prophet-rb 0.1.1 → 0.2.4
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/CHANGELOG.md +21 -0
- data/LICENSE.txt +1 -1
- data/README.md +58 -21
- data/lib/prophet.rb +64 -1
- data/lib/prophet/forecaster.rb +135 -130
- data/lib/prophet/holidays.rb +2 -2
- data/lib/prophet/plot.rb +31 -31
- data/lib/prophet/stan_backend.rb +1 -1
- data/lib/prophet/version.rb +1 -1
- data/stan/unix/prophet.stan +27 -16
- data/stan/win/prophet.stan +15 -2
- metadata +12 -82
data/lib/prophet/holidays.rb
CHANGED
@@ -6,7 +6,7 @@ module Prophet
|
|
6
6
|
end
|
7
7
|
|
8
8
|
def make_holidays_df(year_list, country)
|
9
|
-
holidays_df
|
9
|
+
holidays_df[(holidays_df["country"] == country) & (holidays_df["year"].in?(year_list))][["ds", "holiday"]]
|
10
10
|
end
|
11
11
|
|
12
12
|
# TODO marshal on installation
|
@@ -20,7 +20,7 @@ module Prophet
|
|
20
20
|
holidays["country"] << row["country"]
|
21
21
|
holidays["year"] << row["year"]
|
22
22
|
end
|
23
|
-
|
23
|
+
Rover::DataFrame.new(holidays)
|
24
24
|
end
|
25
25
|
end
|
26
26
|
end
|
data/lib/prophet/plot.rb
CHANGED
@@ -8,16 +8,16 @@ module Prophet
|
|
8
8
|
fig = ax.get_figure
|
9
9
|
end
|
10
10
|
fcst_t = to_pydatetime(fcst["ds"])
|
11
|
-
ax.plot(to_pydatetime(@history["ds"]), @history["y"].
|
12
|
-
ax.plot(fcst_t, fcst["yhat"].
|
13
|
-
if fcst.
|
14
|
-
ax.plot(fcst_t, fcst["cap"].
|
11
|
+
ax.plot(to_pydatetime(@history["ds"]), @history["y"].to_a, "k.")
|
12
|
+
ax.plot(fcst_t, fcst["yhat"].to_a, ls: "-", c: "#0072B2")
|
13
|
+
if fcst.include?("cap") && plot_cap
|
14
|
+
ax.plot(fcst_t, fcst["cap"].to_a, ls: "--", c: "k")
|
15
15
|
end
|
16
|
-
if @logistic_floor && fcst.
|
17
|
-
ax.plot(fcst_t, fcst["floor"].
|
16
|
+
if @logistic_floor && fcst.include?("floor") && plot_cap
|
17
|
+
ax.plot(fcst_t, fcst["floor"].to_a, ls: "--", c: "k")
|
18
18
|
end
|
19
19
|
if uncertainty && @uncertainty_samples
|
20
|
-
ax.fill_between(fcst_t, fcst["yhat_lower"].
|
20
|
+
ax.fill_between(fcst_t, fcst["yhat_lower"].to_a, fcst["yhat_upper"].to_a, color: "#0072B2", alpha: 0.2)
|
21
21
|
end
|
22
22
|
# Specify formatting to workaround matplotlib issue #12925
|
23
23
|
locator = dates.AutoDateLocator.new(interval_multiples: false)
|
@@ -33,25 +33,25 @@ module Prophet
|
|
33
33
|
|
34
34
|
def plot_components(fcst, uncertainty: true, plot_cap: true, weekly_start: 0, yearly_start: 0, figsize: nil)
|
35
35
|
components = ["trend"]
|
36
|
-
if @train_holiday_names && fcst.
|
36
|
+
if @train_holiday_names && fcst.include?("holidays")
|
37
37
|
components << "holidays"
|
38
38
|
end
|
39
39
|
# Plot weekly seasonality, if present
|
40
|
-
if @seasonalities["weekly"] && fcst.
|
40
|
+
if @seasonalities["weekly"] && fcst.include?("weekly")
|
41
41
|
components << "weekly"
|
42
42
|
end
|
43
43
|
# Yearly if present
|
44
|
-
if @seasonalities["yearly"] && fcst.
