prophet-rb 0.2.1 → 0.2.5
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +17 -0
- data/LICENSE.txt +1 -1
- data/README.md +9 -3
- data/lib/prophet.rb +45 -10
- data/lib/prophet/forecaster.rb +35 -10
- data/lib/prophet/version.rb +1 -1
- data/stan/unix/prophet.stan +27 -16
- data/stan/win/prophet.stan +15 -2
- metadata +8 -78
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA256:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: ec194b65cb4bfd061bac7868cad435fea98df148fc7e129d8562c55ed3c91fcc
|
4
|
+
data.tar.gz: 45b9357d04a6c01a8d4ad6ce7888065b946e39cbfa743b650a41d5b12cf9989e
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: cd67e017dac94994c960a42b59fb55f2c33560d9233bb2764581cef3154bc03bd75ba29283f8e51788fcde356f682e9fe487a5506ccb82ed10ab373b11774989
|
7
|
+
data.tar.gz: a07444bc2d9d6a29b6b09303b5d4cef60709a4a4be0a31d2a4526f79366696875b72a36923747b673f05b686c857a78be803f2475fbbc89ffb3dac4a1c856c07
|
data/CHANGELOG.md
CHANGED
@@ -1,3 +1,20 @@
|
|
1
|
+
## 0.2.5 (2021-07-28)
|
2
|
+
|
3
|
+
- Added `anomalies` method
|
4
|
+
|
5
|
+
## 0.2.4 (2021-04-02)
|
6
|
+
|
7
|
+
- Added support for flat growth
|
8
|
+
|
9
|
+
## 0.2.3 (2020-10-14)
|
10
|
+
|
11
|
+
- Added support for times to `forecast` method
|
12
|
+
|
13
|
+
## 0.2.2 (2020-07-26)
|
14
|
+
|
15
|
+
- Fixed error with constant series
|
16
|
+
- Fixed error with no changepoints
|
17
|
+
|
1
18
|
## 0.2.1 (2020-07-15)
|
2
19
|
|
3
20
|
- Added `forecast` method
|
data/LICENSE.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
MIT License
|
2
2
|
|
3
|
-
Copyright (c) 2020 Andrew Kane
|
4
3
|
Copyright (c) Facebook, Inc. and its affiliates.
|
4
|
+
Copyright (c) 2020 Andrew Kane
|
5
5
|
|
6
6
|
Permission is hereby granted, free of charge, to any person obtaining
|
7
7
|
a copy of this software and associated documentation files (the
|
data/README.md
CHANGED
@@ -10,7 +10,7 @@ Supports:
|
|
10
10
|
|
11
11
|
And gracefully handles missing data
|
12
12
|
|
13
|
-
[![Build Status](https://
|
13
|
+
[![Build Status](https://github.com/ankane/prophet/workflows/build/badge.svg?branch=master)](https://github.com/ankane/prophet/actions)
|
14
14
|
|
15
15
|
## Installation
|
16
16
|
|
@@ -48,6 +48,12 @@ series = User.group_by_day(:created_at).count
|
|
48
48
|
Prophet.forecast(series)
|
49
49
|
```
|
50
50
|
|
51
|
+
Detect anomalies in a time series
|
52
|
+
|
53
|
+
```ruby
|
54
|
+
Prophet.anomalies(series)
|
55
|
+
```
|
56
|
+
|
51
57
|
## Advanced API
|
52
58
|
|
53
59
|
Check out the [Prophet documentation](https://facebook.github.io/prophet/docs/quick_start.html) for a great explanation of all of the features. The advanced API follows the Python API and supports the same features. It uses [Rover](https://github.com/ankane/rover) for data frames.
