propane 3.7.1-java → 3.11.0-java

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (71) hide show
  1. checksums.yaml +4 -4
  2. data/.mvn/extensions.xml +1 -1
  3. data/.mvn/wrapper/maven-wrapper.properties +1 -1
  4. data/.travis.yml +1 -1
  5. data/CHANGELOG.md +7 -1
  6. data/README.md +8 -15
  7. data/Rakefile +6 -5
  8. data/lib/propane/app.rb +11 -15
  9. data/lib/propane/helper_methods.rb +6 -6
  10. data/lib/propane/version.rb +1 -1
  11. data/lib/{propane-3.7.1.jar → propane-3.11.0.jar} +0 -0
  12. data/library/pdf/itextpdf-5.5.13.2.jar +0 -0
  13. data/library/pdf/pdf.rb +7 -0
  14. data/library/svg/batik-all-1.14.jar +0 -0
  15. data/library/svg/svg.rb +7 -0
  16. data/mvnw +3 -3
  17. data/mvnw.cmd +2 -2
  18. data/pom.rb +32 -5
  19. data/pom.xml +58 -7
  20. data/propane.gemspec +9 -5
  21. data/src/main/java/monkstone/FastNoiseModuleJava.java +127 -0
  22. data/src/main/java/monkstone/MathToolModule.java +30 -30
  23. data/src/main/java/monkstone/PropaneLibrary.java +2 -0
  24. data/src/main/java/monkstone/SmoothNoiseModuleJava.java +127 -0
  25. data/src/main/java/monkstone/fastmath/DegLutTables.java +111 -0
  26. data/src/main/java/monkstone/fastmath/Deglut.java +6 -56
  27. data/src/main/java/monkstone/filechooser/Chooser.java +1 -1
  28. data/src/main/java/monkstone/noise/OpenSimplex2F.java +914 -0
  29. data/src/main/java/monkstone/noise/OpenSimplex2S.java +1138 -0
  30. data/src/main/java/monkstone/slider/WheelHandler.java +1 -1
  31. data/src/main/java/monkstone/vecmath/JRender.java +6 -6
  32. data/src/main/java/monkstone/vecmath/vec2/Vec2.java +27 -31
  33. data/src/main/java/monkstone/vecmath/vec3/Vec3.java +26 -40
  34. data/src/main/java/processing/awt/PGraphicsJava2D.java +11 -3
  35. data/src/main/java/processing/awt/PImageAWT.java +6 -4
  36. data/src/main/java/processing/core/PApplet.java +13259 -13379
  37. data/src/main/java/processing/core/PConstants.java +155 -163
  38. data/src/main/java/processing/core/PGraphics.java +118 -111
  39. data/src/main/java/processing/core/PImage.java +14 -14
  40. data/src/main/java/processing/opengl/PGraphicsOpenGL.java +13 -13
  41. data/src/main/java/processing/opengl/PJOGL.java +6 -5
  42. data/src/main/java/processing/opengl/PShader.java +1 -6
  43. data/src/main/java/processing/opengl/PSurfaceJOGL.java +6 -6
  44. data/src/main/java/processing/pdf/PGraphicsPDF.java +581 -0
  45. data/src/main/java/processing/svg/PGraphicsSVG.java +378 -0
  46. data/src/main/{java/processing/opengl → resources}/cursors/arrow.png +0 -0
  47. data/src/main/{java/processing/opengl → resources}/cursors/cross.png +0 -0
  48. data/src/main/{java/processing/opengl → resources}/cursors/hand.png +0 -0
  49. data/src/main/{java/processing/opengl → resources}/cursors/license.txt +0 -0
  50. data/src/main/{java/processing/opengl → resources}/cursors/move.png +0 -0
  51. data/src/main/{java/processing/opengl → resources}/cursors/text.png +0 -0
  52. data/src/main/{java/processing/opengl → resources}/cursors/wait.png +0 -0
  53. data/src/main/{java/processing/opengl → resources}/shaders/ColorFrag.glsl +0 -0
  54. data/src/main/{java/processing/opengl → resources}/shaders/ColorVert.glsl +0 -0
  55. data/src/main/{java/processing/opengl → resources}/shaders/LightFrag.glsl +0 -0
  56. data/src/main/{java/processing/opengl → resources}/shaders/LightVert.glsl +0 -0
  57. data/src/main/{java/processing/opengl → resources}/shaders/LineFrag.glsl +0 -0
  58. data/src/main/{java/processing/opengl → resources}/shaders/LineVert.glsl +0 -0