|
44
|
+
if @seasonalities["yearly"] && fcst.include?("yearly")
|
45
45
|
components << "yearly"
|
46
46
|
end
|
47
47
|
# Other seasonalities
|
48
|
-
components.concat(@seasonalities.keys.select { |name| fcst.
|
48
|
+
components.concat(@seasonalities.keys.select { |name| fcst.include?(name) && !["weekly", "yearly"].include?(name) }.sort)
|
49
49
|
regressors = {"additive" => false, "multiplicative" => false}
|
50
50
|
@extra_regressors.each do |name, props|
|
51
51
|
regressors[props[:mode]] = true
|
52
52
|
end
|
53
53
|
["additive", "multiplicative"].each do |mode|
|
54
|
-
if regressors[mode] && fcst.
|
54
|
+
if regressors[mode] && fcst.include?("extra_regressors_#{mode}")
|
55
55
|
components << "extra_regressors_#{mode}"
|
56
56
|
end
|
57
57
|
end
|
@@ -97,11 +97,11 @@ module Prophet
|
|
97
97
|
def add_changepoints_to_plot(ax, fcst, threshold: 0.01, cp_color: "r", cp_linestyle: "--", trend: true)
|
98
98
|
artists = []
|
99
99
|
if trend
|
100
|
-
artists << ax.plot(to_pydatetime(fcst["ds"]), fcst["trend"].
|
100
|
+
artists << ax.plot(to_pydatetime(fcst["ds"]), fcst["trend"].to_a, c: cp_color)
|
101
101
|
end
|
102
102
|
signif_changepoints =
|
103
103
|
if @changepoints.size > 0
|
104
|
-
(@params["delta"].mean(axis: 0, nan: true).abs >= threshold).mask(@changepoints)
|
104
|
+
(@params["delta"].mean(axis: 0, nan: true).abs >= threshold).mask(@changepoints.to_numo)
|
105
105
|
else
|
106
106
|
[]
|
107
107
|
end
|
@@ -120,15 +120,15 @@ module Prophet
|
|
120
120
|
ax = fig.add_subplot(111)
|
121
121
|
end
|
122
122
|
fcst_t = to_pydatetime(fcst["ds"])
|
123
|
-
artists += ax.plot(fcst_t, fcst[name].
|
124
|
-
if fcst.
|
125
|
-
artists += ax.plot(fcst_t, fcst["cap"].
|
123
|
+
artists += ax.plot(fcst_t, fcst[name].to_a, ls: "-", c: "#0072B2")
|
124
|
+
if fcst.include?("cap") && plot_cap
|
125
|
+
artists += ax.plot(fcst_t, fcst["cap"].to_a, ls: "--", c: "k")
|
126
126
|
end
|
127
|
-
if @logistic_floor && fcst.
|
128
|
-
ax.plot(fcst_t, fcst["floor"].
|
127
|
+
if @logistic_floor && fcst.include?("floor") && plot_cap
|
128
|
+
ax.plot(fcst_t, fcst["floor"].to_a, ls: "--", c: "k")
|
129
129
|
end
|
130
130
|
if uncertainty && @uncertainty_samples
|
131
|
-
artists += [ax.fill_between(fcst_t, fcst[name + "_lower"].
|
131
|
+
artists += [ax.fill_between(fcst_t, fcst[name + "_lower"].to_a, fcst[name + "_upper"].to_a, color: "#0072B2", alpha: 0.2)]
|
132
132
|
end
|
133
133
|
# Specify formatting to workaround matplotlib issue #12925
|
134
134
|
locator = dates.AutoDateLocator.new(interval_multiples: false)
|
@@ -145,17 +145,17 @@ module Prophet
|
|
145
145
|
end
|
146
146
|
|
147
147
|
def seasonality_plot_df(ds)
|
148
|
-
df_dict = {"ds" => ds, "cap" =>
|
148
|
+
df_dict = {"ds" => ds, "cap" => 1.0, "floor" => 0.0}
|
149
149
|
@extra_regressors.each_key do |name|
|
150
|
-
df_dict[name] =
|
150
|
+
df_dict[name] = 0.0
|
151
151
|
end
|
152
152
|
# Activate all conditional seasonality columns
|
153
153
|
@seasonalities.values.each do |props|
|
154
154
|
if props[:condition_name]
|
155
|
-
df_dict[props[:condition_name]] =
|
155
|
+
df_dict[props[:condition_name]] = true
|
156
156
|
end
|
157
157
|
end
|
158
|
-
df =
|
158
|
+
df = Rover::DataFrame.new(df_dict)
|
159
159
|
df = setup_dataframe(df)
|
160
160
|
df
|
161
161
|
end
|
@@ -172,9 +172,9 @@ module Prophet
|
|
172
172
|
df_w = seasonality_plot_df(days)
|
173
173
|
seas = predict_seasonal_components(df_w)
|
174
174
|
days = days.map { |v| v.strftime("%A") }
|
175
|
-
artists += ax.plot(days.size.times.to_a, seas[name].