|
@@ -118,7 +124,7 @@ Plot the forecast
|
|
118
124
|
m.plot(forecast).savefig("forecast.png")
|
119
125
|
```
|
120
126
|
|
121
|
-
![Forecast](https://blazer.dokkuapp.com/assets/prophet/forecast-
|
127
|
+
![Forecast](https://blazer.dokkuapp.com/assets/prophet/forecast-77cf453fda67d1b462c6c22aee3a02572203b71c4517fedecc1f438cd374a876.png)
|
122
128
|
|
123
129
|
Plot components
|
124
130
|
|
@@ -126,7 +132,7 @@ Plot components
|
|
126
132
|
m.plot_components(forecast).savefig("components.png")
|
127
133
|
```
|
128
134
|
|
129
|
-
![Components](https://blazer.dokkuapp.com/assets/prophet/components-
|
135
|
+
![Components](https://blazer.dokkuapp.com/assets/prophet/components-2cdd260e23bc89824ecca25f6bfe394deb5821d60b7e0e551469c90d204acd67.png)
|
130
136
|
|
131
137
|
## Saturating Forecasts
|
132
138
|
|
data/lib/prophet.rb
CHANGED
@@ -21,19 +21,22 @@ module Prophet
|
|
21
21
|
Forecaster.new(**kwargs)
|
22
22
|
end
|
23
23
|
|
24
|
-
# to add time support in future, see
|
25
|
-
# https://github.com/ankane/prophet/commit/06e3562835cbcf06b8431f3a91fe2618d4703eb7
|
26
24
|
def self.forecast(series, count: 10)
|
27
25
|
raise ArgumentError, "Series must have at least 10 data points" if series.size < 10
|
28
26
|
|
27
|
+
# check type to determine output format
|
28
|
+
# check for before converting to time
|
29
29
|
keys = series.keys
|
30
|
-
|
31
|
-
|
30
|
+
dates = keys.all? { |k| k.is_a?(Date) }
|
31
|
+
time_zone = keys.first.time_zone if keys.first.respond_to?(:time_zone)
|
32
|
+
utc = keys.first.utc? if keys.first.respond_to?(:utc?)
|
33
|
+
times = keys.map(&:to_time)
|
32
34
|
|
33
|
-
|
34
|
-
|
35
|
-
|
36
|
-
|
35
|
+
day = times.all? { |t| t.hour == 0 && t.min == 0 && t.sec == 0 && t.nsec == 0 }
|
36
|
+
week = day && times.map { |k| k.wday }.uniq.size == 1
|
37
|
+
month = day && times.all? { |k| k.day == 1 }
|
38
|
+
quarter = month && times.all? { |k| k.month % 3 == 1 }
|
39
|
+
year = quarter && times.all? { |k| k.month == 1 }
|
37
40
|
|
38
41
|
freq =
|
39
42
|
if year
|
@@ -44,10 +47,20 @@ module Prophet
|
|
44
47
|
"MS"
|
45
48
|
elsif week
|
46
49
|
"W"
|
47
|
-
|
50
|
+
elsif day
|
48
51
|
"D"
|
52
|
+
else
|
53
|
+
diff = Rover::Vector.new(times).sort.diff.to_numo[1..-1]
|
54
|
+
min_diff = diff.min.to_i
|
55
|
+
|
56
|
+
# could be another common divisor
|
57
|
+
# but keep it simple for now
|
58
|
+
raise "Unknown frequency" unless (diff % min_diff).eq(0).all?
|
59
|
+
|
60
|
+
"#{min_diff}S"
|
49
61
|
end
|
50
62
|
|
63
|
+
# use series, not times, so dates are handled correctly
|
51
64
|
df = Rover::DataFrame.new({"ds" => series.keys, "y" => series.values})
|
52
65
|
|
53
66
|
m = Prophet.new
|
@@ -56,6 +69,28 @@ module Prophet
|
|
56
69
|
|
57
70
|
future = m.make_future_dataframe(periods: count, include_history: false, freq: freq)
|
58
71
|
forecast = m.predict(future)
|
59
|
-
forecast[["ds", "yhat"]].to_a
|
72
|
+
result = forecast[["ds", "yhat"]].to_a
|
73
|
+
|
74
|
+
# use the same format as input
|
75
|
+
if dates
|
76
|
+
result.each { |v| v["ds"] = v["ds"].to_date }
|
77
|
+
elsif time_zone
|
78
|
+
result.each { |v| v["ds"] = v["ds"].in_time_zone(time_zone) }
|
79
|
+
elsif utc
|
80
|
+
result.each { |v| v["ds"] = v["ds"].utc }
|
81
|
+
else
|
82
|
+
result.each { |v| v["ds"] = v["ds"].localtime }
|
83
|
+
end
|
84
|
+
result.map { |v| [v["ds"], v["yhat"]] }.to_h
|
85
|
+
end
|
86
|
+
|
87
|
+
def self.anomalies(series)
|
88
|
+
df = Rover::DataFrame.new(series.map { |k, v| {"ds" => k, "y" => v} })
|
89
|
+
m = Prophet.new(interval_width: 0.99)
|
90
|
+
m.logger.level = ::Logger::FATAL # no logging
|
91
|
+
m.fit(df)
|
92
|
+
forecast = m.predict(df)
|
93
|
+
# filter df["ds"] to ensure dates/times in same format as input
|
94
|
+
df["ds"][(df["y"] < forecast["yhat_lower"]) | (df["y"] > forecast["yhat_upper"])].to_a
|
60
95
|
end
|
61
96
|
end
|
data/lib/prophet/forecaster.rb
CHANGED
@@ -75,8 +75,8 @@ module Prophet
|
|
75
75
|
end
|
76
76
|
|
77
77
|
def validate_inputs
|
78
|
-
if !["linear", "logistic"].include?(@growth)
|
79
|
-
raise ArgumentError, "Parameter \"growth\" should be \"linear\" or \"
|
78
|
+
if !["linear", "logistic", "flat"].include?(@growth)
|
79
|
+
raise ArgumentError, "Parameter \"growth\" should be \"linear\", \"logistic\", or \"flat\"."
