postrunner 0.3.0 → 0.4.0
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- checksums.yaml +4 -4
- data/README.md +8 -6
- data/lib/postrunner/DailyMonitoringAnalyzer.rb +239 -0
- data/lib/postrunner/DailySleepAnalyzer.rb +418 -125
- data/lib/postrunner/FFS_Device.rb +3 -7
- data/lib/postrunner/FFS_Monitoring.rb +0 -2
- data/lib/postrunner/FitFileStore.rb +10 -9
- data/lib/postrunner/FlexiTable.rb +6 -1
- data/lib/postrunner/Main.rb +12 -12
- data/lib/postrunner/MonitoringStatistics.rb +372 -0
- data/lib/postrunner/SleepCycle.rb +198 -0
- data/lib/postrunner/version.rb +1 -1
- data/postrunner.gemspec +10 -2
- data/spec/PostRunner_spec.rb +8 -0
- metadata +17 -10
- data/lib/postrunner/SleepStatistics.rb +0 -117
checksums.yaml
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
---
|
2
2
|
SHA1:
|
3
|
-
metadata.gz:
|
4
|
-
data.tar.gz:
|
3
|
+
metadata.gz: c470dc3a2d1c211ae2c294e98392d9a2621b2ade
|
4
|
+
data.tar.gz: 201bf757b216cb48ab8bf4cf9ace6fae602b7730
|
5
5
|
SHA512:
|
6
|
-
metadata.gz:
|
7
|
-
data.tar.gz:
|
6
|
+
metadata.gz: 2e9a5edc603c22081b74c538f5249943eabc266bb9eb54083c57e7664f948df27f9881a83f47d2db28862360c614e81cd2139b9775819ce46c7321b1d59a104e
|
7
|
+
data.tar.gz: 9bcd6103ac667230b1309b1bf31bcdda583ba651d016dee32510786faa8da52d13f4d06daf8c069f0ff4bdfb3d0563a1a324f865f55e80ef82ede97bbc291b20
|
data/README.md
CHANGED
@@ -2,12 +2,14 @@
|
|
2
2
|
|
3
3
|
PostRunner is an application to manage FIT files such as those
|
4
4
|
produced by Garmin products like the Forerunner 620 (FR620) and Fenix
|
5
|
-
3. It allows you to import the files from the device and
|
6
|
-
In addition to the common features like plotting pace,
|
7
|
-
elevation and other captured values it also provides a
|
8
|
-
variability (HRV) analysis. It can also update satellite
|
9
|
-
(EPO) data on the device to speed-up fix times.
|
10
|
-
alternative to Garmin Connect.
|
5
|
+
3 or Fenix 3HR. It allows you to import the files from the device and
|
6
|
+
analyze the data. In addition to the common features like plotting pace,
|
7
|
+
heart rates, elevation and other captured values it also provides a
|
8
|
+
heart rate variability (HRV) analysis. It can also update satellite
|
9
|
+
orbit prediction (EPO) data on the device to speed-up GPS fix times.
|
10
|
+
It is an offline alternative to Garmin Connect. The software has been
|
11
|
+
developed and tested on Linux but should work on other operating
|
12
|
+
systems as well.
|
11
13
|
|
12
14
|
## Installation
|
13
15
|
|
@@ -0,0 +1,239 @@
|
|
1
|
+
#!/usr/bin/env ruby -w
|
2
|
+
# encoding: UTF-8
|
3
|
+
#
|
4
|
+
# = DailyMonitoringAnalzyer.rb -- PostRunner - Manage the data from your Garmin sport devices.
|
5
|
+
#
|
6
|
+
# Copyright (c) 2016 by Chris Schlaeger <cs@taskjuggler.org>
|
7
|
+
#
|
8
|
+
# This program is free software; you can redistribute it and/or modify
|
9
|
+
# it under the terms of version 2 of the GNU General Public License as
|
10
|
+
# published by the Free Software Foundation.
|
11
|
+
#
|
12
|
+
|
13
|
+
require 'fit4ruby'
|
14
|
+
|
15
|
+
module PostRunner
|
16
|
+
|
17
|
+
class DailyMonitoringAnalyzer
|
18
|
+
|
19
|
+
attr_reader :window_start_time, :window_end_time
|
20
|
+
|
21
|
+
class MonitoringSample
|
22
|
+
|
23
|
+
attr_reader :timestamp, :activity_type, :cycles, :steps,
|
24
|
+
:floors_climbed, :floors_descended, :distance,
|
25
|
+
:active_calories, :weekly_moderate_activity_minutes,
|
26
|
+
:weekly_vigorous_activity_minutes
|
27
|
+
|
28
|
+
def initialize(m)
|
29
|
+
@timestamp = m.timestamp
|
30
|
+
types = [
|
31
|
+
'generic', 'running', 'cycling', 'transition',
|
32
|
+
'fitness_equipment', 'swimming', 'walking', 'unknown7',
|
33
|
+
'resting', 'unknown9'
|
34
|
+
]
|
35
|
+
if (cati = m.current_activity_type_intensity)
|
36
|
+
@activity_type = types[cati & 0x1F]
|
37
|
+
@activity_intensity = (cati >> 5) & 0x7
|
38
|
+
else
|
39
|
+
@activity_type = m.activity_type
|
40
|
+
end
|
41
|
+
@active_time = m.active_time
|
42
|
+
@active_calories = m.active_calories
|
43
|
+
@ascent = m.ascent
|
44
|
+
@descent = m.descent
|
45
|
+
@floors_climbed = m.floors_climbed
|
46
|
+
@floors_descended = m.floors_descended
|
47
|
+
@cycles = m.cycles
|
48
|
+
@distance = m.distance
|
49
|
+
@duration_min = m.duration_min
|
50
|
+
@heart_rate = m.heart_rate
|
51
|
+
@steps = m.steps
|
52
|
+
@weekly_moderate_activity_minutes = m.weekly_moderate_activity_minutes
|
53
|
+
@weekly_vigorous_activity_minutes = m.weekly_vigorous_activity_minutes
|
54
|
+
end
|
55
|
+
|
56
|
+
end
|
57
|
+
|
58
|
+
def initialize(monitoring_files, day)
