propane 3.7.1-java → 3.11.0-java
Sign up to get free protection for your applications and to get access to all the features.
- checksums.yaml +4 -4
- data/.mvn/extensions.xml +1 -1
- data/.mvn/wrapper/maven-wrapper.properties +1 -1
- data/.travis.yml +1 -1
- data/CHANGELOG.md +7 -1
- data/README.md +8 -15
- data/Rakefile +6 -5
- data/lib/propane/app.rb +11 -15
- data/lib/propane/helper_methods.rb +6 -6
- data/lib/propane/version.rb +1 -1
- data/lib/{propane-3.7.1.jar → propane-3.11.0.jar} +0 -0
- data/library/pdf/itextpdf-5.5.13.2.jar +0 -0
- data/library/pdf/pdf.rb +7 -0
- data/library/svg/batik-all-1.14.jar +0 -0
- data/library/svg/svg.rb +7 -0
- data/mvnw +3 -3
- data/mvnw.cmd +2 -2
- data/pom.rb +32 -5
- data/pom.xml +58 -7
- data/propane.gemspec +9 -5
- data/src/main/java/monkstone/FastNoiseModuleJava.java +127 -0
- data/src/main/java/monkstone/MathToolModule.java +30 -30
- data/src/main/java/monkstone/PropaneLibrary.java +2 -0
- data/src/main/java/monkstone/SmoothNoiseModuleJava.java +127 -0
- data/src/main/java/monkstone/fastmath/DegLutTables.java +111 -0
- data/src/main/java/monkstone/fastmath/Deglut.java +6 -56
- data/src/main/java/monkstone/filechooser/Chooser.java +1 -1
- data/src/main/java/monkstone/noise/OpenSimplex2F.java +914 -0
- data/src/main/java/monkstone/noise/OpenSimplex2S.java +1138 -0
- data/src/main/java/monkstone/slider/WheelHandler.java +1 -1
- data/src/main/java/monkstone/vecmath/JRender.java +6 -6
- data/src/main/java/monkstone/vecmath/vec2/Vec2.java +27 -31
- data/src/main/java/monkstone/vecmath/vec3/Vec3.java +26 -40
- data/src/main/java/processing/awt/PGraphicsJava2D.java +11 -3
- data/src/main/java/processing/awt/PImageAWT.java +6 -4
- data/src/main/java/processing/core/PApplet.java +13259 -13379
- data/src/main/java/processing/core/PConstants.java +155 -163
- data/src/main/java/processing/core/PGraphics.java +118 -111
- data/src/main/java/processing/core/PImage.java +14 -14
- data/src/main/java/processing/opengl/PGraphicsOpenGL.java +13 -13
- data/src/main/java/processing/opengl/PJOGL.java +6 -5
- data/src/main/java/processing/opengl/PShader.java +1 -6
- data/src/main/java/processing/opengl/PSurfaceJOGL.java +6 -6
- data/src/main/java/processing/pdf/PGraphicsPDF.java +581 -0
- data/src/main/java/processing/svg/PGraphicsSVG.java +378 -0
- data/src/main/{java/processing/opengl → resources}/cursors/arrow.png +0 -0
- data/src/main/{java/processing/opengl → resources}/cursors/cross.png +0 -0
- data/src/main/{java/processing/opengl → resources}/cursors/hand.png +0 -0
- data/src/main/{java/processing/opengl → resources}/cursors/license.txt +0 -0
- data/src/main/{java/processing/opengl → resources}/cursors/move.png +0 -0
- data/src/main/{java/processing/opengl → resources}/cursors/text.png +0 -0
- data/src/main/{java/processing/opengl → resources}/cursors/wait.png +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/ColorFrag.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/ColorVert.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/LightFrag.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/LightVert.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/LineFrag.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/LineVert.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/MaskFrag.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/PointFrag.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/PointVert.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/TexFrag.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/TexLightFrag.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/TexLightVert.glsl +0 -0
- data/src/main/{java/processing/opengl → resources}/shaders/TexVert.glsl +0 -0
- data/test/deglut_spec_test.rb +2 -2
- data/test/test_helper.rb +1 -0
- data/vendors/Rakefile +1 -1
- metadata +49 -46
- data/library/simplex_noise/simplex_noise.rb +0 -5
- data/src/main/java/monkstone/noise/SimplexNoise.java +0 -436
@@ -1,436 +0,0 @@
|
|
1
|
-
/*
|
2
|
-
* A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
|
3
|
-
*
|
4
|
-
* Based on example code by Stefan Gustavson (stegu@itn.liu.se).