|
80
80
|
end
|
81
81
|
if @changepoint_range < 0 || @changepoint_range > 1
|
82
82
|
raise ArgumentError, "Parameter \"changepoint_range\" must be in [0, 1]"
|
@@ -602,6 +602,12 @@ module Prophet
|
|
602
602
|
[k, m]
|
603
603
|
end
|
604
604
|
|
605
|
+
def flat_growth_init(df)
|
606
|
+
k = 0
|
607
|
+
m = df["y_scaled"].mean
|
608
|
+
[k, m]
|
609
|
+
end
|
610
|
+
|
605
611
|
def fit(df, **kwargs)
|
606
612
|
raise Error, "Prophet object can only be fit once" if @history
|
607
613
|
|
@@ -624,6 +630,8 @@ module Prophet
|
|
624
630
|
|
625
631
|
set_changepoints
|
626
632
|
|
633
|
+
trend_indicator = {"linear" => 0, "logistic" => 1, "flat" => 2}
|
634
|
+
|
627
635
|
dat = {
|
628
636
|
"T" => history.shape[0],
|
629
637
|
"K" => seasonal_features.shape[1],
|
@@ -634,7 +642,7 @@ module Prophet
|
|
634
642
|
"X" => seasonal_features,
|
635
643
|
"sigmas" => prior_scales,
|
636
644
|
"tau" => @changepoint_prior_scale,
|
637
|
-
"trend_indicator" => @growth
|
645
|
+
"trend_indicator" => trend_indicator[@growth],
|
638
646
|
"s_a" => component_cols["additive_terms"],
|
639
647
|
"s_m" => component_cols["multiplicative_terms"]
|
640
648
|
}
|
@@ -642,6 +650,9 @@ module Prophet
|
|
642
650
|
if @growth == "linear"
|
643
651
|
dat["cap"] = Numo::DFloat.zeros(@history.shape[0])
|
644
652
|
kinit = linear_growth_init(history)
|
653
|
+
elsif @growth == "flat"
|
654
|
+
dat["cap"] = Numo::DFloat.zeros(@history.shape[0])
|
655
|
+
kinit = flat_growth_init(history)
|
645
656
|
else
|
646
657
|
dat["cap"] = history["cap_scaled"]
|
647
658
|
kinit = logistic_growth_init(history)
|
@@ -655,12 +666,12 @@ module Prophet
|
|
655
666
|
"sigma_obs" => 1
|
656
667
|
}
|
657
668
|
|
658
|
-
if history["y"].min == history["y"].max && @growth == "linear"
|
669
|
+
if history["y"].min == history["y"].max && (@growth == "linear" || @growth == "flat")