|
59
|
+
# Day as Time object. Midnight UTC.
|
60
|
+
day_as_time = Time.parse(day + "-00:00:00+00:00").gmtime
|
61
|
+
|
62
|
+
@samples = []
|
63
|
+
extract_data_from_monitor_files(monitoring_files, day_as_time)
|
64
|
+
|
65
|
+
# We must have information about the local time zone the data was
|
66
|
+
# recorded in. Abort if not available.
|
67
|
+
return unless @utc_offset
|
68
|
+
end
|
69
|
+
|
70
|
+
def total_distance
|
71
|
+
distance = 0.0
|
72
|
+
@samples.each do |s|
|
73
|
+
if s.distance && s.distance > distance
|
74
|
+
distance = s.distance
|
75
|
+
end
|
76
|
+
end
|
77
|
+
|
78
|
+
distance
|
79
|
+
end
|
80
|
+
|
81
|
+
def total_floors
|
82
|
+
floors_climbed = floors_descended = 0.0
|
83
|
+
|
84
|
+
@samples.each do |s|
|
85
|
+
if s.floors_climbed && s.floors_climbed > floors_climbed
|
86
|
+
floors_climbed = s.floors_climbed
|
87
|
+
end
|
88
|
+
if s.floors_descended && s.floors_descended > floors_descended
|
89
|
+
floors_descended = s.floors_descended
|
90
|
+
end
|
91
|
+
end
|
92
|
+
|
93
|
+
{ :floors_climbed => (floors_climbed / 3.048).floor,
|
94
|
+
:floors_descended => (floors_descended / 3.048).floor }
|
95
|
+
end
|
96
|
+
|
97
|
+
def steps_distance_calories
|
98
|
+
total_cycles = Hash.new(0.0)
|
99
|
+
total_distance = Hash.new(0.0)
|
100
|
+
total_calories = Hash.new(0.0)
|
101
|
+
|
102
|
+
@samples.each do |s|
|
103
|
+
at = s.activity_type
|
104
|
+
if s.cycles && s.cycles > total_cycles[at]
|
105
|
+
total_cycles[at] = s.cycles
|
106
|
+
end
|
107
|
+
if s.distance && s.distance > total_distance[at]
|
108
|
+
total_distance[at] = s.distance
|
109
|
+
end
|
110
|
+
if s.active_calories && s.active_calories > total_calories[at]
|
111
|
+
total_calories[at] = s.active_calories
|
112
|
+
end
|
113
|
+
end
|
114
|
+
|
115
|
+
distance = calories = 0.0
|
116
|
+
if @monitoring_info
|
117
|
+
if @monitoring_info.activity_type &&
|
118
|
+
@monitoring_info.cycles_to_distance &&
|
119
|
+
@monitoring_info.cycles_to_calories
|
120
|
+
walking_cycles_to_distance = running_cycles_to_distance = nil
|
121
|
+
walking_cycles_to_calories = running_cycles_to_calories = nil
|
122
|
+
|
123
|
+
@monitoring_info.activity_type.each_with_index do |at, idx|
|
124
|
+
if at == 'walking'
|
125
|
+
walking_cycles_to_distance =
|
126
|
+
@monitoring_info.cycles_to_distance[idx]
|
127
|
+
walking_cycles_to_calories =
|
128
|
+
@monitoring_info.cycles_to_calories[idx]
|
129
|
+
elsif at == 'running'
|
130
|
+
running_cycles_to_distance =
|
131
|
+
@monitoring_info.cycles_to_distance[idx]
|
132
|
+
running_cycles_to_calories =
|
133
|
+
@monitoring_info.cycles_to_calories[idx]
|
134
|
+
end
|
135
|
+
end
|
136
|
+
distance = total_distance.values.inject(0.0, :+)
|
137
|
+
calories = total_calories.values.inject(0.0, :+) +
|
138
|
+
@monitoring_info.resting_metabolic_rate
|
139
|
+
end
|
140
|
+
end
|
141
|
+
|
142
|
+
{ :steps => ((total_cycles['walking'] + total_cycles['running']) * 2 +
|
143
|
+
total_cycles['generic']).to_i,
|
144
|
+
:distance => distance, :calories => calories }
|
145
|
+
end
|
146
|
+
|
147
|
+
def intensity_minutes
|
148
|
+
moderate_minutes = vigorous_minutes = 0.0
|
149
|
+
@samples.each do |s|
|
150
|
+
if s.weekly_moderate_activity_minutes &&
|
151
|
+
s.weekly_moderate_activity_minutes > moderate_minutes
|
152
|
+
moderate_minutes = s.weekly_moderate_activity_minutes
|
153
|
+
end
|
154
|
+
if s.weekly_vigorous_activity_minutes &&
|
155
|
+
s.weekly_vigorous_activity_minutes > vigorous_minutes
|
156
|
+
vigorous_minutes = s.weekly_vigorous_activity_minutes
|
157
|
+
end
|
158
|
+
end
|
159
|
+
|
160
|
+
{ :moderate_minutes => moderate_minutes,
|
161
|
+
:vigorous_minutes => vigorous_minutes }
|
162
|
+
end
|
163
|
+
|
164
|
+
def steps_goal
|
165
|
+
if @monitoring_info && @monitoring_info.goal_cycles &&
|
166
|
+
@monitoring_info.goal_cycles[0]
|
167
|
+
@monitoring_info.goal_cycles[0]
|
168
|
+
else
|
169
|
+
0
|
170
|
+
end
|
171
|
+
end
|
172
|
+
|
173
|
+
def samples
|
174
|
+
@samples.length
|
175
|
+
end
|
176
|
+
|
177
|
+
private
|
178
|
+
|
179
|
+
def get_monitoring_info(monitoring_file)
