[j][l];
|
|
269
|
+
else if (sum != 0.0) js = i;
|
|
270
|
+
sv[l] = sum / lu[i];
|
|
271
|
+
}
|
|
272
|
+
}
|
|
273
|
+
for (k=n;k>0;--k)
|
|
274
|
+
{
|
|
275
|
+
i = k - 1;
|
|
276
|
+
T *lu = a[i];
|
|
277
|
+
su = b[i];
|
|
278
|
+
for (l=0;l<size_t(K);++l) {
|
|
279
|
+
sum = su[l];
|
|
280
|
+
for (j=n-1;j>i;--j) sum -= lu[j] * b[j][l];
|
|
281
|
+
su[l] = sum;
|
|
282
|
+
}
|
|
283
|
+
}
|
|
284
|
+
FREE(b);
|
|
285
|
+
}
|
|
286
|
+
/*
|
|
287
|
+
Crout : LU分解 クラウト法
|
|
288
|
+
|
|
289
|
+
U0j = a0j; j = 0,...,n-1
|
|
290
|
+
Uij = aij - ΣLik*Ukj; i <= j, k = 0,...,i-1
|
|
291
|
+
Lij =(aij - ΣLik*Ukj)/Ujj; i > j, k = 0,...,j-1
|
|
292
|
+
*/
|
|
293
|
+
template<class T> void luc_decomp(T * a, size_t n, size_t * p, int & s)
|
|
294
|
+
{
|
|
295
|
+
size_t i, j, k, L;
|
|
296
|
+
|
|
297
|
+
s = 1;
|
|
298
|
+
for (k = 0; k < n-1; ++k) {
|
|
299
|
+
T *ak = &a[k*n];
|
|
300
|
+
T akk = ak[k]; L = k;
|
|
301
|
+
// ピボット選択
|
|
302
|
+
for (j = k+1; j < n; ++j)
|
|
303
|
+
if (gabs(akk) < gabs(ak[j])) { L = j; akk = ak[j]; }
|
|
304
|
+
// ピボット列交換
|
|
305
|
+
if (L != k) {
|
|
306
|
+
for (i = 0; i < n; ++i) {
|
|
307
|
+
T *au = &a[i*n];
|
|
308
|
+
T av = au[k]; au[k] = au[L]; au[L] = av; // a[*,k] <=> a[*,L]
|
|
309
|
+
} s *= -1;
|
|
310
|
+
} p[k] = L;
|
|
311
|
+
// 前進消去
|
|
312
|
+
for (i = k+1; i < n; ++i) {
|
|
313
|
+
T *ai = &a[i*n];
|
|
314
|
+
T aik = ai[k] / akk;
|
|
315
|
+
for (j = k+1; j < n; ++j) ai[j] -= aik * a[k*n+j];
|
|
316
|
+
ai[k] = aik;
|
|
317
|
+
}
|
|
318
|
+
}
|
|
319
|
+
}
|
|
320
|
+
|
|
321
|
+
template<class T, class S> void luc_subst(T * a, size_t n, size_t * p, S * b)
|
|
322
|
+
{
|
|
323
|
+
size_t i, j, js = n, k; S sum;
|
|
324
|
+
// 前進代入
|
|
325
|
+
for (i=0;i<n;++i) {
|
|
326
|
+
T* lu = &a[i*n];
|
|
327
|
+
sum = b[i];
|
|
328
|
+
if (js < n)
|
|
329
|
+
for (j=js;j<i;++j) sum -= lu[j] * b[j];
|
|
330
|
+
else if (sum != 0.0) js = i;
|
|
331
|
+
b[i] = sum;
|
|
332
|
+
}
|
|
333
|
+
// 後退代入
|
|
334
|
+
for (k=n;k>0;--k) {
|
|
335
|
+
i = k - 1;
|
|
336
|
+
T* lu = &a[i*n];
|
|
337
|
+
sum = b[i];
|
|
338
|
+
for (j=n-1;j>i;--j) sum -= lu[j] * b[j];
|
|
339
|
+
b[i] = sum / lu[i];
|
|
340
|
+
}
|
|
341
|
+
// 解の保存
|
|
342
|
+
for (k=n-1;k>0;--k) {
|
|
343
|
+
i = k - 1; j = p[i];
|
|
344
|
+
if (i != j) { sum = b[j]; b[j] = b[i]; b[i] = sum; }
|
|
345
|
+
}
|
|
346
|
+
}
|
|
347
|
+
|
|
348
|
+
template<class T, class S> void luc_subst(T * a, size_t n, size_t * p, S * b, int K)