|
659
670
|
# Nothing to fit.
|
660
671
|
@params = stan_init
|
661
672
|
@params["sigma_obs"] = 1e-9
|
662
|
-
@params.each do |par|
|
663
|
-
@params[par] = Numo::NArray.asarray(@params[par])
|
673
|
+
@params.each do |par, _|
|
674
|
+
@params[par] = Numo::NArray.asarray([@params[par]])
|
664
675
|
end
|
665
676
|
elsif @mcmc_samples > 0
|
666
677
|
@params = @stan_backend.sampling(stan_init, dat, @mcmc_samples, **kwargs)
|
@@ -671,8 +682,10 @@ module Prophet
|
|
671
682
|
# If no changepoints were requested, replace delta with 0s
|
672
683
|
if @changepoints.size == 0
|
673
684
|
# Fold delta into the base rate k
|
674
|
-
|
675
|
-
|
685
|
+
# Numo doesn't support -1 with reshape
|
686
|
+
negative_one = @params["delta"].shape.inject(&:*)
|
687
|
+
@params["k"] = @params["k"] + @params["delta"].reshape(negative_one)
|
688
|
+
@params["delta"] = Numo::DFloat.zeros(@params["delta"].shape).reshape(negative_one, 1)
|
676
689
|
end
|
677
690
|
|
678
691
|
self
|
@@ -739,6 +752,11 @@ module Prophet
|
|
739
752
|
cap.to_numo / (1 + Numo::NMath.exp(-k_t * (t - m_t)))
|
740
753
|
end
|
741
754
|
|
755
|
+
def flat_trend(t, m)
|
756
|
+
m_t = m * t.new_ones
|
757
|
+
m_t
|
758
|
+
end
|
759
|
+
|
742
760
|
def predict_trend(df)
|
743
761
|
k = @params["k"].mean(nan: true)
|
744
762
|
m = @params["m"].mean(nan: true)
|
@@ -747,9 +765,11 @@ module Prophet
|
|
747
765
|
t = Numo::NArray.asarray(df["t"].to_a)
|
748
766
|
if @growth == "linear"
|
749
767
|
trend = piecewise_linear(t, deltas, k, m, @changepoints_t)
|
750
|
-
|
768
|
+
elsif @growth == "logistic"
|
751
769
|
cap = df["cap_scaled"]
|
752
770
|
trend = piecewise_logistic(t, cap, deltas, k, m, @changepoints_t)
|
771
|
+
elsif @growth == "flat"
|
772
|
+
trend = flat_trend(t, m)
|
753
773
|
end
|
754
774
|
|
755
775
|
trend * @y_scale + Numo::NArray.asarray(df["floor"].to_a)
|
@@ -885,9 +905,11 @@ module Prophet
|
|
885
905
|
|
886
906
|
if @growth == "linear"
|
887
907
|
trend = piecewise_linear(t, deltas, k, m, changepoint_ts)
|
888
|
-
|
908
|
+
elsif @growth == "logistic"
|
889
909
|
cap = df["cap_scaled"]
|
890
910
|
trend = piecewise_logistic(t, cap, deltas, k, m, changepoint_ts)
|
911
|
+
elsif @growth == "flat"
|
912
|
+
trend = flat_trend(t, m)
|
891
913
|
end
|
892
914
|
|
893
915
|
trend * @y_scale + Numo::NArray.asarray(df["floor"].to_a)
|
@@ -899,6 +921,9 @@ module Prophet
|
|
899
921
|
# TODO add more freq
|
900
922
|
# https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
|
901
923
|
case freq
|
924
|
+
when /\A\d+S\z/
|
925
|
+
secs = freq.to_i
|
926
|
+
dates = (periods + 1).times.map { |i| last_date + i * secs }
|
902
927
|
when "H"
|
903
928
|
hour = 3600
|
904
929
|
dates = (periods + 1).times.map { |i| last_date + i * hour }
|
data/lib/prophet/version.rb
CHANGED
data/stan/unix/prophet.stan
CHANGED
@@ -73,6 +73,15 @@ functions {
|
|
73
73
|
) {
|
74
74
|
return (k + A * delta) .* t + (m + A * (-t_change .* delta));
|
75
75
|
}
|
76
|
+
|
77
|
+
// Flat trend function
|
78
|
+
|
79
|
+
vector flat_trend(
|
80
|
+
real m,
|
81
|
+
int T
|
82
|
+
) {
|
83
|
+
return rep_vector(m, T);
|
84
|
+
}