|
180
|
+
# The monitoring files have a monitoring_info section that contains a
|
181
|
+
# timestamp in UTC and a local_time field for the same time in the local
|
182
|
+
# time. If any of that isn't present, we use an offset of 0.
|
183
|
+
if (mis = monitoring_file.monitoring_infos).nil? || mis.empty? ||
|
184
|
+
(mi = mis[0]).nil? || mi.local_time.nil? || mi.timestamp.nil?
|
185
|
+
return nil
|
186
|
+
end
|
187
|
+
|
188
|
+
mi
|
189
|
+
end
|
190
|
+
|
191
|
+
# Load monitoring data from monitoring_b FIT files into Arrays.
|
192
|
+
# @param monitoring_files [Array of Monitoring_B] FIT files to read
|
193
|
+
# @param day [Time] Midnight UTC of the day to analyze
|
194
|
+
def extract_data_from_monitor_files(monitoring_files, day)
|
195
|
+
monitoring_files.each do |mf|
|
196
|
+
next unless (mi = get_monitoring_info(mf))
|
197
|
+
|
198
|
+
utc_offset = mi.local_time - mi.timestamp
|
199
|
+
# Midnight (local time) of the requested day.
|
200
|
+
window_start_time = day - utc_offset
|
201
|
+
# Midnight (local time) of the next day
|
202
|
+
window_end_time = window_start_time + 24 * 60 * 60
|
203
|
+
|
204
|
+
# Ignore all files with data prior to the potential time window.
|
205
|
+
next if mf.monitorings.empty? ||
|
206
|
+
mf.monitorings.last.timestamp < window_start_time
|
207
|
+
|
208
|
+
if @utc_offset.nil?
|
209
|
+
# The instance variables will only be set once we have found our
|
210
|
+
# first monitoring file that matches the requested day. We use the
|
211
|
+
# local time setting for this first file even if it changes in
|
212
|
+
# subsequent files.
|
213
|
+
@window_start_time = window_start_time
|
214
|
+
@window_end_time = window_end_time
|
215
|
+
@utc_offset = utc_offset
|
216
|
+
end
|
217
|
+
|
218
|
+
if @monitoring_info.nil? && @window_start_time <= mi.local_time &&
|
219
|
+
mi.local_time < @window_end_time
|
220
|
+
@monitoring_info = mi
|
221
|
+
end
|
222
|
+
|
223
|
+
mf.monitorings.each do |m|
|
224
|
+
# Ignore all entries outside our time window. It's important to note
|
225
|
+
# that records with a midnight timestamp contain totals from the day
|
226
|
+
# before.
|
227
|
+
next if m.timestamp <= @window_start_time ||
|
228
|
+
m.timestamp > @window_end_time
|
229
|
+
|
230
|
+
@samples << MonitoringSample.new(m)
|
231
|
+
end
|
232
|
+
end
|
233
|
+
|
234
|
+
end
|
235
|
+
|
236
|
+
end
|
237
|
+
|
238
|
+
end
|
239
|
+
|
@@ -12,206 +12,499 @@
|
|
12
12
|
|
13
13
|
require 'fit4ruby'
|
14
14
|
|
15
|
+
require 'postrunner/SleepCycle'