|
5
|
-
* Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
|
6
|
-
* Better rank ordering method for 4D by Stefan Gustavson in 2012.
|
7
|
-
*
|
8
|
-
* This could be speeded up even further, but it's useful as it is.
|
9
|
-
*
|
10
|
-
* Version 2012-03-09
|
11
|
-
*
|
12
|
-
* This code was placed in the public domain by its original author,
|
13
|
-
* Stefan Gustavson. You may use it as you see fit, but
|
14
|
-
* attribution is appreciated.
|
15
|
-
*
|
16
|
-
*/
|
17
|
-
package monkstone.noise;
|
18
|
-
|
19
|
-
public class SimplexNoise { // Simplex noise in 2D, 3D and 4D
|
20
|
-
|
21
|
-
private static Grad grad3[] = {new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0),
|
22
|
-
new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1),
|
23
|
-
new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)};
|
24
|
-
|
25
|
-
private static Grad grad4[] = {new Grad(0, 1, 1, 1), new Grad(0, 1, 1, -1), new Grad(0, 1, -1, 1), new Grad(0, 1, -1, -1),
|
26
|
-
new Grad(0, -1, 1, 1), new Grad(0, -1, 1, -1), new Grad(0, -1, -1, 1), new Grad(0, -1, -1, -1),
|
27
|
-
new Grad(1, 0, 1, 1), new Grad(1, 0, 1, -1), new Grad(1, 0, -1, 1), new Grad(1, 0, -1, -1),
|
28
|
-
new Grad(-1, 0, 1, 1), new Grad(-1, 0, 1, -1), new Grad(-1, 0, -1, 1), new Grad(-1, 0, -1, -1),
|
29
|
-
new Grad(1, 1, 0, 1), new Grad(1, 1, 0, -1), new Grad(1, -1, 0, 1), new Grad(1, -1, 0, -1),
|
30
|
-
new Grad(-1, 1, 0, 1), new Grad(-1, 1, 0, -1), new Grad(-1, -1, 0, 1), new Grad(-1, -1, 0, -1),
|
31
|
-
new Grad(1, 1, 1, 0), new Grad(1, 1, -1, 0), new Grad(1, -1, 1, 0), new Grad(1, -1, -1, 0),
|
32
|
-
new Grad(-1, 1, 1, 0), new Grad(-1, 1, -1, 0), new Grad(-1, -1, 1, 0), new Grad(-1, -1, -1, 0)};
|
33
|
-
|
34
|
-
private final static short p[] = {151, 160, 137, 91, 90, 15,
|
35
|
-
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
|
36
|
-
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
|
37
|
-
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
|
38
|
-
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
|
39
|
-
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
|
40
|
-
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
|
41
|
-
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
|
42
|
-
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
|
43
|
-
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
|
44
|
-
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
|
45
|
-
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
|
46
|
-
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180};
|
47
|
-
// To remove the need for index wrapping, double the permutation table length
|
48
|
-
final static short[] PERM = new short[512];
|
49
|
-
static short[] PERM_MOD_12 = new short[512];
|
50
|
-
|
51
|
-
static {
|
52
|
-
for (int i = 0; i < 512; i++) {
|
53
|
-
PERM[i] = p[i & 255];
|
54
|
-
PERM_MOD_12[i] = (short) (PERM[i] % 12);
|
55
|
-
}
|
56
|
-
}
|
57
|
-
|
58
|
-
// Skewing and unskewing factors for 2, 3, and 4 dimensions
|
59
|
-
private static final double F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
|
60
|
-
private static final double G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
|
61
|
-
private static final double F3 = 1.0 / 3.0;
|
62
|
-
private static final double G3 = 1.0 / 6.0;
|
63
|
-
private static final double F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
|
64
|
-
private static final double G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
|
65
|
-
|
66
|
-
// This method is a *lot* faster than using (int)Math.floor(x)
|
67
|
-
private static int fastfloor(double x) {
|
68
|
-
int xi = (int) x;
|
69
|
-
return x < xi ? xi - 1 : xi;
|
70
|
-
}
|
71
|
-
|
72
|
-
private static double dot(Grad g, double x, double y) {
|
73
|
-
return g.x * x + g.y * y;
|
74
|
-
}
|
75
|
-
|
76
|
-
private static double dot(Grad g, double x, double y, double z) {
|
77
|
-
return g.x * x + g.y * y + g.z * z;
|
78
|
-
}
|
79
|
-
|
80
|
-
private static double dot(Grad g, double x, double y, double z, double w) {
|
81
|
-
return g.x * x + g.y * y + g.z * z + g.w * w;
|
82
|
-
}
|
83
|
-
|
84
|
-
// 2D simplex noise
|
85
|
-
public static double noise(double xin, double yin) {
|
86
|
-
double n0, n1, n2; // Noise contributions from the three corners
|
87
|
-
// Skew the input space to determine which simplex cell we're in
|
88
|
-
double s = (xin + yin) * F2; // Hairy factor for 2D
|
89
|
-
int i = fastfloor(xin + s);
|
90
|
-
int j = fastfloor(yin + s);
|
91
|
-
double t = (i + j) * G2;
|
92
|
-
double X0 = i - t; // Unskew the cell origin back to (x,y) space
|
93
|
-
double Y0 = j - t;
|
94
|
-
double x0 = xin - X0; // The x,y distances from the cell origin
|
95
|
-
double y0 = yin - Y0;
|
96
|
-
// For the 2D case, the simplex shape is an equilateral triangle.