|
76
85
|
}
|
77
86
|
|
78
87
|
data {
|
@@ -86,7 +95,7 @@ data {
|
|
86
95
|
matrix[T,K] X; // Regressors
|
87
96
|
vector[K] sigmas; // Scale on seasonality prior
|
88
97
|
real<lower=0> tau; // Scale on changepoints prior
|
89
|
-
int trend_indicator; // 0 for linear, 1 for logistic
|
98
|
+
int trend_indicator; // 0 for linear, 1 for logistic, 2 for flat
|
90
99
|
vector[K] s_a; // Indicator of additive features
|
91
100
|
vector[K] s_m; // Indicator of multiplicative features
|
92
101
|
}
|
@@ -104,6 +113,17 @@ parameters {
|
|
104
113
|
vector[K] beta; // Regressor coefficients
|
105
114
|
}
|
106
115
|
|
116
|
+
transformed parameters {
|
117
|
+
vector[T] trend;
|
118
|
+
if (trend_indicator == 0) {
|
119
|
+
trend = linear_trend(k, m, delta, t, A, t_change);
|
120
|
+
} else if (trend_indicator == 1) {
|
121
|
+
trend = logistic_trend(k, m, delta, t, cap, A, t_change, S);
|
122
|
+
} else if (trend_indicator == 2) {
|
123
|
+
trend = flat_trend(m, T);
|
124
|
+
}
|
125
|
+
}
|
126
|
+
|
107
127
|
model {
|
108
128
|
//priors
|
109
129
|
k ~ normal(0, 5);
|
@@ -113,19 +133,10 @@ model {
|
|
113
133
|
beta ~ normal(0, sigmas);
|
114
134
|
|
115
135
|
// Likelihood
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
);
|
123
|
-
} else if (trend_indicator == 1) {
|
124
|
-
y ~ normal(
|
125
|
-
logistic_trend(k, m, delta, t, cap, A, t_change, S)
|
126
|
-
.* (1 + X * (beta .* s_m))
|
127
|
-
+ X * (beta .* s_a),
|
128
|
-
sigma_obs
|
129
|
-
);
|
130
|
-
}
|
136
|
+
y ~ normal(
|
137
|
+
trend
|
138
|
+
.* (1 + X * (beta .* s_m))
|
139
|
+
+ X * (beta .* s_a),
|
140
|
+
sigma_obs
|
141
|
+
);
|
131
142
|
}
|
data/stan/win/prophet.stan
CHANGED
@@ -47,7 +47,7 @@ functions {
|
|
47
47
|
}
|
48
48
|
return gamma;
|
49
49
|
}
|
50
|
-
|
50
|
+
|
51
51
|
real[] logistic_trend(
|
52
52
|
real k,
|
53
53
|
real m,
|
@@ -94,6 +94,17 @@ functions {
|
|
94
94
|
}
|
95
95
|
return Y;
|
96
96
|
}
|
97
|
+
|
98
|
+
// Flat trend function
|
99
|
+
|
100
|
+
real[] flat_trend(
|
101
|
+
real m,
|
102
|
+
int T
|
103
|
+
) {
|
104
|
+
return rep_array(m, T);
|
105
|
+
}
|
106
|
+
|
107
|
+
|
97
108
|
}
|
98
109
|
|
99
110
|
data {
|
@@ -107,7 +118,7 @@ data {
|
|
107
118
|
real X[T,K]; // Regressors
|
108
119
|
vector[K] sigmas; // Scale on seasonality prior
|
109
120
|
real<lower=0> tau; // Scale on changepoints prior
|
110
|
-
int trend_indicator; // 0 for linear, 1 for logistic
|
121
|
+
int trend_indicator; // 0 for linear, 1 for logistic, 2 for flat
|
111
122
|
real s_a[K]; // Indicator of additive features
|
112
123
|
real s_m[K]; // Indicator of multiplicative features
|
113
124
|
}
|
@@ -135,6 +146,8 @@ transformed parameters {
|
|
135
146
|
trend = linear_trend(k, m, delta, t, A, t_change, S, T);
|
136
147
|
} else if (trend_indicator == 1) {
|
137
148
|
trend = logistic_trend(k, m, delta, t, cap, A, t_change, S, T);
|
149
|
+
} else if (trend_indicator == 2){
|
150
|
+
trend = flat_trend(m, T);
|
138
151
|
}
|
139
152
|
|
140
153
|
for (i in 1:K) {
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: prophet-rb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.2.
