prescient 0.0.0 ā 0.1.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/.env.example +37 -0
- data/.rubocop.yml +326 -0
- data/Dockerfile.example +41 -0
- data/README.md +859 -13
- data/Rakefile +25 -3
- data/VECTOR_SEARCH_GUIDE.md +450 -0
- data/db/init/01_enable_pgvector.sql +30 -0
- data/db/init/02_create_schema.sql +108 -0
- data/db/init/03_create_indexes.sql +96 -0
- data/db/init/04_insert_sample_data.sql +121 -0
- data/db/migrate/001_create_prescient_tables.rb +158 -0
- data/docker-compose.yml +153 -0
- data/examples/basic_usage.rb +123 -0
- data/examples/custom_contexts.rb +355 -0
- data/examples/custom_prompts.rb +212 -0
- data/examples/vector_search.rb +330 -0
- data/lib/prescient/base.rb +270 -0
- data/lib/prescient/client.rb +107 -0
- data/lib/prescient/provider/anthropic.rb +146 -0
- data/lib/prescient/provider/huggingface.rb +202 -0
- data/lib/prescient/provider/ollama.rb +172 -0
- data/lib/prescient/provider/openai.rb +181 -0
- data/lib/prescient/version.rb +1 -1
- data/lib/prescient.rb +84 -2
- data/prescient.gemspec +51 -0
- data/scripts/setup-ollama-models.sh +77 -0
- metadata +215 -12
- data/.vscode/settings.json +0 -1
@@ -0,0 +1,330 @@
|
|
1
|
+
#!/usr/bin/env ruby
|
2
|
+
# frozen_string_literal: true
|
3
|
+
|
4
|
+
# Example: Vector similarity search with Prescient gem and PostgreSQL pgvector
|
5
|
+
# This example demonstrates how to store embeddings and perform similarity search
|
6
|
+
|
7
|
+
require_relative '../lib/prescient'
|
8
|
+
require 'pg'
|
9
|
+
require 'json'
|
10
|
+
|
11
|
+
puts "=== Vector Similarity Search Example ==="
|
12
|
+
puts "This example shows how to use Prescient with PostgreSQL pgvector for semantic search."
|
13
|
+
|
14
|
+
# Database connection configuration
|
15
|
+
DB_CONFIG = {
|
16
|
+
host: ENV.fetch('DB_HOST', 'localhost'),
|
17
|
+
port: ENV.fetch('DB_PORT', '5432'),
|
18
|
+
dbname: ENV.fetch('DB_NAME', 'prescient_development'),
|
19
|
+
user: ENV.fetch('DB_USER', 'prescient'),
|
20
|
+
password: ENV.fetch('DB_PASSWORD', 'prescient_password')
|
21
|
+
}.freeze
|
22
|
+
|
23
|
+
class VectorSearchExample
|
24
|
+
def initialize
|
25
|
+
@db = PG.connect(DB_CONFIG)
|
26
|
+
@client = Prescient.client(:ollama)
|
27
|
+
end
|
28
|
+
|
29
|
+
def run_example
|
30
|
+
puts "\n--- Setting up vector search example ---"
|
31
|
+
|
32
|
+
# Check if services are available
|
33
|
+
unless check_services_available
|
34
|
+
puts "ā Required services not available. Please start with: docker-compose up -d"
|
35
|
+
return
|
36
|
+
end
|
37
|
+
|
38
|
+
# 1. Generate and store embeddings for existing documents
|
39
|
+
puts "\nš Generating embeddings for sample documents..."
|
40
|
+
generate_document_embeddings
|
41
|
+
|
42
|
+
# 2. Perform similarity search
|
43
|
+
puts "\nš Performing similarity searches..."
|
44
|
+
search_examples
|
45
|
+
|
46
|
+
# 3. Advanced search with filtering
|
47
|
+
puts "\nšÆ Advanced search with metadata filtering..."
|
48
|
+
advanced_search_examples
|
49
|
+
|
50
|
+
# 4. Demonstrate different distance functions
|
51
|
+
puts "\nš Comparing different distance functions..."
|
52
|
+
compare_distance_functions
|
53
|
+
|
54
|
+
puts "\nš Vector search example completed!"