|
97
|
-
// Determine which simplex we are in.
|
98
|
-
int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
99
|
-
if (x0 > y0) {
|
100
|
-
i1 = 1;
|
101
|
-
j1 = 0;
|
102
|
-
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
103
|
-
else {
|
104
|
-
i1 = 0;
|
105
|
-
j1 = 1;
|
106
|
-
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
107
|
-
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
108
|
-
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
109
|
-
// c = (3-sqrt(3))/6
|
110
|
-
double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
|
111
|
-
double y1 = y0 - j1 + G2;
|
112
|
-
double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
|
113
|
-
double y2 = y0 - 1.0 + 2.0 * G2;
|
114
|
-
// Work out the hashed gradient indices of the three simplex corners
|
115
|
-
int ii = i & 255;
|
116
|
-
int jj = j & 255;
|
117
|
-
int gi0 = PERM_MOD_12[ii + PERM[jj]];
|
118
|
-
int gi1 = PERM_MOD_12[ii + i1 + PERM[jj + j1]];
|
119
|
-
int gi2 = PERM_MOD_12[ii + 1 + PERM[jj + 1]];
|
120
|
-
// Calculate the contribution from the three corners
|
121
|
-
double t0 = 0.5 - x0 * x0 - y0 * y0;
|
122
|
-
if (t0 < 0) {
|
123
|
-
n0 = 0.0;
|
124
|
-
} else {
|
125
|
-
t0 *= t0;
|
126
|
-
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
|
127
|
-
}
|
128
|
-
double t1 = 0.5 - x1 * x1 - y1 * y1;
|
129
|
-
if (t1 < 0) {
|
130
|
-
n1 = 0.0;
|
131
|
-
} else {
|
132
|
-
t1 *= t1;
|
133
|
-
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
|
134
|
-
}
|
135
|
-
double t2 = 0.5 - x2 * x2 - y2 * y2;
|
136
|
-
if (t2 < 0) {
|
137
|
-
n2 = 0.0;
|
138
|
-
} else {
|
139
|
-
t2 *= t2;
|
140
|
-
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
|
141
|
-
}
|
142
|
-
// Add contributions from each corner to get the final noise value.
|
143
|
-
// The result is scaled to return values in the interval [-1,1].
|
144
|
-
return 70.0 * (n0 + n1 + n2);
|
145
|
-
}
|
146
|
-
|
147
|
-
// 3D simplex noise
|
148
|
-
public static double noise(double xin, double yin, double zin) {
|
149
|
-
double n0, n1, n2, n3; // Noise contributions from the four corners
|
150
|
-
// Skew the input space to determine which simplex cell we're in
|
151
|
-
double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
|
152
|
-
int i = fastfloor(xin + s);
|
153
|
-
int j = fastfloor(yin + s);
|
154
|
-
int k = fastfloor(zin + s);
|
155
|
-
double t = (i + j + k) * G3;
|
156
|
-
double X0 = i - t; // Unskew the cell origin back to (x,y,z) space
|
157
|
-
double Y0 = j - t;
|
158
|
-
double Z0 = k - t;
|
159
|
-
double x0 = xin - X0; // The x,y,z distances from the cell origin
|
160
|
-
double y0 = yin - Y0;
|
161
|
-
double z0 = zin - Z0;
|
162
|
-
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
163
|
-
// Determine which simplex we are in.