  59. data/src/main/{java/processing/opengl → resources}/shaders/MaskFrag.glsl +0 -0
  60. data/src/main/{java/processing/opengl → resources}/shaders/PointFrag.glsl +0 -0
  61. data/src/main/{java/processing/opengl → resources}/shaders/PointVert.glsl +0 -0
  62. data/src/main/{java/processing/opengl → resources}/shaders/TexFrag.glsl +0 -0
  63. data/src/main/{java/processing/opengl → resources}/shaders/TexLightFrag.glsl +0 -0
  64. data/src/main/{java/processing/opengl → resources}/shaders/TexLightVert.glsl +0 -0
  65. data/src/main/{java/processing/opengl → resources}/shaders/TexVert.glsl +0 -0
  66. data/test/deglut_spec_test.rb +2 -2
  67. data/test/test_helper.rb +1 -0
  68. data/vendors/Rakefile +1 -1
  69. metadata +49 -46
  70. data/library/simplex_noise/simplex_noise.rb +0 -5
  71. data/src/main/java/monkstone/noise/SimplexNoise.java +0 -436
@@ -1,436 +0,0 @@
1
- /*
2
- * A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
3
- *
4
- * Based on example code by Stefan Gustavson (stegu@itn.liu.se).
5
- * Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
6
- * Better rank ordering method for 4D by Stefan Gustavson in 2012.
7
- *
8
- * This could be speeded up even further, but it's useful as it is.
9
- *
10
- * Version 2012-03-09
11
- *
12
- * This code was placed in the public domain by its original author,
13
- * Stefan Gustavson. You may use it as you see fit, but
14
- * attribution is appreciated.
15
- *
16
- */
17
- package monkstone.noise;
18
-
19
- public class SimplexNoise { // Simplex noise in 2D, 3D and 4D
20
-
21
- private static Grad grad3[] = {new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0),
22
- new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1),
23
- new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)};
24
-
25
- private static Grad grad4[] = {new Grad(0, 1, 1, 1), new Grad(0, 1, 1, -1), new Grad(0, 1, -1, 1), new Grad(0, 1, -1, -1),
26
- new Grad(0, -1, 1, 1), new Grad(0, -1, 1, -1), new Grad(0, -1, -1, 1), new Grad(0, -1, -1, -1),
27
- new Grad(1, 0, 1, 1), new Grad(1, 0, 1, -1), new Grad(1, 0, -1, 1), new Grad(1, 0, -1, -1),
28
- new Grad(-1, 0, 1, 1), new Grad(-1, 0, 1, -1), new Grad(-1, 0, -1, 1), new Grad(-1, 0, -1, -1),
29
- new Grad(1, 1, 0, 1), new Grad(1, 1, 0, -1), new Grad(1, -1, 0, 1), new Grad(1, -1, 0, -1),
30
- new Grad(-1, 1, 0, 1), new Grad(-1, 1, 0, -1), new Grad(-1, -1, 0, 1), new Grad(-1, -1, 0, -1),
31
- new Grad(1, 1, 1, 0), new Grad(1, 1, -1, 0), new Grad(1, -1, 1, 0), new Grad(1, -1, -1, 0),
32
- new Grad(-1, 1, 1, 0), new Grad(-1, 1, -1, 0), new Grad(-1, -1, 1, 0), new Grad(-1, -1, -1, 0)};
33
-
34
- private final static short p[] = {151, 160, 137, 91, 90, 15,
35
- 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
36
- 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
37
- 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
38
- 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
39
- 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
40
- 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
41
- 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
42
- 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
43
- 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
44
- 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
45
- 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
46
- 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180};
47
- // To remove the need for index wrapping, double the permutation table length
48