|
4
|
+
version: 0.2.5
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
|
-
autorequire:
|
8
|
+
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2021-07-29 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: cmdstan
|
@@ -52,78 +52,8 @@ dependencies:
|
|
52
52
|
- - ">="
|
53
53
|
- !ruby/object:Gem::Version
|
54
54
|
version: '0'
|
55
|
-
|
56
|
-
|
57
|
-
requirement: !ruby/object:Gem::Requirement
|
58
|
-
requirements:
|
59
|
-
- - ">="
|
60
|
-
- !ruby/object:Gem::Version
|
61
|
-
version: '0'
|
62
|
-
type: :development
|
63
|
-
prerelease: false
|
64
|
-
version_requirements: !ruby/object:Gem::Requirement
|
65
|
-
requirements:
|
66
|
-
- - ">="
|
67
|
-
- !ruby/object:Gem::Version
|
68
|
-
version: '0'
|
69
|
-
- !ruby/object:Gem::Dependency
|
70
|
-
name: rake
|
71
|
-
requirement: !ruby/object:Gem::Requirement
|
72
|
-
requirements:
|
73
|
-
- - ">="
|
74
|
-
- !ruby/object:Gem::Version
|
75
|
-
version: '0'
|
76
|
-
type: :development
|
77
|
-
prerelease: false
|
78
|
-
version_requirements: !ruby/object:Gem::Requirement
|
79
|
-
requirements:
|
80
|
-
- - ">="
|
81
|
-
- !ruby/object:Gem::Version
|
82
|
-
version: '0'
|
83
|
-
- !ruby/object:Gem::Dependency
|
84
|
-
name: minitest
|
85
|
-
requirement: !ruby/object:Gem::Requirement
|
86
|
-
requirements:
|
87
|
-
- - ">="
|
88
|
-
- !ruby/object:Gem::Version
|
89
|
-
version: '5'
|
90
|
-
type: :development
|
91
|
-
prerelease: false
|
92
|
-
version_requirements: !ruby/object:Gem::Requirement
|
93
|
-
requirements:
|
94
|
-
- - ">="
|
95
|
-
- !ruby/object:Gem::Version
|
96
|
-
version: '5'
|
97
|
-
- !ruby/object:Gem::Dependency
|
98
|
-
name: daru
|
99
|
-
requirement: !ruby/object:Gem::Requirement
|
100
|
-
requirements:
|
101
|
-
- - ">="
|
102
|
-
- !ruby/object:Gem::Version
|
103
|
-
version: '0'
|
104
|
-
type: :development
|
105
|
-
prerelease: false
|
106
|
-
version_requirements: !ruby/object:Gem::Requirement
|
107
|
-
requirements:
|
108
|
-
- - ">="
|
109
|
-
- !ruby/object:Gem::Version
|
110
|
-
version: '0'
|
111
|
-
- !ruby/object:Gem::Dependency
|
112
|
-
name: matplotlib
|
113
|
-
requirement: !ruby/object:Gem::Requirement
|
114
|
-
requirements:
|
115
|
-
- - ">="
|
116
|
-
- !ruby/object:Gem::Version
|
117
|
-
version: '0'
|
118
|
-
type: :development
|
119
|
-
prerelease: false
|
120
|
-
version_requirements: !ruby/object:Gem::Requirement
|
121
|
-
requirements:
|
122
|
-
- - ">="
|
123
|
-
- !ruby/object:Gem::Version
|
124
|
-
version: '0'
|
125
|
-
description:
|
126
|
-
email: andrew@chartkick.com
|
55
|
+
description:
|
56
|
+
email: andrew@ankane.org
|
127
57
|
executables: []
|
128
58
|
extensions:
|
129
59
|
- ext/prophet/extconf.rb
|
@@ -148,7 +78,7 @@ homepage: https://github.com/ankane/prophet
|
|
148
78
|
licenses:
|
149
79
|
- MIT
|
150
80
|
metadata: {}
|
151
|
-
post_install_message:
|
81
|
+
post_install_message:
|
152
82
|
rdoc_options: []
|
153
83
|
require_paths:
|
154
84
|
- lib
|
@@ -163,8 +93,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
163
93
|
- !ruby/object:Gem::Version
|
164
94
|
version: '0'
|
165
95
|
requirements: []
|
166
|
-
rubygems_version: 3.
|
167
|
-
signing_key:
|
96
|
+
rubygems_version: 3.2.22
|
97
|
+
signing_key:
|
168
98
|
specification_version: 4
|
169
99
|
summary: Time series forecasting for Ruby
|
170
100
|
test_files: []
|