|
164
|
-
int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
|
165
|
-
int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
|
166
|
-
if (x0 >= y0) {
|
167
|
-
if (y0 >= z0) {
|
168
|
-
i1 = 1;
|
169
|
-
j1 = 0;
|
170
|
-
k1 = 0;
|
171
|
-
i2 = 1;
|
172
|
-
j2 = 1;
|
173
|
-
k2 = 0;
|
174
|
-
} // X Y Z order
|
175
|
-
else if (x0 >= z0) {
|
176
|
-
i1 = 1;
|
177
|
-
j1 = 0;
|
178
|
-
k1 = 0;
|
179
|
-
i2 = 1;
|
180
|
-
j2 = 0;
|
181
|
-
k2 = 1;
|
182
|
-
} // X Z Y order
|
183
|
-
else {
|
184
|
-
i1 = 0;
|
185
|
-
j1 = 0;
|
186
|
-
k1 = 1;
|
187
|
-
i2 = 1;
|
188
|
-
j2 = 0;
|
189
|
-
k2 = 1;
|
190
|
-
} // Z X Y order
|
191
|
-
} else { // x0<y0
|
192
|
-
if (y0 < z0) {
|
193
|
-
i1 = 0;
|
194
|
-
j1 = 0;
|
195
|
-
k1 = 1;
|
196
|
-
i2 = 0;
|
197
|
-
j2 = 1;
|
198
|
-
k2 = 1;
|
199
|
-
} // Z Y X order
|
200
|
-
else if (x0 < z0) {
|
201
|
-
i1 = 0;
|
202
|
-
j1 = 1;
|
203
|
-
k1 = 0;
|
204
|
-
i2 = 0;
|
205
|
-
j2 = 1;
|
206
|
-
k2 = 1;
|
207
|
-
} // Y Z X order
|
208
|
-
else {
|
209
|
-
i1 = 0;
|
210
|
-
j1 = 1;
|
211
|
-
k1 = 0;
|
212
|
-
i2 = 1;
|
213
|
-
j2 = 1;
|
214
|
-
k2 = 0;
|
215
|
-
} // Y X Z order
|
216
|
-
}
|
217
|
-
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
218
|
-
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
219
|
-
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
220
|
-
// c = 1/6.
|
221
|
-
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
|
222
|
-
double y1 = y0 - j1 + G3;
|
223
|
-
double z1 = z0 - k1 + G3;
|
224
|
-
double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
|
225
|
-
double y2 = y0 - j2 + 2.0 * G3;
|
226
|
-
double z2 = z0 - k2 + 2.0 * G3;
|
227
|
-
double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
|
228
|
-
double y3 = y0 - 1.0 + 3.0 * G3;
|
229
|
-
double z3 = z0 - 1.0 + 3.0 * G3;
|
230
|
-
// Work out the hashed gradient indices of the four simplex corners
|
231
|
-
int ii = i & 255;
|
232
|
-
int jj = j & 255;
|
233
|
-
int kk = k & 255;
|
234
|
-
int gi0 = PERM_MOD_12[ii + PERM[jj + PERM[kk]]];
|
235
|
-
int gi1 = PERM_MOD_12[ii + i1 + PERM[jj + j1 + PERM[kk + k1]]];
|
236
|
-
int gi2 = PERM_MOD_12[ii + i2 + PERM[jj + j2 + PERM[kk + k2]]];
|
237
|
-
int gi3 = PERM_MOD_12[ii + 1 + PERM[jj + 1 + PERM[kk + 1]]];
|
238
|
-
// Calculate the contribution from the four corners
|
239
|
-
double t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0;
|
240
|
-
if (t0 < 0) {
|
241
|
-
n0 = 0.0;
|
242
|
-
} else {
|
243
|
-
t0 *= t0;
|
244
|
-
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
|
245
|
-
}
|
246
|
-
double t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1;
|
247
|
-
if (t1 < 0) {
|
248
|
-
n1 = 0.0;
|
249
|
-
} else {
|
250
|
-
t1 *= t1;
|
251
|
-
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
|
252
|
-
}
|
253
|
-
double t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2;
|
254
|
-
if (t2 < 0) {
|
255
|
-
n2 = 0.0;
|
256
|
-
} else {
|
257
|
-
t2 *= t2;
|
258
|
-
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
|
259
|
-
}
|
260
|
-
double t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3;
|
261
|
-
if (t3 < 0) {
|
262
|
-
n3 = 0.0;
|
263
|
-
} else {
|
264
|
-
t3 *= t3;
|
265
|
-
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
|
266
|
-
}
|
267
|
-
// Add contributions from each corner to get the final noise value.