|
55
|
+
end
|
56
|
+
|
57
|
+
private
|
58
|
+
|
59
|
+
def check_services_available
|
60
|
+
# Check database connection
|
61
|
+
begin
|
62
|
+
result = @db.exec("SELECT 1")
|
63
|
+
puts "ā
PostgreSQL connected"
|
64
|
+
rescue PG::Error => e
|
65
|
+
puts "ā PostgreSQL connection failed: #{e.message}"
|
66
|
+
return false
|
67
|
+
end
|
68
|
+
|
69
|
+
# Check pgvector extension
|
70
|
+
begin
|
71
|
+
result = @db.exec("SELECT * FROM pg_extension WHERE extname = 'vector'")
|
72
|
+
if result.ntuples > 0
|
73
|
+
puts "ā
pgvector extension available"
|
74
|
+
else
|
75
|
+
puts "ā pgvector extension not found"
|
76
|
+
return false
|
77
|
+
end
|
78
|
+
rescue PG::Error => e
|
79
|
+
puts "ā pgvector check failed: #{e.message}"
|
80
|
+
return false
|
81
|
+
end
|
82
|
+
|
83
|
+
# Check Ollama connection
|
84
|
+
if @client.available?
|
85
|
+
puts "ā
Ollama connected"
|
86
|
+
else
|
87
|
+
puts "ā Ollama not available"
|
88
|
+
return false
|
89
|
+
end
|
90
|
+
|
91
|
+
true
|
92
|
+
end
|
93
|
+
|
94
|
+
def generate_document_embeddings
|
95
|
+
# Get documents that don't have embeddings yet
|
96
|
+
query = <<~SQL
|
97
|
+
SELECT d.id, d.title, d.content
|
98
|
+
FROM documents d
|
99
|
+
LEFT JOIN document_embeddings de ON d.id = de.document_id
|
100
|
+
AND de.embedding_provider = 'ollama'
|
101
|
+
AND de.embedding_model = 'nomic-embed-text'
|
102
|
+
WHERE de.id IS NULL
|
103
|
+
LIMIT 10
|
104
|
+
SQL
|
105
|
+
|
106
|
+
result = @db.exec(query)
|
107
|
+
|
108
|
+
if result.ntuples == 0
|
109
|
+
puts " All documents already have embeddings"
|
110
|
+
return
|
111
|
+
end
|
112
|
+
|
113
|
+
result.each do |row|
|
114
|
+
document_id = row['id']
|
115
|
+
title = row['title']
|
116
|
+
content = row['content']
|
117
|
+
|
118
|
+
puts " Generating embedding for: #{title}"
|
119
|
+
|
120
|
+
begin
|
121
|
+
# Generate embedding using Prescient
|
122
|
+
embedding = @client.generate_embedding(content)
|
123
|
+
|
124
|
+
# Store in database
|
125
|
+
insert_embedding(document_id, embedding, content, 'ollama', 'nomic-embed-text', 768)
|
126
|
+
|
127
|
+
puts " ā
Stored embedding (#{embedding.length} dimensions)"
|
128
|
+
|
129
|
+
rescue Prescient::Error => e
|
130
|
+
puts " ā Failed to generate embedding: #{e.message}"
|
131
|
+
end
|
132
|
+
end
|
133
|
+
end
|
134
|
+
|
135
|
+
def insert_embedding(document_id, embedding, text, provider, model, dimensions)
|
136
|
+
# Convert Ruby array to PostgreSQL vector format
|
137
|
+
vector_str = "[#{embedding.join(',')}]"
|
138
|
+
|
139
|
+
query = <<~SQL
|
140
|
+
INSERT INTO document_embeddings
|
141
|
+
(document_id, embedding_provider, embedding_model, embedding_dimensions, embedding, embedding_text)
|
142
|
+
VALUES ($1, $2, $3, $4, $5, $6)
|
143
|
+
SQL
|
144
|
+
|
145
|
+
@db.exec_params(query, [document_id, provider, model, dimensions, vector_str, text])
|
146
|
+
end
|
147
|
+
|
148
|
+
def search_examples
|
149
|
+
search_queries = [
|
150
|
+
"How to learn programming?",
|
151
|
+
"What is machine learning?",
|
152
|
+
"Database optimization techniques",
|
153
|
+
"API security best practices"
|
154
|
+
]
|
155
|
+
|
156
|
+
search_queries.each do |query_text|
|
157
|
+