|
16
|
+
|
15
17
|
module PostRunner
|
16
18
|
|
17
19
|
# This class extracts the sleep information from a set of monitoring files
|
18
20
|
# and determines when and how long the user was awake or had a light or deep
|
19
|
-
# sleep.
|
21
|
+
# sleep. Determining the sleep state of a person purely based on wrist
|
22
|
+
# movement data is not very accurate. It gets a lot more accurate when heart
|
23
|
+
# rate data is available as well. The heart rate describes a sinus-like
|
24
|
+
# curve that aligns with the sleep cycles. Each sinus cycle corresponds to a
|
25
|
+
# sleep cycle. Unfortunately, current Garmin devices only use a default
|
26
|
+
# sampling time of 15 minutes. Since a sleep cycle is broken down into
|
27
|
+
# various sleep phases that normally last 10 - 15 minutes, there is a fairly
|
28
|
+
# high margin of error to determine the exact timing of the sleep cycle.
|
29
|
+
#
|
30
|
+
# HR High -----+ +-------+ +------+
|
31
|
+
# HR Low +---+ +--------+ +---
|
32
|
+
# Mov High --+ +-------+ +-----+ +--
|
33
|
+
# Mov Low +---------+ +--+ +-----+
|
34
|
+
# Phase wk n1 n3 n2 rem n2 n3 n2 rem n2 n3 n2
|
35
|
+
# Cycle 1 2 3
|
36
|
+
#
|
37
|
+
# Legend: wk: wake n1: NREM1, n2: NREM2, n3: NREM3, rem: REM sleep
|
38
|
+
#
|
39
|
+
# Too frequent or too strong movements abort the cycle to wake.
|
20
40
|
class DailySleepAnalyzer
|
21
41
|
|
22
|
-
|
23
|
-
|
24
|
-
|
42
|
+
attr_reader :sleep_cycles, :utc_offset,
|
43
|
+
:total_sleep, :rem_sleep, :deep_sleep, :light_sleep,
|
44
|
+
:resting_heart_rate, :window_start_time, :window_end_time
|
25
45
|
|
26
|
-
|
27
|
-
:total_sleep, :deep_sleep, :light_sleep
|
46
|
+
TIME_WINDOW_MINUTES = 24 * 60
|
28
47
|
|
29
48
|
# Create a new DailySleepAnalyzer object to analyze the given monitoring
|
30
49
|
# files.
|
31
50
|
# @param monitoring_files [Array] A set of Monitoring_B objects
|
32
51
|
# @param day [String] Day to analyze as YY-MM-DD string
|
33
|
-
|
34
|
-
|
35
|
-
|
52
|
+
# @param window_offest_secs [Fixnum] Offset (in seconds) of the time
|
53
|
+
# window to analyze against the midnight of the specified day
|
54
|
+
def initialize(monitoring_files, day, window_offest_secs)
|
55
|
+
@window_start_time = @window_end_time = @utc_offset = nil
|
56
|
+
|
57
|
+
# The following activity types are known:
|
58
|
+
# [ :undefined, :running, :cycling, :transition,
|
59
|
+
# :fitness_equipment, :swimming, :walking, :unknown7,
|
60
|
+
# :resting, :unknown9 ]
|
61
|
+
@activity_type = Array.new(TIME_WINDOW_MINUTES, nil)
|
62
|
+
# The activity values in the FIT files can range from 0 to 7.
|
63
|
+
@activity_intensity = Array.new(TIME_WINDOW_MINUTES, nil)
|
64
|
+
# Wrist motion data is not very well suited to determine wake or sleep
|
65
|
+
# states. A single movement can be a turning motion, a NREM1 jerk or
|
66
|
+
# even a movement while you dream. The fewer motions are detected, the
|
67
|
+
# more likely you are really asleep. To even out single spikes, we
|
68
|
+
# average the motions over a period of time. This Array stores the
|
69
|
+
# weighted activity.
|
70
|
+
@weighted_sleep_activity = Array.new(TIME_WINDOW_MINUTES, 8)
|
71
|
+
# We classify the sleep activity into :wake, :low_activity and
|
72
|
+
# :no_activity in this Array.
|
73
|
+
@sleep_activity_classification = Array.new(TIME_WINDOW_MINUTES, nil)
|
74
|
+
|
75
|
+
# The data from the monitoring files is stored in Arrays that cover 24
|
76
|
+
# hours at 1 minute resolution. The algorithm currently cannot handle
|
77
|
+
# time zone or DST changes. The day is always 24 hours and the local
|
78
|
+
# time at noon the previous day is used for the whole window.
|
79
|
+
@heart_rate = Array.new(TIME_WINDOW_MINUTES, nil)
|
80
|
+
# From the wrist motion data and if available from the heart rate data,
|
81
|
+
# we try to guess the sleep phase (:wake, :rem, :nrem1, :nrem2, :nrem3).
|
82
|
+
# This Array will hold a minute-by-minute list of the guessed sleep
|
83
|
+
# phase.
|
84
|
+
@sleep_phase = Array.new(TIME_WINDOW_MINUTES, :wake)
|
85
|
+
# The DailySleepAnalzyer extracts the sleep cycles from the monitoring
|
86
|
+
# data. Each night usually has 5 - 6 sleep cycles. If we have heart rate
|
87
|
+
# data, those cycles can be identified fairly well. If we have to rely
|
88
|
+
# on wrist motion data only, we usually find more cycles than there
|
89
|
+
# actually were. Each cycle is captured as SleepCycle object.
|
90
|
+
@sleep_cycles = []
|
91
|
+
# The resting heart rate.
|
92
|
+
@resting_heart_rate = nil
|
36
93
|
|
37
94
|
# Day as Time object. Midnight UTC.
|
38
95
|
day_as_time = Time.parse(day + "-00:00:00+00:00").gmtime
|
39
|
-
extract_data_from_monitor_files(monitoring_files, day_as_time
|
40
|
-
|
41
|
-
|
42
|
-
|
43
|
-
|
96
|
+
extract_data_from_monitor_files(monitoring_files, day_as_time,
|
97
|
+
window_offest_secs)
|
98
|
+
|
99
|
+
# We must have information about the local time zone the data was
|
100
|
+
# recorded in. Abort if not available.
|
101
|
+
return unless @utc_offset
|
102
|
+
|
103
|
+
fill_monitoring_data
|
104
|
+
categorize_sleep_activity
|
105
|
+
|
106
|
+
if categorize_sleep_heart_rate
|
107
|
+
# We have usable heart rate data for the sleep periods. Correlating
|
108
|
+
# wrist motion data with heart rate cycles will greatly improve the
|
109
|
+
# sleep phase and sleep cycle detection.
|
110
|
+
categorize_sleep_phase_by_hr_level
|
111
|
+
@sleep_cycles.each do |c|
|
112
|
+
# Adjust the cycle boundaries to align with REM phase.
|
113
|
+
c.adjust_cycle_boundaries(@sleep_phase)
|
114
|
+
# Detect sleep phases for each cycle.
|
115
|
+
c.detect_phases(@sleep_phase)
|
116
|
+
end
|
117
|
+
else
|
118
|
+
# We have no usable heart rate data. Just guess sleep phases based on
|
119
|
+
# wrist motion data.
|
120
|
+
categorize_sleep_phase_by_activity_level
|
121
|
+
@sleep_cycles.each { |c| c.detect_phases(@sleep_phase) }
|
122
|
+
end
|
123
|
+
dump_data
|
124
|
+
delete_wake_cycles
|
125
|
+
determine_resting_heart_rate
|
44
126
|
calculate_totals
|
45
127
|
end
|
46
128
|
|
47
129
|
private
|
48
130
|
|
49
|
-
def
|
131
|
+
def get_monitoring_info(monitoring_file)
|
50
132
|
# The monitoring files have a monitoring_info section that contains a
|
51
133
|
# timestamp in UTC and a local_time field for the same time in the local
|
52
134
|
# time. If any of that isn't present, we use an offset of 0.
|
53
|
-
if (
|
54
|
-
(
|
55
|
-
return
|
135
|
+
if (mis = monitoring_file.monitoring_infos).nil? || mis.empty? ||
|
136
|
+
(mi = mis[0]).nil? || mi.local_time.nil? || mi.timestamp.nil?