|
|
349
|
+
{
|
|
350
|
+
size_t i, j, k, l, js = n; S sum;
|
|
351
|
+
// 前進代入
|
|
352
|
+
for (i=0;i<n;++i) {
|
|
353
|
+
T* lu = &a[i*n];
|
|
354
|
+
for (l=0;l<size_t(K);++l) {
|
|
355
|
+
sum = b[i*K+l];
|
|
356
|
+
if (js < n)
|
|
357
|
+
for (j=js;j<i;++j) sum -= lu[j] * b[j*K+l];
|
|
358
|
+
else if (sum != 0.0) js = i;
|
|
359
|
+
b[i*K+l] = sum;
|
|
360
|
+
}
|
|
361
|
+
}
|
|
362
|
+
// 後退代入
|
|
363
|
+
for (k=n;k>0;--k) {
|
|
364
|
+
i = k - 1;
|
|
365
|
+
T* lu = &a[i*n];
|
|
366
|
+
for (l=0;l<size_t(K);++l) {
|
|
367
|
+
sum = b[i*K+l];
|
|
368
|
+
for (j=n-1;j>i;--j) sum -= lu[j] * b[j*K+l];
|
|
369
|
+
b[i*K+l] = sum / lu[i];
|
|
370
|
+
}
|
|
371
|
+
}
|
|
372
|
+
// 解の保存
|
|
373
|
+
for (k = n-1; k > 0; --k) {
|
|
374
|
+
i = k - 1; j = p[i];
|
|
375
|
+
if (i != j) for (l=0;l<size_t(K);++l) {
|
|
376
|
+
sum = b[j*K+l]; b[j*K+l] = b[i*K+l]; b[i*K+l] = sum;
|
|
377
|
+
}
|
|
378
|
+
}
|
|
379
|
+
}
|
|
380
|
+
|
|
381
|
+
template <class T> void luc_decomp(T ** a, size_t n, size_t * p, int & s)
|
|
382
|
+
{
|
|
383
|
+
size_t i, j, k, l, L;
|
|
384
|
+
double big, tmp, *v = new double[n];
|
|
385
|
+
|
|
386
|
+
s = 1;
|
|
387
|
+
for (i = 0; i < n; ++i) {
|
|
388
|
+
big = 0.0;
|
|
389
|
+
for (j = 0; j < n; ++j)
|
|
390
|
+
if ((tmp = gabs(a[i][j])) > big) big = tmp;
|
|
391
|
+
if (big == 0.0)
|
|
392
|
+
throw "Singular matrix in routine luc_decomp";
|
|
393
|
+
v[i] = 1.0 / big;
|
|
394
|
+
}
|
|
395
|
+
for (j = 0; j < n; j++) {
|
|
396
|
+
L = j; big = 0.0;
|
|
397
|
+
for (i = 1; i < n; i++) {
|
|
398
|
+
l = j < i ? j : i;
|
|
399
|
+
T aij = a[i][j];
|
|
400
|
+
for (k = 0; k < l; k++) aij -= a[i][k] * a[k][j];
|
|
401
|
+
a[i][j] = aij;
|
|
402
|
+
// ピボット選択
|
|
403
|
+
if (i >= j)
|
|
404
|
+
if ((tmp = gabs(aij) * v[i]) > big) { big = tmp; L = i; }
|
|
405
|
+
} p[j] = L;
|
|
406
|
+
// ピボット行交換
|
|
407
|
+
if (L != j) {
|
|
408
|
+
T *w = a[j]; a[j] = a[L]; a[L] = w; // a[j,*] <=> a[L,*]
|
|
409
|
+
v[L] = v[j];
|
|
410
|
+
s *= -1;
|
|
411
|
+
} T ajj = a[j][j];
|
|
412
|
+
if (ajj == 0.0) ajj = DBL_MIN;
|
|
413
|
+
if (j < n-1) for (i = j+1; i < n; i++) a[i][j] /= ajj;
|
|
414
|
+
}
|
|
415
|
+
delete[] v;
|
|
416
|
+
}
|
|
417
|
+
|
|
418
|
+
template <class T, class S> void luc_subst(T ** a, size_t n, size_t * p, S * b)
|
|
419
|
+
{
|
|
420
|
+
size_t i, j, k, js = n; S sum;
|
|
421
|
+
// 前進代入
|
|
422
|
+
for (i=0;i<n;++i) {
|
|
423
|
+
T *lu = a[i]; k = p[i];