puts "\nš Searching for: '#{query_text}'"
|
158
|
+
perform_similarity_search(query_text, limit: 3)
|
159
|
+
end
|
160
|
+
end
|
161
|
+
|
162
|
+
def perform_similarity_search(query_text, limit: 5, distance_function: 'cosine')
|
163
|
+
begin
|
164
|
+
# Generate embedding for query
|
165
|
+
query_embedding = @client.generate_embedding(query_text)
|
166
|
+
query_vector = "[#{query_embedding.join(',')}]"
|
167
|
+
|
168
|
+
# Choose distance operator based on function
|
169
|
+
distance_op = case distance_function
|
170
|
+
when 'cosine' then '<=>'
|
171
|
+
when 'l2' then '<->'
|
172
|
+
when 'inner_product' then '<#>'
|
173
|
+
else '<=>'
|
174
|
+
end
|
175
|
+
|
176
|
+
# Perform similarity search
|
177
|
+
search_query = <<~SQL
|
178
|
+
SELECT
|
179
|
+
d.title,
|
180
|
+
d.content,
|
181
|
+
d.metadata,
|
182
|
+
de.embedding #{distance_op} $1::vector AS distance,
|
183
|
+
1 - (de.embedding <=> $1::vector) AS cosine_similarity
|
184
|
+
FROM documents d
|
185
|
+
JOIN document_embeddings de ON d.id = de.document_id
|
186
|
+
WHERE de.embedding_provider = 'ollama'
|
187
|
+
AND de.embedding_model = 'nomic-embed-text'
|
188
|
+
ORDER BY de.embedding #{distance_op} $1::vector
|
189
|
+
LIMIT $2
|
190
|
+
SQL
|
191
|
+
|
192
|
+
result = @db.exec_params(search_query, [query_vector, limit])
|
193
|
+
|
194
|
+
if result.ntuples == 0
|
195
|
+
puts " No results found"
|
196
|
+
return
|
197
|
+
end
|
198
|
+
|
199
|
+
result.each_with_index do |row, index|
|
200
|
+
similarity = (row['cosine_similarity'].to_f * 100).round(1)
|
201
|
+
puts " #{index + 1}. #{row['title']} (#{similarity}% similar)"
|
202
|
+
puts " #{row['content'][0..100]}..."
|
203
|
+
|
204
|
+
# Show metadata if available
|
205
|
+
if row['metadata'] && !row['metadata'].empty?
|
206
|
+
metadata = JSON.parse(row['metadata'])
|
207
|
+
tags = metadata['tags']&.join(', ')
|
208
|
+
puts " Tags: #{tags}" if tags
|
209
|
+
end
|
210
|
+
puts
|
211
|
+
end
|
212
|
+
|
213
|
+
rescue Prescient::Error => e
|
214
|
+
puts " ā Search failed: #{e.message}"
|
215
|
+
rescue PG::Error => e
|
216
|
+
puts " ā Database error: #{e.message}"
|
217
|
+
end
|
218
|
+
end
|
219
|
+
|
220
|
+
def advanced_search_examples
|
221
|
+
# Search with metadata filtering
|
222
|
+
puts "\nšÆ Search for programming content with beginner difficulty:"
|
223
|
+
advanced_search("programming basics", tags: ["programming"], difficulty: "beginner")
|
224
|
+
|
225
|
+
puts "\nšÆ Search for AI/ML content:"
|
226
|
+
advanced_search("artificial intelligence", tags: ["ai", "machine-learning"])
|
227
|
+
end
|
228
|
+
|
229
|
+
def advanced_search(query_text, filters = {})
|
230
|
+
begin
|
231
|
+
query_embedding = @client.generate_embedding(query_text)
|
232
|
+
query_vector = "[#{query_embedding.join(',')}]"
|
233
|
+
|
234
|
+
# Build WHERE clause for metadata filtering
|
235
|
+
where_conditions = ["de.embedding_provider = 'ollama'", "de.embedding_model = 'nomic-embed-text'"]
|
236
|
+
params = [query_vector]
|
237
|
+
param_index = 2
|
238
|
+
|
239
|
+
filters.each do |key, value|
|
240
|
+
case key
|
241
|
+
when :tags
|
242
|
+
# Filter by tags array overlap
|
243
|
+
where_conditions << "d.metadata->'tags' ?| $#{param_index}::text[]"