|
137
|
+
return nil
|
56
138
|
end
|
57
139
|
|
58
|
-
|
59
|
-
# offset.
|
60
|
-
localtime - mi[0].timestamp
|
140
|
+
mi
|
61
141
|
end
|
62
142
|
|
63
|
-
|
64
|
-
|
65
|
-
|
66
|
-
|
143
|
+
# Load monitoring data from monitoring_b FIT files into Arrays.
|
144
|
+
# @param monitoring_files [Array of Monitoring_B] FIT files to read
|
145
|
+
# @param day [Time] Midnight UTC of the day to analyze
|
146
|
+
# @param window_offest_secs [Fixnum] Difference between midnight and the
|
147
|
+
# start of the time window to analyze.
|
148
|
+
def extract_data_from_monitor_files(monitoring_files, day,
|
149
|
+
window_offest_secs)
|
67
150
|
monitoring_files.each do |mf|
|
68
|
-
|
151
|
+
next unless (mi = get_monitoring_info(mf))
|
152
|
+
|
153
|
+
utc_offset = mi.local_time - mi.timestamp
|
154
|
+
# Midnight (local time) of the requested day.
|
155
|
+
midnight_today = day - utc_offset
|
69
156
|
# Noon (local time) the day before the requested day. The time object
|
70
157
|
# is UTC for the noon time in the local time zone.
|
71
|
-
|
158
|
+
window_start_time = midnight_today + window_offest_secs
|
72
159
|
# Noon (local time) of the current day
|
73
|
-
|
160
|
+
window_end_time = window_start_time + TIME_WINDOW_MINUTES * 60
|
161
|
+
|
162
|
+
# Ignore all files with data prior to the potential time window.
|
163
|
+
next if mf.monitorings.empty? ||
|
164
|
+
mf.monitorings.last.timestamp < window_start_time
|
165
|
+
|
166
|
+
if @utc_offset.nil?
|
167
|
+
# The instance variables will only be set once we have found our
|
168
|
+
# first monitoring file that matches the requested day. We use the
|
169
|
+
# local time setting for this first file even if it changes in
|
170
|
+
# subsequent files.
|
171
|
+
@window_start_time = window_start_time
|
172
|
+
@window_end_time = window_end_time
|
173
|
+
@utc_offset = utc_offset
|
174
|
+
end
|
74
175
|
|
75
176
|
mf.monitorings.each do |m|
|
76
|
-
# Ignore all entries outside our
|
77
|
-
|
78
|
-
|
79
|
-
|
80
|
-
|
81
|
-
|
82
|
-
|
83
|
-
# local time setting for this first file even if it changes in
|
84
|
-
# subsequent files.
|
85
|
-
@noon_yesterday = noon_yesterday
|
86
|
-
@noon_today = noon_today
|
87
|
-
@utc_offset = utc_offset
|
88
|
-
end
|
177
|
+
# Ignore all entries outside our time window.
|
178
|
+
next if m.timestamp < @window_start_time ||
|
179
|
+
m.timestamp >= @window_end_time
|
180
|
+
|
181
|
+
# The index (minutes after noon yesterday) to address all the value
|
182
|
+
# arrays.
|
183
|
+
index = (m.timestamp - @window_start_time) / 60
|
89
184
|
|
185
|
+
# The activity type and intensity are stored in the same FIT field.
|
186
|
+
# We'll break them into 2 separate values.
|
90
187
|
if (cati = m.current_activity_type_intensity)
|
91
|
-
activity_type = cati & 0x1F
|
188
|
+
@activity_type[index] = cati & 0x1F
|
189
|
+
@activity_intensity[index] = (cati >> 5) & 0x7
|
190
|
+
end
|
92
191
|
|
93
|
-
|
94
|
-
|
95
|
-
|
96
|
-
intensity = (cati >> 5) & 0x7
|
97
|
-
@sleep_activity[index] = intensity
|
98
|
-
else
|
99
|
-
@sleep_activity[index] = false
|
100
|
-
end
|
192
|
+
# Store heart rate data if available.
|
193
|
+
if m.heart_rate
|
194
|
+
@heart_rate[index] = m.heart_rate
|
101
195
|
end
|
102
196
|
end
|
103
197
|
end
|
104
198
|
|
105
199
|
end
|
106
200
|
|
107
|
-
def
|
201
|
+
def fill_monitoring_data
|
202
|
+
# The FIT files only contain a timestamped entry when new values have
|
203
|
+
# been measured. The timestamp marks the end of the period where the
|
204
|
+
# recorded values were current.
|
205
|
+
#
|
206
|
+
# We want to have an entry for every minute. So we have to replicate the
|
207
|
+
# found value for all previous minutes until we find another valid
|
208
|
+
# entry.
|
108
209
|
current = nil
|
109
|
-
@
|
110
|
-
|
111
|
-
|
210
|
+
[ @activity_type, @activity_intensity, @heart_rate ].each do |dataset|
|
211
|
+
current = nil
|
212
|
+
# We need to fill back-to-front, so we reverse the array during the
|
213
|
+
# fill. And reverse it back at the end.
|
214
|
+
dataset.reverse!.map! do |v|
|
215
|
+
v.nil? ? current : current = v
|
216
|
+
end.reverse!