- final static short[] PERM = new short[512];
49
- static short[] PERM_MOD_12 = new short[512];
50
-
51
- static {
52
- for (int i = 0; i < 512; i++) {
53
- PERM[i] = p[i & 255];
54
- PERM_MOD_12[i] = (short) (PERM[i] % 12);
55
- }
56
- }
57
-
58
- // Skewing and unskewing factors for 2, 3, and 4 dimensions
59
- private static final double F2 = 0.5 * (Math.sqrt(3.0) - 1.0);
60
- private static final double G2 = (3.0 - Math.sqrt(3.0)) / 6.0;
61
- private static final double F3 = 1.0 / 3.0;
62
- private static final double G3 = 1.0 / 6.0;
63
- private static final double F4 = (Math.sqrt(5.0) - 1.0) / 4.0;
64
- private static final double G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
65
-
66
- // This method is a *lot* faster than using (int)Math.floor(x)
67
- private static int fastfloor(double x) {
68
- int xi = (int) x;
69
- return x < xi ? xi - 1 : xi;
70
- }
71
-
72
- private static double dot(Grad g, double x, double y) {
73
- return g.x * x + g.y * y;
74
- }
75
-
76
- private static double dot(Grad g, double x, double y, double z) {
77
- return g.x * x + g.y * y + g.z * z;
78
- }
79
-
80
- private static double dot(Grad g, double x, double y, double z, double w) {
81
- return g.x * x + g.y * y + g.z * z + g.w * w;
82
- }
83
-
84
- // 2D simplex noise
85
- public static double noise(double xin, double yin) {
86
- double n0, n1, n2; // Noise contributions from the three corners
87
- // Skew the input space to determine which simplex cell we're in
88
- double s = (xin + yin) * F2; // Hairy factor for 2D
89
- int i = fastfloor(xin + s);
90
- int j = fastfloor(yin + s);
91
- double t = (i + j) * G2;
92
- double X0 = i - t; // Unskew the cell origin back to (x,y) space
93
- double Y0 = j - t;
94
- double x0 = xin - X0; // The x,y distances from the cell origin
95
- double y0 = yin - Y0;
96
- // For the 2D case, the simplex shape is an equilateral triangle.
97
- // Determine which simplex we are in.
98
- int i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
99
- if (x0 > y0) {
100
- i1 = 1;
101
- j1 = 0;
102
- } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
103
- else {
104
- i1 = 0;
105
- j1 = 1;
106
- } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
107
- // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
108
- // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
109
- // c = (3-sqrt(3))/6
110
- double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
111
- double y1 = y0 - j1 + G2;
112
- double x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
113
- double y2 = y0 - 1.0 + 2.0 * G2;
114
- // Work out the hashed gradient indices of the three simplex corners
115
- int ii = i & 255;
116
- int jj = j & 255;
117
- int gi0 = PERM_MOD_12[ii + PERM[jj]];
118
- int gi1 = PERM_MOD_12[ii + i1 + PERM[jj + j1]];
119
- int gi2 = PERM_MOD_12[ii + 1 + PERM[jj + 1]];
120
- // Calculate the contribution from the three corners
121
- double t0 = 0.5 - x0 * x0 - y0 * y0;
122
- if (t0 < 0) {
123
- n0 = 0.0;
124
- } else {
125
- t0 *= t0;
126
- n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
127
- }
128
- double t1 = 0.5 - x1 * x1 - y1 * y1;
129
- if (t1 < 0) {
130
- n1 = 0.0;
131
- } else {
132
- t1 *= t1;
133
- n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
134
- }
135
- double t2 = 0.5 - x2 * x2 - y2 * y2;
136
- if (t2 < 0) {
137
- n2 = 0.0;
138
- } else {
139
- t2 *= t2;
140
- n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
141
- }
142
- // Add contributions from each corner to get the final noise value.