|
244
|
+
params << value
|
245
|
+
param_index += 1
|
246
|
+
when :difficulty
|
247
|
+
# Filter by exact difficulty match
|
248
|
+
where_conditions << "d.metadata->>'difficulty' = $#{param_index}"
|
249
|
+
params << value
|
250
|
+
param_index += 1
|
251
|
+
when :source_type
|
252
|
+
# Filter by source type
|
253
|
+
where_conditions << "d.source_type = $#{param_index}"
|
254
|
+
params << value
|
255
|
+
param_index += 1
|
256
|
+
end
|
257
|
+
end
|
258
|
+
|
259
|
+
search_query = <<~SQL
|
260
|
+
SELECT
|
261
|
+
d.title,
|
262
|
+
d.content,
|
263
|
+
d.metadata,
|
264
|
+
de.embedding <=> $1::vector AS cosine_distance,
|
265
|
+
1 - (de.embedding <=> $1::vector) AS cosine_similarity
|
266
|
+
FROM documents d
|
267
|
+
JOIN document_embeddings de ON d.id = de.document_id
|
268
|
+
WHERE #{where_conditions.join(' AND ')}
|
269
|
+
ORDER BY de.embedding <=> $1::vector
|
270
|
+
LIMIT 3
|
271
|
+
SQL
|
272
|
+
|
273
|
+
result = @db.exec_params(search_query, params)
|
274
|
+
|
275
|
+
if result.ntuples == 0
|
276
|
+
puts " No results found with the specified filters"
|
277
|
+
return
|
278
|
+
end
|
279
|
+
|
280
|
+
result.each_with_index do |row, index|
|
281
|
+
similarity = (row['cosine_similarity'].to_f * 100).round(1)
|
282
|
+
puts " #{index + 1}. #{row['title']} (#{similarity}% similar)"
|
283
|
+
|
284
|
+
metadata = JSON.parse(row['metadata'])
|
285
|
+
puts " Difficulty: #{metadata['difficulty']}"
|
286
|
+
puts " Tags: #{metadata['tags']&.join(', ')}"
|
287
|
+
puts " #{row['content'][0..80]}..."
|
288
|
+
puts
|
289
|
+
end
|
290
|
+
|
291
|
+
rescue Prescient::Error => e
|
292
|
+
puts " ā Search failed: #{e.message}"
|
293
|
+
rescue PG::Error => e
|
294
|
+
puts " ā Database error: #{e.message}"
|
295
|
+
end
|
296
|
+
end
|
297
|
+
|
298
|
+
def compare_distance_functions
|
299
|
+
query_text = "programming languages and development"
|
300
|
+
|
301
|
+
puts "\nš Comparing distance functions for: '#{query_text}'"
|
302
|
+
|
303
|
+
%w[cosine l2 inner_product].each do |distance_func|
|
304
|
+
puts "\n #{distance_func.upcase} Distance:"
|
305
|
+
perform_similarity_search(query_text, limit: 2, distance_function: distance_func)
|
306
|
+
end
|
307
|
+
end
|
308
|
+
|
309
|
+
def cleanup
|
310
|
+
@db.close if @db
|
311
|
+
end
|
312
|
+
end
|
313
|
+
|
314
|
+
# Run the example
|
315
|
+
begin
|
316
|
+
example = VectorSearchExample.new
|
317
|
+
example.run_example
|
318
|
+
rescue StandardError => e
|
319
|
+
puts "ā Example failed: #{e.message}"
|
320
|
+
puts e.backtrace.first(5).join("\n")
|
321
|
+
ensure
|
322
|
+
example&.cleanup
|
323
|
+
end
|
324
|
+
|
325
|
+
puts "\nš” Next steps:"
|
326
|
+
puts " - Try different embedding models (OpenAI, HuggingFace)"
|
327
|
+
puts " - Implement hybrid search (vector + keyword)"
|
328
|
+
puts " - Add document chunking for large texts"
|
329
|
+
puts " - Experiment with different similarity thresholds"
|
330
|
+
puts " - Add result re-ranking and filtering"
|
@@ -0,0 +1,270 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
class Prescient::Base
|
4
|
+
attr_reader :options
|
5
|
+
|
6
|
+
def initialize(**options)
|
7
|
+
@options = options
|
8
|
+
validate_configuration!