|
217
|
+
end
|
218
|
+
end
|
112
219
|
|
220
|
+
# Dump all input and intermediate data for the sleep tracking into a CSV
|
221
|
+
# file if DEBUG mode is enabled.
|
222
|
+
def dump_data
|
113
223
|
if $DEBUG
|
114
|
-
File.open('
|
115
|
-
f.puts 'Date;
|
116
|
-
|
117
|
-
|
224
|
+
File.open('monitoring-data.csv', 'w') do |f|
|
225
|
+
f.puts 'Date;Activity Type;Activity Level;Weighted Act. Level;' +
|
226
|
+
'Heart Rate;Activity Class;Heart Rate Class;Sleep Phase'
|
227
|
+
0.upto(TIME_WINDOW_MINUTES - 1) do |i|
|
228
|
+
at = @activity_type[i]
|
229
|
+
ai = @activity_intensity[i]
|
230
|
+
wsa = @weighted_sleep_activity[i]
|
231
|
+
hr = @heart_rate[i]
|
232
|
+
sac = @sleep_activity_classification[i]
|
233
|
+
shc = @sleep_heart_rate_classification[i]
|
234
|
+
sp = @sleep_phase[i]
|
235
|
+
f.puts "#{@window_start_time + i * 60};" +
|
236
|
+
"#{at.is_a?(Fixnum) ? at : ''};" +
|
237
|
+
"#{ai.is_a?(Fixnum) ? ai : ''};" +
|
238
|
+
"#{wsa};" +
|
239
|
+
"#{hr.is_a?(Fixnum) ? hr : ''};" +
|
240
|
+
"#{sac ? sac.to_s : ''};" +
|
241
|
+
"#{shc ? shc.to_s : ''};" +
|
242
|
+
"#{sp.to_s}"
|
118
243
|
end
|
119
244
|
end
|
120
245
|
end
|
121
246
|
end
|
122
247
|
|
123
|
-
def
|
124
|
-
|
125
|
-
|
126
|
-
|
127
|
-
|
128
|
-
|
129
|
-
|
130
|
-
|
131
|
-
|
132
|
-
|
133
|
-
|
248
|
+
def categorize_sleep_activity
|
249
|
+
delta = 7
|
250
|
+
0.upto(TIME_WINDOW_MINUTES - 1) do |i|
|
251
|
+
intensity_sum = 0
|
252
|
+
weight_sum = 0
|
253
|
+
|
254
|
+
(i - delta).upto(i + delta) do |j|
|
255
|
+
next if i < 0 || i >= TIME_WINDOW_MINUTES
|
256
|
+
|
257
|
+
weight = delta - (i - j).abs
|
258
|
+
intensity_sum += weight *
|
259
|
+
(@activity_type[j] != 8 ? 8 : @activity_intensity[j])
|
260
|
+
weight_sum += weight
|
134
261
|
end
|
135
|
-
|
262
|
+
|
263
|
+
# Normalize the weighted intensity sum
|
264
|
+
@weighted_sleep_activity[i] =
|
265
|
+
intensity_sum.to_f / weight_sum
|
266
|
+
|
267
|
+
@sleep_activity_classification[i] =
|
268
|
+
if @weighted_sleep_activity[i] > 2.2
|
269
|
+
:wake
|
270
|
+
elsif @weighted_sleep_activity[i] > 0.5
|
271
|
+
:low_activity
|
272
|
+
else
|
273
|
+
:no_activity
|
274
|
+
end
|
136
275
|
end
|
276
|
+
end
|
137
277
|
|
138
|
-
|
139
|
-
|
140
|
-
|
141
|
-
|
142
|
-
|
278
|
+
# During the nightly sleep the heart rate is alternating between a high
|
279
|
+
# and a low frequency. The actual frequencies vary so that we need to look
|
280
|
+
# for the transitions to classify each sample as high or low.
|
281
|
+
def categorize_sleep_heart_rate
|
282
|
+
@sleep_heart_rate_classification = Array.new(TIME_WINDOW_MINUTES, nil)
|
283
|
+
|
284
|
+
last_heart_rate = 0
|
285
|
+
current_category = :high_hr
|
286
|
+
last_transition_index = 0
|
287
|
+
last_transition_delta = 0
|
288
|
+
transitions = 0
|
289
|
+
|
290
|
+
0.upto(TIME_WINDOW_MINUTES - 1) do |i|
|
291
|
+
if @sleep_activity_classification[i] == :wake ||
|
292
|
+
@heart_rate[i].nil? || @heart_rate[i] == 0
|
293
|
+
last_heart_rate = 0
|
294
|
+
current_category = :high_hr
|
295
|
+
last_transition_index = i + 1
|
296
|
+
last_transition_delta = 0
|
297
|
+
next
|
298
|
+
end
|
299
|
+
|
300
|
+
if last_heart_rate
|
301
|
+
if current_category == :high_hr
|
302
|
+
if last_heart_rate > @heart_rate[i]
|
303
|
+
# High/low transition found
|
304
|
+
current_category = :low_hr
|
305
|
+
transitions += 1
|
306
|
+
last_transition_delta = last_heart_rate - @heart_rate[i]