|
268
|
-
// The result is scaled to stay just inside [-1,1]
|
269
|
-
return 32.0 * (n0 + n1 + n2 + n3);
|
270
|
-
}
|
271
|
-
|
272
|
-
// 4D simplex noise, better simplex rank ordering method 2012-03-09
|
273
|
-
public static double noise(double x, double y, double z, double w) {
|
274
|
-
|
275
|
-
double n0, n1, n2, n3, n4; // Noise contributions from the five corners
|
276
|
-
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
|
277
|
-
double s = (x + y + z + w) * F4; // Factor for 4D skewing
|
278
|
-
int i = fastfloor(x + s);
|
279
|
-
int j = fastfloor(y + s);
|
280
|
-
int k = fastfloor(z + s);
|
281
|
-
int l = fastfloor(w + s);
|
282
|
-
double t = (i + j + k + l) * G4; // Factor for 4D unskewing
|
283
|
-
double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
|
284
|
-
double Y0 = j - t;
|
285
|
-
double Z0 = k - t;
|
286
|
-
double W0 = l - t;
|
287
|
-
double x0 = x - X0; // The x,y,z,w distances from the cell origin
|
288
|
-
double y0 = y - Y0;
|
289
|
-
double z0 = z - Z0;
|
290
|
-
double w0 = w - W0;
|
291
|
-
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
|
292
|
-
// To find out which of the 24 possible simplices we're in, we need to
|
293
|
-
// determine the magnitude ordering of x0, y0, z0 and w0.
|
294
|
-
// Six pair-wise comparisons are performed between each possible pair
|
295
|
-
// of the four coordinates, and the results are used to rank the numbers.
|
296
|
-
int rankx = 0;
|
297
|
-
int ranky = 0;
|
298
|
-
int rankz = 0;
|
299
|
-
int rankw = 0;
|
300
|
-
if (x0 > y0) {
|
301
|
-
rankx++;
|
302
|
-
} else {
|
303
|
-
ranky++;
|
304
|
-
}
|
305
|
-
if (x0 > z0) {
|
306
|
-
rankx++;
|
307
|
-
} else {
|
308
|
-
rankz++;
|
309
|
-
}
|
310
|
-
if (x0 > w0) {
|
311
|
-
rankx++;
|
312
|
-
} else {
|
313
|
-
rankw++;
|
314
|
-
}
|
315
|
-
if (y0 > z0) {
|
316
|
-
ranky++;
|
317
|
-
} else {
|
318
|
-
rankz++;
|
319
|
-
}
|
320
|
-
if (y0 > w0) {
|
321
|
-
ranky++;
|
322
|
-
} else {
|
323
|
-
rankw++;
|
324
|
-
}
|
325
|
-
if (z0 > w0) {
|
326
|
-
rankz++;
|
327
|
-
} else {
|
328
|
-
rankw++;
|
329
|
-
}
|
330
|
-
int i1, j1, k1, l1; // The integer offsets for the second simplex corner
|
331
|
-
int i2, j2, k2, l2; // The integer offsets for the third simplex corner
|
332
|
-
int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
|
333
|
-
// [rankx, ranky, rankz, rankw] is a 4-vector with the numbers 0, 1, 2 and 3
|
334
|
-
// in some order. We use a thresholding to set the coordinates in turn.
|
335
|
-
// Rank 3 denotes the largest coordinate.
|
336
|
-
i1 = rankx >= 3 ? 1 : 0;
|
337
|
-
j1 = ranky >= 3 ? 1 : 0;
|
338
|
-
k1 = rankz >= 3 ? 1 : 0;
|
339
|
-
l1 = rankw >= 3 ? 1 : 0;
|
340
|
-
// Rank 2 denotes the second largest coordinate.
|
341
|
-
i2 = rankx >= 2 ? 1 : 0;
|
342
|
-
j2 = ranky >= 2 ? 1 : 0;
|
343
|
-
k2 = rankz >= 2 ? 1 : 0;
|
344
|
-
l2 = rankw >= 2 ? 1 : 0;
|
345
|
-
// Rank 1 denotes the second smallest coordinate.