|
|
424
|
+
sum = b[k]; if (i != k) b[k] = b[i];
|
|
425
|
+
if (js < n)
|
|
426
|
+
for (j=js;j<i;++j) sum -= lu[j] * b[j];
|
|
427
|
+
else if (sum != 0.0) js = i;
|
|
428
|
+
b[i] = sum;
|
|
429
|
+
}
|
|
430
|
+
// 後退代入
|
|
431
|
+
for (k=n;k>0;--k) {
|
|
432
|
+
i = k - 1;
|
|
433
|
+
T *lu = a[i];
|
|
434
|
+
sum = b[i];
|
|
435
|
+
for (j=n-1;j>i;--j) sum -= lu[j] * b[j];
|
|
436
|
+
b[i] = sum / lu[i];
|
|
437
|
+
}
|
|
438
|
+
}
|
|
439
|
+
|
|
440
|
+
template <class T, class S> void luc_subst(T ** a, size_t n, size_t * p, S * x, int K)
|
|
441
|
+
{
|
|
442
|
+
S sum, *su, *sv, **b = create_marray_view(n, K, x);
|
|
443
|
+
size_t i, j, k, l, js = n;
|
|
444
|
+
// 前進代入
|
|
445
|
+
for (i=0;i<n;++i) {
|
|
446
|
+
T *lu = a[i]; k = p[i];
|
|
447
|
+
su = b[k]; sv = b[i];
|
|
448
|
+
for (l=0;l<size_t(K);++l) {
|
|
449
|
+
sum = su[l]; if (i != k) su[l] = sv[l];
|
|
450
|
+
if (js < n)
|
|
451
|
+
for (j=js;j<i;++j) sum -= lu[j] * b[j][l];
|
|
452
|
+
else if (sum != 0.0) js = i;
|
|
453
|
+
sv[l] = sum;
|
|
454
|
+
}
|
|
455
|
+
}
|
|
456
|
+
// 後退代入
|
|
457
|
+
for (k=n;k>0;--k) {
|
|
458
|
+
i = k - 1;
|
|
459
|
+
T *lu = a[i];
|
|
460
|
+
su = b[i];
|
|
461
|
+
for (l=0;l<size_t(K);++l) {
|
|
462
|
+
sum = su[l];
|
|
463
|
+
for (j=n-1;j>i;--j) sum -= lu[j] * b[j][l];
|
|
464
|
+
su[l] = sum / lu[i];
|
|
465
|
+
}
|
|
466
|
+
}
|
|
467
|
+
free(b);
|
|
468
|
+
}
|
|
469
|
+
|
|
470
|
+
template double coeff(double**, const int*, int, int);
|
|
471
|
+
template double total_derive(double**, const int*, int, int, const double*);
|
|
472
|
+
template void luc_decomp(double *, size_t, size_t*, int&);
|
|
473
|
+
template void luc_decomp(double**, size_t, size_t*, int&);
|
|
474
|
+
template void lud_decomp(double *, size_t, size_t*, int&);
|
|
475
|
+
template void lud_decomp(double**, size_t, size_t*, int&);
|
|
476
|
+
template void luc_subst(double *, size_t, size_t*, double*);
|
|
477
|
+
template void luc_subst(double**, size_t, size_t*, double*);
|
|
478
|
+
template void lud_subst(double *, size_t, size_t*, double*);
|
|
479
|
+
template void lud_subst(double**, size_t, size_t*, double*);
|
|
480
|
+
template void luc_subst(double *, size_t, size_t*, double*, int);
|
|
481
|
+
template void luc_subst(double**, size_t, size_t*, double*, int);
|
|
482
|
+
template void lud_subst(double *, size_t, size_t*, double*, int);
|
|
483
|
+
template void lud_subst(double**, size_t, size_t*, double*, int);
|