|
9
|
+
end
|
10
|
+
|
11
|
+
# Abstract methods that must be implemented by subclasses
|
12
|
+
def generate_embedding(text)
|
13
|
+
raise NotImplementedError, "#{self.class} must implement #generate_embedding"
|
14
|
+
end
|
15
|
+
|
16
|
+
def generate_response(prompt, context_items = [], **options)
|
17
|
+
raise NotImplementedError, "#{self.class} must implement #generate_response"
|
18
|
+
end
|
19
|
+
|
20
|
+
def health_check
|
21
|
+
raise NotImplementedError, "#{self.class} must implement #health_check"
|
22
|
+
end
|
23
|
+
|
24
|
+
def available?
|
25
|
+
health_check[:status] == 'healthy'
|
26
|
+
rescue StandardError
|
27
|
+
false
|
28
|
+
end
|
29
|
+
|
30
|
+
protected
|
31
|
+
|
32
|
+
def validate_configuration!
|
33
|
+
# Override in subclasses to validate required configuration
|
34
|
+
end
|
35
|
+
|
36
|
+
def handle_errors
|
37
|
+
yield
|
38
|
+
rescue Prescient::Error
|
39
|
+
# Re-raise Prescient errors without wrapping
|
40
|
+
raise
|
41
|
+
rescue Net::ReadTimeout, Net::OpenTimeout => e
|
42
|
+
raise Prescient::ConnectionError, "Request timeout: #{e.message}"
|
43
|
+
rescue Net::HTTPError => e
|
44
|
+
raise Prescient::ConnectionError, "HTTP error: #{e.message}"
|
45
|
+
rescue JSON::ParserError => e
|
46
|
+
raise Prescient::InvalidResponseError, "Invalid JSON response: #{e.message}"
|
47
|
+
rescue StandardError => e
|
48
|
+
raise Prescient::Error, "Unexpected error: #{e.message}"
|
49
|
+
end
|
50
|
+
|
51
|
+
def normalize_embedding(embedding, target_dimensions)
|
52
|
+
return nil unless embedding.is_a?(Array)
|
53
|
+
return embedding if embedding.length == target_dimensions
|
54
|
+
|
55
|
+
if embedding.length > target_dimensions
|
56
|
+
# Truncate
|
57
|
+
embedding.first(target_dimensions)
|
58
|
+
else
|
59
|
+
# Pad with zeros
|
60
|
+
embedding + Array.new(target_dimensions - embedding.length, 0.0)
|
61
|
+
end
|
62
|
+
end
|
63
|
+
|
64
|
+
def clean_text(text)
|
65
|
+
return '' if text.nil? || text.to_s.strip.empty?
|
66
|
+
|
67
|
+
cleaned = text.to_s
|
68
|
+
.strip
|
69
|
+
.gsub(/\s+/, ' ')
|
70
|
+
|
71
|
+
# Limit length for most models
|
72
|
+
cleaned.length > 8000 ? cleaned[0, 8000] : cleaned
|
73
|
+
end
|
74
|
+
|
75
|
+
# Default prompt templates - can be overridden in provider options
|
76
|
+
def default_prompt_templates
|
77
|
+
{
|
78
|
+
system_prompt: 'You are a helpful AI assistant. Answer questions clearly and accurately.',
|
79
|
+
no_context_template: <<~TEMPLATE.strip,
|
80
|
+
%<system_prompt>s
|
81
|
+
|
82
|
+
Question: %<query>s
|
83
|
+
|
84
|
+
Please provide a helpful response based on your knowledge.
|
85
|
+
TEMPLATE
|
86
|
+
with_context_template: <<~TEMPLATE.strip,
|
87
|
+
%<system_prompt>s Use the following context to answer the question. If the context doesn't contain relevant information, say so clearly.