143
- // The result is scaled to return values in the interval [-1,1].
144
- return 70.0 * (n0 + n1 + n2);
145
- }
146
-
147
- // 3D simplex noise
148
- public static double noise(double xin, double yin, double zin) {
149
- double n0, n1, n2, n3; // Noise contributions from the four corners
150
- // Skew the input space to determine which simplex cell we're in
151
- double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
152
- int i = fastfloor(xin + s);
153
- int j = fastfloor(yin + s);
154
- int k = fastfloor(zin + s);
155
- double t = (i + j + k) * G3;
156
- double X0 = i - t; // Unskew the cell origin back to (x,y,z) space
157
- double Y0 = j - t;
158
- double Z0 = k - t;
159
- double x0 = xin - X0; // The x,y,z distances from the cell origin
160
- double y0 = yin - Y0;
161
- double z0 = zin - Z0;
162
- // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
163
- // Determine which simplex we are in.
164
- int i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
165
- int i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
166
- if (x0 >= y0) {
167
- if (y0 >= z0) {
168
- i1 = 1;
169
- j1 = 0;
170
- k1 = 0;
171
- i2 = 1;
172
- j2 = 1;
173
- k2 = 0;
174
- } // X Y Z order
175
- else if (x0 >= z0) {
176
- i1 = 1;
177
- j1 = 0;
178
- k1 = 0;
179
- i2 = 1;
180
- j2 = 0;
181
- k2 = 1;
182
- } // X Z Y order
183
- else {
184
- i1 = 0;
185
- j1 = 0;
186
- k1 = 1;
187
- i2 = 1;
188
- j2 = 0;
189
- k2 = 1;
190
- } // Z X Y order
191
- } else { // x0<y0
192
- if (y0 < z0) {
193
- i1 = 0;
194
- j1 = 0;
195
- k1 = 1;
196
- i2 = 0;
197
- j2 = 1;
198
- k2 = 1;
199
- } // Z Y X order
200
- else if (x0 < z0) {
201
- i1 = 0;
202
- j1 = 1;
203
- k1 = 0;
204
- i2 = 0;
205
- j2 = 1;
206
- k2 = 1;
207
- } // Y Z X order
208
- else {
209
- i1 = 0;
210
- j1 = 1;
211
- k1 = 0;
212
- i2 = 1;
213
- j2 = 1;
214
- k2 = 0;
215
- } // Y X Z order
216
- }
217
- // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
218
- // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
219
- // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
220
- // c = 1/6.
221
- double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
222
- double y1 = y0 - j1 + G3;
223
- double z1 = z0 - k1 + G3;
224
- double x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
225
- double y2 = y0 - j2 + 2.0 * G3;
226
- double z2 = z0 - k2 + 2.0 * G3;
227
- double x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
228
- double y3 = y0 - 1.0 + 3.0 * G3;
229
- double z3 = z0 - 1.0 + 3.0 * G3;
230
- // Work out the hashed gradient indices of the four simplex corners
231
- int ii = i & 255;
232
- int jj = j & 255;
233
- int kk = k & 255;
234
- int gi0 = PERM_MOD_12[ii + PERM[jj + PERM[kk]]];
235
- int gi1 = PERM_MOD_12[ii + i1 + PERM[jj + j1 + PERM[kk + k1]]];
236
- int gi2 = PERM_MOD_12[ii + i2 + PERM[jj + j2 + PERM[kk + k2]]];
237
- int gi3 = PERM_MOD_12[ii + 1 + PERM[jj + 1 + PERM[kk + 1]]];
238
- // Calculate the contribution from the four corners
239
- double t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0;
240
- if (t0 < 0) {
241
- n0 = 0.0;
242
- } else {
243
- t0 *= t0;
244
- n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
245
- }
246
- double t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1;
247
- if (t1 < 0) {
248
- n1 = 0.0;
249
- } else {
250
- t1 *= t1;
251
- n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
252
- }
253
- double t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2;
254
- if (t2 < 0) {
255
- n2 = 0.0;
256
- } else {
257
- t2 *= t2;
258
- n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
259
- }
260
- double t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3;
261
- if (t3 < 0) {
262
- n3 = 0.0;
263
- } else {
264
- t3 *= t3;
265
- n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
266
- }
267
- // Add contributions from each corner to get the final noise value.