|
175
|
+
artists += ax.plot(days.size.times.to_a, seas[name].to_a, ls: "-", c: "#0072B2")
|
176
176
|
if uncertainty && @uncertainty_samples
|
177
|
-
artists += [ax.fill_between(days.size.times.to_a, seas[name + "_lower"].
|
177
|
+
artists += [ax.fill_between(days.size.times.to_a, seas[name + "_lower"].to_a, seas[name + "_upper"].to_a, color: "#0072B2", alpha: 0.2)]
|
178
178
|
end
|
179
179
|
ax.grid(true, which: "major", c: "gray", ls: "-", lw: 1, alpha: 0.2)
|
180
180
|
ax.set_xticks(days.size.times.to_a)
|
@@ -198,9 +198,9 @@ module Prophet
|
|
198
198
|
days = 365.times.map { |i| start + i + yearly_start }
|
199
199
|
df_y = seasonality_plot_df(days)
|
200
200
|
seas = predict_seasonal_components(df_y)
|
201
|
-
artists += ax.plot(to_pydatetime(df_y["ds"]), seas[name].
|
201
|
+
artists += ax.plot(to_pydatetime(df_y["ds"]), seas[name].to_a, ls: "-", c: "#0072B2")
|
202
202
|
if uncertainty && @uncertainty_samples
|
203
|
-
artists += [ax.fill_between(to_pydatetime(df_y["ds"]), seas[name + "_lower"].
|
203
|
+
artists += [ax.fill_between(to_pydatetime(df_y["ds"]), seas[name + "_lower"].to_a, seas[name + "_upper"].to_a, color: "#0072B2", alpha: 0.2)]
|
204
204
|
end
|
205
205
|
ax.grid(true, which: "major", c: "gray", ls: "-", lw: 1, alpha: 0.2)
|
206
206
|
months = dates.MonthLocator.new((1..12).to_a, bymonthday: 1, interval: 2)
|
@@ -231,9 +231,9 @@ module Prophet
|
|
231
231
|
days = plot_points.times.map { |i| Time.at(start + i * step).utc }
|
232
232
|
df_y = seasonality_plot_df(days)
|
233
233
|
seas = predict_seasonal_components(df_y)
|
234
|
-
artists += ax.plot(to_pydatetime(df_y["ds"]), seas[name].
|
234
|
+
artists += ax.plot(to_pydatetime(df_y["ds"]), seas[name].to_a, ls: "-", c: "#0072B2")
|
235
235
|
if uncertainty && @uncertainty_samples
|
236
|
-
artists += [ax.fill_between(to_pydatetime(df_y["ds"]), seas[name + "_lower"].
|
236
|
+
artists += [ax.fill_between(to_pydatetime(df_y["ds"]), seas[name + "_lower"].to_a, seas[name + "_upper"].to_a, color: "#0072B2", alpha: 0.2)]
|
237
237
|
end
|
238
238
|
ax.grid(true, which: "major", c: "gray", ls: "-", lw: 1, alpha: 0.2)
|
239
239
|
step = (finish - start) / (7 - 1).to_f
|
@@ -281,7 +281,7 @@ module Prophet
|
|
281
281
|
|
282
282
|
def to_pydatetime(v)
|
283
283
|
datetime = PyCall.import_module("datetime")
|
284
|
-
v.map { |v| datetime.datetime.utcfromtimestamp(v.to_i) }
|
284
|
+
v.map { |v| datetime.datetime.utcfromtimestamp(v.to_i) }.to_a
|
285
285
|
end
|
286
286
|
end
|
287
287
|
end
|
data/lib/prophet/stan_backend.rb
CHANGED
@@ -127,7 +127,7 @@ module Prophet
|
|
127
127
|
stan_data["t_change"] = stan_data["t_change"].to_a
|
128
128
|
stan_data["s_a"] = stan_data["s_a"].to_a
|
129
129
|
stan_data["s_m"] = stan_data["s_m"].to_a
|
130
|
-
stan_data["X"] = stan_data["X"].