|
88
|
+
|
89
|
+
Context:
|
90
|
+
%<context>s
|
91
|
+
|
92
|
+
Question: %<query>s
|
93
|
+
|
94
|
+
Please provide a helpful response based on the context above.
|
95
|
+
TEMPLATE
|
96
|
+
}
|
97
|
+
end
|
98
|
+
|
99
|
+
# Build prompt using configurable templates
|
100
|
+
def build_prompt(query, context_items = [])
|
101
|
+
templates = default_prompt_templates.merge(@options[:prompt_templates] || {})
|
102
|
+
system_prompt = templates[:system_prompt]
|
103
|
+
|
104
|
+
if context_items.empty?
|
105
|
+
templates[:no_context_template] % {
|
106
|
+
system_prompt: system_prompt,
|
107
|
+
query: query,
|
108
|
+
}
|
109
|
+
else
|
110
|
+
context_text = context_items.map.with_index(1) { |item, index|
|
111
|
+
"#{index}. #{format_context_item(item)}"
|
112
|
+
}.join("\n\n")
|
113
|
+
|
114
|
+
templates[:with_context_template] % {
|
115
|
+
system_prompt: system_prompt,
|
116
|
+
context: context_text,
|
117
|
+
query: query,
|
118
|
+
}
|
119
|
+
end
|
120
|
+
end
|
121
|
+
|
122
|
+
# Minimal default context configuration - users should define their own contexts
|
123
|
+
def default_context_configs
|
124
|
+
{
|
125
|
+
# Generic fallback configuration - works with any hash structure
|
126
|
+
'default' => {
|
127
|
+
fields: [], # Will be dynamically determined from item keys
|
128
|
+
format: nil, # Will use fallback formatting
|
129
|
+
embedding_fields: [], # Will use all string/text fields
|
130
|
+
},
|
131
|
+
}
|
132
|
+
end
|
133
|
+
|
134
|
+
# Extract text for embedding generation based on context configuration
|
135
|
+
def extract_embedding_text(item, context_type = nil)
|
136
|
+
return item.to_s unless item.is_a?(Hash)
|
137
|
+
|
138
|
+
config = resolve_context_config(item, context_type)
|
139
|
+
text_values = extract_configured_fields(item, config) || extract_text_values(item)
|
140
|
+
text_values.join(' ').strip
|
141
|
+
end
|
142
|
+
|
143
|
+
# Extract text values from hash, excluding non-textual fields
|
144
|
+
def extract_text_values(item)
|
145
|
+
# Common fields to exclude from embedding text
|
146
|
+
exclude_fields = ['id', '_id', 'uuid', 'created_at', 'updated_at', 'timestamp', 'version', 'status', 'active']
|
147
|
+
|
148
|
+
item.filter_map { |key, value|
|
149
|
+
next if exclude_fields.include?(key.to_s.downcase)
|
150
|
+
next unless value.is_a?(String) || value.is_a?(Numeric)
|
151
|
+
next if value.to_s.strip.empty?
|
152
|
+
|
153
|
+
value.to_s
|
154
|
+
}
|
155
|
+
end
|
156
|
+
|
157
|
+
# Generic context item formatting using configurable contexts
|
158
|
+
def format_context_item(item)
|
159
|
+
case item
|
160
|
+
when Hash then format_hash_item(item)
|
161
|
+
when String then item
|
162
|
+
else item.to_s
|
163
|
+
end
|
164
|
+
end
|
165
|
+
|
166
|
+
private
|
167
|
+
|
168
|
+
# Resolve context configuration for an item
|
169
|
+
def resolve_context_config(item, context_type)
|
170
|
+
context_configs = default_context_configs.merge(@options[:context_configs] || {})
|
171
|
+
return context_configs['default'] if context_configs.empty?
|
172
|
+
|
173
|
+
detected_type = context_type || detect_context_type(item)
|
174
|
+
context_configs[detected_type] || context_configs['default']
|
175
|
+
end
|
176
|
+
|
177
|
+
# Extract fields configured for embeddings
|
178
|
+
def extract_configured_fields(item, config)
|
179
|
+
return nil unless config[:embedding_fields]&.any?