268
- // The result is scaled to stay just inside [-1,1]
269
- return 32.0 * (n0 + n1 + n2 + n3);
270
- }
271
-
272
- // 4D simplex noise, better simplex rank ordering method 2012-03-09
273
- public static double noise(double x, double y, double z, double w) {
274
-
275
- double n0, n1, n2, n3, n4; // Noise contributions from the five corners
276
- // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
277
- double s = (x + y + z + w) * F4; // Factor for 4D skewing
278
- int i = fastfloor(x + s);
279
- int j = fastfloor(y + s);
280
- int k = fastfloor(z + s);
281
- int l = fastfloor(w + s);
282
- double t = (i + j + k + l) * G4; // Factor for 4D unskewing
283
- double X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
284
- double Y0 = j - t;
285
- double Z0 = k - t;
286
- double W0 = l - t;
287
- double x0 = x - X0; // The x,y,z,w distances from the cell origin
288
- double y0 = y - Y0;
289
- double z0 = z - Z0;
290
- double w0 = w - W0;
291
- // For the 4D case, the simplex is a 4D shape I won't even try to describe.
292
- // To find out which of the 24 possible simplices we're in, we need to
293
- // determine the magnitude ordering of x0, y0, z0 and w0.
294
- // Six pair-wise comparisons are performed between each possible pair
295
- // of the four coordinates, and the results are used to rank the numbers.
296
- int rankx = 0;
297
- int ranky = 0;
298
- int rankz = 0;
299
- int rankw = 0;
300
- if (x0 > y0) {
301
- rankx++;
302
- } else {
303
- ranky++;
304
- }
305
- if (x0 > z0) {
306
- rankx++;
307
- } else {
308
- rankz++;
309
- }
310
- if (x0 > w0) {
311
- rankx++;
312
- } else {
313
- rankw++;
314
- }
315
- if (y0 > z0) {
316
- ranky++;
317
- } else {
318
- rankz++;
319
- }
320
- if (y0 > w0) {
321
- ranky++;
322
- } else {
323
- rankw++;
324
- }
325
- if (z0 > w0) {
326
- rankz++;
327
- } else {
328
- rankw++;
329
- }
330
- int i1, j1, k1, l1; // The integer offsets for the second simplex corner
331
- int i2, j2, k2, l2; // The integer offsets for the third simplex corner
332
- int i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
333
- // [rankx, ranky, rankz, rankw] is a 4-vector with the numbers 0, 1, 2 and 3
334
- // in some order. We use a thresholding to set the coordinates in turn.
335
- // Rank 3 denotes the largest coordinate.
336
- i1 = rankx >= 3 ? 1 : 0;
337
- j1 = ranky >= 3 ? 1 : 0;
338
- k1 = rankz >= 3 ? 1 : 0;
339
- l1 = rankw >= 3 ? 1 : 0;
340
- // Rank 2 denotes the second largest coordinate.
341
- i2 = rankx >= 2 ? 1 : 0;
342
- j2 = ranky >= 2 ? 1 : 0;
343
- k2 = rankz >= 2 ? 1 : 0;
344
- l2 = rankw >= 2 ? 1 : 0;
345
- // Rank 1 denotes the second smallest coordinate.