|
130
|
+
stan_data["X"] = stan_data["X"].to_numo.to_a
|
131
131
|
stan_init["delta"] = stan_init["delta"].to_a
|
132
132
|
stan_init["beta"] = stan_init["beta"].to_a
|
133
133
|
[stan_init, stan_data]
|
data/lib/prophet/version.rb
CHANGED
data/stan/unix/prophet.stan
CHANGED
@@ -73,6 +73,15 @@ functions {
|
|
73
73
|
) {
|
74
74
|
return (k + A * delta) .* t + (m + A * (-t_change .* delta));
|
75
75
|
}
|
76
|
+
|
77
|
+
// Flat trend function
|
78
|
+
|
79
|
+
vector flat_trend(
|
80
|
+
real m,
|
81
|
+
int T
|
82
|
+
) {
|
83
|
+
return rep_vector(m, T);
|
84
|
+
}
|
76
85
|
}
|
77
86
|
|
78
87
|
data {
|
@@ -86,7 +95,7 @@ data {
|
|
86
95
|
matrix[T,K] X; // Regressors
|
87
96
|
vector[K] sigmas; // Scale on seasonality prior
|
88
97
|
real<lower=0> tau; // Scale on changepoints prior
|
89
|
-
int trend_indicator; // 0 for linear, 1 for logistic
|
98
|
+
int trend_indicator; // 0 for linear, 1 for logistic, 2 for flat
|
90
99
|
vector[K] s_a; // Indicator of additive features
|
91
100
|
vector[K] s_m; // Indicator of multiplicative features
|
92
101
|
}
|
@@ -104,6 +113,17 @@ parameters {
|
|
104
113
|
vector[K] beta; // Regressor coefficients
|
105
114
|
}
|
106
115
|
|
116
|
+
transformed parameters {
|
117
|
+
vector[T] trend;
|
118
|
+
if (trend_indicator == 0) {
|
119
|
+
trend = linear_trend(k, m, delta, t, A, t_change);
|
120
|
+
} else if (trend_indicator == 1) {
|
121
|
+
trend = logistic_trend(k, m, delta, t, cap, A, t_change, S);
|
122
|
+
} else if (trend_indicator == 2) {
|
123
|
+
trend = flat_trend(m, T);
|
124
|
+
}
|
125
|
+
}
|
126
|
+
|
107
127
|
model {
|
108
128
|
//priors
|
109
129
|
k ~ normal(0, 5);
|
@@ -113,19 +133,10 @@ model {
|
|
113
133
|
beta ~ normal(0, sigmas);
|
114
134
|
|
115
135
|
// Likelihood
|
116
|
-
|
117
|
-
|
118
|
-
|
119
|
-
|
120
|
-
|
121
|
-
|
122
|
-
);
|
123
|
-
} else if (trend_indicator == 1) {
|
124
|
-
y ~ normal(
|
125
|
-
logistic_trend(k, m, delta, t, cap, A, t_change, S)
|
126
|
-
.* (1 + X * (beta .* s_m))
|
127
|
-
+ X * (beta .* s_a),
|
128
|
-
sigma_obs
|
129
|
-
);
|
130
|
-
}
|
136
|
+
y ~ normal(
|
137
|
+
trend
|
138
|
+
.* (1 + X * (beta .* s_m))
|
139
|
+
+ X * (beta .* s_a),
|
140
|
+
sigma_obs
|
141
|
+
);
|
131
142
|
}
|
data/stan/win/prophet.stan
CHANGED
@@ -47,7 +47,7 @@ functions {
|
|
47
47
|
}
|
48
48
|
return gamma;
|
49
49
|
}
|
50
|
-
|
50
|
+
|
51
51
|
real[] logistic_trend(
|
52
52
|
real k,
|
53
53
|
real m,
|
@@ -94,6 +94,17 @@ functions {
|
|
94
94
|
}
|
95
95
|
return Y;
|
96
96
|
}
|
97
|
+
|
98
|
+
// Flat trend function
|
99
|
+
|
100
|
+
real[] flat_trend(
|
101
|
+
real m,
|
102
|
+
int T
|
103
|
+
) {
|
104
|
+
return rep_array(m, T);
|
105
|
+
}
|
106
|
+
|
107
|
+
|
97
108
|
}
|