|
180
|
+
|
181
|
+
config[:embedding_fields].filter_map { |field| item[field] || item[field.to_sym] }
|
182
|
+
end
|
183
|
+
|
184
|
+
# Format a hash item using context configuration
|
185
|
+
def format_hash_item(item)
|
186
|
+
config = resolve_context_config(item, nil)
|
187
|
+
return fallback_format_hash(item) unless config[:format]
|
188
|
+
|
189
|
+
format_data = build_format_data(item, config)
|
190
|
+
return fallback_format_hash(item) unless format_data.any?
|
191
|
+
|
192
|
+
apply_format_template(config[:format], format_data) || fallback_format_hash(item)
|
193
|
+
end
|
194
|
+
|
195
|
+
# Build format data from item fields
|
196
|
+
def build_format_data(item, config)
|
197
|
+
format_data = {}
|
198
|
+
fields_to_check = config[:fields].any? ? config[:fields] : item.keys.map(&:to_s)
|
199
|
+
|
200
|
+
fields_to_check.each do |field|
|
201
|
+
value = item[field] || item[field.to_sym]
|
202
|
+
format_data[field.to_sym] = value if value
|
203
|
+
end
|
204
|
+
|
205
|
+
format_data
|
206
|
+
end
|
207
|
+
|
208
|
+
# Apply format template with error handling
|
209
|
+
def apply_format_template(template, format_data)
|
210
|
+
template % format_data
|
211
|
+
rescue KeyError
|
212
|
+
nil
|
213
|
+
end
|
214
|
+
|
215
|
+
# Detect context type from item structure
|
216
|
+
def detect_context_type(item)
|
217
|
+
return 'default' unless item.is_a?(Hash)
|
218
|
+
|
219
|
+
# Check for explicit type fields (user-defined)
|
220
|
+
return item['type'].to_s if item['type']
|
221
|
+
return item['context_type'].to_s if item['context_type']
|
222
|
+
return item['model_type'].to_s.downcase if item['model_type']
|
223
|
+
|
224
|
+
# If no explicit type and user has configured contexts, try to match
|
225
|
+
context_configs = @options[:context_configs] || {}
|
226
|
+
return match_context_by_fields(item, context_configs) if context_configs.any?
|
227
|
+
|
228
|
+
# Default fallback
|
229
|
+
'default'
|
230
|
+
end
|
231
|
+
|
232
|
+
# Match context type based on configured field patterns
|
233
|
+
def match_context_by_fields(item, context_configs)
|
234
|
+
item_fields = item.keys.map(&:to_s)
|
235
|
+
best_match = find_best_field_match(item_fields, context_configs)
|
236
|
+
best_match || 'default'
|
237
|
+
end
|
238
|
+
|
239
|
+
# Find the best matching context configuration
|
240
|
+
def find_best_field_match(item_fields, context_configs)
|
241
|
+
best_match = nil
|
242
|
+
best_score = 0
|
243
|
+
|
244
|
+
context_configs.each do |context_type, config|
|
245
|
+
next unless config[:fields]&.any?
|
246
|
+
|
247
|
+
score = calculate_field_match_score(item_fields, config[:fields])
|
248
|
+
next unless score >= 0.5 && score > best_score
|
249
|
+
|
250
|
+
best_match = context_type
|
251
|
+
best_score = score
|
252
|
+
end
|
253
|
+
|
254
|
+
best_match
|
255
|
+
end
|
256
|
+
|
257
|
+
# Calculate field matching score
|
258
|
+
def calculate_field_match_score(item_fields, config_fields)
|
259
|
+
return 0 if config_fields.empty?
|
260
|
+
|
261
|
+
matching_fields = (item_fields & config_fields).size
|
262
|
+
matching_fields.to_f / config_fields.size
|
263
|
+
end
|
264
|
+
|
265
|
+
# Fallback formatting for hash items
|
266
|
+
def fallback_format_hash(item, format_data = nil)
|
267
|
+
# Fallback: join key-value pairs
|
268
|
+
(format_data || item).map { |k, v| "#{k}: #{v}" }.join(', ')
|
269
|
+
end
|
270
|
+
end
|
@@ -0,0 +1,107 @@
|
|
1
|
+
# frozen_string_literal: true
|
2
|
+
|
3
|
+
module Prescient
|
4
|
+
class Client
|
5
|
+
attr_reader :provider_name
|
6
|
+
attr_reader :provider
|
7
|
+
|
8
|
+
def initialize(provider_name = nil)
|
9
|
+
@provider_name = provider_name || Prescient.configuration.default_provider
|
10
|
+
@provider = Prescient.configuration.provider(@provider_name)
|
11
|
+
|
12
|
+
raise Prescient::Error, "Provider not found: #{@provider_name}" unless @provider
|
13
|
+
end
|
14
|
+
|
15
|
+
def generate_embedding(text, **options)
|
16
|
+
with_error_handling do
|
17
|
+
if options.any?