|
346
|
-
i3 = rankx >= 1 ? 1 : 0;
|
347
|
-
j3 = ranky >= 1 ? 1 : 0;
|
348
|
-
k3 = rankz >= 1 ? 1 : 0;
|
349
|
-
l3 = rankw >= 1 ? 1 : 0;
|
350
|
-
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
|
351
|
-
double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
|
352
|
-
double y1 = y0 - j1 + G4;
|
353
|
-
double z1 = z0 - k1 + G4;
|
354
|
-
double w1 = w0 - l1 + G4;
|
355
|
-
double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
|
356
|
-
double y2 = y0 - j2 + 2.0 * G4;
|
357
|
-
double z2 = z0 - k2 + 2.0 * G4;
|
358
|
-
double w2 = w0 - l2 + 2.0 * G4;
|
359
|
-
double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
|
360
|
-
double y3 = y0 - j3 + 3.0 * G4;
|
361
|
-
double z3 = z0 - k3 + 3.0 * G4;
|
362
|
-
double w3 = w0 - l3 + 3.0 * G4;
|
363
|
-
double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
|
364
|
-
double y4 = y0 - 1.0 + 4.0 * G4;
|
365
|
-
double z4 = z0 - 1.0 + 4.0 * G4;
|
366
|
-
double w4 = w0 - 1.0 + 4.0 * G4;
|
367
|
-
// Work out the hashed gradient indices of the five simplex corners
|
368
|
-
int ii = i & 255;
|
369
|
-
int jj = j & 255;
|
370
|
-
int kk = k & 255;
|
371
|
-
int ll = l & 255;
|
372
|
-
int gi0 = PERM[ii + PERM[jj + PERM[kk + PERM[ll]]]] % 32;
|
373
|
-
int gi1 = PERM[ii + i1 + PERM[jj + j1 + PERM[kk + k1 + PERM[ll + l1]]]] % 32;
|
374
|
-
int gi2 = PERM[ii + i2 + PERM[jj + j2 + PERM[kk + k2 + PERM[ll + l2]]]] % 32;
|
375
|
-
int gi3 = PERM[ii + i3 + PERM[jj + j3 + PERM[kk + k3 + PERM[ll + l3]]]] % 32;
|
376
|
-
int gi4 = PERM[ii + 1 + PERM[jj + 1 + PERM[kk + 1 + PERM[ll + 1]]]] % 32;
|
377
|
-
// Calculate the contribution from the five corners
|
378
|
-
double t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
|
379
|
-
if (t0 < 0) {
|
380
|
-
n0 = 0.0;
|
381
|
-
} else {
|
382
|
-
t0 *= t0;
|
383
|
-
n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
|
384
|
-
}
|
385
|
-
double t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
|
386
|
-
if (t1 < 0) {
|
387
|
-
n1 = 0.0;
|
388
|
-
} else {
|
389
|
-
t1 *= t1;
|
390
|
-
n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
|
391
|
-
}
|
392
|
-
double t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
|
393
|
-
if (t2 < 0) {
|
394
|
-
n2 = 0.0;
|
395
|
-
} else {
|
396
|
-
t2 *= t2;
|
397
|
-
n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
|
398
|
-
}
|
399
|
-
double t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
|
400
|
-
if (t3 < 0) {
|
401
|
-
n3 = 0.0;
|
402
|
-
} else {
|
403
|
-
t3 *= t3;
|
404
|
-
n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
|
405
|
-
}
|
406
|
-
double t4 = 0.5 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
|
407
|
-
if (t4 < 0) {
|
408
|
-
n4 = 0.0;
|
409
|
-
} else {
|
410
|
-
t4 *= t4;
|
411
|
-
n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
|
412
|
-
}
|
413
|
-
// Sum up and scale the result to cover the range [-1,1]
|
414
|
-
return 27.0 * (n0 + n1 + n2 + n3 + n4);
|
415
|
-
}
|
416
|
-
|
417
|
-
// Inner class to speed upp gradient computations
|
418
|
-
// (In Java, array access is a lot slower than member access)
|
419
|
-
private static class Grad {
|
420
|
-
|
421
|
-
double x, y, z, w;
|
422
|
-
|
423
|
-
Grad(double x, double y, double z) {
|
424
|
-
this.x = x;
|
425
|
-
this.y = y;
|
426
|
-
this.z = z;
|
427
|
-
}
|
428
|
-
|
429
|
-
Grad(double x, double y, double z, double w) {
|
430
|
-
this.x = x;
|
431
|
-
this.y = y;
|
432
|
-
this.z = z;
|
433
|
-
this.w = w;
|
434
|
-
}
|
435
|
-
}
|
436
|
-
}
|