|
307
|
+
last_transition_index = i
|
308
|
+
elsif last_heart_rate < @heart_rate[i] &&
|
309
|
+
last_transition_delta < @heart_rate[i] - last_heart_rate
|
310
|
+
# The previously found high segment was wrongly categorized as
|
311
|
+
# such. Convert it to low segment.
|
312
|
+
last_transition_index.upto(i - 1) do |j|
|
313
|
+
@sleep_heart_rate_classification[j] = :low_hr
|
314
|
+
end
|
315
|
+
# Now we are in a high segment.
|
316
|
+
current_category = :high_hr
|
317
|
+
last_transition_delta += @heart_rate[i] - last_heart_rate
|
318
|
+
last_transition_index = i
|
319
|
+
end
|
320
|
+
else
|
321
|
+
if last_heart_rate < @heart_rate[i]
|
322
|
+
# Low/High transition found.
|
323
|
+
current_category = :high_hr
|
324
|
+
transitions += 1
|
325
|
+
last_transition_delta = @heart_rate[i] - last_heart_rate
|
326
|
+
last_transition_index = i
|
327
|
+
elsif last_heart_rate > @heart_rate[i] &&
|
328
|
+
last_transition_delta < last_heart_rate - @heart_rate[i]
|
329
|
+
# The previously found low segment was wrongly categorized as
|
330
|
+
# such. Convert it to high segment.
|
331
|
+
last_transition_index.upto(i - 1) do |j|
|
332
|
+
@sleep_heart_rate_classification[j] = :high_hr
|
333
|
+
end
|
334
|
+
# Now we are in a low segment.
|
335
|
+
current_category = :low_hr
|
336
|
+
last_transition_delta += last_heart_rate - @heart_rate[i]
|
337
|
+
last_transition_index = i
|
338
|
+
end
|
143
339
|
end
|
340
|
+
@sleep_heart_rate_classification[i] = current_category
|
144
341
|
end
|
342
|
+
|
343
|
+
last_heart_rate = @heart_rate[i]
|
145
344
|
end
|
345
|
+
|
346
|
+
# We consider the HR transition data good enough if we have found at
|
347
|
+
# least 3 transitions.
|
348
|
+
transitions > 3
|
146
349
|
end
|
147
350
|
|
148
|
-
|
149
|
-
|
150
|
-
|
151
|
-
|
152
|
-
|
153
|
-
|
154
|
-
|
155
|
-
|
156
|
-
|
157
|
-
|
158
|
-
|
159
|
-
|
351
|
+
# Use the wrist motion data and heart rate data to guess the sleep phases
|
352
|
+
# and sleep cycles.
|
353
|
+
def categorize_sleep_phase_by_hr_level
|
354
|
+
rem_possible = false
|
355
|
+
current_hr_phase = nil
|
356
|
+
cycle = nil
|
357
|
+
|
358
|
+
0.upto(TIME_WINDOW_MINUTES - 1) do |i|
|
359
|
+
sac = @sleep_activity_classification[i]
|
360
|
+
hrc = @sleep_heart_rate_classification[i]
|
361
|
+
|
362
|
+
if hrc != current_hr_phase
|
363
|
+
if current_hr_phase.nil?
|
364
|
+
if hrc == :high_hr
|
365
|
+
# Wake/High transition.
|
366
|
+
rem_possible = false
|
367
|
+
else
|
368
|
+
# Wake/Low transition. Should be very uncommon.
|
369
|
+
rem_possible = true
|
370
|
+
end
|
371
|
+
cycle = SleepCycle.new(@window_start_time, i)
|
372
|
+
elsif current_hr_phase == :high_hr
|
373
|
+
rem_possible = false
|
374
|
+
if hrc.nil?
|
375
|
+
# High/Wake transition. Wakeing up from light sleep.
|
376
|
+
if cycle
|
377
|
+
cycle.end_idx = i - 1
|
378
|
+
@sleep_cycles << cycle
|
379
|
+
cycle = nil
|
380
|
+
end
|
381
|
+
else
|
382
|
+
# High/Low transition. Going into deep sleep
|
383
|
+
if cycle
|
384
|
+
# A high/low transition completes the cycle if we already have
|
385
|
+
# a low/high transition for this cycle. The actual end
|
386
|
+
# should be the end of the REM phase, but we have to correct
|
387
|
+
# this and the start of the new cycle later.
|
388
|
+
cycle.high_low_trans_idx = i
|
389
|
+
if cycle.low_high_trans_idx
|
390
|
+
cycle.end_idx = i - 1
|
391
|
+
@sleep_cycles << cycle
|
392
|
+
cycle = SleepCycle.new(@window_start_time, i, cycle)
|
393
|
+
end
|
394
|
+
end
|
395
|
+
end
|
396
|
+
else
|
397
|
+
if hrc.nil?