98
109
|
|
99
110
|
data {
|
@@ -107,7 +118,7 @@ data {
|
|
107
118
|
real X[T,K]; // Regressors
|
108
119
|
vector[K] sigmas; // Scale on seasonality prior
|
109
120
|
real<lower=0> tau; // Scale on changepoints prior
|
110
|
-
int trend_indicator; // 0 for linear, 1 for logistic
|
121
|
+
int trend_indicator; // 0 for linear, 1 for logistic, 2 for flat
|
111
122
|
real s_a[K]; // Indicator of additive features
|
112
123
|
real s_m[K]; // Indicator of multiplicative features
|
113
124
|
}
|
@@ -135,6 +146,8 @@ transformed parameters {
|
|
135
146
|
trend = linear_trend(k, m, delta, t, A, t_change, S, T);
|
136
147
|
} else if (trend_indicator == 1) {
|
137
148
|
trend = logistic_trend(k, m, delta, t, cap, A, t_change, S, T);
|
149
|
+
} else if (trend_indicator == 2){
|
150
|
+
trend = flat_trend(m, T);
|
138
151
|
}
|
139
152
|
|
140
153
|
for (i in 1:K) {
|
metadata
CHANGED
@@ -1,14 +1,14 @@
|
|
1
1
|
--- !ruby/object:Gem::Specification
|
2
2
|
name: prophet-rb
|
3
3
|
version: !ruby/object:Gem::Version
|
4
|
-
version: 0.
|
4
|
+
version: 0.2.4
|
5
5
|
platform: ruby
|
6
6
|
authors:
|
7
7
|
- Andrew Kane
|
8
|
-
autorequire:
|
8
|
+
autorequire:
|
9
9
|
bindir: bin
|
10
10
|
cert_chain: []
|
11
|
-
date:
|
11
|
+
date: 2021-04-03 00:00:00.000000000 Z
|
12
12
|
dependencies:
|
13
13
|
- !ruby/object:Gem::Dependency
|
14
14
|
name: cmdstan
|
@@ -24,106 +24,36 @@ dependencies:
|
|
24
24
|
- - ">="
|
25
25
|
- !ruby/object:Gem::Version
|
26
26
|
version: 0.1.2
|
27
|
-
- !ruby/object:Gem::Dependency
|
28
|
-
name: daru
|
29
|
-
requirement: !ruby/object:Gem::Requirement
|
30
|
-
requirements:
|
31
|
-
- - ">="
|
32
|
-
- !ruby/object:Gem::Version
|
33
|
-
version: '0'
|
34
|
-
type: :runtime
|
35
|
-
prerelease: false
|
36
|
-
version_requirements: !ruby/object:Gem::Requirement
|
37
|
-
requirements:
|
38
|
-
- - ">="
|
39
|
-
- !ruby/object:Gem::Version
|
40
|
-
version: '0'
|
41
27
|
- !ruby/object:Gem::Dependency
|
42
28
|
name: numo-narray
|
43
29
|
requirement: !ruby/object:Gem::Requirement
|
44
30
|
requirements:
|
45
31
|
- - ">="
|
46
32
|
- !ruby/object:Gem::Version
|
47
|
-
version:
|
33
|
+
version: 0.9.1.7
|
48
34
|
type: :runtime
|
49
35
|
prerelease: false
|
50
36
|
version_requirements: !ruby/object:Gem::Requirement
|
51
37
|
requirements:
|
52
38
|
- - ">="
|
53
39
|
- !ruby/object:Gem::Version
|
54
|
-
version:
|
55
|
-
- !ruby/object:Gem::Dependency
|
56
|
-
name: bundler
|
57
|
-
requirement: !ruby/object:Gem::Requirement
|
58
|
-
requirements:
|
59
|
-
- - ">="
|
60
|
-
- !ruby/object:Gem::Version
|
61
|
-
version: '0'
|
62
|
-
type: :development
|
63
|
-
prerelease: false
|
64
|
-
version_requirements: !ruby/object:Gem::Requirement
|
65
|
-
requirements:
|
66
|
-
- - ">="
|
67
|
-
- !ruby/object:Gem::Version
|
68
|
-
version: '0'
|
69
|
-
- !ruby/object:Gem::Dependency
|
70
|
-
name: rake
|
71
|
-
requirement: !ruby/object:Gem::Requirement
|
72
|
-
requirements:
|
73
|
-
- - ">="
|
74
|
-
- !ruby/object:Gem::Version
|
75
|
-
version: '0'
|
76
|
-
type: :development
|
77
|
-
prerelease: false
|
78
|
-
version_requirements: !ruby/object:Gem::Requirement
|
79
|
-
requirements:
|
80
|
-
- - ">="
|
81
|
-
- !ruby/object:Gem::Version
|
82
|
-
version: '0'
|
40
|
+
version: 0.9.1.7
|
83
41
|
- !ruby/object:Gem::Dependency
|
84
|
-
name:
|
42
|
+
name: rover-df
|
85
43
|
requirement: !ruby/object:Gem::Requirement
|
86
|
-
requirements:
|
87
|
-
- - ">="
|
88
|
-
- !ruby/object:Gem::Version
|
89
|
-
version: '5'
|
90
|
-
type: :development
|
91
|
-
prerelease: false
|
92
|
-
version_requirements: !ruby/object:Gem::Requirement
|
93
|
-
requirements:
|
94
|
-
- - ">="
|
95
|
-
- !ruby/object:Gem::Version
|
96
|
-
version: '5'
|
97
|
-
- !ruby/object:Gem::Dependency
|
98
|
-
name: matplotlib
|
99
|
-
requirement: !ruby/object:Gem::Requirement
|
100
|
-
requirements:
|
101
|
-
- - ">="
|
102
|
-
- !ruby/object:Gem::Version
|
103
|
-
version: '0'
|
104
|
-
type: :development
|
105
|
-
prerelease: false
|
106
|
-
version_requirements: !ruby/object:Gem::Requirement
|
107
44
|
requirements:
|
108
45
|
- - ">="
|
109
46
|
- !ruby/object:Gem::Version
|
110
47
|
version: '0'
|
111
|
-
|
112
|
-
name: ruby-prof
|
113
|
-
requirement: !ruby/object:Gem::Requirement
|
114
|
-
requirements:
|
115
|
-
- - ">="
|
116
|
-
- !ruby/object:Gem::Version
|
117
|
-
version: '0'
|
118
|
-
type: :development
|
48
|
+
type: :runtime
|
119
49
|
prerelease: false
|
120
50
|
version_requirements: !ruby/object:Gem::Requirement
|
121
51
|
requirements:
|
122
52
|
- - ">="
|
123
53
|
- !ruby/object:Gem::Version
|
124
54
|
version: '0'
|
125
|
-
description:
|
126
|
-
email: andrew@
|
55
|
+
description:
|
56
|
+
email: andrew@ankane.org
|
127
57
|
executables: []
|
128
58
|
extensions:
|
129
59
|
- ext/prophet/extconf.rb
|
@@ -148,7 +78,7 @@ homepage: https://github.com/ankane/prophet
|
|
148
78
|
licenses:
|
149
79
|
- MIT
|
150
80
|
metadata: {}
|
151
|
-
post_install_message:
|
81
|
+
post_install_message:
|
152
82
|
rdoc_options: []
|
153
83
|
require_paths:
|
154
84
|
- lib
|
@@ -163,8 +93,8 @@ required_rubygems_version: !ruby/object:Gem::Requirement
|
|
163
93
|
- !ruby/object:Gem::Version
|
164
94
|
version: '0'
|
165
95
|
requirements: []
|
166
|
-
rubygems_version: 3.
|
167
|
-
signing_key:
|
96
|
+
rubygems_version: 3.2.3
|
97
|
+
signing_key:
|
168
98
|
specification_version: 4
|
169
99
|
summary: Time series forecasting for Ruby
|
170
100
|
test_files: []
|