346
- i3 = rankx >= 1 ? 1 : 0;
347
- j3 = ranky >= 1 ? 1 : 0;
348
- k3 = rankz >= 1 ? 1 : 0;
349
- l3 = rankw >= 1 ? 1 : 0;
350
- // The fifth corner has all coordinate offsets = 1, so no need to compute that.
351
- double x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
352
- double y1 = y0 - j1 + G4;
353
- double z1 = z0 - k1 + G4;
354
- double w1 = w0 - l1 + G4;
355
- double x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
356
- double y2 = y0 - j2 + 2.0 * G4;
357
- double z2 = z0 - k2 + 2.0 * G4;
358
- double w2 = w0 - l2 + 2.0 * G4;
359
- double x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
360
- double y3 = y0 - j3 + 3.0 * G4;
361
- double z3 = z0 - k3 + 3.0 * G4;
362
- double w3 = w0 - l3 + 3.0 * G4;
363
- double x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
364
- double y4 = y0 - 1.0 + 4.0 * G4;
365
- double z4 = z0 - 1.0 + 4.0 * G4;
366
- double w4 = w0 - 1.0 + 4.0 * G4;
367
- // Work out the hashed gradient indices of the five simplex corners
368
- int ii = i & 255;
369
- int jj = j & 255;
370
- int kk = k & 255;
371
- int ll = l & 255;
372
- int gi0 = PERM[ii + PERM[jj + PERM[kk + PERM[ll]]]] % 32;
373
- int gi1 = PERM[ii + i1 + PERM[jj + j1 + PERM[kk + k1 + PERM[ll + l1]]]] % 32;
374
- int gi2 = PERM[ii + i2 + PERM[jj + j2 + PERM[kk + k2 + PERM[ll + l2]]]] % 32;
375
- int gi3 = PERM[ii + i3 + PERM[jj + j3 + PERM[kk + k3 + PERM[ll + l3]]]] % 32;
376
- int gi4 = PERM[ii + 1 + PERM[jj + 1 + PERM[kk + 1 + PERM[ll + 1]]]] % 32;
377
- // Calculate the contribution from the five corners
378
- double t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
379
- if (t0 < 0) {
380
- n0 = 0.0;
381
- } else {
382
- t0 *= t0;
383
- n0 = t0 * t0 * dot(grad4[gi0], x0, y0, z0, w0);
384
- }
385
- double t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
386
- if (t1 < 0) {
387
- n1 = 0.0;
388
- } else {
389
- t1 *= t1;
390
- n1 = t1 * t1 * dot(grad4[gi1], x1, y1, z1, w1);
391
- }
392
- double t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
393
- if (t2 < 0) {
394
- n2 = 0.0;
395
- } else {
396
- t2 *= t2;
397
- n2 = t2 * t2 * dot(grad4[gi2], x2, y2, z2, w2);
398
- }
399
- double t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
400
- if (t3 < 0) {
401
- n3 = 0.0;
402
- } else {
403
- t3 *= t3;
404
- n3 = t3 * t3 * dot(grad4[gi3], x3, y3, z3, w3);
405
- }
406
- double t4 = 0.5 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
407
- if (t4 < 0) {
408
- n4 = 0.0;
409
- } else {
410
- t4 *= t4;
411
- n4 = t4 * t4 * dot(grad4[gi4], x4, y4, z4, w4);
412
- }
413
- // Sum up and scale the result to cover the range [-1,1]
414
- return 27.0 * (n0 + n1 + n2 + n3 + n4);
415
- }
416
-
417
- // Inner class to speed upp gradient computations
418
- // (In Java, array access is a lot slower than member access)
419
- private static class Grad {
420
-
421
- double x, y, z, w;
422
-
423
- Grad(double x, double y, double z) {
424
- this.x = x;
425
- this.y = y;
426
- this.z = z;
427
- }
428
-
429
- Grad(double x, double y, double z, double w) {
430
- this.x = x;
431
- this.y = y;
432
- this.z = z;
433
- this.w = w;
434
- }
435
- }
436
- }