|
18
|
+
@provider.generate_embedding(text, **options)
|
19
|
+
else
|
20
|
+
@provider.generate_embedding(text)
|
21
|
+
end
|
22
|
+
end
|
23
|
+
end
|
24
|
+
|
25
|
+
def generate_response(prompt, context_items = [], **options)
|
26
|
+
with_error_handling do
|
27
|
+
if options.any?
|
28
|
+
@provider.generate_response(prompt, context_items, **options)
|
29
|
+
else
|
30
|
+
@provider.generate_response(prompt, context_items)
|
31
|
+
end
|
32
|
+
end
|
33
|
+
end
|
34
|
+
|
35
|
+
def health_check
|
36
|
+
@provider.health_check
|
37
|
+
end
|
38
|
+
|
39
|
+
def available?
|
40
|
+
@provider.available?
|
41
|
+
end
|
42
|
+
|
43
|
+
def provider_info
|
44
|
+
{
|
45
|
+
name: @provider_name,
|
46
|
+
class: @provider.class.name.split('::').last,
|
47
|
+
available: available?,
|
48
|
+
options: sanitize_options(@provider.options),
|
49
|
+
}
|
50
|
+
end
|
51
|
+
|
52
|
+
def method_missing(method_name, ...)
|
53
|
+
if @provider.respond_to?(method_name)
|
54
|
+
@provider.send(method_name, ...)
|
55
|
+
else
|
56
|
+
super
|
57
|
+
end
|
58
|
+
end
|
59
|
+
|
60
|
+
def respond_to_missing?(method_name, include_private = false)
|
61
|
+
@provider.respond_to?(method_name, include_private) || super
|
62
|
+
end
|
63
|
+
|
64
|
+
private
|
65
|
+
|
66
|
+
def sanitize_options(options)
|
67
|
+
sensitive_keys = [:api_key, :password, :token, :secret]
|
68
|
+
options.reject { |key, _| sensitive_keys.include?(key.to_sym) }
|
69
|
+
end
|
70
|
+
|
71
|
+
def with_error_handling
|
72
|
+
retries = 0
|
73
|
+
begin
|
74
|
+
yield
|
75
|
+
rescue Prescient::RateLimitError => e
|
76
|
+
raise e unless retries < Prescient.configuration.retry_attempts
|
77
|
+
|
78
|
+
retries += 1
|
79
|
+
sleep(Prescient.configuration.retry_delay * retries)
|
80
|
+
retry
|
81
|
+
rescue Prescient::ConnectionError => e
|
82
|
+
raise e unless retries < Prescient.configuration.retry_attempts
|
83
|
+
|
84
|
+
retries += 1
|
85
|
+
sleep(Prescient.configuration.retry_delay)
|
86
|
+
retry
|
87
|
+
end
|
88
|
+
end
|
89
|
+
end
|
90
|
+
|
91
|
+
# Convenience methods for quick access
|
92
|
+
def self.client(provider_name = nil)
|
93
|
+
Client.new(provider_name)
|
94
|
+
end
|
95
|
+
|
96
|
+
def self.generate_embedding(text, provider: nil, **options)
|
97
|
+
client(provider).generate_embedding(text, **options)
|
98
|
+
end
|
99
|
+
|
100
|
+
def self.generate_response(prompt, context_items = [], provider: nil, **options)
|
101
|
+
client(provider).generate_response(prompt, context_items, **options)
|
102
|
+
end
|
103
|
+
|
104
|
+
def self.health_check(provider: nil)
|
105
|
+
client(provider).health_check
|
106
|
+
end
|
107
|
+
end
|