|
398
|
+
# Low/Wake transition. Waking up from deep sleep.
|
399
|
+
rem_possible = false
|
400
|
+
if cycle
|
401
|
+
cycle.end_idx = i - 1
|
402
|
+
@sleep_cycles << cycle
|
403
|
+
cycle = nil
|
404
|
+
end
|
405
|
+
else
|
406
|
+
# Low/High transition. REM phase possible
|
407
|
+
rem_possible = true
|
408
|
+
cycle.low_high_trans_idx = i if cycle
|
409
|
+
end
|
410
|
+
end
|
160
411
|
end
|
412
|
+
current_hr_phase = hrc
|
161
413
|
|
162
|
-
|
163
|
-
|
164
|
-
|
165
|
-
|
166
|
-
|
167
|
-
|
168
|
-
|
414
|
+
next unless hrc && sac
|
415
|
+
|
416
|
+
@sleep_phase[i] =
|
417
|
+
if hrc == :high_hr
|
418
|
+
if sac == :no_activity
|
419
|
+
:nrem1
|
420
|
+
else
|
421
|
+
rem_possible ? :rem : :nrem1
|
422
|
+
end
|
423
|
+
else
|
424
|
+
if sac == :no_activity
|
425
|
+
:nrem3
|
426
|
+
else
|
427
|
+
:nrem2
|
428
|
+
end
|
429
|
+
end
|
169
430
|
end
|
170
|
-
@sleep_intervals << SleepInterval.new(current_phase_start, @noon_today,
|
171
|
-
current_phase)
|
172
431
|
end
|
173
432
|
|
174
|
-
def
|
175
|
-
|
433
|
+
def categorize_sleep_phase_by_activity_level
|
434
|
+
@sleep_phase = []
|
435
|
+
mappings = { :wake => :wake, :low_activity => :nrem1,
|
436
|
+
:no_activity => :nrem3 }
|
437
|
+
|
438
|
+
current_cycle_start = nil
|
439
|
+
current_phase = @sleep_activity_classification[0]
|
440
|
+
current_phase_start = 0
|
441
|
+
|
442
|
+
0.upto(TIME_WINDOW_MINUTES - 1) do |idx|
|
443
|
+
# Without HR data, we need to use other threshold values to determine
|
444
|
+
# the activity classification. Hence we do it again here.
|
445
|
+
@sleep_activity_classification[idx] = sac =
|
446
|
+
if @weighted_sleep_activity[idx] > 2.2
|
447
|
+
:wake
|
448
|
+
elsif @weighted_sleep_activity[idx] > 0.01
|
449
|
+
:low_activity
|
450
|
+
else
|
451
|
+
:no_activity
|
452
|
+
end
|
453
|
+
|
454
|
+
@sleep_phase << mappings[sac]
|
176
455
|
|
177
|
-
|
178
|
-
if
|
179
|
-
|
180
|
-
first_deep_sleep_idx = idx unless first_deep_sleep_idx
|
181
|
-
last_deep_sleep_idx = idx
|
456
|
+
# Sleep cycles start at wake/non-wake transistions.
|
457
|
+
if current_cycle_start.nil? && sac != :wake
|
458
|
+
current_cycle_start = idx
|
182
459
|
end
|
183
|
-
end
|
184
460
|
|
185
|
-
|
461
|
+
if current_phase != sac || idx >= TIME_WINDOW_MINUTES
|
462
|
+
# We have detected the end of a phase.
|
463
|
+
if (current_phase == :no_activity || sac == :wake) &&
|
464
|
+
current_cycle_start
|
465
|
+
# The end of the :no_activity phase marks the end of a sleep cycle.
|
466
|
+
@sleep_cycles << (cycle = SleepCycle.new(@window_start_time,
|
467
|
+
current_cycle_start,
|
468
|
+
@sleep_cycles.last))
|
469
|
+
cycle.end_idx = idx
|
470
|
+
current_cycle_start = nil
|
471
|
+
end
|
186
472
|
|
187
|
-
|
188
|
-
|
189
|
-
|
190
|
-
end
|
191
|
-
if last_deep_sleep_idx < @sleep_intervals.length - 2 &&
|
192
|
-
@sleep_intervals[last_deep_sleep_idx + 1].phase == :light_sleep
|
193
|
-
last_deep_sleep_idx += 1
|
473
|
+
current_phase = sac
|
474
|
+
current_phase_start = idx
|
475
|
+
end
|
194
476
|
end
|
477
|
+
end
|
195
478
|
|
196
|
-
|
197
|
-
|
479
|
+
def delete_wake_cycles
|
480
|
+
wake_cycles = []
|
481
|
+
@sleep_cycles.each { |c| wake_cycles << c if c.is_wake_cycle? }
|
482
|
+
|
483
|
+
wake_cycles.each { |c| c.unlink }
|
484
|
+
@sleep_cycles.delete_if { |c| wake_cycles.include?(c) }
|
198
485
|
end
|
199
486
|
|
200
|
-
def
|
201
|
-
|
202
|
-
@
|
203
|
-
|
204
|
-
|
205
|
-
@
|
206
|
-
if p.phase == :light_sleep
|
207
|
-
@light_sleep += seconds
|
208
|
-
else
|
209
|
-
@deep_sleep += seconds
|
210
|
-
end
|
487
|
+
def determine_resting_heart_rate
|
488
|
+
# Find the smallest heart rate. TODO: While being awake.
|
489
|
+
@heart_rate.each_with_index do |heart_rate, idx|
|
490
|
+
next unless heart_rate && heart_rate > 0
|
491
|
+
if @resting_heart_rate.nil? || @resting_heart_rate > heart_rate
|
492
|
+
@resting_heart_rate = heart_rate
|
211
493
|
end
|
212
494
|
end
|
213
495
|
end
|
214
496
|
|
497
|
+
def calculate_totals
|
498
|
+
@total_sleep = @light_sleep = @deep_sleep = @rem_sleep = 0
|
499
|
+
|
500
|
+
@sleep_cycles.each do |p|
|
501
|
+
@total_sleep += p.total_seconds.values.inject(0, :+)
|
502
|
+
@light_sleep += p.total_seconds[:nrem1] + p.total_seconds[:nrem2]
|
503
|
+
@deep_sleep += p.total_seconds[:nrem3]
|
504
|
+
@rem_sleep += p.total_seconds[:rem]
|
505
|
+
end
|
506
|
+
end
|
507
|
+
|
215
508
|
# Return the begining of the current day in local time as Time object.
|
216
509
|
def begining_of_today(time = Time.now)
|
217
510
|
sec, min, hour, day, month, year = time.to_a
|